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ABSTRACT: Mass spectrometry (MS) is uniquely powerful for measuring the mass of intact proteins and other biomole-
cules. New applications have expanded intact protein analysis into biopharmaceuticals, native MS, and top-down prote-
omics, all of which have driven the need for more automated data processing pipelines. However, key metrics in the field
are often not precisely defined. For example, there are different views on how to calculate uncertainty from spectra. This
Critical Insight will explore the different definitions of mass, error, and uncertainty. It will discuss situations where different
definitions may be more suitable and provide recommendations for best practices. Targeting both beginners and experts,
the goal of the discussion is to provide a common foundation of terminology, enhance statistical rigor, and improve automa-

tion of data analysis.

Introduction

Native electrospray (ESI) mass spectrometry (MS) has
matured from an emerging technology for specialists
into an established research tool. Unlike conventional
soft ionization MS, which preserves covalent interac-
tions but often disrupts non-covalent interactions with
denaturing solvent conditions, native MS uses non-
denaturing solvent conditions prior to ionization and
often seeks to preserve non-covalent interactions dur-
ing MS to study biomolecular interactions.! As instru-
mentation and methods have improved, more academic
researchers are using native MS to characterize bio-
molecular interactions and stoichiometry.l-3 Further-
more, native MS techniques are becoming essential in
industry for development and quality control of bio-
therapeutics.#®> The expansion of the field, especially
into industrial applications, is transforming the analysis
of native MS data from a manual process performed by
trained personnel to an automated process performed
by sophisticated software from a variety of vendors and
research labs.6-10

As the field expands, it is important that we discuss best
practices for native MS data analysis and interpretation.
Community-driven efforts have driven standardization
for proteomics,!! glycomics,'?2 and ion mobility spec-
trometry,13 in particular with regards to development of
data analysis software.1* A full discussion for native MS
is beyond the limited scope of this Critical Insight, but
these fields provide helpful recommendations for native
MS.

Here, the goal is to start a conversation over how to de-
fine and calculate mass, error, and uncertainty. We will
focus only on the mass information. Readers interested
in intensities are referred to prior work from John Klas-
sen!>16 and Valerie Gabelica.17.18 We will also limit our
discussion to spectra without isotopic resolution, as
spectra with isotopic resolution warrant different con-
sideration. Finally, we will primarily consider homoge-
neous spectra with easily assignable charge states to
simplify our discussion. Heterogeneous spectra can pre-
sent additional challenges of intrinsic ambiguity and are
nicely reviewed by Roland and Prell'® and discussed
previously.20

Precise definitions of mass, error, and uncertainty spe-
cific to native MS will help ensure reproducibility of
results, standardize methods, and guide software de-
velopment for data analysis. The goal is that this Critical
Insight will offer a helpful introduction to beginners and
some thought-provoking questions for experienced
practitioners. Although we will focus on native MS, the
same discussions are also relevant for denatured or
conventional ESI analysis of larger molecules and for
MS1 spectra in top-down proteomics.

How Do We Calculate Mass?

The primary goal of many MS experiments is to meas-
ure the mass of a molecule or complex. Although this
appears to be trivial, carefully defining the mass meas-
ured by MS without isotopic resolution requires more
discussion to carefully define the measurand.?! Mass
spectrometry measures the distribution of ion
mass/charge (m/z) values. For our discussions, we will



disregard the differences between mass analyzers and
consider the distribution of generic intensity with re-
spect to m/z. For convenience, we will refer to a single
distribution of ions in m/z as a peak, which may include
adducts.

Several descriptive statistics can be employed to de-
scribe the position of the peak in m/z: mean, median,
and apex. In practice, median is rarely used to describe
peaks in MS. The mean is often referred to as the cen-
troid and is defined for MS as the average of m/z values
(m;) weighted by their intensities ([;): Centroid =
% The apex is the position in m/z of the highest in-
1A
tensity value: Apex = Myqy(p).-

In the case of an ideal symmetric peak, the centroid and
the apex will be the same (Figure 1A). However, unlike
denatured MS, peaks in native MS are often not sym-
metric, typically because adduction of salts, solvent, or
other small molecules from solution shifts a subpopula-
tion of ions to slightly higher mass.”22-2¢ These sorts of
adducts are important because native MS traditionally
produced lower resolution data where adducts are con-
volved into the same peak and cannot be distinguished.
A peak that is Gaussian on the low mass side and Lo-
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rentzian on the high mass side, producing a longer tail
at higher mass, can be used to model an asymmetric
peak distribution caused by unresolvable adduction.2>
Here, the centroid and the apex diverge (Figure 1B).
Importantly, the apex is likely a better measure of the
true mass with asymmetric peak shapes because the
centroid is easily skewed by higher mass adducts.

Peaks in native MS may also be superimposed with
baseline and noise. The apex is likely less sensitive to
baseline effects (Figure 1D) but more sensitive to noise
(Figure 1C). In contrast, the centroid is likely more sen-
sitive to baseline but less sensitive to noise.

It is important to note that peaks are defined relative to
a local window. The apex is defined as the local max,
and the centroid must ignore intensity from neighbor-
ing peaks and from baseline or noise. Determining the
window to define peaks is often subconscious for hu-
mans, but it must be specified for automated peak de-
tection and analysis. The apex is less sensitive to the
definition of the local window than centroid, especially
when baseline is present. For example, Figure 1D shows
how the centroid can shift an otherwise ideal peak
when baseline is included in the centroid calculation
and the window is not centered.
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Figure 1. Sketch of an ideal peak (A) along with peaks suffering from adduction (B), noise (C), and baseline (D). The apex
(green) and centroid (purple) are annotated along with the true peak (black, C only). For illustration, the width of the Gaussi-
an peak in C has been doubled, and the window in D has been shifted.



Here, we propose that the apex is generally a more reli-
able measure of mass than centroid in native MS be-
cause it is less sensitive to adduction and baseline. It is
also easier to calculate by hand or computer, in part
because it is less sensitive to definitions of local win-
dow.

In spectra where noise is a major issue, centroid may be
more suitable, and the centroid of the intensities above
a specific threshold is a useful compromise to avoid ad-
ducts causing a systematic shift towards higher masses.
In UniDec,?10 the peaks are generally defined as the
apex, but tools allow calculation of the centroid for in-
tensities above a 0, 10, or 50% threshold. In any case, as
instrumentation continues to improve, enhancements
in resolution, desolvation, and data quality will lead to
the convergence of centroid and apex.26-28 For example,
improvements in resolution sometimes allow adducts
to be resolved. In this case, adducts can be treated as
distinct peaks and assigned independently as an analyte
plus a specific number of bound adducts.

Computational techniques such as smoothing and base-
line subtraction can be used for spectra with noise and
baseline, respectively. A detailed discussion of different
algorithms is outside the scope of this article. However,
when used carefully, both approaches can be used safe-
ly to remove potential artifacts in the mass measure-
ment without distorting the underlying data. To apply
these methods appropriately, start by understanding
the sources of noise/baseline, which differ between
instrument platforms. Next, learn how the algorithms
work and what potential biases they may have. Finally,
use the least amount of smoothing/subtraction needed.

Our discussion has centered on a single peak, but ESI
MS generally produces multiple charge states for a sin-
gle species. Thus, the mass is calculated from the sepa-
rate m/z values from each charge state and must be
combined to determine the average mass. The simplest
calculation is the average of the masses measured from
each individual charge state.?? However, the un-
weighted average may be skewed from minor charge
states at the fringes of the distribution with lower sig-
nal-to-noise ratios. Thus, we propose that the average
weighted by intensity is a more reliable approach to
combine peaks from multiple charge states. In fact,
many deconvolution algorithms, including UniDec, use
this approach implicitly to assemble a zero-charge mass
spectrum, which is the weighted average of all data af-
ter transformation from m/z into mass. The mass defi-
nitions described above are equally applicable to the
zero-charge spectrum and should converge to the same
result as calculating the weighted average of individual
charge state peaks.

How Do We Calculate Error?

In contrast to uncertainty/precision (discussed below),
error or accuracy in native MS is easy to define and
compute. The IUPAC definition of error is as “the result
of a measurement minus the true value of the measur-
and.”3® Thus, if we measure a molecular weight
(M yeasurea) and compare it with a predicted molecular
weight (M qicuiatea), We define:

Error = Mpeasurea — Mcaiculated

Hidden in this definition is a key insight into MS exper-
iments: the reason to measure mass is to determine the
identity of an ion. The power of MS is that mass is easy
to predict from a candidate molecule. With good stand-
ards ranging from 8-800 kDa,3! known molecules can be
used to evaluate error, but known masses can also be
calculated for potential species to help assign an exper-
imental peak. However, adduction can cause systematic
biases towards positive error that should be considered
when interpreting the data, especially for larger protein
complexes where adducts are more difficult to remove.

Although the definition of error in MS—how closely the
measurement matches a predicted mass—is straight-
forward, establishing whether a certain amount of error
allows us to confirm the identity of a peak requires a
metric for uncertainty, which is more challenging to
define.

How Do We Calculate Uncertainty?

To determine how well a measurement matches a pre-
diction, we need to know the uncertainty of the meas-
urement, defined as “the dispersion of values that could
reasonably be attributed to the measurand.”?! However,
in contrast to error, uncertainty or precision of the mass
measurement is poorly defined for native MS. Here, we
will weigh the advantages and disadvantages of three
metrics for Type A uncertainty (uncertainty that can be
statistically evaluated)?! of mass measured by ESI: 1)
the weighted or unweighted standard deviation of the
mass calculated from different charge states, 2) the
peak width, and 3) replicate measurements. In homo-
geneous spectra where charge states are clearly assign-
able, we will assume essentially zero uncertainty in the
charge state. Heterogeneous spectra!?20 with uncertain-
ty in the charge state assignments will be partially cap-
tured by the metrics described below but may require
additional considerations not explored here.

Standard Deviation of Charge States

Perhaps the earliest definition of ESI uncertainty is the
standard deviation of the mass calculated from different
charge states (Figure 2A).2° The mass of each peak is
typically defined as: M; = m;z; — M,z;, where M; is the
mass of the peak, m; is the m/z value of the peak, z; is
the assigned charge state of the peak, and M, is the
mass of the ESI charge carrier, typically hydrogen in
positive ionization mode. After assigning N peaks as
belonging to the same charge state series, M, can be



calculated as the average of the set of all M; values in
the charge state series, and the standard deviation can
be calculated:

Standard Deviation = \/% YN(M; - Mavg)z,

as shown in Figure 2A. Noise, background, and broader
peaks (see Figure 1) will increase the standard devia-
tion because the masses from each peak (either the
apex or centroid) will vary more between charge states
under these conditions.

However, the standard deviation of charge states pre-
sents some significant limitations, primarily due to dif-
ficulties in defining which peaks to include. For exam-
ple, overlapping peaks in more complex spectra present

Ms Std. Dev. of Charge States

challenges for identifying the m/z value and thus the
mass for these peaks. Even in a relatively simple spec-
trum with a single charge series, it can be challenging to
decide which charge states to include when peaks at the
fringes of the charge state distribution have low signal-
to-noise ratios, such as points M; and Ms in Figure 2A.
Overall, the standard deviation of charge states is rela-
tively easy for humans to calculate but is more challeng-
ing to define precisely for algorithms.

Using a weighted standard deviation solves some of
these challenges because the most abundant peaks are
the most influential. Fringe peaks, like M; and Ms in Fig-
ure 2A, will have less influence on the weighted stand-
ard deviation. However, very narrow charge state dis-
tributions present a significant challenge for weighted
standard deviation and to a lesser degree with un-
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Figure 2. Three different measures of uncertainty: A) the standard deviation of the masses, M;, measured from each different
charge state in m/z; B) the peak width such as the full width at half maximum in mass; and C) replicate mass measurements

from three samples.



weighted standard deviation. It is not uncommon for
small proteins to have only one or two dominant charge
states in native MS,3233 which will limit the statistical
utility of defining uncertainty from weighted standard
deviation of the charge state distribution.

Peak Width

Another way to define uncertainty is to consider the
peak as a statistical distribution of masses and use a
measure of the peak width as the uncertainty (Figure
2B). By fitting the peak to a Gaussian distribution, the
standard deviation of the peak distribution can be used
as a metric of uncertainty. For asymmetric peaks that
do not fit a clear statistical model (Figure 1B), full width
at half max (FWHM) can be used instead. Peak width,
however defined, is useful as a metric for uncertainty
because it is easily defined for complex spectra with
overlapping peaks, which can be computationally sepa-
rated by deconvolution or fitting.%34-37 It also avoids
issues with trying to decide which fringe charge states
to include. Thus, it is easier for computers to calculate
but is more challenging for humans to calculate precise-
ly by hand.

It is important to note that the standard deviation of
charge states and the peak width are fundamentally
different statistical measures. The standard deviation of
charge states represents the standard deviation of the
mean of the ion population. In other words, how precise
is the measurement of the mean mass? The peak width
represents the standard deviation of the population of
ions, which may include adducts as mentioned above. In
other words, how wide is the spread of masses in a
packet of ions? These can give very different results and
mean fundamentally different things.

Replicate Measurements

The primary limitation of both charge state and peak
width definitions of uncertainty is that they use a single
spectrum to estimate uncertainty. Even when multiple
charge states are present and multiple scans are col-
lected, we propose that a single spectrum should be
considered a single measurement and is insufficient to
fully estimate the uncertainty. Instead, replicate meas-
urements are a better way to determine the uncertainty.
Our proposal is that the best definition of uncertainty is
the standard deviation of the measured mass between
replicate samples of the analyte (Figure 2C). Standard
deviation of multiple replicates is easy for both humans
and computers to calculate from either raw or decon-
volved data. It sufficiently captures the uncertainty
caused by poor spectra. Finally, more scans, charge
states, and replicates will decrease the uncertainty of
the measurement, as one would expect.

In practice, researchers will have to define the scope of
what “replicate samples” means based on the questions
they seek to answer, the properties of the analyte, and
the sample preparation procedures. For example, in our

research with native MS of nanodisc complexes, we
found that the primary source of variance is the nano-
disc assembly process. Replicate measurements of the
same sample of nanodiscs show lower standard devia-
tions than replicate samples prepared under different
assembly reactions.1? Thus, we define replicate samples
to mean replicate assemblies. However, soluble protein
complexes such as myoglobin are less sensitive to sam-
ple preparation. For mass spectrometry studies using
myoglobin as a model protein, we found it was suffi-
cient to define replicate samples of myoglobin as simply
replicate buffer exchange columns from the same start-
ing stocked prepared by dissolving protein from the
bottle in ammonium acetate solution. However, if we
were seeking to answer larger biological questions re-
lated to myoglobin, more rigorous biological replicates
might be necessary.

At a minimum, we propose that uncertainty from MS
measurements should be determined from separate
injections of replicate samples. The manual clipping of
the homemade capillary needles that are common in
native MS can introduce variance between injections
due to different tip diameters,2538 so the use of replicate
needles is a reasonable minimum to capture potential
uncertainty in the measurement. Again, each researcher
needs to define the appropriate replicates for their sys-
tem, which may go beyond the minimum level proposed
here.

Finally, it is important to note that each of these metrics
captures primarily random effects. There can be addi-
tional systematic effects on uncertainty and error that
each of these will miss. For example, poor calibration of
the mass spectrometer will introduce error that is not
reflected in the uncertainty metrics discussed here.
Changes to sample preparations and instrument pa-
rameters can also shift the ion population by reducing
adduction, which may underestimate the uncertainty in
the ion population if we broaden our definition of the
ion population to consider alternative solution- and gas-
phase treatments. Capturing these forms of error and
uncertainty will require Type B evaluations uncertainty,
which do not use statistical analysis but instead use
other forms of knowledge, such as comparison against
true values from standards.2!

Conclusions

Here, we have discussed the definitions of mass, error,
and uncertainty specific to native MS. Error is easy to
define and calculate. In contrast, there are two primary
definitions of mass: centroid and apex. Both should
yield similar results for ideal peaks, but we propose that
apex is a more straightforward definition in most cases.
However, centroid above a certain threshold is more
useful with noisy spectra.

For uncertainty, three primary definitions are used in
the field, and they all tell us different things. Charge



state uncertainty captures the standard error of the
mean within a single spectrum. FWHM captures the
standard deviation of the ion population, also from a
single spectrum. Replicate measurements captures the
standard error of the mean across multiple measure-
ments. We propose that the best measure of uncertainty
of the mass is from replicate measurements, although
FWHM is also useful to report on the standard deviation
of the population.

Although precise definitions of mass, error, and uncer-
tainty are admittedly not the most exciting topic, they
are important to advancing native MS and intact mass
analysis. As the field advances to more automation and
sophisticated data analysis, having common definitions
will support ongoing software development and com-
mon standards in analysis.
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