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ABSTRACT: Mass spectrometry (MS) is uniquely powerful for measuring the mass of intact proteins and other biomole-
cules. New applications have expanded intact protein analysis into biopharmaceuticals, native MS, and top-down prote-
omics, all of which have driven the need for more automated data processing pipelines. However, key metrics in the field 
are often not precisely defined. For example, there are different views on how to calculate uncertainty from spectra. This 
Critical Insight will explore the different definitions of mass, error, and uncertainty. It will discuss situations where different 
definitions may be more suitable and provide recommendations for best practices. Targeting both beginners and experts, 
the goal of the discussion is to provide a common foundation of terminology, enhance statistical rigor, and improve automa-
tion of data analysis.   

Introduction 
Native electrospray (ESI) mass spectrometry (MS) has 
matured from an emerging technology for specialists 
into an established research tool. Unlike conventional 
soft ionization MS, which preserves covalent interac-
tions but often disrupts non-covalent interactions with 
denaturing solvent conditions, native MS uses non-
denaturing solvent conditions prior to ionization and 
often seeks to preserve non-covalent interactions dur-
ing MS to study biomolecular interactions.1 As instru-
mentation and methods have improved, more academic 
researchers are using native MS to characterize bio-
molecular interactions and stoichiometry.1-3 Further-
more, native MS techniques are becoming essential in 
industry for development and quality control of bio-
therapeutics.4,5 The expansion of the field, especially 
into industrial applications, is transforming the analysis 
of native MS data from a manual process performed by 
trained personnel to an automated process performed 
by sophisticated software from a variety of vendors and 
research labs.6-10  
 
As the field expands, it is important that we discuss best 
practices for native MS data analysis and interpretation. 
Community-driven efforts have driven standardization 
for proteomics,11 glycomics,12 and ion mobility spec-
trometry,13 in particular with regards to development of 
data analysis software.14 A full discussion for native MS 
is beyond the limited scope of this Critical Insight, but 
these fields provide helpful recommendations for native 
MS.  
 

Here, the goal is to start a conversation over how to de-
fine and calculate mass, error, and uncertainty. We will 
focus only on the mass information. Readers interested 
in intensities are referred to prior work from John Klas-
sen15,16 and Valerie Gabelica.17,18 We will also limit our 
discussion to spectra without isotopic resolution, as 
spectra with isotopic resolution warrant different con-
sideration. Finally, we will primarily consider homoge-
neous spectra with easily assignable charge states to 
simplify our discussion. Heterogeneous spectra can pre-
sent additional challenges of intrinsic ambiguity and are 
nicely reviewed by Roland and Prell19 and discussed 
previously.20   
 
Precise definitions of mass, error, and uncertainty spe-
cific to native MS will help ensure reproducibility of 
results, standardize methods, and guide software de-
velopment for data analysis. The goal is that this Critical 
Insight will offer a helpful introduction to beginners and 
some thought-provoking questions for experienced 
practitioners. Although we will focus on native MS, the 
same discussions are also relevant for denatured or 
conventional ESI analysis of larger molecules and for 
MS1 spectra in top-down proteomics.   
 
How Do We Calculate Mass? 
The primary goal of many MS experiments is to meas-
ure the mass of a molecule or complex. Although this 
appears to be trivial, carefully defining the mass meas-
ured by MS without isotopic resolution requires more 
discussion to carefully define the measurand.21 Mass 
spectrometry measures the distribution of ion 
mass/charge (m/z) values. For our discussions, we will 



 

disregard the differences between mass analyzers and 
consider the distribution of generic intensity with re-
spect to m/z. For convenience, we will refer to a single 
distribution of ions in m/z as a peak, which may include 
adducts.   
 
Several descriptive statistics can be employed to de-
scribe the position of the peak in m/z: mean, median, 
and apex. In practice, median is rarely used to describe 
peaks in MS. The mean is often referred to as the cen-
troid and is defined for MS as the average of m/z values 
(𝑚𝑖) weighted by their intensities (𝐼𝑖): 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑚𝑖𝐼𝑖

∑ 𝐼𝑖
. The apex is the position in m/z of the highest in-

tensity value: 𝐴𝑝𝑒𝑥 = 𝑚𝑀𝑎𝑥(𝐼). 

 
In the case of an ideal symmetric peak, the centroid and 
the apex will be the same (Figure 1A). However, unlike 
denatured MS, peaks in native MS are often not sym-
metric, typically because adduction of salts, solvent, or 
other small molecules from solution shifts a subpopula-
tion of ions to slightly higher mass.7,22-24 These sorts of 
adducts are important because native MS traditionally 
produced lower resolution data where adducts are con-
volved into the same peak and cannot be distinguished. 
A peak that is Gaussian on the low mass side and Lo-

rentzian on the high mass side, producing a longer tail 
at higher mass, can be used to model an asymmetric 
peak distribution caused by unresolvable adduction.25 
Here, the centroid and the apex diverge (Figure 1B). 
Importantly, the apex is likely a better measure of the 
true mass with asymmetric peak shapes because the 
centroid is easily skewed by higher mass adducts.  
 

Peaks in native MS may also be superimposed with 
baseline and noise. The apex is likely less sensitive to 
baseline effects (Figure 1D) but more sensitive to noise 
(Figure 1C). In contrast, the centroid is likely more sen-
sitive to baseline but less sensitive to noise.  
 
It is important to note that peaks are defined relative to 
a local window. The apex is defined as the local max, 
and the centroid must ignore intensity from neighbor-
ing peaks and from baseline or noise. Determining the 
window to define peaks is often subconscious for hu-
mans, but it must be specified for automated peak de-
tection and analysis. The apex is less sensitive to the 
definition of the local window than centroid, especially 
when baseline is present. For example, Figure 1D shows 
how the centroid can shift an otherwise ideal peak 
when baseline is included in the centroid calculation 
and the window is not centered. 

 

Figure 1. Sketch of an ideal peak (A) along with peaks suffering from adduction (B), noise (C), and baseline (D). The apex 
(green) and centroid (purple) are annotated along with the true peak (black, C only). For illustration, the width of the Gaussi-
an peak in C has been doubled, and the window in D has been shifted.  

 



 

 
Here, we propose that the apex is generally a more reli-
able measure of mass than centroid in native MS be-
cause it is less sensitive to adduction and baseline. It is 
also easier to calculate by hand or computer, in part 
because it is less sensitive to definitions of local win-
dow.  
 
In spectra where noise is a major issue, centroid may be 
more suitable, and the centroid of the intensities above 
a specific threshold is a useful compromise to avoid ad-
ducts causing a systematic shift towards higher masses. 
In UniDec,9,10 the peaks are generally defined as the 
apex, but tools allow calculation of the centroid for in-
tensities above a 0, 10, or 50% threshold. In any case, as 
instrumentation continues to improve, enhancements 
in resolution, desolvation, and data quality will lead to 
the convergence of centroid and apex.26-28 For example, 
improvements in resolution sometimes allow adducts 
to be resolved. In this case, adducts can be treated as 
distinct peaks and assigned independently as an analyte 
plus a specific number of bound adducts. 
 
Computational techniques such as smoothing and base-
line subtraction can be used for spectra with noise and 
baseline, respectively. A detailed discussion of different 
algorithms is outside the scope of this article. However, 
when used carefully, both approaches can be used safe-
ly to remove potential artifacts in the mass measure-
ment without distorting the underlying data. To apply 
these methods appropriately, start by understanding 
the sources of noise/baseline, which differ between 
instrument platforms. Next, learn how the algorithms 
work and what potential biases they may have. Finally, 
use the least amount of smoothing/subtraction needed. 
 
Our discussion has centered on a single peak, but ESI 
MS generally produces multiple charge states for a sin-
gle species. Thus, the mass is calculated from the sepa-
rate m/z values from each charge state and must be 
combined to determine the average mass. The simplest 
calculation is the average of the masses measured from 
each individual charge state.29 However, the un-
weighted average may be skewed from minor charge 
states at the fringes of the distribution with lower sig-
nal-to-noise ratios. Thus, we propose that the average 
weighted by intensity is a more reliable approach to 
combine peaks from multiple charge states. In fact, 
many deconvolution algorithms, including UniDec, use 
this approach implicitly to assemble a zero-charge mass 
spectrum, which is the weighted average of all data af-
ter transformation from m/z into mass. The mass defi-
nitions described above are equally applicable to the 
zero-charge spectrum and should converge to the same 
result as calculating the weighted average of individual 
charge state peaks.  
 
How Do We Calculate Error? 

In contrast to uncertainty/precision (discussed below), 
error or accuracy in native MS is easy to define and 
compute. The IUPAC definition of error is as “the result 
of a measurement minus the true value of the measur-
and.”30 Thus, if we measure a molecular weight 
(𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) and compare it with a predicted molecular 
weight (𝑀𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑), we define:  
 
𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  𝑀𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  
 
Hidden in this definition is a key insight into MS exper-
iments: the reason to measure mass is to determine the 
identity of an ion. The power of MS is that mass is easy 
to predict from a candidate molecule. With good stand-
ards ranging from 8-800 kDa,31 known molecules can be 
used to evaluate error, but known masses can also be 
calculated for potential species to help assign an exper-
imental peak. However, adduction can cause systematic 
biases towards positive error that should be considered 
when interpreting the data, especially for larger protein 
complexes where adducts are more difficult to remove.  
 
Although the definition of error in MS—how closely the 
measurement matches a predicted mass—is straight-
forward, establishing whether a certain amount of error 
allows us to confirm the identity of a peak requires a 
metric for uncertainty, which is more challenging to 
define.  
 
How Do We Calculate Uncertainty? 
To determine how well a measurement matches a pre-
diction, we need to know the uncertainty of the meas-
urement, defined as “the dispersion of values that could 
reasonably be attributed to the measurand.”21 However, 
in contrast to error, uncertainty or precision of the mass 
measurement is poorly defined for native MS. Here, we 
will weigh the advantages and disadvantages of three 
metrics for Type A uncertainty (uncertainty that can be 
statistically evaluated)21 of mass measured by ESI: 1) 
the weighted or unweighted standard deviation of the 
mass calculated from different charge states, 2) the 
peak width, and 3) replicate measurements. In homo-
geneous spectra where charge states are clearly assign-
able, we will assume essentially zero uncertainty in the 
charge state. Heterogeneous spectra19,20 with uncertain-
ty in the charge state assignments will be partially cap-
tured by the metrics described below but may require 
additional considerations not explored here. 
 
Standard Deviation of Charge States 
Perhaps the earliest definition of ESI uncertainty is the 
standard deviation of the mass calculated from different 
charge states (Figure 2A).29 The mass of each peak is 
typically defined as: 𝑀𝑖 = 𝑚𝑖𝑧𝑖 − 𝑀𝑎𝑧𝑖 , where 𝑀𝑖  is the 
mass of the peak, 𝑚𝑖  is the m/z value of the peak, 𝑧𝑖  is 
the assigned charge state of the peak, and 𝑀𝑎 is the 
mass of the ESI charge carrier, typically hydrogen in 
positive ionization mode. After assigning N peaks as 
belonging to the same charge state series, 𝑀𝑎𝑣𝑔 can be 



 

calculated as the average of the set of all 𝑀𝑖  values in 
the charge state series, and the standard deviation can 
be calculated:  
 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √
1

𝑁
∑ (𝑀𝑖 − 𝑀𝑎𝑣𝑔)

2𝑁
𝑖 ,  

 
as shown in Figure 2A. Noise, background, and broader 
peaks (see Figure 1) will increase the standard devia-
tion because the masses from each peak (either the 
apex or centroid) will vary more between charge states 
under these conditions. 
 
However, the standard deviation of charge states pre-
sents some significant limitations, primarily due to dif-
ficulties in defining which peaks to include. For exam-
ple, overlapping peaks in more complex spectra present 

challenges for identifying the m/z value and thus the 
mass for these peaks. Even in a relatively simple spec-
trum with a single charge series, it can be challenging to 
decide which charge states to include when peaks at the 
fringes of the charge state distribution have low signal-
to-noise ratios, such as points M1 and M5 in Figure 2A. 
Overall, the standard deviation of charge states is rela-
tively easy for humans to calculate but is more challeng-
ing to define precisely for algorithms.  
 
Using a weighted standard deviation solves some of 
these challenges because the most abundant peaks are 
the most influential. Fringe peaks, like M1 and M5 in Fig-
ure 2A, will have less influence on the weighted stand-
ard deviation. However, very narrow charge state dis-
tributions present a significant challenge for weighted 
standard deviation and to a lesser degree with un-

 

Figure 2. Three different measures of uncertainty: A) the standard deviation of the masses, Mi, measured from each different 
charge state in m/z; B) the peak width such as the full width at half maximum in mass; and C) replicate mass measurements 
from three samples.  

 



 

weighted standard deviation. It is not uncommon for 
small proteins to have only one or two dominant charge 
states in native MS,32,33  which will limit the statistical 
utility of defining uncertainty from weighted standard 
deviation of the charge state distribution.  
 
Peak Width 
Another way to define uncertainty is to consider the 
peak as a statistical distribution of masses and use a 
measure of the peak width as the uncertainty (Figure 
2B). By fitting the peak to a Gaussian distribution, the 
standard deviation of the peak distribution can be used 
as a metric of uncertainty. For asymmetric peaks that 
do not fit a clear statistical model (Figure 1B), full width 
at half max (FWHM) can be used instead. Peak width, 
however defined, is useful as a metric for uncertainty 
because it is easily defined for complex spectra with 
overlapping peaks, which can be computationally sepa-
rated by deconvolution or fitting.9,34-37 It also avoids 
issues with trying to decide which fringe charge states 
to include. Thus, it is easier for computers to calculate 
but is more challenging for humans to calculate precise-
ly by hand. 
 
It is important to note that the standard deviation of 
charge states and the peak width are fundamentally 
different statistical measures. The standard deviation of 
charge states represents the standard deviation of the 
mean of the ion population. In other words, how precise 
is the measurement of the mean mass? The peak width 
represents the standard deviation of the population of 
ions, which may include adducts as mentioned above. In 
other words, how wide is the spread of masses in a 
packet of ions? These can give very different results and 
mean fundamentally different things.  
 
Replicate Measurements 
The primary limitation of both charge state and peak 
width definitions of uncertainty is that they use a single 
spectrum to estimate uncertainty. Even when multiple 
charge states are present and multiple scans are col-
lected, we propose that a single spectrum should be 
considered a single measurement and is insufficient to 
fully estimate the uncertainty. Instead, replicate meas-
urements are a better way to determine the uncertainty. 
Our proposal is that the best definition of uncertainty is 
the standard deviation of the measured mass between 
replicate samples of the analyte (Figure 2C). Standard 
deviation of multiple replicates is easy for both humans 
and computers to calculate from either raw or decon-
volved data. It sufficiently captures the uncertainty 
caused by poor spectra. Finally, more scans, charge 
states, and replicates will decrease the uncertainty of 
the measurement, as one would expect.  
 
In practice, researchers will have to define the scope of 
what “replicate samples” means based on the questions 
they seek to answer, the properties of the analyte, and 
the sample preparation procedures. For example, in our 

research with native MS of nanodisc complexes, we 
found that the primary source of variance is the nano-
disc assembly process. Replicate measurements of the 
same sample of nanodiscs show lower standard devia-
tions than replicate samples prepared under different 
assembly reactions.10 Thus, we define replicate samples 
to mean replicate assemblies. However, soluble protein 
complexes such as myoglobin are less sensitive to sam-
ple preparation. For mass spectrometry studies using 
myoglobin as a model protein, we found it was suffi-
cient to define replicate samples of myoglobin as simply 
replicate buffer exchange columns from the same start-
ing stocked prepared by dissolving protein from the 
bottle in ammonium acetate solution. However, if we 
were seeking to answer larger biological questions re-
lated to myoglobin, more rigorous biological replicates 
might be necessary.  
 
At a minimum, we propose that uncertainty from MS 
measurements should be determined from separate 
injections of replicate samples. The manual clipping of 
the homemade capillary needles that are common in 
native MS can introduce variance between injections 
due to different tip diameters,25,38 so the use of replicate 
needles is a reasonable minimum to capture potential 
uncertainty in the measurement. Again, each researcher 
needs to define the appropriate replicates for their sys-
tem, which may go beyond the minimum level proposed 
here. 
 
Finally, it is important to note that each of these metrics 
captures primarily random effects. There can be addi-
tional systematic effects on uncertainty and error that 
each of these will miss. For example, poor calibration of 
the mass spectrometer will introduce error that is not 
reflected in the uncertainty metrics discussed here. 
Changes to sample preparations and instrument pa-
rameters can also shift the ion population by reducing 
adduction, which may underestimate the uncertainty in 
the ion population if we broaden our definition of the 
ion population to consider alternative solution- and gas-
phase treatments. Capturing these forms of error and 
uncertainty will require Type B evaluations uncertainty, 
which do not use statistical analysis but instead use 
other forms of knowledge, such as comparison against 
true values from standards.21    
 
Conclusions 
Here, we have discussed the definitions of mass, error, 
and uncertainty specific to native MS. Error is easy to 
define and calculate. In contrast, there are two primary 
definitions of mass: centroid and apex. Both should 
yield similar results for ideal peaks, but we propose that 
apex is a more straightforward definition in most cases. 
However, centroid above a certain threshold is more 
useful with noisy spectra. 
 
For uncertainty, three primary definitions are used in 
the field, and they all tell us different things. Charge 



 

state uncertainty captures the standard error of the 
mean within a single spectrum. FWHM captures the 
standard deviation of the ion population, also from a 
single spectrum. Replicate measurements captures the 
standard error of the mean across multiple measure-
ments. We propose that the best measure of uncertainty 
of the mass is from replicate measurements, although 
FWHM is also useful to report on the standard deviation 
of the population. 
 
Although precise definitions of mass, error, and uncer-
tainty are admittedly not the most exciting topic, they 
are important to advancing native MS and intact mass 
analysis. As the field advances to more automation and 
sophisticated data analysis, having common definitions 
will support ongoing software development and com-
mon standards in analysis.  
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