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Uncertainty Propagation for General Stochastic Hybrid Systems
on Compact Lie Groups*

Weixin Wang' and Taeyoung Leef

Abstract. This paper deals with uncertainty propagation of general stochastic hybrid systems (GSHS) where
the continuous state space is a compact Lie group. A computational framework is proposed to
solve the Fokker-Planck (FP) equation that describes the time evolution of the probability density
function for the state of GSHS. The FP equation is split into two parts: the partial differential
operator corresponding to the continuous dynamics, and the integral operator arising from the
discrete dynamics. These two parts are solved alternatively using the operator splitting technique.
Specifically, the partial differential equation is solved by the spectral method where the density
function is decomposed into a linear combination of a complete orthonormal function basis brought
forth by the Peter-Weyl theorem, thereby resulting an ordinary differential equation. Next, the
integral equation is solved by approximating the integral by a finite summation using a quadrature
rule. The proposed method is then applied to a three-dimensional rigid body pendulum colliding
with a wall, evolving on the product of the three-dimensional special orthogonal group and the
Fuclidean space. It is illustrated that the proposed method exhibits more accurate numerical results
than the conventional Gaussian approach formulated in the tangent space by comparing with a
Monte Carlo simulation, while explicitly generating the density function that carries the complete
stochastic information of the hybrid state.

Key words. stochastic hybrid system, Fokker-Planck equation, noncommutative harmonic analysis, Lie group
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1. Introduction. General stochastic hybrid system (GSHS) is a stochastic dynamical sys-
tem that exhibits both continuous and discrete random behaviors [5]. In a GSHS, the hybrid
state consists of two parts: the continuous state that takes the value on a smooth manifold,
and the discrete state that lies on a countable set. The continuous dynamics is defined by
stochastic differential equations (SDEs) indexed by the discrete state, describing the evolution
of continuous state between jumps. The discrete dynamics describes the stochastic jump of
the state, which is triggered by a Poisson process with a state-dependent rate function. The
uncertainty after the jump is represented by a stochastic kernel. GSHS exhibits rich dynamics
caused by the interplay between the continuous state and the discrete counterpart, and it has
been used to model various complex systems, such as chemical reactions [12], neuron activities
[28], air traffic control [2, 31, 34], and communication networks [11].

Uncertainty propagation involves advecting a probability density along the flow of a dy-
namical system according to the Fokker—Planck (FP) equation. The probability density can
be approximated by, for example, the first n-moments [17], which leads to Monte Carlo meth-
ods [10, 27], Gaussian closure methods [13, 22], and equivalent linearization and stochastic
averaging [30, 32]. But, Monte Carlo methods do not propagate the probability density func-
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2 W. WANG AND T. LEE

tion directly. Other methods involve low-order approximations of the dynamical system, which
are suitable only for moderately nonlinear systems as the omitted higher-order terms can lead
to significant errors, particularly for long time intervals. For stochastic hybrid systems, uncer-
tainty propagation has been focused on the case when the continuous state lies in the Euclidean
space. For example, the interacting multiple model approach [3] and the salted Kalman filter
[15] linearize the dynamics and use the Gaussian distribution to describe uncertainties. In
[4, 36], particle filters are employed to propagate random samples through the dynamics to
approximate the uncertainty distribution. Alternatively, to propagate the probability density
function directly, the FP equation has been extended for GSHS into integro-partial differen-
tial equations (IPDEs) [1, 11]. And it has been solved using finite difference method [23] and
spectral method [38].

In this paper, we study the uncertainty propagation for GSHS whose continuous state
evolves on a compact Lie group G. More specifically, given an initial probability distribution
of the state, we wish to construct the probability distribution at an arbitrary time through
GSHS, by solving the corresponding FP equation represented by IPDEs on G. To address
the presence of partial differentiation and integration in the FP equation, we employ the
operator splitting method [24]. Specifically, the FP equation is decomposed into two parts:
the continuous dynamics which only contains the partial differential operator, and the discrete
dynamics which only contains the integral operator. These two individual equations are solved
alternatively over a small time step using their respective numerical methods, and they are
combined by a first order splitting scheme.

For the partial differential equation corresponding to the continuous dynamics, we use
the classic spectral method. The spectral method has been used to solve the FP equations
on SE(2) and SO(3) [14, 18, 19, 41, 42] for uncertainty propagation of stochastic dynamical
systems without discrete dynamics. It utilizes the Peter-Weyl theorem [29], which states
that the matrix components of all finite dimensional irreducible unitary representations of
a compact Lie group form a complete orthonormal basis for the space of square integrable
functions. As such, an arbitrary probability density function on G can be approximated by
a linear combination of the matrix elements of irreducible unitary representations. Further
using the operational properties of the representation, the FP equation is transformed into
ordinary differential equations (ODEs) of the coefficients, which can be integrated by standard
ODE solvers. Next, the integro-differential equation corresponding to the discrete dynamics
is approximated by a quadrature rule over a grid, such that the density values on the grid
are propagated by another set of ODEs. A useful property is that the grid for the discrete
dynamics can be selected to be compatible with the harmonic analysis for the continuous
dynamics so as to improve the computational efficiency of the overall splitting scheme.

Compared to conventional methods based on Gaussian distributions formulated in the
tangent space of the Lie group [6, 9], the proposed method has the advantage of being non-
parametric, i.e., it does not assume a specific family of distributions, but applies to density
functions with arbitrary shapes. The proposed method constructs a probability density func-
tion, which carries the complete stochastic information about the propagated state, and as
such, it can be directly used for visualization or calculating descriptive measures, such as
moments, number and locations of local maxima, etc. In this regard, although the Monte
Carlo method is also non-parametric, the information of the state is implicitly carried by
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UNCERTAINTY PROPAGATION FOR STOCHASTIC HYBRID SYSTEMS 3

random samples, which is usually hard to be distilled into usable forms other than calculating
moments, especially when the number of samples is large. Also, the Monte Carlo method
cannot deal with large uncertainties efficiently [38]. The downside of the proposed approach
is that as a spectral method, its computational complexity increases exponentially with the
dimension of continuous space, and quickly becomes infeasible [35].

In short, the main contribution of this paper is the computational framework to propagate
uncertainties though GSHS on a compact Lie group. The use of noncommutative harmonic
analysis to represent the uncertainty distribution in a global fashion overcomes a fundamental
limitation of existing techniques, which implicitly assume that the uncertainty is localized, or
has a canonical form. By solving the Fokker—Planck equation directly, the probability density
that describes the complete stochastic properties of a hybrid system is propagated.

The rest of this paper is organized as follows: Section 2 reviews the formulation of GSHS
considered in this paper, and introduces its associated FP equation. The proposed algorithm
for uncertainty propagation is introduced in Section 3 when the continuous state space is a
general compact Lie group. In Section 4, we focus on a specific example of a 3D pendulum
colliding with a wall, where the continuous state space is SO(3) x R2.

2. Problem Formulation. In this section, we give a formal definition of the GSHS [5]
considered in this paper, and introduce the corresponding FP equation that describes the
evolution of the probability density function over time.

2.1. General Stochastic Hybrid System. The GSHS considered in this paper is defined
as a collection H = {X, a,b, Init, \, K} as follows:

e X = (G xS is the hybrid state space, where G is a Ny-dimensional compact Lie
group, and S is a set composed of N discrete modes. The hybrid state is denoted by
(9,8) e GxS.

e Init : B(X) — [0,1] is the initial uncertainty distribution of the hybrid state, where
B(X) is all Borel sets in X.

e The continuous state evolves according to the following stochastic differential equations
between discrete jumps:

(2.1) g tdg = a(t,g,s)"dt + (b(t, s)dW;)"

where @ : R x X — R™s is the drifting vector field, and b : R x § — RNo*Nw ig
the coefficient matrix for diffusion. Next, W; is a N,-dimensional standard Wiener
process. The map (-)" : R™ — g is the natural identification of R™s and g, the Lie
algebra of G. Since b does not depend on g, (2.1) can be defined either in Ito’s or
Stratonovich’s sense.
e The discrete jump is triggered by a Poisson process, with a rate function A : X — RT
dependent on the hybrid state.
e During each discrete jump, the hybrid state is reset according to a stochastic kernel
K : (X,B(X)) — [0,1], such that K(z~—,X™") is the probability of 2= € X being
reset into the set X+ € B(X).
One restriction of the GSHS defined above is that it does not allow the discrete jump to
be triggered by the continuous state g entering a certain guard set in a deterministic fashion.
However, such forced jumps can be approximated by a Poisson process after choosing the rate
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4 W. WANG AND T. LEE

function sufficiently large inside the guard set, and zero outside [11]. This will be illustrated
by the 3D pendulum example in Section 4.

We also assume the initial distribution has a probability density function for each s € S,
ie., Init(A) =3 g f(gvs)eAp(tg,g, s)dg for all A € B(X), where dg is the bi-invariant Haar
measure on G normalized such that fgeG dg = 1. Furthermore, the discrete transition kernel
K can also be written as a set of density functions:

Kaxh=Y [ wlg™, 55+ 5%)dg",

where kK : X X X — R.

Let (2, F,P) be the underlying probability space, where  is the sample space, F is a
sigma-algebra over 2, and P denotes the probability measure on F. For a given w € (),
let {ux(w)} be a sequence of independent uniformly distributed random variables on [0, 1].
Then an execution of the GSHS defined above can be generated according to the following
procedure.

1. Initialize g(w,tp) and s(w,tp) from the initial distribution Init.

2. Let t1(w) = sup {t : exp( ft ,5(w, tg))dv') > ul(w)} be the time of the

first jump.

3. During ¢ € [to,t1(w)), g(w,t) is a sample path of SDE (2.1) with s = s(w,tp), and

s(w,t) = s(w, o).
4. At time t;, the state is reset to (g(w,t]),s(w,t])) as a sample from the kernel

r(g(w, 1), s(w, to), 2+, sT).
5. If t1 < oo, repeat from 2) with tg, so, t1, up replaced by tx(w), s(w,t;), tpa1(w),
ug+1(w) for k=1,2,....

2.2. Fokker-Planck Equation for GSHS. The FP equation for GSHS describes how its
density function evolves over time [1, 7, 11], and it is given as a set of IPDEs as follows:

Ng

ap(t, g,
g ZDJ a;(t,g,5)p(t, 9,5)) + Y Djk(t, s)0,0kp(t, g, 5)
G k=1
(2.2) Lep(t,g,s)
£y / (972579 9Mg 57 )p(t g, 57)dg™ — Mg, 5)p(t:9,9),
s—esv9 €G
L;}p?;w)

where the subscripts denote the indices of a vector or matrix, and D = %bbT. Moreover, 0;
is the left-trivialized derivative of a function on G, i.e., 9;f(9) = & o/ (gexp(té;)), where
exp : g — G is the exponential map, and e; is the j-th standard base vector of RNs. For
each s € S, (2.2) defines an IPDE for p(t, g, s), and thus, there are a total of Ny IPDEs.

The FP equation can be interpreted as follows. The first two terms on the right hand
side of (2.2) represent the evolution caused by the continuous process: the first one represents
advection due to the drift vector field, and the second corresponds to diffusion caused by
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UNCERTAINTY PROPAGATION FOR STOCHASTIC HYBRID SYSTEMS 5

noise, or the Wiener process. The last two terms of (2.2) describe the evolution due to
discrete jumps. The third term represents the densities transitioned into (g, s) from (¢g~,s7)
before the jump, weighted by how likely the jump happens ()), and how likely the density is
transitioned into (g, s) (k). The last term represents the density transitioned out of (g, s). To
distinguish these two parts explicitly, (2.2) is written as

Ip(t,g,s)

(2.3) -

= Lep(t, g,5) + Lgp(t, g, 5),
where £} and L}, denote the adjoint of the infinitesimal generators of the continuous SDE,
and the discrete jump of the GSHS, respectively.

The FP equation (2.2) describes the evolution of the probability density along the flows of
GSHS on a Lie group. In contrast to the Fokker—Planck equation of non-hybrid systems, which
is a partial-differential equation, (2.2) exhibits fundamental challenges, as it is an integro-
partial differential equation that involves both partial differentiation and integration. Another
challenge is that the probability density is defined on a nonlinear Lie group G, so the existing
computational techniques in solving the Fokker—Planck equation on a linear space R™ cannot
be directly applied. In this paper, these are addressed by utilizing noncommutative harmonic
analysis and the splitting technique.

3. Uncertainty Propagation for GSHS. In this section, we present a computational
framework to solve (2.3) via the spectral method using noncommutative harmonic analy-
sis on G. However, the integral term in (2.2) causes issues in the spectral method as there is
no closed formula to express the Fourier coefficients of the integral of a function f(g) over G
as the Fourier coefficients of f. Even though a closed formula exists on RY, it has been shown
that taking the Fourier transform of the integral term directly involves intensive computations
[39].

Instead, we adopt the operator splitting technique, where (2.3) is split into two equations:

opc(t,g,s . e

(3.10) W92 _ r1e(r,g,9)
pr(t,g:8) .

(3.1b) (8759) = Lip"(t,9,5).

The desirable features are that in the absence of the term L}p, (3.1a) corresponds to a PDE
on G for each discrete state; and without £}p, (3.1b) becomes an integro-differential equation
without partial differentiation. These can be addressed by using the spectral method and
numerical quadrature respectively. Then, the solution of each part can be combined with the

operator splitting.

3.1. Propagation over Continuous Dynamics. First, we solve (3.1a) via noncommutative
harmonic analysis. The objective is to decompose the density function p°(¢, g, s) into a linear
combination of an orthonormal basis of a function space on G for each t > ty and s € S. Then
(3.1a) can be converted to a set of ODEs for the coefficients of the linear combination, which
can be solved via standard numerical integration schemes for ODE.
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6 W. WANG AND T. LEE

We first summarize harmonic analysis on a compact Lie group G [8, 26]. Let Ul(g) : G —
GL(d(1),C) be the I-th irreducible unitary representation of G with a finite dimension d(l),
and the collection of all [ be denoted by G. Then by the Peter-Weyl theorem, the functions
{ut, L ma }féi ‘ma=1Jc¢; form an orthonormal basis of the function space L*(G). That is, for
any square integrable function f : G — C, it can be decomposed as a linear combination

(3.2) Xj§jci ) o 11U s (9),

leG mi1,m2=1

where F?

mi,msg

[f] are the Fourier coefficients of f, given by the (mj, mo)-th entry of

(3.3) Flifl= [ FfloUg™HTdg= [ fl9)Ug)dg

geG gelG

Equation (3.2) and (3.3) are called the inverse and forward Fourier transform of function f.
One crucial property is that we can express the Fourier coefficient of the derivative F[0; f]
in terms of F[f] [8]. Let u! : g — gl(d(l),C) be the associated Lie algebra representation of

Ul ie., forall X € g, u!(X) = &‘tonl(exp(tX)). Then, we have

(3.4) F'oj f1 = Fflu' )"

It should be noted in some other works, the subscripts for F! malf] are reversed relative to
FTanml [f] in (3.2). Under this convention, (3.3) and (3.4) should be modified accordingly (see
for example Section 8.3 in [8]).

Using these, (3.1a) can be transformed into a set of ODEs for the Fourier coefficients of
p(t, g, s) as follows.

Theorem 3.1. Let F[p°|(t,s) be the Fourier coefficients of p°(t, g, s) which depend on t and
s. For any s € S, if p°(t,g,s) satisfies (3.1a), then F[p|(t,s) approzimately satisfies the
following ODE:

Ng
(3.5) —]-'l Zfl ajp°)(t, s)u(e;)" + D DipF et s)ul () ul (¢5)"
Jk=1
Proof. Suppose p°(t, g, s) is approximated by a band-limited [26] sum of its Fourier series:
(3.6) p°(t,g.9) Z}§:<1 s [Pt ) Uy s (9),
leGo m1,m2=1

where Gy is a finite subset of G. Substitute the above equation and a similar band-limited
expansion of Lip€ into (3.1a), we get for all s € S

) Z A0 Py s 1(05) U (0) ~ 3 Z A1) Fhy g |C20°N(t 5) Ul 1y (9):

leGo m1,ma=1 leGo m1,m2=1
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UNCERTAINTY PROPAGATION FOR STOCHASTIC HYBRID SYSTEMS 7

Due to the orthogonality of basis, we can equate the Fourier coefficient with the same indices,

Le. LFL 01t s) = Fh m, [L*p°)(t, 5) for any s € S. Equation (3.5) can be derived by
expanding L£*p° using the differentiation formula (3.4). [ |
Equation (3.5) is ODEs of the Fourier coefficients f£117m2 [p°](t, s), and can be integrated

using numerical ODE solvers. To illustrate how the calculations can be carried out in practice,
we present with the simplest forward Euler’s method. Suppose a grid {g, ]Vvil is put onto G,

and there is a quadrature rule {w,,}f,vil such that the integral in (3.3) can be approximated
by a finite summation:

Ny
(3.7) FU =) wof(9.)U gw)-

v=1

This allows the forward Fourier transform to be computed. Suppose at time ¢ = ¢}, the values
of p°(tk, gv, ), a(tk, gy, s) on the grid, and D(t,s) are given. Then the Fourier coefficients
Flla;p)(ty, s), and F![p](tg,s) for | € Gp can be calculated as in (3.7) using the quadrature
rule. Namely, the right hand side of (3.5), i.e., F'[L%p°](tk, s) can be calculated, which enables
the first order integration F![p¢](tgr1,8) = FL[p°](tk, 8) + F[LEpC) (¢, 8)At. And the values of
P°(tk+1, gv, s) on the grid can be recovered by (3.6), which can be used in the next integration
step. The pseudocode is summarized in Algorithm 3.1, where the first order integration can
easily be replaced by other higher order numerical integration schemes.

The summations in (3.7) and (3.6) can be accelerated using extensions of the classic
Cooley-Tukey FFT algorithm to compact Lie groups. See for example [33] for a review on
this topic. The FFT algorithms have been developed for classic compact matrix Lie groups
SO(n), U(n), SU(n) and Sp(n) in [26].

3.2. Propagation over Discrete Dynamics. Next, consider (3.1b). We apply the quad-
rature rule on G to the integral term on the right hand side of (3.1b), where the integration
over (G is replaced by a finite summation over the grid:

dpi(t, g, 5)

(3.8) e

Nq
= > wklg,, s, v, SNy 5PNt 9,0 57) = Algws )P (E g0 5),
s—esSv'=1

where g, and g/, are lattices of the grid on G. The above is a set of linear ODEs of p?(t, g,,, s)
with Ny- N, equations. Suppose at time t = tj, the values of p?(t, g,, s) on the grid are given,
then the values of p? at time ¢ = ¢, can be integrated using the forward Euler’s method as
P(tks1, Gus 8) = p(t, gu, 8) + Lip(tr, g, 8)At, where Lip®(tg, gy, s) is calculated as the right
hand side of (3.8). The pseudocode is summarized in Algorithm 3.1.

3.3. Splitting Method. In summary, (3.1a) is transformed into ODEs of Fourier coeffi-
cients, and (3.1b) is converted into ODEs of probability densities on the grid. The numerical
solutions of these two equations are combined using a first order splitting scheme as follows.
Suppose the time is discretized by a sequence {t,};°, with a fixed increment At =t — .
Given p(t, g, s), we first solve (3.1a) with the initial condition p©(tx, g, s) = p(tx, g, s) to ob-
tain p°(tx+1, g, s) that is propagated over the continuous dynamics. Next, we solve (3.1b) with
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8 W. WANG AND T. LEE

the initial condition p?(ty, g, s) = p°(tx+1, 9, ) to propagate it over the discrete dynamics, and
construct p?(tg41,9,s) which is taken as the solution of (2.2) at t,;. These two parts are
integrated seamlessly, as the probability density values propagated over the discrete dynam-
ics are on the grid designed for the Fourier transform required for the propagation over the
continuous dynamics. The pseudocode is summarized in Algorithm 3.1.

Algorithm 3.1 Uncertainty propagation for GSHS

1: procedure p(tg+1,9y,5) = UNCERTAINTY_PROPAGATION(p(tk, g, S))
2: pc(tkuglMS) :p<tkagl/78)'

3 P°(tk+1, gv, S) = PROPAGATE_CONTINUOUS(p(tk, v, S))-

4 Pt gvs 8) = P°(tet1, 9o 8)-

5. p(tki1, v, 8) = PROPAGATE_DISCRETE(p?(t1, gy, 5)).

6: p(tk+1agv78) :pd(tk+lagvas)'

7: end procedure

8

9

: procedure p(txi1, gy, S) = PROPAGATE_CONTINUOUS(p(tk, gv, S))

for s € S do
10: for | € Gy do
11: for j=1,...,N,do
12: Compute F[a;p°](tg, s) using (3.7).
13: end for
14: Compute F'[p¢](t, s) using (3.7).
15: Compute F'(L:p°)(ty, s) using the right hand side of (3.5).
16 FUp (b1, 5) = FUp] (b, 5) + L) ()AL,
17: end for
18: Recover p®(tgi1, gy, s) from F![p¢](ty11,5) using (3.6).
19: end for

20: end procedure

21: procedure p?(tyy1,9,,5) = PROPAGATE_DISCRETE(p®(tx, g, 5))
22: forse Sandv=1,...,N, do

23: Compute Lp?(ty, g., s) using the right hand side of (3.8).
24: pd(tk—i-h v, S) - pd(tka v, S) + [’jlpd(tk) v, S)At
25: end for

26: end procedure

4. Numerical Example of 3D Pendulum. A 3D pendulum is a rigid body that freely
rotates about an inertially-fixed pivot under gravity. In this section, we apply the proposed
method to the 3D pendulum model, to propagate the uncertainties of its attitude and angular
velocity. For the discrete dynamics, we assume that the 3D pendulum may collide with a fixed
planar wall, which causes an instantaneous change of its angular velocity (see Figure 4.1).

4.1. 3D Pendulum Model. We use the GSHS defined in Section 2.1 to model the 3D
pendulum as follows. Two reference Eragnei are used: the inertial frame {é7, &, €3}, and the
body-fixed frame of the pendulum {b1,bs,bs}. The origin of the body-fixed frame is at the
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(a) Possible collision configurations. (b) Collision response.

Figure 4.1: An Axially symmetric 3D pendulum colliding with a wall.

pivot point denoted by P. The continuous state is (R, Q) € G' = SO(3) x R, where R € SO(3)
is the attitude of the pendulum, i.e., the linear transform of coordinates from the body-fixed
frame to the inertial frame, and ) € R? is the coordinates of angular velocity in the body-fixed
frame. The discrete state space is S = {1}, i.e., there is only one discrete mode. Throughout
this section, for any vector @, a € R? denotes its coordinates in the inertial frame, if not stated
otherwise.

Continuous Dynamics. The continuous dynamics is given by the following SDE:

(4.1a) RTAR = Qadt,
(4.1b) dQ = (J7(—Q x JQ — mgp x RTe3) — BQ) dt + H.AW,,

where J € R3*3 is the moment of inertia about the pivot, and m € R is the mass. The
coordinates of the center of mass are given by p € R? in the body-fixed frame. The fixed
gravitational acceleration is denoted by g € R. There is a damping torque proportional to the
angular velocity scaled by the matrix B = diag(B1, Bo, B3) € R3*3. Finally, W; € R3 is the
standard Wiener process, representing random external torques.

We make the following assumptions to simplify the continuous dynamics: (i) the pendulum
is axially symmetric, i.e., J = diag(J1,J1,J3), and p = [0,0, p,]7 is along the axis bs; (ii)
Init({23 = 0}) = 1, i.e., the initial angular velocity along the axis of symmetry is zero with
probability one; (iii) the third row of H, is zero. Under these assumptions, it is straightforward
to verify that P(Q3(t) = 0) = 1 for any ¢ > #y. As a consequence, we may ignore 23 and
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10 W. WANG AND T. LEE

reduce the continuous state space into G = SO(3) x R2. The resulting SDE is given by

~ AN

(4.2a) RTaR = ([07 o) at,

(4.2b) a0 = <m9pz { Bz } - BQ) dt + H.AW,,
Ji |~ Ra

where Q = [, Q]7, B = diag(Bj, By), and H. is the first two rows of H..

Discrete Dynamics. A planar wall is placed perpendicular to the inertial €) axis, at dyan > 0
from the pivot point P. As the pendulum swings, it may collide with the wall and rebound.
We further assume the pendulum is a cylinder with the height A and the radius r. Then, all
possible collision points between the pendulum and the wall form a circle, as illustrated in
Figure 4.1a. Let the angle between the €1-€5 plane and bs be denoted by 6 = arcsin(gg - e1).
A collision occurs when

. dwall . r
4.3a 0 > 0y = arcsin —— — arcsin ——,
(4.32) =7 Vh? +r? h% 42
(4.3]?)) (RQ X Q) -e1 >0,

where g € R? is the coordinates of the vector PC = (h — 7 tan @)bs + 7 sec &, in the inertial
frame, and C' is the point on the pendulum that has the largest coordinate along €.

The first equation states that the pendulum penetrates through the wall, and the second
equation implies that the pendulum is rotating towards the wall. Equation (4.3) represents
a guard set defined such that whenever the continuous state enters it, the discrete jump is
triggered. This corresponds to a deterministic forced jump of hybrid systems. In the presented
GSHS, a Poisson process can be designed to approximate this forced jump, with a rate function
A(R, Q) being very large when (4.3) is satisfied, and zero otherwise. However, one must make
a compromise on the space variation of A. Specifically, the ideal A would make the probability
density p°¢ large outside the guard set, and close to zero inside, i.e., there is a large space
variation of p¢ caused by the discontinuity at the boundary. This is unfavorable for the
spectral method, since a high bandwidth must be used to capture the large space variation,
at the cost of increased computational load. Here we design a rate function corresponding to
(4.3) with a relatively small space variation as

%sin(%(&—&o))#—’\m%, if —0,<0—0y<8, RAxo-e1>0
(4.4) MR, = { Amaxs if0—0y>0, ROxo0 e >0

0, otherwise

Namely, a threshold 6; > 0 is used to mark a “boundary region” of the guard set, and the sine
function is used to make a smooth connection between the large Ap.x > 0 inside the guard
set, and zero outside (Figure 4.2).

Next, we formulate the stochastic kernel describing the state distribution immediately
after a jump. During the collision, an impulse —je; with j > 0 is applied to the pendulum
at the collision point C' (Figure 4.1b) that redirects the linear velocity of the pendulum at C'
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0
Figure 4.2: A(R, Q) versus 0(R) when (RQ X ) -e; > 0.

along €7. First assume there is no noise, then the collision response can be summarized in
terms of the change of angular velocity and linear velocity at C', as follows:

(4.5a) QF — Q" =J'RT (0 x (—jer)),
(4.5b) (ROT x 0)-e1 = —e(RQY™ x g) - eq,

where Q~, QF denote the angular velocities before and after collision respectively, and 0 < € <
1 is the coefficient of restitution. Note that t £ (o x e1)/|o x e1] is perpendicular to b3, since
J = diag(Ji, J1, J3), it can be verified that J 'Rt = J%RTt. This indicates that QF — Q™ is
along RTt and is perpendicular to RT'bs, thus Q;{ = ()3 and we may ignore {23 as we did in
the continuous dynamics where P(23 = 0) = 1. Furthermore, (4.5b) can be simplified into

(4.6) Qt=Q" — (1+¢)(Q - RTt)R™,

which gives the continuous state 2 right after the collision in an ideal case. Here we further
assume that the angular velocity is also perturbed by a Gaussian noise during collision, i.e.,

(4.7) QF =0t + [Ho"f] :

where Q7 is the perturbed angular velocity after collision, Hy € R?*2, and € is a 2-dimensional
standard Gaussian random vector.
In short, the stochastic kernel for discrete jump caused by the collision can be written as

R(R™,Q7, RY, QF) =bso@3) (RT(R7)T)
(4.8) 1 1 (o _6+) 1 (o+ _ 6+
X5 detEdexp{_2 (Q —QO) %, (Q —Q[))},
where Xy = HgH, , and dgq(3) is the Dirac-delta function on SO(3). In other words, the

discrete jump does not alter the attitude R, while it resets the angular velocity from Q to
Ot with Gaussian distributed random noises.
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4.2. Harmonic Analysis on SO(3) x T2, One obstacle in applying the proposed approach
to the pendulum model is that the continuous state space, namely SO(3) x R? is not compact.
Nevertheless, since the angular velocity is uniformly bounded by the initial mechanical energy
of the pendulum, as long as p(t, R, Q) is compactly supported, we may assume p(¢, R, Q)
is compactly supported, uniformly in time ¢. Therefore, the continuous state space can be
regarded as SO(3) x T?, where T? = S! x S! is the 2-dimensional torus. Noncommutative
harmonic analysis on SO(3) has been presented in [8, 37], and harmonic analysis on S is
widely available. Here we review those materials needed to formulate harmonic analysis on
SO(3) x T2

Representation. Let the representations of SO(3) be denoted by {U!(R)};en, where the
dimension of U'(R) is d(l) = 2] + 1. Suppose that R € SO(3) is parameterized by the 3-2-3
Euler angles as

(4.9) R(a, B,7) = exp(aés3) exp(Béz) exp(vés),

where a,y € [0,27), § € [0,7]. For =l < mj,mg < [, the elements of the [-th representation
UY(R) can be explicitly written as

(4.10) Uymy (R(ev, B,7)) = e7"™dL, . (B)e ™7,

where d! (B) is the real valued Wigner-d function [37]. Next, the representations of T2

mi,m2
are given by

~ i §2 1282
(4.11) V™'(Q) =exp <z7m£ Lt ang 2>

for n = (n1,n2) € Z?, where (Q1,Qs) is normalized by its uniform bound L > 0, such that
/L € [-m,m), j = 1,2, s0 Q) € T2. Then, the representations of SO(3) x T? are given by
the tensor product of U! and V", and more explicitly {{Ufnhm2 (R)-V™(Q) lrnl,mngl}IEN,TLEZL
which forms a complete orthonormal basis for the function space L?(SO(3) x T?).

Sampling Theorem. Consider a band-limited function on SO(3) x T? spanned by the rep-
resentations with [ <lp — 1 and —ng < n1,ns < ng — 1. According to the sampling theorem,
its Fourier coefficients can be exactly recovered by the sample values on a certain grid and
the associated quadrature rule. The grid on SO(3) can be designed in terms of Euler angles,

with 2[y points along each dimension:

V] m(2v2 + 1 T3
(4.12) =™ g, Tt D T
lo 41y lo
for v1,v9,v3 =0,...,2lyp — 1. The quadrature rule associated with this grid [16] is
1 lo—1
(4.13) v = 1m sin(f3,,) ]Z; T sin((2j + 1)B.,)-
Similarly, a grid on T? can be defined as
(414) 7r(gll),u‘l _ M17T7 W(QQ),UQ _ /14271"
L no L no
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for w1, ue = —ng,...,ng — 1. The quadrature rule is simply
(4.15) !
. wy = @n)?"

Using the above orthonormal basis and quadrature rules, the forward Fourier transform
(3.3) can be computed using the following finite summation:

no—1 2lp—1
ffﬂr;mﬁa [f] = Z Z wl/w,uf<R(OéV15BI/27fy1/3)u (Ql)ula (92)u2>
(4.16) p1,i2=—ng v1,v2,v3=0

i ezm1al,1d£nl mz(ﬂuz)ezmz’yl’3 - eXp <— lﬂ—( 1)#1 - 27T( 2)H2) )

L L

forany 0 <1 <lg—1, =l <mi,ms <[, and —ng < ni,ne < ng— 1. Conversely, the backward
Fourier transform (3.6) can be explicitly written as

no—1 lo—1

F (B Bas )y W @2)) = D D2 S @ 0ED)

(417) ni,n2=—no [=0 mi,mo=-1

.efzmwwl dfnl e (lguz)e*ZmQ'Yug - exp <Zn17T(L 1)111 + Zn?W(L 2)M2> 7

to recover the function values on the grid. The summations in (4.16) and (4.17) can be
computed using a combination of the classic Cooley-Tukey FFT algorithm, and the FFT
developed specifically for SO(3) [16].

4.3. Implementation. Now, the proposed method is implemented to the pendulum model
as follows.

Continuous Dynamics. First, for the continuous dynamics (4.2), the corresponding FP
equation (3.1a) can be written as

~ 2
¢ Q
(3]9(%;%,) E DJ Jp t R, Q E 8% (t R, Q))
— J
(4.18) o =

0 N e
+ZBJ(,m (p°(t, B, ) + > Dy 50, 06057 p°(t, R, ),
7,k=1

where af(R) = "P=[Rso, —Rs1|7, and D = LH.HY. Next, we present selected operational
properties of the representations that are required to perform the Fourier transform for the
right hand side of the above expression. For the representation U'(R) of SO(3), the associated
Lie algebra representation has explicit forms:

(4198‘) ulrnl,mg (él) = _%ic'lm,g(sml_LmZ - %iclfmgéml‘f‘l,"na?
(4‘19b) ulml,mg (é2) = _%Cf’na&ml_]-,mQ + %cl—m25m1+1,m27
(4.19¢) U, g (€3) = — 10181 sy,
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14 W. WANG AND T. LEE

where ¢!, = \/(I —m)(l +m + 1). These can be used to calculate F""[0;(Q2;p)], the first term
on the right hand side of (4.18), as in (3.4). Also, the Lie algebra representation associated
with V"™ (Q) is

iﬂnj

(4.20) o"(ej) = T,

J=12,

which can be used to obtain those terms involving fl’”[a%j] and fl’”[agjggk] in (4.18). Fur-

thermore, utilizing the inverse convolution theorem specific to the Fourier series on T, for
any f € L*(SO(3) x T?) and g € L?(T?), we may calculate the Fourier coefficient of f - ¢
directly from those of f and g:

no—1

(4.21) Firolfal = > FhrrfF (gl

’ol
n,Ny=—ng

where n —n' = (n; —n),nz —nb). This can be used for F4"[Q;p¢] as an intermediate step to
calculate F l’”[bj (Q;p°)]. Using these properties, the Fourier transform of the right hand side
for the continuous dynamics (4.18) can be constructed.

Discrete Dynamics. Next, we consider the discrete dynamics of the pendulum given by
(4.4) and (4.8). The FP equation (3.1b) can be simplified as

d 0 ~ ~ ~ ~ ~ ~ ~
(4.22) W: / o ra(ROT QAR Q)L RO — MR, Q)pl(t, R, Q)

LT
where rko(R™,Q7,Q") is the second term of the right hand side of (4.8), and dQ~ is the
Lebesgue measure on R2. As the attitude remains unchanged after any collision, the do-
main of integration in the above expression has been reduced to T2. More specifically,
we have used the property of Dirac-delta function: for any continuous f and Ry € SO(3),
Jreso) O(RRE) f(R)AR = f(Ro).

For numerical implementation, the integral in (4.22) can be evaluated with a finite sum-
mation using the grid (4.14) on T? as in (4.23), where the quadrature weights corresponding

to dQ~ is w), = ﬁ
opt(t, Ry, Q) ol . o -
(423) ot Z wyrki(Ru, @, Q) ARy, Q0 )p° (¢, Ru, Q)
H1sH=—"10

— MRy, )Pt Ry, Q).

The density values propagated over the discrete dynamics on the grid can be directly utilized in
the subsequent propagation over the continuous dynamics according to the splitting method.

4.4. Simulation Results. The attitude and angular velocity uncertainties of the pendu-
lum model are propagated using Algorithm 3.1, with the explicit computations developed in
Section 4.2 and Section 4.3. These are implemented in ¢ with Nvidia GPU computing toolkit
11.2, along with a MATLAB interface. The standard FFT on T is computed using cuFFT,
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Table 4.1: Simulation Parameters

. . h r Pz dwall
Dimensions 0.2m 0.025m 0.1m 0.12m
Inerti m J1 g
nertia 1.0642kg 0.0144 kg m? 9.8ms2
B He
. D i
Cont. Dynamics diag(0.2,0.2) [s~1] 1 0 0 [radsz/z]
01 0
. . et )\max S Hd
Dist. Dynamics 5deg 100 0.8 diag(0.05,0.05) [rads~1]
. lo, no L At
Computation 30 14.5rads™! 0.0025 s

and the discrete convolution in (4.21) and the finite summation in (4.23) are computed using
cuTENSOR 1.2.2. All of the computations are in double precision. The code is available at [40].
For [y = ng = 30, the computation time of propagating over one time step is 245 seconds in
average with a Nvidia A100-40GB GPU.

The initial uncertainty distribution is chosen as follows. The initial attitude follows a ma-

2T 4

trix Fisher distribution [25] with parameter F' = exp(—%é2) diag(15, 15,15), i.e., the mean at-
titude is exp(—%”ég), and the variance is approximately %rad2 along each axis (Figure 4.3(a)).
The initial angular velocity is Gaussian with zero mean and the standard deviation 2rads™!
(Figure 4.5(a)). The initial attitude and angular velocity are independent. The parameters for
the pendulum model and those designed for the computation are listed in Table 4.1. Equation
(3.1a) is integrated using the fourth order Runge-Kutta method, and (3.1b) is propagated by
the forward Euler’s method. The simulation is carried out for eight seconds with the step size
of At =0.0025s.

Propagation of Continuous Dynamics. We first propagate the uncertainty of the pendulum
without collisions, i.e., only (3.1a) is integrated. The attitude uncertainty is depicted by
the marginal distribution of the coordinates of body-fixed base axes via color shading in
Figure 4.3. In other words, the red, greed, and blue shades represent the marginal density of
the 51, 52, and 53 axes respectively, and darker color indicates larger density value. Initially,
the attitude is concentrated where bg is about 60 deg to the vertical position (Figure 4.3(a)).
After the pendulum is released, it swings about the é5 axis until it reaches the opposite limit
position (Figure 4.3(d)), and swings back to somewhere slightly below the initial position
(Figure 4.3(g)), which is repeated later on. At the same time, the uncertainty spreads about
the 53 axis, i.e., the rotation about 53 axis becomes more and more dispersed. After several
cycles, the bs axis becomes concentrated near the vertical direction (Figure 4.3(q)-(t)), since
the energy is dissipated by the damping of the pendulum. Also, the rotation about 53 finally
becomes almost uniformly distributed. The same process can be observed from the bottom
view for the distribution of b3 axis shown in Figure 4.4.

The marginal density for the angular velocity is shown in Figure 4.5. Initially, it is con-
centrated around zero (Figure 4.5(a)). After the pendulum is released, the angular velocity
around by, i.e., Qy accelerates and decelerates in the negative direction (Figure 4.5(b)-(d)), as
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Figure 4.3: Marginal distribution of attitude without collisions.

the pendulum swings and reaches the opposite limit. Then €2 accelerates into the positive
direction as the pendulum swings back, and this is repeated. Finally, {2 becomes concentrated
near zero again, after the energy is mostly dissipated (Figure 4.5(t)). During the process, the
distribution of angular velocity displays some interesting shapes (Figure 4.5(i)-(0)). This is
because the area with smaller €y leads to oscillations compared to other areas with larger
Q. This illustrates one of the benefits of the proposed method that is capable of represent-
ing an arbitrary density function, and this cannot be achieved with the common Gaussian
distribution.

Next, the numerical results of the proposed method are compared against a Monte Carlo
simulation with one million samples in Figure 4.6. The differences of the mean attitude
and the bg direction between the Monte Carlo simulation and the proposed method with
lo = no = 20,30 are shown in Figure 4.6(a)(b), in terms of angles. It is shown that the
difference of the mean direction of 53 is below 1.5deg, which is very small compared to the
standard deviation of attitude that is around 15deg. The difference of the mean attitude
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Figure 4.4: Marginal distribution of b3 without collisions.

becomes relatively large (above 5deg) after 6 s. However, this is contributed by the fact that
the rotation around bs becomes close to a uniform distribution as seen in Figure 4.3(q)-(t),
thereby making the mean value less distinctive. The standard deviations of attitude around
€1 and & axes are compared in Figure 4.6(c), with their discrepancies more explicitly shown
in Figure 4.6(d). Again the differences between the Monte Carlo simulation and the proposed
method are small compared to their absolute magnitudes. Similarly, the mean and standard
deviation of angular velocity are compared in Figure 4.6(e)(g), with the differences depicted
in Figure 4.6(f)(h). In general, the larger bandwidth by = no = 30 makes the uncertainty
propagation more accurate compared to by = ng = 20, especially for the dispersion represented
by standard deviations. The moments computed by the proposed method are consistent
with the Monte Carlo simulation. However, the proposed method provides the probability
distribution that carries the complete stochastic properties of the hybrid state beyond the
moments.

As another comparison, we also propagate the uncertainty using a Gaussian distribution
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ONEETTTT 14.14
145 55 ) t = 0.25s (d) t = 0.375s (e) t = 0.5s
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Q (rad/s)

(1) t = 2.95s (m) t = 3.6s

-14.5

-14.5 145 Q, (rad/s) -14.5 145

Figure 4.5: Marginal distribution of angular velocity without collisions.

in the tangent space of SO(3) at the nominal attitude. This is the conventional approach
when dealing with uncertainties involving 3D attitude. The dynamics in (4.1) is linearized
according to [20]. The nominal state, i.e., the mean attitude and angular velocity, is obtained
by integrating (4.2) with H, = 0 using the Lie group variational integrator developed in [21]
from the initial mean. The covariance matrix is integrated using the 4th order Runge-Kutta
method along the standard differential equation obtained through linearization. The compar-
ison of this uncertainty propagation scheme and Monte Carlo simulations is demonstrated in
Figure 4.7. Compared to Figure 4.6, the difference is a lot larger than that using the proposed
spectral method, rendering the incapability of using a Gaussian distribution in the tangent
space of SO(3) for uncertainty propagation of this complex pendulum dynamics. By observing
Figure 4.3-Figure 4.5, it is straightforward that Gaussian distribution is deficient in describing
the complex shape of the uncertainty.

Propagation of GSHS. Next, we propagate the uncertainty of the pendulum with collisions,
i.e., both (3.1a) and (3.1b) are integrated. The marginal distribution of attitude is shown in
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Figure 4.6: Comparison of proposed method with Monte Carlo simulation without collisions.
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Figure 4.7: Comparison of uncertainty propagation using a Gaussian distribution in the tan-
gent space of SO(3) with Monte Carlo simulation without collisions.

Figure 4.8, and in Figure 4.9 where only the marginal distribution of 53 is observed from
bottom. The wall is depicted by a gray plane. Similar to the case without collisions, initially
the attitude is concentrated where 53 is 60 deg from the vertical. And after the pendulum is
released, it swings about the €3 axis. When the pendulum collides with the wall (Figure 4.8(c)),
it cannot penetrate through the wall, but rebounds backwards (Figure 4.8(d)). This is more
clearly seen by comparing Figure 4.9(c¢) with Figure 4.4(c). Then the pendulum swings back to
somewhere below the initial position (Figure 4.8(e)) due to the friction. These are repeated for
several cycles until the energy is mostly dissipated, when 53 is concentrated around the vertical
direction, and no longer reaches the wall (Figure 4.8(r)-(t)). Compared with the case without
collisions, the energy is dissipated more quickly, since it is also lost during the collision due
to the coefficient of restitution less than one, besides the damping. Note that there are some
densities of b3 that are slightly on the left of the wall during the collision (Figure 4.9(c),(h)).
This is because the rate function (4.4) is not infinitely large in the guard set, thus there is a
small probability that the discrete jump is not triggered when the pendulum is on the left.
But this probability becomes smaller when the pendulum further penetrates through the wall,
since the rate function increases. This can be interpreted as that the probability of rebounds
increases as the third body-fixed axis bs becomes closer to the wall. The computational
benefit is that the density changes gradually around the boundary of the guard set, instead
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Figure 4.8: Marginal distribution of attitude with collisions.

of becoming zero abruptly like a step function, which allows capturing the space variation of
the density function without excessively high bandwidth.

The marginal density of angular velocity is shown in Figure 4.10. Similar to the case
without collisions, the angular velocity is concentrated around zero initially (Figure 4.10(a)),
and accelerates into the negative Q9 direction after the pendulum is released (Figure 4.10(b)).
Nevertheless, instead of decelerating to zero, the angular velocity undergoes jump due to
the collision, i.e., the negative €)o is reset to be positive instantly during the discrete jump
(Figure 4.10(c)) according to the reset kernel (4.8), thereby separating the angular velocity
distribution into two parts. Later, most of the angular velocity has completed the collision and
)5 continuous to accelerate (Figure 4.10(d)) until the pendulum reaches the vertical position,
and begins to decelerate (Figure 4.10(e)) afterwards. These are repeated by several cycles,
until the energy is mostly dissipated and the angular velocity is concentrated around zero
again (Figure 4.10(r)-(t)). These illustrate that the proposed method successfully captures
the complex interplay between the uncertainty distributions of attitude and angular velocity,
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Figure 4.9: Marginal distribution of b3 with collisions.

as well as the collision, while generating the propagated density function for the hybrid state.

The propagated uncertainty using the proposed method with Iy = ng = 30 is also compared
with a Monte Carlo simulation with a million samples in Figure 4.11. It is seen the differences
of mean attitude and mean direction of gg are small compared with the attitude standard
deviation. The differences of attitude standard deviation, mean and standard deviation of
angular velocity are in general within 10% of their absolute magnitudes.

5. Conclusions. In this paper, we propose a computational framework to propagate the
uncertainty of a general stochastic hybrid system where the continuous state space is a com-
pact Lie group. The Fokker-Planck equation for the GSHS is split into two parts: a partial
differential equation corresponding to the continuous dynamics, and an integro-differential
equation corresponding to the discrete dynamics. The two split equations are solved alterna-
tively and combined using a first order splitting scheme. In particular, the PDE is solved using
the classic spectral method, by invoking noncommutative harmonic analysis on a compact Lie
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Figure 4.10: Marginal distribution of angular velocity with collisions.

group. The proposed method is applied to a 3D pendulum that collides with a planar wall.
It is exhibited that the proposed method is able to capture complex uncertainty distributions
with arbitrary shapes or large dispersion, and the computed density function can be directly
used for visualization or for constructing any stochastic properties.
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