

Uncertainty Propagation for General Stochastic Hybrid Systems on Compact Lie Groups*

Weixin Wang[†] and Taeyoung Lee[†]

Abstract. This paper deals with uncertainty propagation of general stochastic hybrid systems (GSHS) where the continuous state space is a compact Lie group. A computational framework is proposed to solve the Fokker-Planck (FP) equation that describes the time evolution of the probability density function for the state of GSHS. The FP equation is split into two parts: the partial differential operator corresponding to the continuous dynamics, and the integral operator arising from the discrete dynamics. These two parts are solved alternatively using the operator splitting technique. Specifically, the partial differential equation is solved by the spectral method where the density function is decomposed into a linear combination of a complete orthonormal function basis brought forth by the Peter-Weyl theorem, thereby resulting an ordinary differential equation. Next, the integral equation is solved by approximating the integral by a finite summation using a quadrature rule. The proposed method is then applied to a three-dimensional rigid body pendulum colliding with a wall, evolving on the product of the three-dimensional special orthogonal group and the Euclidean space. It is illustrated that the proposed method exhibits more accurate numerical results than the conventional Gaussian approach formulated in the tangent space by comparing with a Monte Carlo simulation, while explicitly generating the density function that carries the complete stochastic information of the hybrid state.

Key words. stochastic hybrid system, Fokker-Planck equation, noncommutative harmonic analysis, Lie group

22 AMS subject classifications. 93C30, 37M05

1. **Introduction.** General stochastic hybrid system (GSHS) is a stochastic dynamical system that exhibits both continuous and discrete random behaviors [5]. In a GSHS, the hybrid state consists of two parts: the continuous state that takes the value on a smooth manifold, and the discrete state that lies on a countable set. The continuous dynamics is defined by stochastic differential equations (SDEs) indexed by the discrete state, describing the evolution of continuous state between jumps. The discrete dynamics describes the stochastic jump of the state, which is triggered by a Poisson process with a state-dependent rate function. The uncertainty after the jump is represented by a stochastic kernel. GSHS exhibits rich dynamics caused by the interplay between the continuous state and the discrete counterpart, and it has been used to model various complex systems, such as chemical reactions [12], neuron activities [28], air traffic control [2, 31, 34], and communication networks [11].

Uncertainty propagation involves advecting a probability density along the flow of a dynamical system according to the Fokker–Planck (FP) equation. The probability density can be approximated by, for example, the first n -moments [17], which leads to Monte Carlo methods [10, 27], Gaussian closure methods [13, 22], and equivalent linearization and stochastic averaging [30, 32]. But, Monte Carlo methods do not propagate the probability density func-

*Submitted to the editors DATE.

Funding: This work has been supported in part by AFOSR under the grant FA9550-18-1-0288, and by NSF under the grants CNS-1837382 and CMMI-1760928.

[†]The George Washington University, DC (wwang442@gwu.edu, tylee@gwu.edu).

tion directly. Other methods involve low-order approximations of the dynamical system, which are suitable only for moderately nonlinear systems as the omitted higher-order terms can lead to significant errors, particularly for long time intervals. For stochastic hybrid systems, uncertainty propagation has been focused on the case when the continuous state lies in the Euclidean space. For example, the interacting multiple model approach [3] and the salted Kalman filter [15] linearize the dynamics and use the Gaussian distribution to describe uncertainties. In [4, 36], particle filters are employed to propagate random samples through the dynamics to approximate the uncertainty distribution. Alternatively, to propagate the probability density function directly, the FP equation has been extended for GS HS into integro-partial differential equations (IPDEs) [1, 11]. And it has been solved using finite difference method [23] and spectral method [38].

In this paper, we study the uncertainty propagation for GS HS whose continuous state evolves on a compact Lie group G . More specifically, given an initial probability distribution of the state, we wish to construct the probability distribution at an arbitrary time through GS HS, by solving the corresponding FP equation represented by IPDEs on G . To address the presence of partial differentiation and integration in the FP equation, we employ the operator splitting method [24]. Specifically, the FP equation is decomposed into two parts: the continuous dynamics which only contains the partial differential operator, and the discrete dynamics which only contains the integral operator. These two individual equations are solved alternatively over a small time step using their respective numerical methods, and they are combined by a first order splitting scheme.

For the partial differential equation corresponding to the continuous dynamics, we use the classic spectral method. The spectral method has been used to solve the FP equations on $SE(2)$ and $SO(3)$ [14, 18, 19, 41, 42] for uncertainty propagation of stochastic dynamical systems without discrete dynamics. It utilizes the Peter-Weyl theorem [29], which states that the matrix components of all finite dimensional irreducible unitary representations of a compact Lie group form a complete orthonormal basis for the space of square integrable functions. As such, an arbitrary probability density function on G can be approximated by a linear combination of the matrix elements of irreducible unitary representations. Further using the operational properties of the representation, the FP equation is transformed into ordinary differential equations (ODEs) of the coefficients, which can be integrated by standard ODE solvers. Next, the integro-differential equation corresponding to the discrete dynamics is approximated by a quadrature rule over a grid, such that the density values on the grid are propagated by another set of ODEs. A useful property is that the grid for the discrete dynamics can be selected to be compatible with the harmonic analysis for the continuous dynamics so as to improve the computational efficiency of the overall splitting scheme.

Compared to conventional methods based on Gaussian distributions formulated in the tangent space of the Lie group [6, 9], the proposed method has the advantage of being non-parametric, i.e., it does not assume a specific family of distributions, but applies to density functions with arbitrary shapes. The proposed method constructs a probability density function, which carries the complete stochastic information about the propagated state, and as such, it can be directly used for visualization or calculating descriptive measures, such as moments, number and locations of local maxima, etc. In this regard, although the Monte Carlo method is also non-parametric, the information of the state is implicitly carried by

83 random samples, which is usually hard to be distilled into usable forms other than calculating
 84 moments, especially when the number of samples is large. Also, the Monte Carlo method
 85 cannot deal with large uncertainties efficiently [38]. The downside of the proposed approach
 86 is that as a spectral method, its computational complexity increases exponentially with the
 87 dimension of continuous space, and quickly becomes infeasible [35].

88 In short, the main contribution of this paper is the computational framework to propagate
 89 uncertainties through GSHS on a compact Lie group. The use of noncommutative harmonic
 90 analysis to represent the uncertainty distribution in a global fashion overcomes a fundamental
 91 limitation of existing techniques, which implicitly assume that the uncertainty is localized, or
 92 has a canonical form. By solving the Fokker–Planck equation directly, the probability density
 93 that describes the complete stochastic properties of a hybrid system is propagated.

94 The rest of this paper is organized as follows: Section 2 reviews the formulation of GSHS
 95 considered in this paper, and introduces its associated FP equation. The proposed algorithm
 96 for uncertainty propagation is introduced in Section 3 when the continuous state space is a
 97 general compact Lie group. In Section 4, we focus on a specific example of a 3D pendulum
 98 colliding with a wall, where the continuous state space is $\text{SO}(3) \times \mathbb{R}^2$.

99 **2. Problem Formulation.** In this section, we give a formal definition of the GSHS [5]
 100 considered in this paper, and introduce the corresponding FP equation that describes the
 101 evolution of the probability density function over time.

102 **2.1. General Stochastic Hybrid System.** The GSHS considered in this paper is defined
 103 as a collection $H = \{X, a, b, \text{Init}, \lambda, K\}$ as follows:

- 104 • $X = G \times S$ is the hybrid state space, where G is a N_g -dimensional compact Lie
 105 group, and S is a set composed of N_s discrete modes. The hybrid state is denoted by
 106 $(g, s) \in G \times S$.
- 107 • $\text{Init} : \mathcal{B}(X) \rightarrow [0, 1]$ is the initial uncertainty distribution of the hybrid state, where
 108 $\mathcal{B}(X)$ is all Borel sets in X .
- 109 • The continuous state evolves according to the following stochastic differential equations
 110 between discrete jumps:

$$111 \quad (2.1) \quad g^{-1}dg = a(t, g, s)^\wedge dt + (b(t, s)dW_t)^\wedge$$

112 where $a : \mathbb{R} \times X \rightarrow \mathbb{R}^{N_g}$ is the drifting vector field, and $b : \mathbb{R} \times S \rightarrow \mathbb{R}^{N_g \times N_w}$ is
 113 the coefficient matrix for diffusion. Next, W_t is a N_w -dimensional standard Wiener
 114 process. The map $(\cdot)^\wedge : \mathbb{R}^{N_g} \rightarrow \mathfrak{g}$ is the natural identification of \mathbb{R}^{N_g} and \mathfrak{g} , the Lie
 115 algebra of G . Since b does not depend on g , (2.1) can be defined either in Ito's or
 116 Stratonovich's sense.

- 117 • The discrete jump is triggered by a Poisson process, with a rate function $\lambda : X \rightarrow \mathbb{R}^+$
 118 dependent on the hybrid state.
- 119 • During each discrete jump, the hybrid state is reset according to a stochastic kernel
 120 $K : (X, \mathcal{B}(X)) \rightarrow [0, 1]$, such that $K(x^-, X^+)$ is the probability of $x^- \in X$ being
 121 reset into the set $X^+ \in \mathcal{B}(X)$.

122 One restriction of the GSHS defined above is that it does not allow the discrete jump to
 123 be triggered by the continuous state g entering a certain guard set in a deterministic fashion.
 124 However, such *forced* jumps can be approximated by a Poisson process after choosing the rate

125 function sufficiently large inside the guard set, and zero outside [11]. This will be illustrated
 126 by the 3D pendulum example in Section 4.

127 We also assume the initial distribution has a probability density function for each $s \in S$,
 128 i.e., $Init(A) = \sum_{s \in S} \int_{(g,s) \in A} p(t_0, g, s) dg$ for all $A \in \mathcal{B}(X)$, where dg is the bi-invariant Haar
 129 measure on G normalized such that $\int_{g \in G} dg = 1$. Furthermore, the discrete transition kernel
 130 K can also be written as a set of density functions:

$$131 \quad K(x^-, X^+) = \sum_{s^+ \in S} \int_{(g^+, s^+) \in X^+} \kappa(g^-, s^-, g^+, s^+) dg^+,$$

132 where $\kappa : X \times X \rightarrow \mathbb{R}$.

133 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the underlying probability space, where Ω is the sample space, \mathcal{F} is a
 134 sigma-algebra over Ω , and \mathbb{P} denotes the probability measure on \mathcal{F} . For a given $\omega \in \Omega$,
 135 let $\{u_k(\omega)\}$ be a sequence of independent uniformly distributed random variables on $[0, 1]$.
 136 Then an execution of the GSHS defined above can be generated according to the following
 137 procedure.

- 138 1. Initialize $g(\omega, t_0)$ and $s(\omega, t_0)$ from the initial distribution $Init$.
- 139 2. Let $t_1(\omega) = \sup \left\{ t : \exp \left(- \int_{t_0}^t \lambda(g(\omega, \tau), s(\omega, t_0)) d\tau \right) > u_1(\omega) \right\}$ be the time of the
 140 first jump.
- 141 3. During $t \in [t_0, t_1(\omega))$, $g(\omega, t)$ is a sample path of SDE (2.1) with $s = s(\omega, t_0)$, and
 142 $s(\omega, t) = s(\omega, t_0)$.
- 143 4. At time t_1 , the state is reset to $(g(\omega, t_1^+), s(\omega, t_1^+))$ as a sample from the kernel
 144 $\kappa(g(\omega, t_1^-), s(\omega, t_0), z^+, s^+)$.
- 145 5. If $t_1 < \infty$, repeat from 2) with t_0, s_0, t_1, u_1 replaced by $t_k(\omega), s(\omega, t_k^+), t_{k+1}(\omega),$
 146 $u_{k+1}(\omega)$ for $k = 1, 2, \dots$

147 **2.2. Fokker-Planck Equation for GSHS.** The FP equation for GSHS describes how its
 148 density function evolves over time [1, 7, 11], and it is given as a set of IPDEs as follows:

$$149 \quad (2.2) \quad \begin{aligned} \frac{\partial p(t, g, s)}{\partial t} = & \underbrace{- \sum_{i=1}^{N_g} \mathfrak{d}_j (a_j(t, g, s) p(t, g, s)) + \sum_{j,k=1}^{N_g} D_{j,k}(t, s) \mathfrak{d}_j \mathfrak{d}_k p(t, g, s)}_{\mathcal{L}_c^* p(t, g, s)} \\ & + \underbrace{\sum_{s^- \in S} \int_{g^- \in G} \kappa(g^-, s^-, g, s) \lambda(g^-, s^-) p(t, g^-, s^-) dg^- - \lambda(g, s) p(t, g, s)}_{\mathcal{L}_d^* p(t, g, s)}, \end{aligned}$$

150 where the subscripts denote the indices of a vector or matrix, and $D = \frac{1}{2}bb^T$. Moreover, \mathfrak{d}_j
 151 is the left-trivialized derivative of a function on G , i.e., $\mathfrak{d}_j f(g) = \frac{d}{dt} \Big|_{t=0} f(g \exp(t \hat{e}_j))$, where
 152 $\exp : \mathfrak{g} \rightarrow G$ is the exponential map, and e_j is the j -th standard base vector of \mathbb{R}^{N_g} . For
 153 each $s \in S$, (2.2) defines an IPDE for $p(t, g, s)$, and thus, there are a total of N_s IPDEs.

154 The FP equation can be interpreted as follows. The first two terms on the right hand
 155 side of (2.2) represent the evolution caused by the continuous process: the first one represents
 156 advection due to the drift vector field, and the second corresponds to diffusion caused by

157 noise, or the Wiener process. The last two terms of (2.2) describe the evolution due to
 158 discrete jumps. The third term represents the densities transitioned into (g, s) from (g^-, s^-)
 159 before the jump, weighted by how likely the jump happens (λ), and how likely the density is
 160 transitioned into (g, s) (κ). The last term represents the density transitioned out of (g, s) . To
 161 distinguish these two parts explicitly, (2.2) is written as

162 (2.3)
$$\frac{\partial p(t, g, s)}{\partial t} = \mathcal{L}_c^* p(t, g, s) + \mathcal{L}_d^* p(t, g, s),$$

163 where \mathcal{L}_c^* and \mathcal{L}_d^* denote the adjoint of the infinitesimal generators of the continuous SDE,
 164 and the discrete jump of the GS HS, respectively.

165 The FP equation (2.2) describes the evolution of the probability density along the flows of
 166 GS HS on a Lie group. In contrast to the Fokker–Planck equation of non-hybrid systems, which
 167 is a partial-differential equation, (2.2) exhibits fundamental challenges, as it is an *integro-*
 168 *partial differential equation* that involves both partial differentiation and integration. Another
 169 challenge is that the probability density is defined on a nonlinear Lie group G , so the existing
 170 computational techniques in solving the Fokker–Planck equation on a linear space \mathbb{R}^n cannot
 171 be directly applied. In this paper, these are addressed by utilizing noncommutative harmonic
 172 analysis and the splitting technique.

173 **3. Uncertainty Propagation for GS HS.** In this section, we present a computational
 174 framework to solve (2.3) via the spectral method using noncommutative harmonic analy-
 175 sis on G . However, the integral term in (2.2) causes issues in the spectral method as there is
 176 no closed formula to express the Fourier coefficients of the integral of a function $f(g)$ over G
 177 as the Fourier coefficients of f . Even though a closed formula exists on \mathbb{R}^N , it has been shown
 178 that taking the Fourier transform of the integral term directly involves intensive computations
 179 [39].

180 Instead, we adopt the operator splitting technique, where (2.3) is split into two equations:
 181

182 (3.1a)
$$\frac{\partial p^c(t, g, s)}{\partial t} = \mathcal{L}_c^* p^c(t, g, s),$$

183 (3.1b)
$$\frac{\partial p^d(t, g, s)}{\partial t} = \mathcal{L}_d^* p^d(t, g, s).$$

185 The desirable features are that in the absence of the term $\mathcal{L}_d^* p$, (3.1a) corresponds to a PDE
 186 on G for each discrete state; and without $\mathcal{L}_c^* p$, (3.1b) becomes an integro-differential equation
 187 without partial differentiation. These can be addressed by using the spectral method and
 188 numerical quadrature respectively. Then, the solution of each part can be combined with the
 189 operator splitting.

190 **3.1. Propagation over Continuous Dynamics.** First, we solve (3.1a) via noncommutative
 191 harmonic analysis. The objective is to decompose the density function $p^c(t, g, s)$ into a linear
 192 combination of an orthonormal basis of a function space on G for each $t \geq t_0$ and $s \in S$. Then
 193 (3.1a) can be converted to a set of ODEs for the coefficients of the linear combination, which
 194 can be solved via standard numerical integration schemes for ODE.

195 We first summarize harmonic analysis on a compact Lie group G [8, 26]. Let $U^l(g) : G \rightarrow$
 196 $\mathrm{GL}(d(l), \mathbb{C})$ be the l -th irreducible unitary representation of G with a finite dimension $d(l)$,
 197 and the collection of all l be denoted by \hat{G} . Then by the Peter-Weyl theorem, the functions
 198 $\{\{U_{m_1, m_2}^l\}_{m_1, m_2=1}^{d(l)}\}_{l \in \hat{G}}$ form an orthonormal basis of the function space $L^2(G)$. That is, for
 199 any square integrable function $f : G \rightarrow \mathbb{C}$, it can be decomposed as a linear combination

200 (3.2)
$$f(g) = \sum_{l \in \hat{G}} \sum_{m_1, m_2=1}^{d(l)} d(l) \mathcal{F}_{m_1, m_2}^l[f] U_{m_1, m_2}^l(g),$$

201 where $\mathcal{F}_{m_1, m_2}^l[f]$ are the Fourier coefficients of f , given by the (m_1, m_2) -th entry of

202 (3.3)
$$\mathcal{F}^l[f] = \int_{g \in G} f(g) U^l(g^{-1})^T dg = \int_{g \in G} f(g) \overline{U^l(g)} dg.$$

203 Equation (3.2) and (3.3) are called the inverse and forward Fourier transform of function f .

204 One crucial property is that we can express the Fourier coefficient of the derivative $\mathcal{F}[\mathfrak{d}_j f]$
 205 in terms of $\mathcal{F}[f]$ [8]. Let $u^l : \mathfrak{g} \rightarrow \mathfrak{gl}(d(l), \mathbb{C})$ be the associated Lie algebra representation of
 206 U^l , i.e., for all $X \in \mathfrak{g}$, $u^l(X) = \frac{d}{dt}|_{t=0} U^l(\exp(tX))$. Then, we have

207 (3.4)
$$\mathcal{F}^l[\mathfrak{d}_j f] = \mathcal{F}^l[f] u^l(\hat{e}_j)^T.$$

208 It should be noted in some other works, the subscripts for $F_{m_1, m_2}^l[f]$ are reversed relative to
 209 $F_{m_2, m_1}^l[f]$ in (3.2). Under this convention, (3.3) and (3.4) should be modified accordingly (see
 210 for example Section 8.3 in [8]).

211 Using these, (3.1a) can be transformed into a set of ODEs for the Fourier coefficients of
 212 $p^c(t, g, s)$ as follows.

213 **Theorem 3.1.** *Let $\mathcal{F}[p^c](t, s)$ be the Fourier coefficients of $p^c(t, g, s)$ which depend on t and
 214 s . For any $s \in S$, if $p^c(t, g, s)$ satisfies (3.1a), then $\mathcal{F}[p^c](t, s)$ approximately satisfies the
 215 following ODE:*

216 (3.5)
$$\frac{d}{dt} \mathcal{F}^l[p^c](t, s) = - \sum_{j=1}^{N_g} \mathcal{F}^l[a_j p^c](t, s) u^l(\hat{e}_j)^T + \sum_{j, k=1}^{N_g} D_{j, k} \mathcal{F}^l[p^c](t, s) u^l(\hat{e}_k)^T u^l(\hat{e}_j)^T.$$

217 *Proof.* Suppose $p^c(t, g, s)$ is approximated by a band-limited [26] sum of its Fourier series:

218 (3.6)
$$p^c(t, g, s) \approx \sum_{l \in \hat{G}_0} \sum_{m_1, m_2=1}^{d(l)} d(l) \mathcal{F}_{m_1, m_2}^l[p^c](t, s) U_{m_1, m_2}^l(g),$$

219 where \hat{G}_0 is a finite subset of \hat{G} . Substitute the above equation and a similar band-limited
 220 expansion of $\mathcal{L}_c^* p^c$ into (3.1a), we get for all $s \in S$

221
$$\sum_{l \in \hat{G}_0} \sum_{m_1, m_2=1}^{d(l)} d(l) \frac{d}{dt} \mathcal{F}_{m_1, m_2}^l[p^c](t, s) U_{m_1, m_2}^l(g) \approx \sum_{l \in \hat{G}_0} \sum_{m_1, m_2=1}^{d(l)} d(l) \mathcal{F}_{m_1, m_2}^l[\mathcal{L}_c^* p^c](t, s) U_{m_1, m_2}^l(g).$$

222 Due to the orthogonality of basis, we can equate the Fourier coefficient with the same indices,
 223 i.e. $\frac{d}{dt}\mathcal{F}_{m_1, m_2}^l[p^c](t, s) = \mathcal{F}_{m_1, m_2}^l[\mathcal{L}^*p^c](t, s)$ for any $s \in S$. Equation (3.5) can be derived by
 224 expanding \mathcal{L}^*p^c using the differentiation formula (3.4). \blacksquare

225 Equation (3.5) is ODEs of the Fourier coefficients $\mathcal{F}_{m_1, m_2}^l[p^c](t, s)$, and can be integrated
 226 using numerical ODE solvers. To illustrate how the calculations can be carried out in practice,
 227 we present with the simplest forward Euler's method. Suppose a grid $\{g_\nu\}_{\nu=1}^{N_q}$ is put onto G ,
 228 and there is a quadrature rule $\{w_\nu\}_{\nu=1}^{N_q}$ such that the integral in (3.3) can be approximated
 229 by a finite summation:

230 (3.7)
$$\mathcal{F}^l[f] = \sum_{\nu=1}^{N_q} w_\nu f(g_\nu) \overline{U^l(g_\nu)}.$$

231 This allows the forward Fourier transform to be computed. Suppose at time $t = t_k$, the values
 232 of $p^c(t_k, g_\nu, s)$, $a(t_k, g_\nu, s)$ on the grid, and $D(t_k, s)$ are given. Then the Fourier coefficients
 233 $\mathcal{F}^l[a_j p^c](t_k, s)$, and $\mathcal{F}^l[p^c](t_k, s)$ for $l \in \hat{G}_0$ can be calculated as in (3.7) using the quadrature
 234 rule. Namely, the right hand side of (3.5), i.e., $\mathcal{F}^l[\mathcal{L}_c^*p^c](t_k, s)$ can be calculated, which enables
 235 the first order integration $\mathcal{F}^l[p^c](t_{k+1}, s) = \mathcal{F}^l[p^c](t_k, s) + \mathcal{F}^l[\mathcal{L}_c^*p^c](t_k, s)\Delta t$. And the values of
 236 $p^c(t_{k+1}, g_\nu, s)$ on the grid can be recovered by (3.6), which can be used in the next integration
 237 step. The pseudocode is summarized in [Algorithm 3.1](#), where the first order integration can
 238 easily be replaced by other higher order numerical integration schemes.

239 The summations in (3.7) and (3.6) can be accelerated using extensions of the classic
 240 Cooley-Tukey FFT algorithm to compact Lie groups. See for example [33] for a review on
 241 this topic. The FFT algorithms have been developed for classic compact matrix Lie groups
 242 $\text{SO}(n)$, $\text{U}(n)$, $\text{SU}(n)$ and $\text{Sp}(n)$ in [26].

243 **3.2. Propagation over Discrete Dynamics.** Next, consider (3.1b). We apply the quad-
 244 rature rule on G to the integral term on the right hand side of (3.1b), where the integration
 245 over G is replaced by a finite summation over the grid:

246 (3.8)
$$\frac{dp^d(t, g_\nu, s)}{dt} = \sum_{s^- \in S} \sum_{\nu'=1}^{N_q} w_{\nu'} \kappa(g_{\nu'}^-, s^-, g_\nu, s) \lambda(g_{\nu'}^-, s^-) p^d(t, g_{\nu'}^-, s^-) - \lambda(g_\nu, s) p^d(t, g_\nu, s),$$

247 where g_ν and g_ν' are lattices of the grid on G . The above is a set of linear ODEs of $p^d(t, g_\nu, s)$
 248 with $N_s \cdot N_q$ equations. Suppose at time $t = t_k$, the values of $p^d(t_k, g_\nu, s)$ on the grid are given,
 249 then the values of p^d at time $t = t_{k+1}$ can be integrated using the forward Euler's method as
 250 $p(t_{k+1}, g_\nu, s) = p(t_k, g_\nu, s) + \mathcal{L}_d^*p^d(t_k, g_\nu, s)\Delta t$, where $\mathcal{L}_d^*p^d(t_k, g_\nu, s)$ is calculated as the right
 251 hand side of (3.8). The pseudocode is summarized in [Algorithm 3.1](#).

252 **3.3. Splitting Method.** In summary, (3.1a) is transformed into ODEs of Fourier coeffi-
 253 cients, and (3.1b) is converted into ODEs of probability densities on the grid. The numerical
 254 solutions of these two equations are combined using a first order splitting scheme as follows.
 255 Suppose the time is discretized by a sequence $\{t_k\}_{k=0}^\infty$ with a fixed increment $\Delta t = t_{k+1} - t_k$.
 256 Given $p(t_k, g, s)$, we first solve (3.1a) with the initial condition $p^c(t_k, g, s) = p(t_k, g, s)$ to ob-
 257 tain $p^c(t_{k+1}, g, s)$ that is propagated over the continuous dynamics. Next, we solve (3.1b) with

258 the initial condition $p^d(t_k, g, s) = p^c(t_k, g, s)$ to propagate it over the discrete dynamics, and
 259 construct $p^d(t_{k+1}, g, s)$ which is taken as the solution of (2.2) at t_{k+1} . These two parts are
 260 integrated seamlessly, as the probability density values propagated over the discrete dynamics
 261 are on the grid designed for the Fourier transform required for the propagation over the
 262 continuous dynamics. The pseudocode is summarized in [Algorithm 3.1](#).

Algorithm 3.1 Uncertainty propagation for GSHS

```

1: procedure  $p(t_{k+1}, g_\nu, s) = \text{UNCERTAINTY\_PROPAGATION}(p(t_k, g_\nu, s))$ 
2:    $p^c(t_k, g_\nu, s) = p(t_k, g_\nu, s).$ 
3:    $p^c(t_{k+1}, g_\nu, s) = \text{PROPAGATE\_CONTINUOUS}(p^c(t_k, g_\nu, s)).$ 
4:    $p^d(t_k, g_\nu, s) = p^c(t_k, g_\nu, s).$ 
5:    $p^d(t_{k+1}, g_\nu, s) = \text{PROPAGATE\_DISCRETE}(p^d(t_k, g_\nu, s)).$ 
6:    $p(t_{k+1}, g_\nu, s) = p^d(t_{k+1}, g_\nu, s).$ 
7: end procedure
8: procedure  $p^c(t_{k+1}, g_\nu, s) = \text{PROPAGATE\_CONTINUOUS}(p^c(t_k, g_\nu, s))$ 
9:   for  $s \in S$  do
10:    for  $l \in \hat{G}_0$  do
11:      for  $j = 1, \dots, N_g$  do
12:        Compute  $\mathcal{F}^l[a_j p^c](t_k, s)$  using (3.7).
13:      end for
14:      Compute  $\mathcal{F}^l[p^c](t_k, s)$  using (3.7).
15:      Compute  $\mathcal{F}^l[\mathcal{L}_c^* p^c](t_k, s)$  using the right hand side of (3.5).
16:       $\mathcal{F}^l[p^c](t_{k+1}, s) = \mathcal{F}^l[p^c](t_k, s) + \mathcal{F}^l[\mathcal{L}_c^* p^c](t_k, s) \Delta t.$ 
17:    end for
18:    Recover  $p^c(t_{k+1}, g_\nu, s)$  from  $\mathcal{F}^l[p^c](t_{k+1}, s)$  using (3.6).
19:  end for
20: end procedure
21: procedure  $p^d(t_{k+1}, g_\nu, s) = \text{PROPAGATE\_DISCRETE}(p^d(t_k, g_\nu, s))$ 
22:   for  $s \in S$  and  $\nu = 1, \dots, N_q$  do
23:     Compute  $\mathcal{L}_d^* p^d(t_k, g_\nu, s)$  using the right hand side of (3.8).
24:      $p^d(t_{k+1}, g_\nu, s) = p^d(t_k, g_\nu, s) + \mathcal{L}_d^* p^d(t_k, g_\nu, s) \Delta t.$ 
25:   end for
26: end procedure

```

263 **4. Numerical Example of 3D Pendulum.** A 3D pendulum is a rigid body that freely
 264 rotates about an inertially-fixed pivot under gravity. In this section, we apply the proposed
 265 method to the 3D pendulum model, to propagate the uncertainties of its attitude and angular
 266 velocity. For the discrete dynamics, we assume that the 3D pendulum may collide with a fixed
 267 planar wall, which causes an instantaneous change of its angular velocity (see [Figure 4.1](#)).

268 **4.1. 3D Pendulum Model.** We use the GSHS defined in Section 2.1 to model the 3D
 269 pendulum as follows. Two reference frames are used: the inertial frame $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$, and the
 270 body-fixed frame of the pendulum $\{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$. The origin of the body-fixed frame is at the

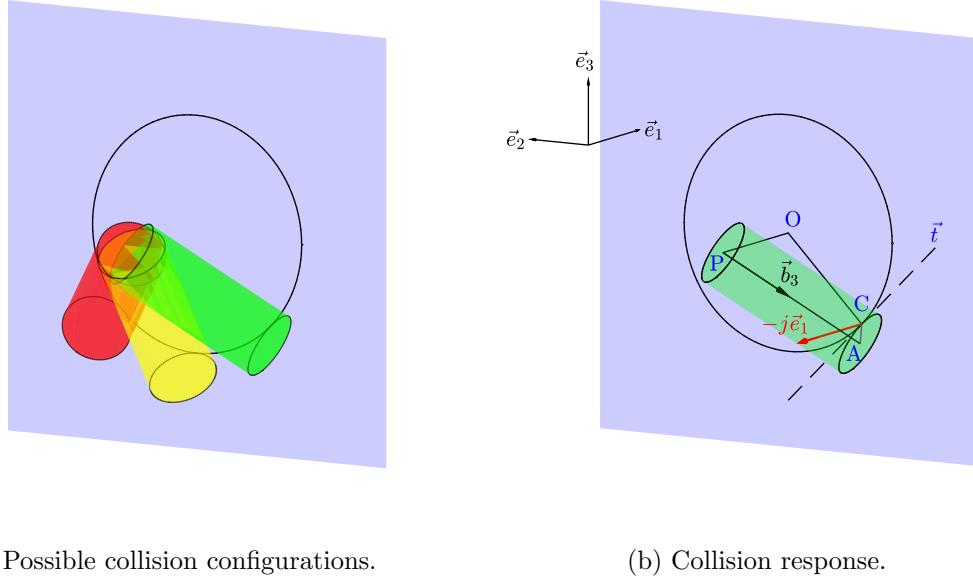


Figure 4.1: An Axially symmetric 3D pendulum colliding with a wall.

271 pivot point denoted by P . The continuous state is $(R, \Omega) \in G = \text{SO}(3) \times \mathbb{R}^3$, where $R \in \text{SO}(3)$
 272 is the attitude of the pendulum, i.e., the linear transform of coordinates from the body-fixed
 273 frame to the inertial frame, and $\Omega \in \mathbb{R}^3$ is the coordinates of angular velocity in the body-fixed
 274 frame. The discrete state space is $S = \{1\}$, i.e., there is only one discrete mode. Throughout
 275 this section, for any vector \vec{a} , $a \in \mathbb{R}^3$ denotes its coordinates in the inertial frame, if not stated
 276 otherwise.

277 *Continuous Dynamics.* The continuous dynamics is given by the following SDE:

278 (4.1a)
$$R^T dR = \hat{\Omega} dt,$$

279 (4.1b)
$$d\Omega = (J^{-1}(-\Omega \times J\Omega - mg\rho \times R^T e_3) - B\Omega) dt + H_c dW_t,$$

281 where $J \in \mathbb{R}^{3 \times 3}$ is the moment of inertia about the pivot, and $m \in \mathbb{R}$ is the mass. The
 282 coordinates of the center of mass are given by $\rho \in \mathbb{R}^3$ in the body-fixed frame. The fixed
 283 gravitational acceleration is denoted by $g \in \mathbb{R}$. There is a damping torque proportional to the
 284 angular velocity scaled by the matrix $B = \text{diag}(B_1, B_2, B_3) \in \mathbb{R}^{3 \times 3}$. Finally, $W_t \in \mathbb{R}^3$ is the
 285 standard Wiener process, representing random external torques.

286 We make the following assumptions to simplify the continuous dynamics: (i) the pendulum
 287 is axially symmetric, i.e., $J = \text{diag}(J_1, J_1, J_3)$, and $\rho = [0, 0, \rho_z]^T$ is along the axis \vec{b}_3 ; (ii)
 288 $\text{Init}(\{\Omega_3 = 0\}) = 1$, i.e., the initial angular velocity along the axis of symmetry is zero with
 289 probability one; (iii) the third row of H_c is zero. Under these assumptions, it is straightforward
 290 to verify that $\mathbb{P}(\Omega_3(t) = 0) = 1$ for any $t > t_0$. As a consequence, we may ignore Ω_3 and

291 reduce the continuous state space into $G = \text{SO}(3) \times \mathbb{R}^2$. The resulting SDE is given by

292 (4.2a)
$$R^T dR = \left(\begin{bmatrix} \tilde{\Omega}^T & 0 \end{bmatrix}^T \right)^\wedge dt,$$

293 (4.2b)
$$d\tilde{\Omega} = \left(\frac{mg\rho_z}{J_1} \begin{bmatrix} R_{32} \\ -R_{31} \end{bmatrix} - \tilde{B}\tilde{\Omega} \right) dt + \tilde{H}_c dW_t,$$

295 where $\tilde{\Omega} = [\Omega_1, \Omega_2]^T$, $\tilde{B} = \text{diag}(B_1, B_2)$, and \tilde{H}_c is the first two rows of H_c .

296 **Discrete Dynamics.** A planar wall is placed perpendicular to the inertial \vec{e}_1 axis, at $d_{\text{wall}} > 0$
297 from the pivot point P . As the pendulum swings, it may collide with the wall and rebound.
298 We further assume the pendulum is a cylinder with the height h and the radius r . Then, all
299 possible collision points between the pendulum and the wall form a circle, as illustrated in
300 [Figure 4.1a](#). Let the angle between the \vec{e}_1 - \vec{e}_2 plane and \vec{b}_3 be denoted by $\theta = \arcsin(\vec{b}_3 \cdot \vec{e}_1)$.
301 A collision occurs when

302 (4.3a)
$$\theta \geq \theta_0 = \arcsin \frac{d_{\text{wall}}}{\sqrt{h^2 + r^2}} - \arcsin \frac{r}{\sqrt{h^2 + r^2}},$$

303 (4.3b)
$$(R\Omega \times \varrho) \cdot e_1 > 0,$$

305 where $\varrho \in \mathbb{R}^3$ is the coordinates of the vector $\overrightarrow{PC} = (h - r \tan \theta)\vec{b}_3 + r \sec \theta \vec{e}_1$ in the inertial
306 frame, and C is the point on the pendulum that has the largest coordinate along \vec{e}_1 .

307 The first equation states that the pendulum penetrates through the wall, and the second
308 equation implies that the pendulum is rotating towards the wall. Equation (4.3) represents
309 a guard set defined such that whenever the continuous state enters it, the discrete jump is
310 triggered. This corresponds to a deterministic forced jump of hybrid systems. In the presented
311 GSHS, a Poisson process can be designed to approximate this forced jump, with a rate function
312 $\lambda(R, \Omega)$ being very large when (4.3) is satisfied, and zero otherwise. However, one must make
313 a compromise on the space variation of λ . Specifically, the ideal λ would make the probability
314 density p^c large outside the guard set, and close to zero inside, i.e., there is a large space
315 variation of p^c caused by the discontinuity at the boundary. This is unfavorable for the
316 spectral method, since a high bandwidth must be used to capture the large space variation,
317 at the cost of increased computational load. Here we design a rate function corresponding to
318 (4.3) with a relatively small space variation as

319 (4.4)
$$\lambda(R, \Omega) = \begin{cases} \frac{\lambda_{\max}}{2} \sin \left(\frac{pi}{2\theta_t} (\theta - \theta_0) \right) + \frac{\lambda_{\max}}{2}, & \text{if } -\theta_t \leq \theta - \theta_0 \leq \theta_t, R\Omega \times \varrho \cdot e_1 > 0 \\ \lambda_{\max}, & \text{if } \theta - \theta_0 > \theta_t, R\Omega \times \varrho \cdot e_1 > 0 \\ 0, & \text{otherwise} \end{cases}.$$

320 Namely, a threshold $\theta_t > 0$ is used to mark a “boundary region” of the guard set, and the sine
321 function is used to make a smooth connection between the large $\lambda_{\max} > 0$ inside the guard
322 set, and zero outside ([Figure 4.2](#)).

323 Next, we formulate the stochastic kernel describing the state distribution immediately
324 after a jump. During the collision, an impulse $-j\vec{e}_i$ with $j > 0$ is applied to the pendulum
325 at the collision point C ([Figure 4.1b](#)) that redirects the linear velocity of the pendulum at C

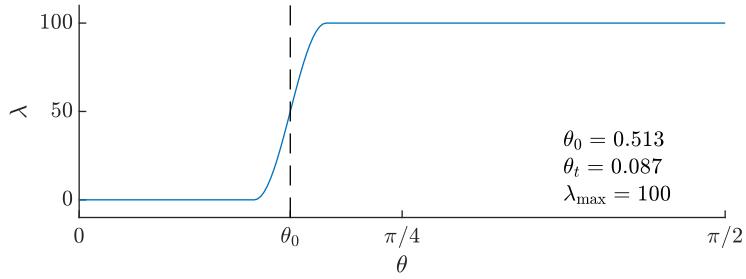


Figure 4.2: $\lambda(R, \Omega)$ versus $\theta(R)$ when $(R\Omega \times \varrho) \cdot e_1 > 0$.

326 along \vec{e}_1 . First assume there is no noise, then the collision response can be summarized in
 327 terms of the change of angular velocity and linear velocity at C , as follows:

328 (4.5a) $\bar{\Omega}^+ - \Omega^- = J^{-1}R^T(\varrho \times (-je_1)),$

329 (4.5b) $(R\bar{\Omega}^+ \times \varrho) \cdot e_1 = -\varepsilon(R\Omega^- \times \varrho) \cdot e_1,$

331 where Ω^- , $\bar{\Omega}^+$ denote the angular velocities before and after collision respectively, and $0 < \varepsilon \leq$
 332 1 is the coefficient of restitution. Note that $t \triangleq (\varrho \times e_1)/|\varrho \times e_1|$ is perpendicular to b_3 , since
 333 $J = \text{diag}(J_1, J_1, J_3)$, it can be verified that $J^{-1}R^T t = \frac{1}{J_1}R^T t$. This indicates that $\bar{\Omega}^+ - \Omega^-$ is
 334 along $R^T t$ and is perpendicular to $R^T b_3$, thus $\bar{\Omega}_3^+ = \Omega_3^-$ and we may ignore Ω_3 as we did in
 335 the continuous dynamics where $\mathbb{P}(\Omega_3 = 0) = 1$. Furthermore, (4.5b) can be simplified into

336 (4.6) $\bar{\Omega}^+ = \Omega^- - (1 + \varepsilon)(\Omega^- \cdot R^T t)R^T t,$

337 which gives the continuous state Ω right after the collision in an ideal case. Here we further
 338 assume that the angular velocity is also perturbed by a Gaussian noise during collision, i.e.,

339 (4.7) $\Omega^+ = \bar{\Omega}^+ + \begin{bmatrix} H_d \xi \\ 0 \end{bmatrix},$

340 where Ω^+ is the perturbed angular velocity after collision, $H_d \in \mathbb{R}^{2 \times 2}$, and ξ is a 2-dimensional
 341 standard Gaussian random vector.

342 In short, the stochastic kernel for discrete jump caused by the collision can be written as

343 (4.8)
$$\kappa(R^-, \bar{\Omega}^-, R^+, \tilde{\Omega}^+) = \delta_{\text{SO}(3)}(R^+(R^-)^T) \times \frac{1}{2\pi\sqrt{\det \Sigma_d}} \exp \left\{ -\frac{1}{2} \left(\tilde{\Omega}^+ - \tilde{\Omega}_0^+ \right)^T \Sigma_d^{-1} \left(\tilde{\Omega}^+ - \tilde{\Omega}_0^+ \right) \right\},$$

344 where $\Sigma_d = H_d H_d^T$, and $\delta_{\text{SO}(3)}$ is the Dirac-delta function on $\text{SO}(3)$. In other words, the
 345 discrete jump does not alter the attitude R , while it resets the angular velocity from $\bar{\Omega}^-$ to
 346 $\tilde{\Omega}^+$ with Gaussian distributed random noises.

347 **4.2. Harmonic Analysis on $\text{SO}(3) \times \mathbb{T}^2$.** One obstacle in applying the proposed approach
 348 to the pendulum model is that the continuous state space, namely $\text{SO}(3) \times \mathbb{R}^2$ is not compact.
 349 Nevertheless, since the angular velocity is uniformly bounded by the initial mechanical energy
 350 of the pendulum, as long as $p(t_0, R, \tilde{\Omega})$ is compactly supported, we may assume $p(t, R, \tilde{\Omega})$
 351 is compactly supported, uniformly in time t . Therefore, the continuous state space can be
 352 regarded as $\text{SO}(3) \times \mathbb{T}^2$, where $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ is the 2-dimensional torus. Noncommutative
 353 harmonic analysis on $\text{SO}(3)$ has been presented in [8, 37], and harmonic analysis on \mathbb{S} is
 354 widely available. Here we review those materials needed to formulate harmonic analysis on
 355 $\text{SO}(3) \times \mathbb{T}^2$.

356 *Representation.* Let the representations of $\text{SO}(3)$ be denoted by $\{U^l(R)\}_{l \in \mathbb{N}}$, where the
 357 dimension of $U^l(R)$ is $d(l) = 2l + 1$. Suppose that $R \in \text{SO}(3)$ is parameterized by the 3-2-3
 358 Euler angles as

$$359 \quad (4.9) \quad R(\alpha, \beta, \gamma) = \exp(\alpha \hat{e}_3) \exp(\beta \hat{e}_2) \exp(\gamma \hat{e}_3),$$

360 where $\alpha, \gamma \in [0, 2\pi)$, $\beta \in [0, \pi]$. For $-l \leq m_1, m_2 \leq l$, the elements of the l -th representation
 361 $U^l(R)$ can be explicitly written as

$$362 \quad (4.10) \quad U_{m_1, m_2}^l(R(\alpha, \beta, \gamma)) = e^{-im_1\alpha} d_{m_1, m_2}^l(\beta) e^{-im_2\gamma},$$

363 where $d_{m_1, m_2}^l(\beta)$ is the real valued Wigner-d function [37]. Next, the representations of T^2
 364 are given by

$$365 \quad (4.11) \quad V^n(\tilde{\Omega}) = \exp\left(\frac{i\pi n_1 \Omega_1}{L} + \frac{i\pi n_2 \Omega_2}{L}\right)$$

366 for $n = (n_1, n_2) \in \mathbb{Z}^2$, where (Ω_1, Ω_2) is normalized by its uniform bound $L > 0$, such that
 367 $\pi\Omega_j/L \in [-\pi, \pi)$, $j = 1, 2$, so $\tilde{\Omega} \in T^2$. Then, the representations of $SO(3) \times T^2$ are given by
 368 the tensor product of U^l and V^n , and more explicitly $\{ \{U_{m_1, m_2}^l(R) \cdot V^n(\tilde{\Omega})\}_{m_1, m_2 = -l}^l \}_{l \in \mathbb{N}, n \in \mathbb{Z}^2}$,
 369 which forms a complete orthonormal basis for the function space $L^2(SO(3) \times T^2)$.

370 *Sampling Theorem.* Consider a band-limited function on $\mathrm{SO}(3) \times \mathrm{T}^2$ spanned by the representations with $l \leq l_0 - 1$ and $-n_0 \leq n_1, n_2 \leq n_0 - 1$. According to the sampling theorem, 371 its Fourier coefficients can be exactly recovered by the sample values on a certain grid and 372 the associated quadrature rule. The grid on $\mathrm{SO}(3)$ can be designed in terms of Euler angles, 373 with $2l_0$ points along each dimension:

374

$$375 \quad (4.12) \quad \alpha_{\nu_1} = \frac{\pi \nu_1}{l_0}, \quad \beta_{\nu_2} = \frac{\pi(2\nu_2 + 1)}{4l_0}, \quad \gamma_{\nu_3} = \frac{\pi \nu_3}{l_0},$$

³⁷⁶ for $\nu_1, \nu_2, \nu_3 = 0, \dots, 2l_0 - 1$. The quadrature rule associated with this grid [16] is

$$377 \quad (4.13) \quad w_\nu = \frac{1}{4l_0^3} \sin(\beta_{\nu_2}) \sum_{j=0}^{l_0-1} \frac{1}{2j+1} \sin((2j+1)\beta_{\nu_2}).$$

378 Similarly, a grid on T^2 can be defined as

$$379 \quad (4.14) \quad \frac{\pi(\Omega_1)_{\mu_1}}{L} = \frac{\mu_1 \pi}{n_0}, \quad \frac{\pi(\Omega_2)_{\mu_2}}{L} = \frac{\mu_2 \pi}{n_0},$$

380 for $\mu_1, \mu_2 = -n_0, \dots, n_0 - 1$. The quadrature rule is simply

381 (4.15)
$$w_\mu = \frac{1}{(2n_0)^2}.$$

382 Using the above orthonormal basis and quadrature rules, the forward Fourier transform
383 (3.3) can be computed using the following finite summation:

384 (4.16)
$$\mathcal{F}_{m_1, m_2}^{l, n}[f] = \sum_{\mu_1, \mu_2 = -n_0}^{n_0-1} \sum_{\nu_1, \nu_2, \nu_3 = 0}^{2l_0-1} w_\nu w_\mu f\left(R(\alpha_{\nu_1}, \beta_{\nu_2}, \gamma_{\nu_3}), (\Omega_1)_{\mu_1}, (\Omega_2)_{\mu_2}\right) \\ \cdot e^{im_1\alpha_{\nu_1}} d_{m_1, m_2}^l(\beta_{\nu_2}) e^{im_2\gamma_{\nu_3}} \cdot \exp\left(-\frac{in_1\pi(\Omega_1)_{\mu_1}}{L} - \frac{in_2\pi(\Omega_2)_{\mu_2}}{L}\right),$$

385 for any $0 \leq l \leq l_0 - 1$, $-l \leq m_1, m_2 \leq l$, and $-n_0 \leq n_1, n_2 \leq n_0 - 1$. Conversely, the backward
386 Fourier transform (3.6) can be explicitly written as

387 (4.17)
$$f\left(R(\alpha_{\nu_1}, \beta_{\nu_2}, \gamma_{\nu_3}), (\Omega_1)_{\mu_1}, (\Omega_2)_{\mu_2}\right) = \sum_{n_1, n_2 = -n_0}^{n_0-1} \sum_{l=0}^{l_0-1} \sum_{m_1, m_2 = -l}^l (2l+1) \mathcal{F}_{m_1, m_2}^{l, n}[f] \\ \cdot e^{-im_1\alpha_{\nu_1}} d_{m_1, m_2}^l(\beta_{\nu_2}) e^{-im_2\gamma_{\nu_3}} \cdot \exp\left(\frac{in_1\pi(\Omega_1)_{\mu_1}}{L} + \frac{in_2\pi(\Omega_2)_{\mu_2}}{L}\right),$$

388 to recover the function values on the grid. The summations in (4.16) and (4.17) can be
389 computed using a combination of the classic Cooley-Tukey FFT algorithm, and the FFT
390 developed specifically for SO(3) [16].

391 **4.3. Implementation.** Now, the proposed method is implemented to the pendulum model
392 as follows.

393 *Continuous Dynamics.* First, for the continuous dynamics (4.2), the corresponding FP
394 equation (3.1a) can be written as

395 (4.18)
$$\frac{\partial p^c(t, R, \tilde{\Omega})}{\partial t} = - \sum_{j=1}^2 \mathfrak{d}_j(\Omega_j p^c(t, R, \tilde{\Omega})) - \sum_{j=1}^2 \frac{\partial}{\partial \Omega_j} (a_j^g(R) p^c(t, R, \tilde{\Omega})) \\ + \sum_{j=1}^2 B_j \frac{\partial}{\partial \Omega_j} (\Omega_j p^c(t, R, \tilde{\Omega})) + \sum_{j,k=1}^2 \tilde{D}_{jk} \frac{\partial}{\partial \Omega_j \partial \Omega_k} p^c(t, R, \tilde{\Omega}),$$

396 where $a^g(R) = \frac{mg\rho_z}{J_1} [R_{32}, -R_{31}]^T$, and $\tilde{D} = \frac{1}{2} \tilde{H}_c \tilde{H}_c^T$. Next, we present selected operational
397 properties of the representations that are required to perform the Fourier transform for the
398 right hand side of the above expression. For the representation $U^l(R)$ of SO(3), the associated
399 Lie algebra representation has explicit forms:

400 (4.19a)
$$u_{m_1, m_2}^l(\hat{e}_1) = -\frac{1}{2} i c_{m_2}^l \delta_{m_1-1, m_2} - \frac{1}{2} i c_{-m_2}^l \delta_{m_1+1, m_2},$$

401 (4.19b)
$$u_{m_1, m_2}^l(\hat{e}_2) = -\frac{1}{2} c_{m_2}^l \delta_{m_1-1, m_2} + \frac{1}{2} c_{-m_2}^l \delta_{m_1+1, m_2},$$

402 (4.19c)
$$u_{m_1, m_2}^l(\hat{e}_3) = -im_1 \delta_{m_1, m_2},$$

404 where $c_m^l = \sqrt{(l-m)(l+m+1)}$. These can be used to calculate $\mathcal{F}^{l,n}[\mathfrak{d}_j(\Omega_j p^c)]$, the first term
 405 on the right hand side of (4.18), as in (3.4). Also, the Lie algebra representation associated
 406 with $V^n(\tilde{\Omega})$ is

407 (4.20)
$$v^n(e_j) = \frac{i\pi n_j}{L}, \quad j = 1, 2,$$

408 which can be used to obtain those terms involving $\mathcal{F}^{l,n}[\frac{\partial}{\partial \Omega_j}]$ and $\mathcal{F}^{l,n}[\frac{\partial^2 p^c}{\partial \Omega_j \partial \Omega_k}]$ in (4.18). Fur-
 409 thermore, utilizing the inverse convolution theorem specific to the Fourier series on T^N , for
 410 any $f \in L^2(\text{SO}(3) \times T^2)$ and $g \in L^2(T^2)$, we may calculate the Fourier coefficient of $f \cdot g$
 411 directly from those of f and g :

412 (4.21)
$$\mathcal{F}_{m_1, m_2}^{l,n}[fg] = \sum_{n'_1, n'_2 = -n_0}^{n_0-1} \mathcal{F}_{m_1, m_2}^{l,n-n'}[f] \mathcal{F}^{n'}[g],$$

413 where $n - n' = (n_1 - n'_1, n_2 - n'_2)$. This can be used for $\mathcal{F}^{l,n}[\Omega_j p^c]$ as an intermediate step to
 414 calculate $\mathcal{F}^{l,n}[\mathfrak{d}_j(\Omega_j p^c)]$. Using these properties, the Fourier transform of the right hand side
 415 for the continuous dynamics (4.18) can be constructed.

416 *Discrete Dynamics.* Next, we consider the discrete dynamics of the pendulum given by
 417 (4.4) and (4.8). The FP equation (3.1b) can be simplified as

418 (4.22)
$$\frac{\partial p^d(t, R, \tilde{\Omega})}{\partial t} = \int_{\frac{\pi \tilde{\Omega}^-}{L} \in T^2} \kappa_\Omega(R, \tilde{\Omega}^-, \tilde{\Omega}) \lambda(R, \tilde{\Omega}^-) p^d(t, R, \tilde{\Omega}^-) d\tilde{\Omega}^- - \lambda(R, \tilde{\Omega}) p^d(t, R, \tilde{\Omega})$$

420 where $\kappa_\Omega(R^-, \Omega^-, \Omega^+)$ is the second term of the right hand side of (4.8), and $d\Omega^-$ is the
 421 Lebesgue measure on \mathbb{R}^2 . As the attitude remains unchanged after any collision, the do-
 422 main of integration in the above expression has been reduced to T^2 . More specifically,
 423 we have used the property of Dirac-delta function: for any continuous f and $R_0 \in \text{SO}(3)$,
 424 $\int_{R \in \text{SO}(3)} \delta(RR_0^T) f(R) dR = f(R_0)$.

425 For numerical implementation, the integral in (4.22) can be evaluated with a finite sum-
 426 mation using the grid (4.14) on T^2 as in (4.23), where the quadrature weights corresponding
 427 to $d\tilde{\Omega}^-$ is $w'_\mu = \frac{L^2}{(2n_0)^2}$.

428 (4.23)
$$\frac{\partial p^d(t, R_\nu, \tilde{\Omega}_\mu)}{\partial t} \approx \sum_{\mu'_1, \mu'_2 = -n_0}^{n_0-1} w'_{\mu'} \kappa_\Omega(R_\nu, \tilde{\Omega}_{\mu'}, \tilde{\Omega}_\mu) \lambda(R_\nu, \tilde{\Omega}_{\mu'}) p^d(t, R_\nu, \tilde{\Omega}_{\mu'})$$

$$- \lambda(R_\nu, \tilde{\Omega}_\mu) p^d(t, R_\nu, \tilde{\Omega}_\mu).$$

429 The density values propagated over the discrete dynamics on the grid can be directly utilized in
 430 the subsequent propagation over the continuous dynamics according to the splitting method.

431 **4.4. Simulation Results.** The attitude and angular velocity uncertainties of the pendu-
 432 lum model are propagated using Algorithm 3.1, with the explicit computations developed in
 433 Section 4.2 and Section 4.3. These are implemented in c with Nvidia GPU computing toolkit
 434 11.2, along with a MATLAB interface. The standard FFT on T^N is computed using cuFFT,

Table 4.1: Simulation Parameters

Dimensions	h 0.2 m	r 0.025 m	ρ_z 0.1 m	d_{wall} 0.12 m
Inertia	m 1.0642 kg	J_1 0.0144 kg m ²	g 9.8 m s ⁻²	
Cont. Dynamics	\tilde{B} diag(0.2, 0.2) [s ⁻¹]		\tilde{H}_c $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ [rads ^{-3/2}]	
Dist. Dynamics	θ_t 5 deg	λ_{\max} 100	ε 0.8	H_d diag(0.05, 0.05) [rad s ⁻¹]
Computation	l_0, n_0 30	L 14.5 rad s ⁻¹		Δt 0.0025 s

435 and the discrete convolution in (4.21) and the finite summation in (4.23) are computed using
436 **cuTENSOR 1.2.2**. All of the computations are in double precision. The code is available at [40].
437 For $l_0 = n_0 = 30$, the computation time of propagating over one time step is 245 seconds in
438 average with a Nvidia A100-40GB GPU.

439 The initial uncertainty distribution is chosen as follows. The initial attitude follows a ma-
440 trix Fisher distribution [25] with parameter $F = \exp(-\frac{2\pi}{3}\hat{e}_2)$ diag(15, 15, 15), i.e., the mean at-
441 titude is $\exp(-\frac{2\pi}{3}\hat{e}_2)$, and the variance is approximately $\frac{1}{30}$ rad² along each axis (Figure 4.3(a)).
442 The initial angular velocity is Gaussian with zero mean and the standard deviation 2 rad s⁻¹
443 (Figure 4.5(a)). The initial attitude and angular velocity are independent. The parameters for
444 the pendulum model and those designed for the computation are listed in Table 4.1. Equation
445 (3.1a) is integrated using the fourth order Runge-Kutta method, and (3.1b) is propagated by
446 the forward Euler's method. The simulation is carried out for eight seconds with the step size
447 of $\Delta t = 0.0025$ s.

448 **Propagation of Continuous Dynamics.** We first propagate the uncertainty of the pendulum
449 without collisions, i.e., only (3.1a) is integrated. The attitude uncertainty is depicted by
450 the marginal distribution of the coordinates of body-fixed base axes via color shading in
451 Figure 4.3. In other words, the red, green, and blue shades represent the marginal density of
452 the \vec{b}_1 , \vec{b}_2 , and \vec{b}_3 axes respectively, and darker color indicates larger density value. Initially,
453 the attitude is concentrated where \vec{b}_3 is about 60 deg to the vertical position (Figure 4.3(a)).
454 After the pendulum is released, it swings about the \vec{e}_2 axis until it reaches the opposite limit
455 position (Figure 4.3(d)), and swings back to somewhere slightly below the initial position
456 (Figure 4.3(g)), which is repeated later on. At the same time, the uncertainty spreads about
457 the \vec{b}_3 axis, i.e., the rotation about \vec{b}_3 axis becomes more and more dispersed. After several
458 cycles, the \vec{b}_3 axis becomes concentrated near the vertical direction (Figure 4.3(q)-(t)), since
459 the energy is dissipated by the damping of the pendulum. Also, the rotation about \vec{b}_3 finally
460 becomes almost uniformly distributed. The same process can be observed from the bottom
461 view for the distribution of \vec{b}_3 axis shown in Figure 4.4.

462 The marginal density for the angular velocity is shown in Figure 4.5. Initially, it is con-
463 centrated around zero (Figure 4.5(a)). After the pendulum is released, the angular velocity
464 around \vec{b}_2 , i.e., Ω_2 accelerates and decelerates in the negative direction (Figure 4.5(b)-(d)), as

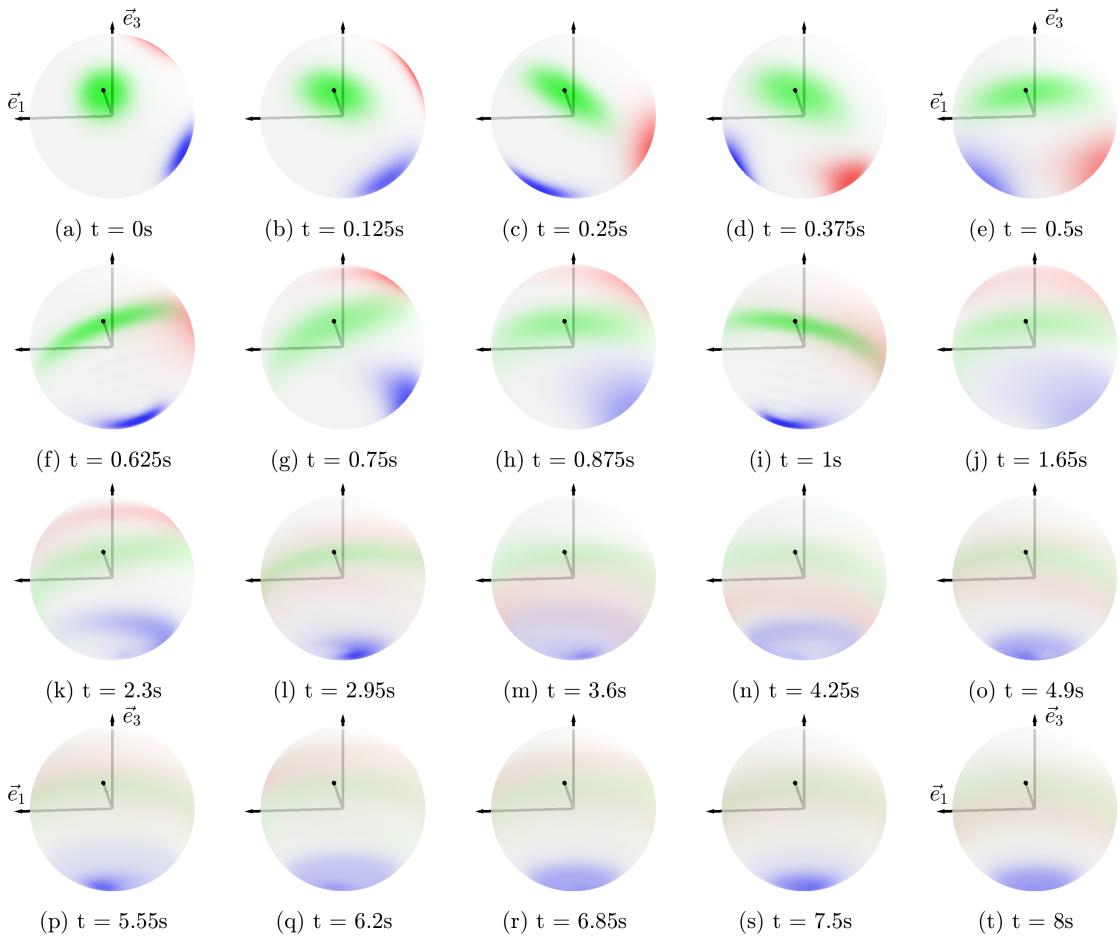
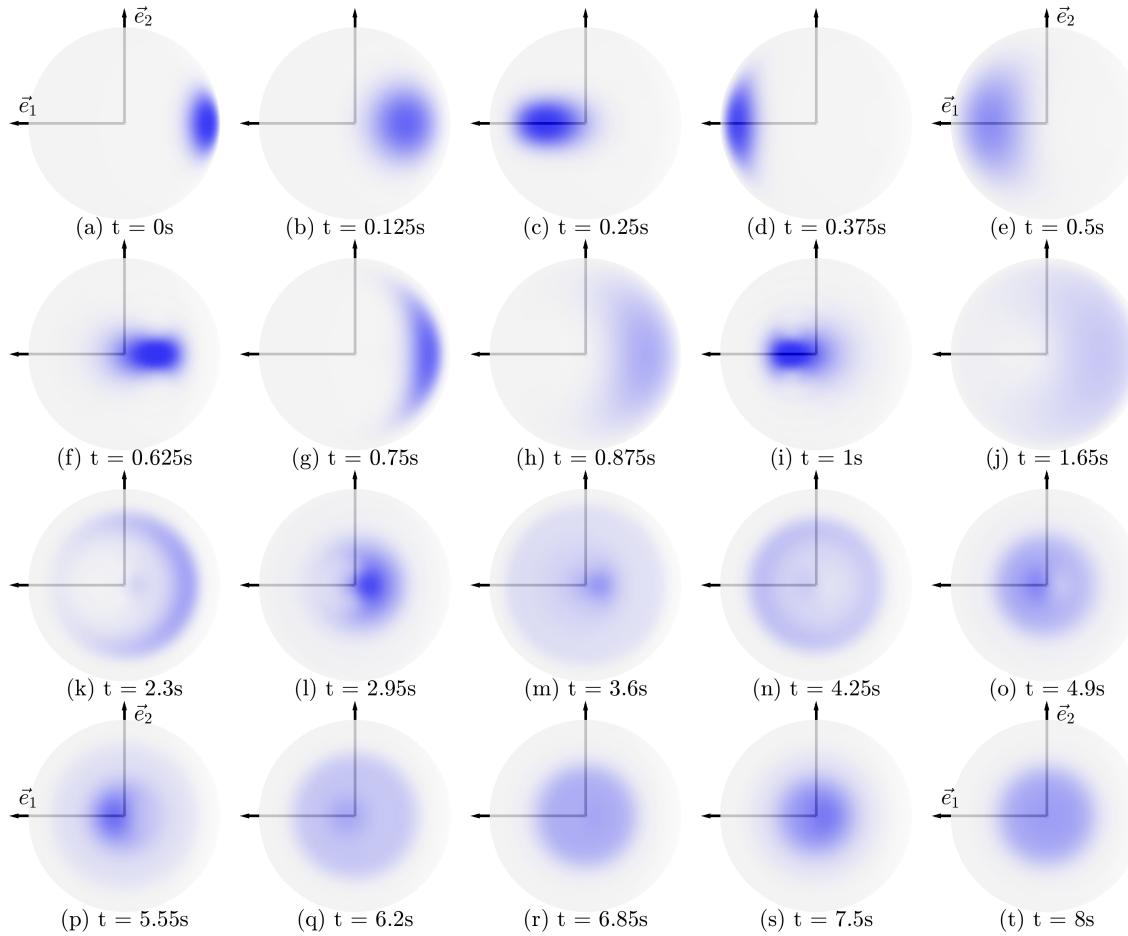


Figure 4.3: Marginal distribution of attitude without collisions.

465 the pendulum swings and reaches the opposite limit. Then Ω_2 accelerates into the positive
 466 direction as the pendulum swings back, and this is repeated. Finally, Ω becomes concentrated
 467 near zero again, after the energy is mostly dissipated (Figure 4.5(t)). During the process, the
 468 distribution of angular velocity displays some interesting shapes (Figure 4.5(i)-(o)). This is
 469 because the area with smaller Ω_1 leads to oscillations compared to other areas with larger
 470 Ω_1 . This illustrates one of the benefits of the proposed method that is capable of represent-
 471 ing an arbitrary density function, and this cannot be achieved with the common Gaussian
 472 distribution.

473 Next, the numerical results of the proposed method are compared against a Monte Carlo
 474 simulation with one million samples in Figure 4.6. The differences of the mean attitude
 475 and the b_3 direction between the Monte Carlo simulation and the proposed method with
 476 $l_0 = n_0 = 20, 30$ are shown in Figure 4.6(a)(b), in terms of angles. It is shown that the
 477 difference of the mean direction of \vec{b}_3 is below 1.5 deg, which is very small compared to the
 478 standard deviation of attitude that is around 15 deg. The difference of the mean attitude

Figure 4.4: Marginal distribution of b_3 without collisions.

479 becomes relatively large (above 5 deg) after 6 s. However, this is contributed by the fact that
 480 the rotation around \vec{b}_3 becomes close to a uniform distribution as seen in Figure 4.3(q)-(t),
 481 thereby making the mean value less distinctive. The standard deviations of attitude around
 482 \vec{e}_1 and \vec{e}_2 axes are compared in Figure 4.6(c), with their discrepancies more explicitly shown
 483 in Figure 4.6(d). Again the differences between the Monte Carlo simulation and the proposed
 484 method are small compared to their absolute magnitudes. Similarly, the mean and standard
 485 deviation of angular velocity are compared in Figure 4.6(e)(g), with the differences depicted
 486 in Figure 4.6(f)(h). In general, the larger bandwidth $b_0 = n_0 = 30$ makes the uncertainty
 487 propagation more accurate compared to $b_0 = n_0 = 20$, especially for the dispersion represented
 488 by standard deviations. The moments computed by the proposed method are consistent
 489 with the Monte Carlo simulation. However, the proposed method provides the probability
 490 distribution that carries the complete stochastic properties of the hybrid state beyond the
 491 moments.

492 As another comparison, we also propagate the uncertainty using a Gaussian distribution

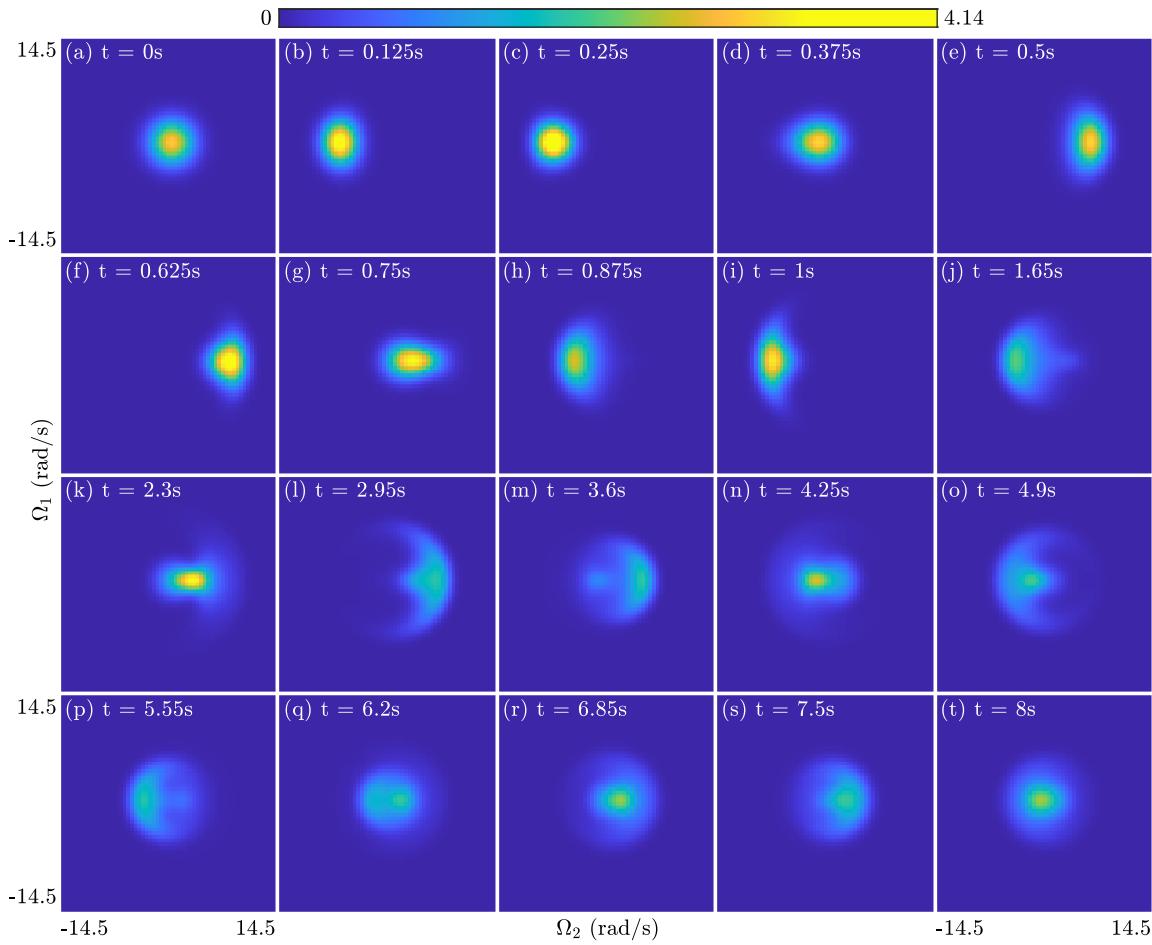


Figure 4.5: Marginal distribution of angular velocity without collisions.

in the tangent space of $\text{SO}(3)$ at the nominal attitude. This is the conventional approach when dealing with uncertainties involving 3D attitude. The dynamics in (4.1) is linearized according to [20]. The nominal state, i.e., the mean attitude and angular velocity, is obtained by integrating (4.2) with $\tilde{H}_c = 0$ using the Lie group variational integrator developed in [21] from the initial mean. The covariance matrix is integrated using the 4th order Runge-Kutta method along the standard differential equation obtained through linearization. The comparison of this uncertainty propagation scheme and Monte Carlo simulations is demonstrated in Figure 4.7. Compared to Figure 4.6, the difference is a lot larger than that using the proposed spectral method, rendering the incapability of using a Gaussian distribution in the tangent space of $\text{SO}(3)$ for uncertainty propagation of this complex pendulum dynamics. By observing Figure 4.3-Figure 4.5, it is straightforward that Gaussian distribution is deficient in describing the complex shape of the uncertainty.

Propagation of GS HS. Next, we propagate the uncertainty of the pendulum with collisions, i.e., both (3.1a) and (3.1b) are integrated. The marginal distribution of attitude is shown in

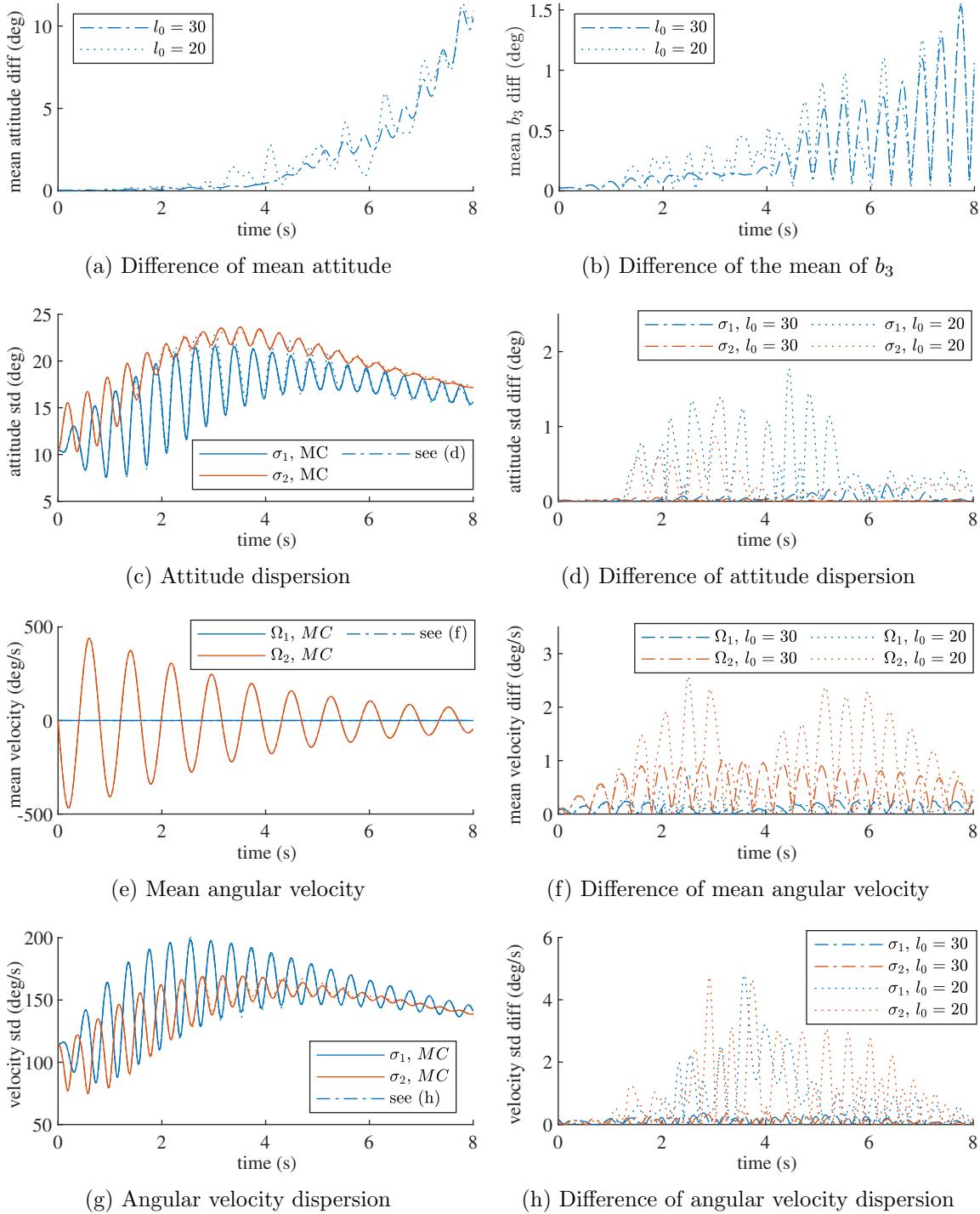


Figure 4.6: Comparison of proposed method with Monte Carlo simulation without collisions.

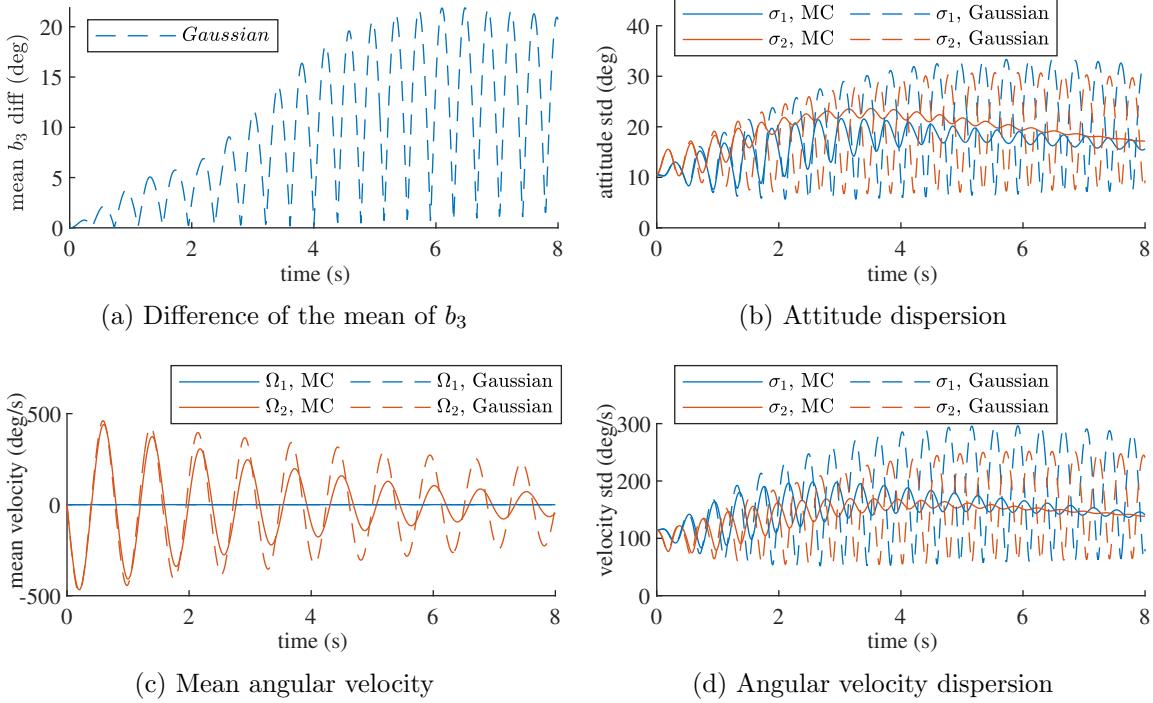


Figure 4.7: Comparison of uncertainty propagation using a Gaussian distribution in the tangent space of $\text{SO}(3)$ with Monte Carlo simulation without collisions.

507 Figure 4.8, and in Figure 4.9 where only the marginal distribution of \vec{b}_3 is observed from
 508 bottom. The wall is depicted by a gray plane. Similar to the case without collisions, initially
 509 the attitude is concentrated where \vec{b}_3 is 60 deg from the vertical. And after the pendulum is
 510 released, it swings about the \vec{e}_2 axis. When the pendulum collides with the wall (Figure 4.8(c)),
 511 it cannot penetrate through the wall, but rebounds backwards (Figure 4.8(d)). This is more
 512 clearly seen by comparing Figure 4.9(c) with Figure 4.4(c). Then the pendulum swings back to
 513 somewhere below the initial position (Figure 4.8(e)) due to the friction. These are repeated for
 514 several cycles until the energy is mostly dissipated, when \vec{b}_3 is concentrated around the vertical
 515 direction, and no longer reaches the wall (Figure 4.8(r)-(t)). Compared with the case without
 516 collisions, the energy is dissipated more quickly, since it is also lost during the collision due
 517 to the coefficient of restitution less than one, besides the damping. Note that there are some
 518 densities of b_3 that are slightly on the left of the wall during the collision (Figure 4.9(c),(h)).
 519 This is because the rate function (4.4) is not infinitely large in the guard set, thus there is a
 520 small probability that the discrete jump is not triggered when the pendulum is on the left.
 521 But this probability becomes smaller when the pendulum further penetrates through the wall,
 522 since the rate function increases. This can be interpreted as that the probability of rebounds
 523 increases as the third body-fixed axis \vec{b}_3 becomes closer to the wall. The computational
 524 benefit is that the density changes gradually around the boundary of the guard set, instead

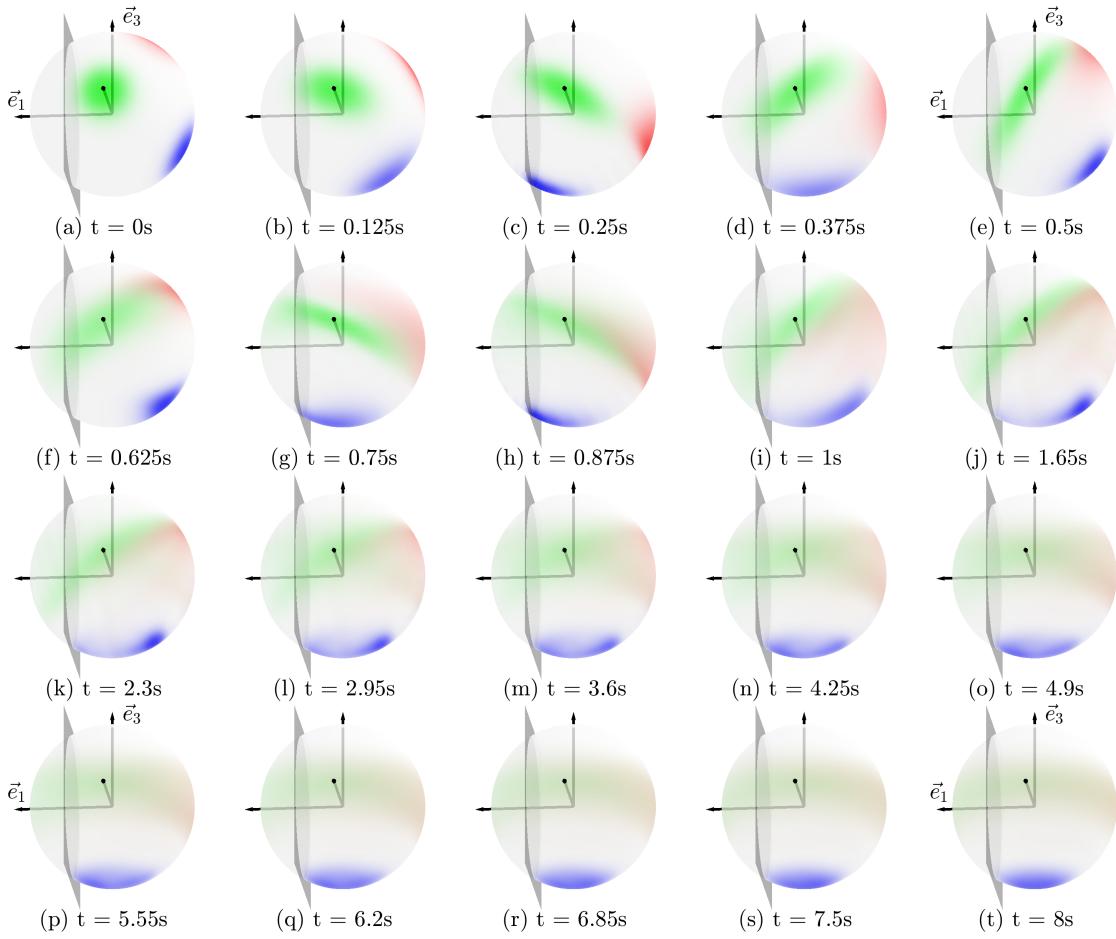


Figure 4.8: Marginal distribution of attitude with collisions.

525 of becoming zero abruptly like a step function, which allows capturing the space variation of
 526 the density function without excessively high bandwidth.

527 The marginal density of angular velocity is shown in Figure 4.10. Similar to the case
 528 without collisions, the angular velocity is concentrated around zero initially (Figure 4.10(a)),
 529 and accelerates into the negative Ω_2 direction after the pendulum is released (Figure 4.10(b)).
 530 Nevertheless, instead of decelerating to zero, the angular velocity undergoes jump due to
 531 the collision, i.e., the negative Ω_2 is reset to be positive instantly during the discrete jump
 532 (Figure 4.10(c)) according to the reset kernel (4.8), thereby separating the angular velocity
 533 distribution into two parts. Later, most of the angular velocity has completed the collision and
 534 Ω_2 continuous to accelerate (Figure 4.10(d)) until the pendulum reaches the vertical position,
 535 and begins to decelerate (Figure 4.10(e)) afterwards. These are repeated by several cycles,
 536 until the energy is mostly dissipated and the angular velocity is concentrated around zero
 537 again (Figure 4.10(r)-(t)). These illustrate that the proposed method successfully captures
 538 the complex interplay between the uncertainty distributions of attitude and angular velocity,

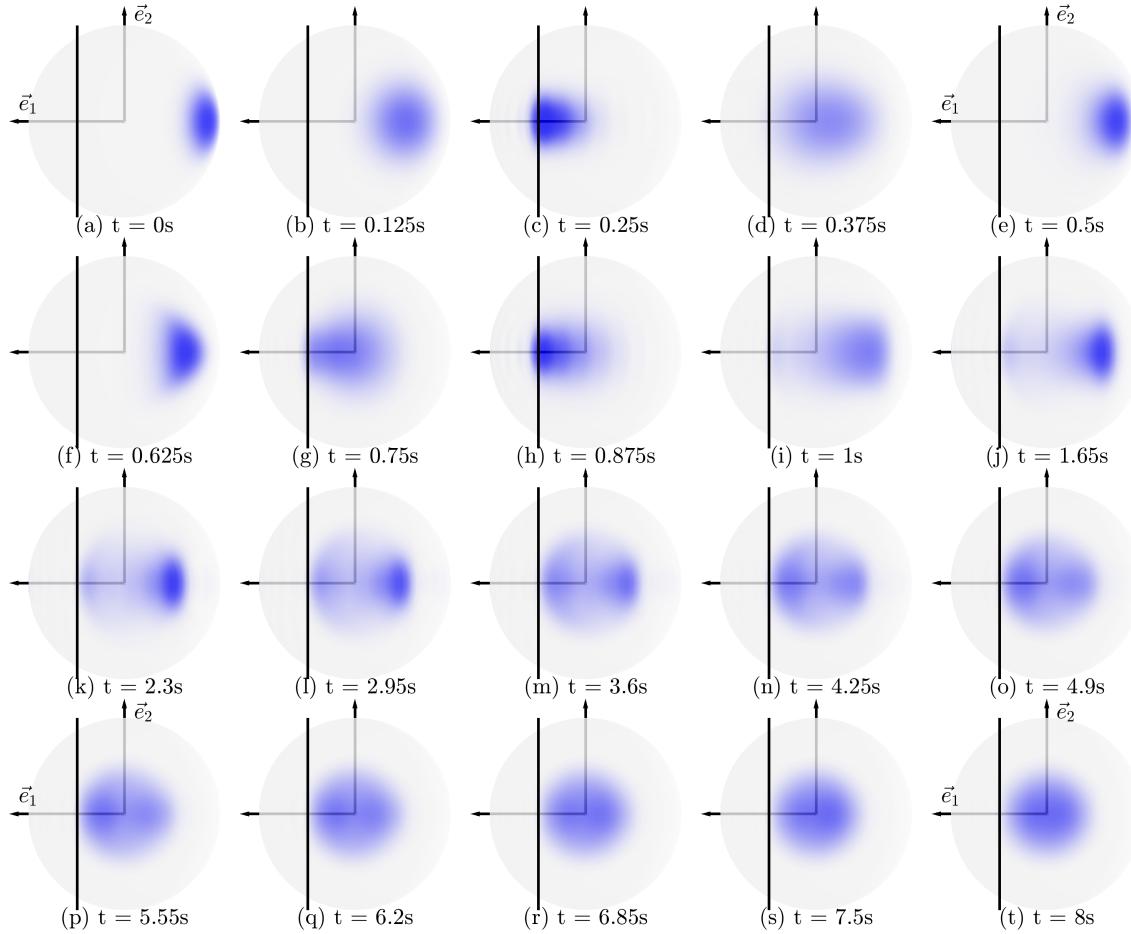


Figure 4.9: Marginal distribution of b_3 with collisions.

539 as well as the collision, while generating the propagated density function for the hybrid state.

540 The propagated uncertainty using the proposed method with $l_0 = n_0 = 30$ is also compared
 541 with a Monte Carlo simulation with a million samples in Figure 4.11. It is seen the differences
 542 of mean attitude and mean direction of \vec{b}_3 are small compared with the attitude standard
 543 deviation. The differences of attitude standard deviation, mean and standard deviation of
 544 angular velocity are in general within 10% of their absolute magnitudes.

545 **5. Conclusions.** In this paper, we propose a computational framework to propagate the
 546 uncertainty of a general stochastic hybrid system where the continuous state space is a com-
 547 pact Lie group. The Fokker-Planck equation for the GSFS is split into two parts: a partial
 548 differential equation corresponding to the continuous dynamics, and an integro-differential
 549 equation corresponding to the discrete dynamics. The two split equations are solved alterna-
 550 tively and combined using a first order splitting scheme. In particular, the PDE is solved using
 551 the classic spectral method, by invoking noncommutative harmonic analysis on a compact Lie

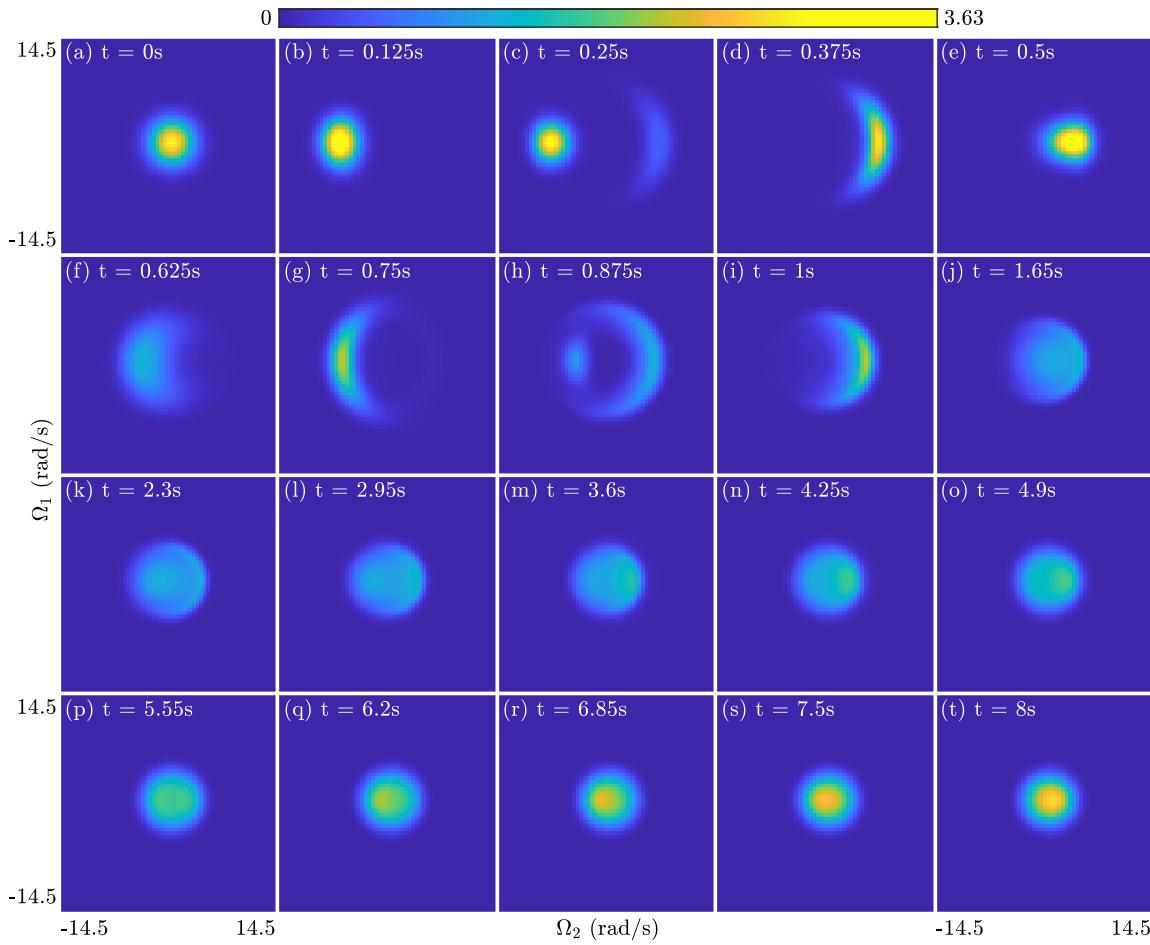


Figure 4.10: Marginal distribution of angular velocity with collisions.

552 group. The proposed method is applied to a 3D pendulum that collides with a planar wall.
 553 It is exhibited that the proposed method is able to capture complex uncertainty distributions
 554 with arbitrary shapes or large dispersion, and the computed density function can be directly
 555 used for visualization or for constructing any stochastic properties.

556

REFERENCES

557 [1] J. BECT, *A unifying formulation of the Fokker–Planck–Kolmogorov equation for general stochastic hybrid*
 558 *systems*, Nonlinear Analysis: Hybrid Systems, 4 (2010), pp. 357–370.
 559 [2] H. A. BLOM, G. BAKKER, AND J. KRYSTUL, *Rare event estimation for a large-scale stochastic hybrid*
 560 *system with air traffic application*, in Rare event simulation using Monte Carlo methods, Wiley Online
 561 Library, 2009, ch. 9, pp. 193–214.
 562 [3] H. A. BLOM AND Y. BAR-SHALOM, *The interacting multiple model algorithm for systems with Markovian*
 563 *switching coefficients*, IEEE transactions on Automatic Control, 33 (1988), pp. 780–783.
 564 [4] H. A. BLOM AND E. A. BLOEM, *Particle filtering for stochastic hybrid systems*, in IEEE Conference on

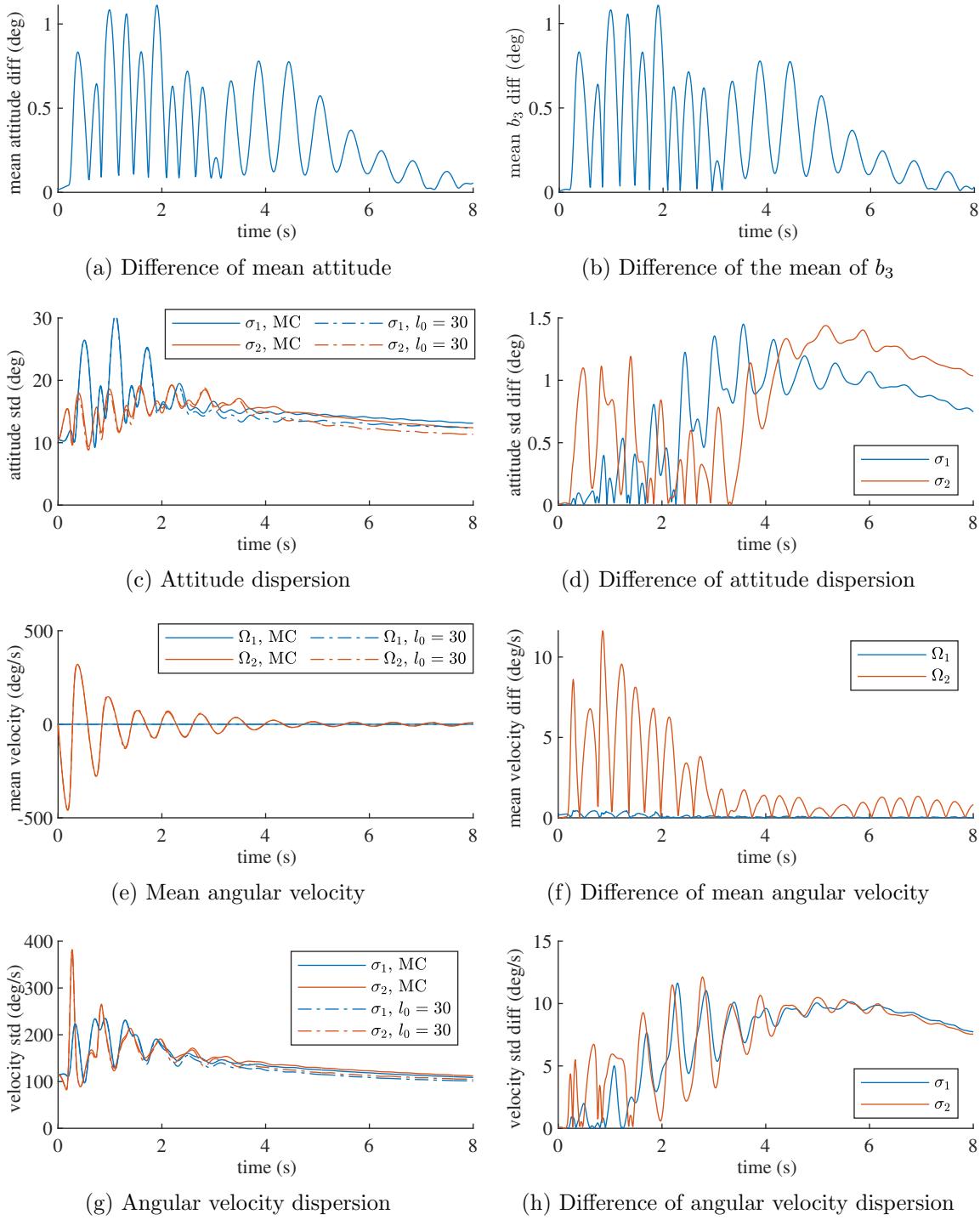


Figure 4.11: Comparison of proposed method with Monte Carlo simulation with collisions.

565 Decision and Control, IEEE, 2004, pp. 3221–3226.

566 [5] M. L. BUJORIANU AND J. LYGEROS, *Toward a general theory of stochastic hybrid systems*, in Stochastic
567 hybrid systems, Springer, 2006, pp. 3–30.

568 [6] G. CHIRIKJIAN AND M. KOBILAROV, *Gaussian approximation of non-linear measurement models on Lie
569 groups*, in 53rd IEEE Conference on Decision and Control, IEEE, 2014, pp. 6401–6406.

570 [7] G. S. CHIRIKJIAN, *Stochastic models, information theory, and Lie groups, volume 2: Analytic methods
571 and modern applications*, vol. 2, Springer Science & Business Media, 2011.

572 [8] G. S. CHIRIKJIAN AND A. B. KYATKIN, *Engineering applications of noncommutative harmonic analysis:
573 with emphasis on rotation and motion groups*, CRC press, 2000.

574 [9] H. DONG AND G. S. CHIRIKJIAN, *A comparison of Gaussian and Fourier methods for degenerate diffusions
575 on SE(2)*, in 2015 54th IEEE Conference on Decision and Control, IEEE, 2015, pp. 6016–6022.

576 [10] J. HAMMERSLEY AND D. HANDSCOMB, *Monte Carlo methods*, Methuen, 1975.

577 [11] J. P. HESPAÑA, *Stochastic hybrid systems: Application to communication networks*, in International
578 Workshop on Hybrid Systems: Computation and Control, Springer, 2004, pp. 387–401.

579 [12] J. P. HESPAÑA AND A. SINGH, *Stochastic models for chemically reacting systems using polynomial
580 stochastic hybrid systems*, International Journal of Robust and Nonlinear Control, 15 (2005), pp. 669–
581 689.

582 [13] R. IYENGAR AND P. DASH, *Study of the random vibration of nonlinear systems by the Gaussian closure
583 technique*, Journal of Applied Mechanics, 45 (1978), pp. 393–399.

584 [14] J. S. KIM AND G. S. CHIRIKJIAN, *Bayesian filtering for orientational distributions: A Fourier approach*,
585 in 18th International Conference on Information Fusion, IEEE, 2015, pp. 748–753.

586 [15] N. J. KONG, J. J. PAYNE, G. COUNCIL, AND A. M. JOHNSON, *The salted Kalman filter: Kalman filtering
587 on hybrid dynamical systems*, Automatica, 131 (2021), p. 109752.

588 [16] P. J. KOSTELEC AND D. N. ROCKMORE, *FFTs on the rotation group*, Journal of Fourier analysis and
589 applications, 14 (2008), pp. 145–179.

590 [17] M. KUMAR, P. SINGLA, S. CHAKRAVORTY, AND J. JUNKINS, *The partition of unity finite element ap-
591 proach to the stationary Fokker-Planck equation*, in AIAA/AAS Astrodynamics Specialist Conference
592 and Exhibit, 2006.

593 [18] T. LEE, *Stochastic optimal motion planning for the attitude kinematics of a rigid body with non-Gaussian
594 uncertainties*, Journal of Dynamic Systems, Measurement, and Control, 137 (2015), p. 034502.

595 [19] T. LEE, M. LEOK, AND N. H. MCCCLAMROCH, *Global symplectic uncertainty propagation on SO(3)*, in
596 47th IEEE Conference on Decision and Control, IEEE, 2008, pp. 61–66.

597 [20] T. LEE, M. LEOK, AND N. H. MCCCLAMROCH, *Stable manifolds of saddle points for pendulum dynamics
598 on S^2 and SO(3)*, arXiv preprint arXiv:1103.2822, (2011).

599 [21] T. LEE, N. H. MCCCLAMROCH, AND M. LEOK, *A Lie group variational integrator for the attitude dynamics
600 of a rigid body with applications to the 3D pendulum*, in Proceedings of IEEE Conference on Control
601 Applications, IEEE, 2005, pp. 962–967.

602 [22] C. LEVERMORE AND W. MOROKOFF, *The Gaussian moment closure for gas dynamics*, SIAM Journal of
603 Applied Mathematics, 59 (1998), pp. 72–96.

604 [23] W. LIU AND I. HWANG, *On hybrid state estimation for stochastic hybrid systems*, IEEE Transactions on
605 Automatic Control, 59 (2014), pp. 2615–2628.

606 [24] S. MACNAMARA AND G. STRANG, *Operator splitting*, in Splitting methods in communication, imaging,
607 science, and engineering, Springer, 2016, pp. 95–114.

608 [25] K. V. MARDIA AND P. E. JUPP, *Directional statistics*, vol. 494, John Wiley & Sons, 2009.

609 [26] D. K. MASLEN, *Efficient computation of Fourier transforms on compact groups*, Journal of Fourier Analy-
610 sis and Applications, 4 (1998), pp. 19–52.

611 [27] N. METROPOLIS AND S. ULAM, *The Monte Carlo method*, Journal of the American Statistical Association,
612 44 (1949), pp. 335–341.

613 [28] K. PAKDAMAN, M. THIEULLEN, AND G. WAINRIB, *Fluid limit theorems for stochastic hybrid systems with
614 application to neuron models*, Advances in Applied Probability, 42 (2010), pp. 761–794.

615 [29] F. PETER AND H. WEYL, *Die vollständigkeit der primitiven darstellungen einer geschlossenen kontinuier-
616 lichen gruppe*, Mathematische Annalen, 97 (1927), pp. 735–755.

617 [30] H. PRADWARTER, *Nonlinear stochastic response distribution by local statistical linearization*, International
618 Journal of Nonlinear Mechanics, 36 (2001), pp. 1135–1151.

619 [31] M. PRANDINI AND J. HU, *Application of reachability analysis for stochastic hybrid systems to aircraft*
620 *conflict prediction*, in 47th IEEE Conference on Decision and Control, IEEE, 2008, pp. 4036–4041.
621 [32] J. ROBERTS AND P. SPANOS, *Random vibration and statistical linearization*, Dover Publications, 2003.
622 [33] D. N. ROCKMORE, *Recent progress and applications in group FFTs*, in Computational noncommutative
623 algebra and applications, Springer, 2004, pp. 227–254.
624 [34] C. E. SEAH AND I. HWANG, *Stochastic linear hybrid systems: modeling, estimation, and application in*
625 *air traffic control*, IEEE Transactions on Control Systems Technology, 17 (2009), pp. 563–575.
626 [35] E. TADMOR, *A review of numerical methods for nonlinear partial differential equations*, Bulletin of the
627 American Mathematical Society, 49 (2012), pp. 507–554.
628 [36] S. TAFAZOLI AND X. SUN, *Hybrid system state tracking and fault detection using particle filters*, IEEE
629 Transactions on Control Systems Technology, 14 (2006), pp. 1078–1087.
630 [37] D. A. VARSHALOVICH, A. N. MOSKALEV, AND V. K. KHERSONSKII, *Quantum theory of angular momen-*
631 *tum*, World Scientific, 1988.
632 [38] W. WANG AND T. LEE, *Spectral Bayesian estimation for general stochastic hybrid systems*, Automatica,
633 117 (2020), p. 108989.
634 [39] W. WANG AND T. LEE, *Spectral uncertainty propagation for generalized stochastic hybrid systems with*
635 *applications to a bouncing ball*, in American Control Conference, IEEE, 2020, pp. 1803–1808.
636 [40] W. WANG AND T. LEE, *Uncertainty propagation for GS HS*. [Online]. Available: https://github.com/fdcl-gwu/hybrid_UP, 2021.
637 [41] Y. WANG, Y. ZHOU, D. K. MASLEN, AND G. S. CHIRIKJIAN, *Solving phase-noise Fokker-Planck equa-*
638 *tions using the motion-group Fourier transform*, IEEE Transactions on Communications, 54 (2006),
639 pp. 868–877.
640 [42] Y. ZHOU AND G. S. CHIRIKJIAN, *Probabilistic models of dead-reckoning error in nonholonomic mobile*
641 *robots*, in 2003 IEEE International Conference on Robotics and Automation, vol. 2, IEEE, 2003,
642 pp. 1594–1599.
643