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Abstract. This paper deals with uncertainty propagation of general stochastic hybrid systems (GSHS) where5
the continuous state space is a compact Lie group. A computational framework is proposed to6
solve the Fokker-Planck (FP) equation that describes the time evolution of the probability density7
function for the state of GSHS. The FP equation is split into two parts: the partial di↵erential8
operator corresponding to the continuous dynamics, and the integral operator arising from the9
discrete dynamics. These two parts are solved alternatively using the operator splitting technique.10
Specifically, the partial di↵erential equation is solved by the spectral method where the density11
function is decomposed into a linear combination of a complete orthonormal function basis brought12
forth by the Peter-Weyl theorem, thereby resulting an ordinary di↵erential equation. Next, the13
integral equation is solved by approximating the integral by a finite summation using a quadrature14
rule. The proposed method is then applied to a three-dimensional rigid body pendulum colliding15
with a wall, evolving on the product of the three-dimensional special orthogonal group and the16
Euclidean space. It is illustrated that the proposed method exhibits more accurate numerical results17
than the conventional Gaussian approach formulated in the tangent space by comparing with a18
Monte Carlo simulation, while explicitly generating the density function that carries the complete19
stochastic information of the hybrid state.20
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1. Introduction. General stochastic hybrid system (GSHS) is a stochastic dynamical sys-23

tem that exhibits both continuous and discrete random behaviors [5]. In a GSHS, the hybrid24

state consists of two parts: the continuous state that takes the value on a smooth manifold,25

and the discrete state that lies on a countable set. The continuous dynamics is defined by26

stochastic di↵erential equations (SDEs) indexed by the discrete state, describing the evolution27

of continuous state between jumps. The discrete dynamics describes the stochastic jump of28

the state, which is triggered by a Poisson process with a state-dependent rate function. The29

uncertainty after the jump is represented by a stochastic kernel. GSHS exhibits rich dynamics30

caused by the interplay between the continuous state and the discrete counterpart, and it has31

been used to model various complex systems, such as chemical reactions [12], neuron activities32

[28], air tra�c control [2, 31, 34], and communication networks [11].33

Uncertainty propagation involves advecting a probability density along the flow of a dy-34

namical system according to the Fokker–Planck (FP) equation. The probability density can35

be approximated by, for example, the first n-moments [17], which leads to Monte Carlo meth-36

ods [10, 27], Gaussian closure methods [13, 22], and equivalent linearization and stochastic37

averaging [30, 32]. But, Monte Carlo methods do not propagate the probability density func-38
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2 W. WANG AND T. LEE

tion directly. Other methods involve low-order approximations of the dynamical system, which39

are suitable only for moderately nonlinear systems as the omitted higher-order terms can lead40

to significant errors, particularly for long time intervals. For stochastic hybrid systems, uncer-41

tainty propagation has been focused on the case when the continuous state lies in the Euclidean42

space. For example, the interacting multiple model approach [3] and the salted Kalman filter43

[15] linearize the dynamics and use the Gaussian distribution to describe uncertainties. In44

[4, 36], particle filters are employed to propagate random samples through the dynamics to45

approximate the uncertainty distribution. Alternatively, to propagate the probability density46

function directly, the FP equation has been extended for GSHS into integro-partial di↵eren-47

tial equations (IPDEs) [1, 11]. And it has been solved using finite di↵erence method [23] and48

spectral method [38].49

In this paper, we study the uncertainty propagation for GSHS whose continuous state50

evolves on a compact Lie group G. More specifically, given an initial probability distribution51

of the state, we wish to construct the probability distribution at an arbitrary time through52

GSHS, by solving the corresponding FP equation represented by IPDEs on G. To address53

the presence of partial di↵erentiation and integration in the FP equation, we employ the54

operator splitting method [24]. Specifically, the FP equation is decomposed into two parts:55

the continuous dynamics which only contains the partial di↵erential operator, and the discrete56

dynamics which only contains the integral operator. These two individual equations are solved57

alternatively over a small time step using their respective numerical methods, and they are58

combined by a first order splitting scheme.59

For the partial di↵erential equation corresponding to the continuous dynamics, we use60

the classic spectral method. The spectral method has been used to solve the FP equations61

on SE(2) and SO(3) [14, 18, 19, 41, 42] for uncertainty propagation of stochastic dynamical62

systems without discrete dynamics. It utilizes the Peter-Weyl theorem [29], which states63

that the matrix components of all finite dimensional irreducible unitary representations of64

a compact Lie group form a complete orthonormal basis for the space of square integrable65

functions. As such, an arbitrary probability density function on G can be approximated by66

a linear combination of the matrix elements of irreducible unitary representations. Further67

using the operational properties of the representation, the FP equation is transformed into68

ordinary di↵erential equations (ODEs) of the coe�cients, which can be integrated by standard69

ODE solvers. Next, the integro-di↵erential equation corresponding to the discrete dynamics70

is approximated by a quadrature rule over a grid, such that the density values on the grid71

are propagated by another set of ODEs. A useful property is that the grid for the discrete72

dynamics can be selected to be compatible with the harmonic analysis for the continuous73

dynamics so as to improve the computational e�ciency of the overall splitting scheme.74

Compared to conventional methods based on Gaussian distributions formulated in the75

tangent space of the Lie group [6, 9], the proposed method has the advantage of being non-76

parametric, i.e., it does not assume a specific family of distributions, but applies to density77

functions with arbitrary shapes. The proposed method constructs a probability density func-78

tion, which carries the complete stochastic information about the propagated state, and as79

such, it can be directly used for visualization or calculating descriptive measures, such as80

moments, number and locations of local maxima, etc. In this regard, although the Monte81

Carlo method is also non-parametric, the information of the state is implicitly carried by82
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UNCERTAINTY PROPAGATION FOR STOCHASTIC HYBRID SYSTEMS 3

random samples, which is usually hard to be distilled into usable forms other than calculating83

moments, especially when the number of samples is large. Also, the Monte Carlo method84

cannot deal with large uncertainties e�ciently [38]. The downside of the proposed approach85

is that as a spectral method, its computational complexity increases exponentially with the86

dimension of continuous space, and quickly becomes infeasible [35].87

In short, the main contribution of this paper is the computational framework to propagate88

uncertainties though GSHS on a compact Lie group. The use of noncommutative harmonic89

analysis to represent the uncertainty distribution in a global fashion overcomes a fundamental90

limitation of existing techniques, which implicitly assume that the uncertainty is localized, or91

has a canonical form. By solving the Fokker–Planck equation directly, the probability density92

that describes the complete stochastic properties of a hybrid system is propagated.93

The rest of this paper is organized as follows: Section 2 reviews the formulation of GSHS94

considered in this paper, and introduces its associated FP equation. The proposed algorithm95

for uncertainty propagation is introduced in Section 3 when the continuous state space is a96

general compact Lie group. In Section 4, we focus on a specific example of a 3D pendulum97

colliding with a wall, where the continuous state space is SO(3)⇥ R2.98

2. Problem Formulation. In this section, we give a formal definition of the GSHS [5]99

considered in this paper, and introduce the corresponding FP equation that describes the100

evolution of the probability density function over time.101

2.1. General Stochastic Hybrid System. The GSHS considered in this paper is defined102

as a collection H = {X, a, b, Init,�,K} as follows:103

• X = G ⇥ S is the hybrid state space, where G is a Ng-dimensional compact Lie104

group, and S is a set composed of Ns discrete modes. The hybrid state is denoted by105

(g, s) 2 G⇥ S.106

• Init : B(X) ! [0, 1] is the initial uncertainty distribution of the hybrid state, where107

B(X) is all Borel sets in X.108

• The continuous state evolves according to the following stochastic di↵erential equations109

between discrete jumps:110

(2.1) g
�1dg = a(t, g, s)^dt+ (b(t, s)dWt)

^111

where a : R ⇥ X ! RNg is the drifting vector field, and b : R ⇥ S ! RNg⇥Nw is112

the coe�cient matrix for di↵usion. Next, Wt is a Nw-dimensional standard Wiener113

process. The map (·)^ : RNg ! g is the natural identification of RNg and g, the Lie114

algebra of G. Since b does not depend on g, (2.1) can be defined either in Ito’s or115

Stratonovich’s sense.116

• The discrete jump is triggered by a Poisson process, with a rate function � : X ! R+117

dependent on the hybrid state.118

• During each discrete jump, the hybrid state is reset according to a stochastic kernel119

K : (X,B(X)) ! [0, 1], such that K(x�, X+) is the probability of x� 2 X being120

reset into the set X+ 2 B(X).121

One restriction of the GSHS defined above is that it does not allow the discrete jump to122

be triggered by the continuous state g entering a certain guard set in a deterministic fashion.123

However, such forced jumps can be approximated by a Poisson process after choosing the rate124
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function su�ciently large inside the guard set, and zero outside [11]. This will be illustrated125

by the 3D pendulum example in Section 4.126

We also assume the initial distribution has a probability density function for each s 2 S,127

i.e., Init(A) =
P

s2S
R
(g,s)2A p(t0, g, s)dg for all A 2 B(X), where dg is the bi-invariant Haar128

measure on G normalized such that
R
g2G dg = 1. Furthermore, the discrete transition kernel129

K can also be written as a set of density functions:130

K(x�, X+) =
X

s+2S

Z

(g+,s+)2X+
(g�, s�, g+, s+)dg+,131

where  : X ⇥X ! R.132

Let (⌦,F ,P) be the underlying probability space, where ⌦ is the sample space, F is a133

sigma-algebra over ⌦, and P denotes the probability measure on F . For a given ! 2 ⌦,134

let {uk(!)} be a sequence of independent uniformly distributed random variables on [0, 1].135

Then an execution of the GSHS defined above can be generated according to the following136

procedure.137

1. Initialize g(!, t0) and s(!, t0) from the initial distribution Init.138

2. Let t1(!) = sup
n
t : exp

⇣
�
R
t

t0
�(g(!, ⌧), s(!, t0))d⌧

⌘
> u1(!)

o
be the time of the139

first jump.140

3. During t 2 [t0, t1(!)), g(!, t) is a sample path of SDE (2.1) with s = s(!, t0), and141

s(!, t) = s(!, t0).142

4. At time t1, the state is reset to (g(!, t+
1
), s(!, t+

1
)) as a sample from the kernel143

(g(!, t�
1
), s(!, t0), z+, s+).144

5. If t1 < 1, repeat from 2) with t0, s0, t1, u1 replaced by tk(!), s(!, t+
k
), tk+1(!),145

uk+1(!) for k = 1, 2, . . ..146

2.2. Fokker-Planck Equation for GSHS. The FP equation for GSHS describes how its147

density function evolves over time [1, 7, 11], and it is given as a set of IPDEs as follows:148

(2.2)

@p(t, g, s)

@t
=�

NgX

i=1

dj (aj(t, g, s)p(t, g, s)) +

NgX

j,k=1

Dj,k(t, s)djdkp(t, g, s)

| {z }
L⇤
cp(t,g,s)

+
X

s�2S

Z

g�2G
(g�, s�, g, s)�(g�, s�)p(t, g�, s�)dg� � �(g, s)p(t, g, s)

| {z }
L⇤
dp(t,g,s)

,

149

where the subscripts denote the indices of a vector or matrix, and D = 1

2
bb

T . Moreover, dj150

is the left-trivialized derivative of a function on G, i.e., djf(g) =
d

dt

��
t=0

f
�
g exp(têj)

�
, where151

exp : g ! G is the exponential map, and ej is the j-th standard base vector of RNg . For152

each s 2 S, (2.2) defines an IPDE for p(t, g, s), and thus, there are a total of Ns IPDEs.153

The FP equation can be interpreted as follows. The first two terms on the right hand154

side of (2.2) represent the evolution caused by the continuous process: the first one represents155

advection due to the drift vector field, and the second corresponds to di↵usion caused by156
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noise, or the Wiener process. The last two terms of (2.2) describe the evolution due to157

discrete jumps. The third term represents the densities transitioned into (g, s) from (g�, s�)158

before the jump, weighted by how likely the jump happens (�), and how likely the density is159

transitioned into (g, s) (). The last term represents the density transitioned out of (g, s). To160

distinguish these two parts explicitly, (2.2) is written as161

(2.3)
@p(t, g, s)

@t
= L⇤

cp(t, g, s) + L⇤
d
p(t, g, s),162

where L⇤
c and L⇤

d
denote the adjoint of the infinitesimal generators of the continuous SDE,163

and the discrete jump of the GSHS, respectively.164

The FP equation (2.2) describes the evolution of the probability density along the flows of165

GSHS on a Lie group. In contrast to the Fokker–Planck equation of non-hybrid systems, which166

is a partial-di↵erential equation, (2.2) exhibits fundamental challenges, as it is an integro-167

partial di↵erential equation that involves both partial di↵erentiation and integration. Another168

challenge is that the probability density is defined on a nonlinear Lie group G, so the existing169

computational techniques in solving the Fokker–Planck equation on a linear space Rn cannot170

be directly applied. In this paper, these are addressed by utilizing noncommutative harmonic171

analysis and the splitting technique.172

3. Uncertainty Propagation for GSHS. In this section, we present a computational173

framework to solve (2.3) via the spectral method using noncommutative harmonic analy-174

sis on G. However, the integral term in (2.2) causes issues in the spectral method as there is175

no closed formula to express the Fourier coe�cients of the integral of a function f(g) over G176

as the Fourier coe�cients of f . Even though a closed formula exists on RN , it has been shown177

that taking the Fourier transform of the integral term directly involves intensive computations178

[39].179

Instead, we adopt the operator splitting technique, where (2.3) is split into two equations:180

181

@p
c(t, g, s)

@t
= L⇤

cp
c(t, g, s),(3.1a)182

@p
d(t, g, s)

@t
= L⇤

d
p
d(t, g, s).(3.1b)183

184

The desirable features are that in the absence of the term L⇤
d
p, (3.1a) corresponds to a PDE185

on G for each discrete state; and without L⇤
cp, (3.1b) becomes an integro-di↵erential equation186

without partial di↵erentiation. These can be addressed by using the spectral method and187

numerical quadrature respectively. Then, the solution of each part can be combined with the188

operator splitting.189

3.1. Propagation over Continuous Dynamics. First, we solve (3.1a) via noncommutative190

harmonic analysis. The objective is to decompose the density function p
c(t, g, s) into a linear191

combination of an orthonormal basis of a function space on G for each t � t0 and s 2 S. Then192

(3.1a) can be converted to a set of ODEs for the coe�cients of the linear combination, which193

can be solved via standard numerical integration schemes for ODE.194
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6 W. WANG AND T. LEE

We first summarize harmonic analysis on a compact Lie group G [8, 26]. Let U l(g) : G !195

GL(d(l),C) be the l-th irreducible unitary representation of G with a finite dimension d(l),196

and the collection of all l be denoted by Ĝ. Then by the Peter-Weyl theorem, the functions197 �
{U l

m1,m2
}d(l)
m1,m2=1

 
l2Ĝ form an orthonormal basis of the function space L

2(G). That is, for198

any square integrable function f : G ! C, it can be decomposed as a linear combination199

(3.2) f(g) =
X

l2Ĝ

d(l)X

m1,m2=1

d(l)F l

m1,m2
[f ]U l

m1,m2
(g),200

where F l
m1,m2

[f ] are the Fourier coe�cients of f , given by the (m1,m2)-th entry of201

(3.3) F l[f ] =

Z

g2G
f(g)U l(g�1)Tdg =

Z

g2G
f(g)U l(g)dg.202

Equation (3.2) and (3.3) are called the inverse and forward Fourier transform of function f .203

One crucial property is that we can express the Fourier coe�cient of the derivative F [djf ]204

in terms of F [f ] [8]. Let ul : g ! gl(d(l),C) be the associated Lie algebra representation of205

U
l, i.e., for all X 2 g, ul(X) = d

dt

��
t=0

U
l(exp(tX)). Then, we have206

(3.4) F l[djf ] = F l[f ]ul(êj)
T
.207

It should be noted in some other works, the subscripts for F l

m1,m2
[f ] are reversed relative to208

F
l

m2,m1
[f ] in (3.2). Under this convention, (3.3) and (3.4) should be modified accordingly (see209

for example Section 8.3 in [8]).210

Using these, (3.1a) can be transformed into a set of ODEs for the Fourier coe�cients of211

p
c(t, g, s) as follows.212

Theorem 3.1. Let F [pc](t, s) be the Fourier coe�cients of p
c(t, g, s) which depend on t and213

s. For any s 2 S, if p
c(t, g, s) satisfies (3.1a), then F [pc](t, s) approximately satisfies the214

following ODE:215

(3.5)
d

dt
F l[pc](t, s) = �

NgX

j=1

F l[ajp
c](t, s)ul(êj)

T +

NgX

j,k=1

Dj,kF l[pc](t, s)ul(êk)
T
u
l(êj)

T
.216

Proof. Suppose pc(t, g, s) is approximated by a band-limited [26] sum of its Fourier series:217

(3.6) p
c(t, g, s) ⇡

X

l2Ĝ0

d(l)X

m1,m2=1

d(l)F l

m1,m2
[pc](t, s)U l

m1,m2
(g),218

where Ĝ0 is a finite subset of Ĝ. Substitute the above equation and a similar band-limited219

expansion of L⇤
cp

c into (3.1a), we get for all s 2 S220

X

l2Ĝ0

d(l)X

m1,m2=1

d(l)
d

dt
F l

m1,m2
[pc](t, s)U l

m1,m2
(g) ⇡

X

l2Ĝ0

d(l)X

m1,m2=1

d(l)F l

m1,m2
[L⇤

cp
c](t, s)U l

m1,m2
(g).221
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Due to the orthogonality of basis, we can equate the Fourier coe�cient with the same indices,222

i.e. d

dt
F l
m1,m2

[pc](t, s) = F l
m1,m2

[L⇤
p
c](t, s) for any s 2 S. Equation (3.5) can be derived by223

expanding L⇤
p
c using the di↵erentiation formula (3.4).224

Equation (3.5) is ODEs of the Fourier coe�cients F l
m1,m2

[pc](t, s), and can be integrated225

using numerical ODE solvers. To illustrate how the calculations can be carried out in practice,226

we present with the simplest forward Euler’s method. Suppose a grid {g⌫}
Nq

⌫=1
is put onto G,227

and there is a quadrature rule {w⌫}
Nq

⌫=1
such that the integral in (3.3) can be approximated228

by a finite summation:229

(3.7) F l[f ] =

NqX

⌫=1

w⌫f(g⌫)U l(g⌫).230

This allows the forward Fourier transform to be computed. Suppose at time t = tk, the values231

of pc(tk, g⌫ , s), a(tk, g⌫ , s) on the grid, and D(tk, s) are given. Then the Fourier coe�cients232

F l[ajpc](tk, s), and F l[pc](tk, s) for l 2 Ĝ0 can be calculated as in (3.7) using the quadrature233

rule. Namely, the right hand side of (3.5), i.e., F l[L⇤
cp

c](tk, s) can be calculated, which enables234

the first order integration F l[pc](tk+1, s) = F l[pc](tk, s)+F l[L⇤
cp

c](tk, s)�t. And the values of235

p
c(tk+1, g⌫ , s) on the grid can be recovered by (3.6), which can be used in the next integration236

step. The pseudocode is summarized in Algorithm 3.1, where the first order integration can237

easily be replaced by other higher order numerical integration schemes.238

The summations in (3.7) and (3.6) can be accelerated using extensions of the classic239

Cooley-Tukey FFT algorithm to compact Lie groups. See for example [33] for a review on240

this topic. The FFT algorithms have been developed for classic compact matrix Lie groups241

SO(n), U(n), SU(n) and Sp(n) in [26].242

3.2. Propagation over Discrete Dynamics. Next, consider (3.1b). We apply the quad-243

rature rule on G to the integral term on the right hand side of (3.1b), where the integration244

over G is replaced by a finite summation over the grid:245

(3.8)
dpd(t, g⌫ , s)

dt
=

X

s�2S

NqX

⌫0=1

w⌫0(g
�
⌫0 , s

�
, g⌫ , s)�(g

�
⌫0 , s

�)pd(t, g�
⌫0 , s

�)� �(g⌫ , s)p
d(t, g⌫ , s),246

where g⌫ and g
0
⌫ are lattices of the grid on G. The above is a set of linear ODEs of pd(t, g⌫ , s)247

with Ns ·Nq equations. Suppose at time t = tk, the values of pd(tk, g⌫ , s) on the grid are given,248

then the values of pd at time t = tk+1 can be integrated using the forward Euler’s method as249

p(tk+1, g⌫ , s) = p(tk, g⌫ , s) + L⇤
d
p
d(tk, g⌫ , s)�t, where L⇤

d
p
d(tk, g⌫ , s) is calculated as the right250

hand side of (3.8). The pseudocode is summarized in Algorithm 3.1.251

3.3. Splitting Method. In summary, (3.1a) is transformed into ODEs of Fourier coe�-252

cients, and (3.1b) is converted into ODEs of probability densities on the grid. The numerical253

solutions of these two equations are combined using a first order splitting scheme as follows.254

Suppose the time is discretized by a sequence {tk}1k=0
with a fixed increment �t = tk+1 � tk.255

Given p(tk, g, s), we first solve (3.1a) with the initial condition p
c(tk, g, s) = p(tk, g, s) to ob-256

tain p
c(tk+1, g, s) that is propagated over the continuous dynamics. Next, we solve (3.1b) with257
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the initial condition p
d(tk, g, s) = p

c(tk+1, g, s) to propagate it over the discrete dynamics, and258

construct p
d(tk+1, g, s) which is taken as the solution of (2.2) at tk+1. These two parts are259

integrated seamlessly, as the probability density values propagated over the discrete dynam-260

ics are on the grid designed for the Fourier transform required for the propagation over the261

continuous dynamics. The pseudocode is summarized in Algorithm 3.1.262

Algorithm 3.1 Uncertainty propagation for GSHS

1: procedure p(tk+1, g⌫ , s) = uncertainty propagation(p(tk, g⌫ , s))
2: p

c(tk, g⌫ , s) = p(tk, g⌫ , s).
3: p

c(tk+1, g⌫ , s) = propagate continuous(pc(tk, g⌫ , s)).
4: p

d(tk, g⌫ , s) = p
c(tk+1, g⌫ , s).

5: p
d(tk+1, g⌫ , s) = propagate discrete(pd(tk, g⌫ , s)).

6: p(tk+1, g⌫ , s) = p
d(tk+1, g⌫ , s).

7: end procedure

8: procedure p
c(tk+1, g⌫ , s) = propagate continuous(pc(tk, g⌫ , s))

9: for s 2 S do
10: for l 2 Ĝ0 do
11: for j = 1, . . . , Ng do
12: Compute F l[ajpc](tk, s) using (3.7).
13: end for
14: Compute F l[pc](tk, s) using (3.7).
15: Compute F l(L⇤

cp
c)(tk, s) using the right hand side of (3.5).

16: F l[pc](tk+1, s) = F l[pc](tk, s) + F l(L⇤
cp

c)(tk, s)�t.
17: end for
18: Recover pc(tk+1, g⌫ , s) from F l[pc](tk+1, s) using (3.6).
19: end for
20: end procedure

21: procedure p
d(tk+1, g⌫ , s) = propagate discrete(pd(tk, g⌫ , s))

22: for s 2 S and ⌫ = 1, . . . , Nq do
23: Compute L⇤

d
p
d(tk, g⌫ , s) using the right hand side of (3.8).

24: p
d(tk+1, g⌫ , s) = p

d(tk, g⌫ , s) + L⇤
d
p
d(tk, g⌫ , s)�t.

25: end for
26: end procedure

4. Numerical Example of 3D Pendulum. A 3D pendulum is a rigid body that freely263

rotates about an inertially-fixed pivot under gravity. In this section, we apply the proposed264

method to the 3D pendulum model, to propagate the uncertainties of its attitude and angular265

velocity. For the discrete dynamics, we assume that the 3D pendulum may collide with a fixed266

planar wall, which causes an instantaneous change of its angular velocity (see Figure 4.1).267

4.1. 3D Pendulum Model. We use the GSHS defined in Section 2.1 to model the 3D268

pendulum as follows. Two reference frames are used: the inertial frame {~e1,~e2,~e3}, and the269

body-fixed frame of the pendulum {~b1,~b2,~b3}. The origin of the body-fixed frame is at the270
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(a) Possible collision configurations. (b) Collision response.

Figure 4.1: An Axially symmetric 3D pendulum colliding with a wall.

pivot point denoted by P . The continuous state is (R,⌦) 2 G = SO(3)⇥R3, where R 2 SO(3)271

is the attitude of the pendulum, i.e., the linear transform of coordinates from the body-fixed272

frame to the inertial frame, and ⌦ 2 R3 is the coordinates of angular velocity in the body-fixed273

frame. The discrete state space is S = {1}, i.e., there is only one discrete mode. Throughout274

this section, for any vector ~a, a 2 R3 denotes its coordinates in the inertial frame, if not stated275

otherwise.276

Continuous Dynamics. The continuous dynamics is given by the following SDE:277

R
TdR = ⌦̂dt,(4.1a)278

d⌦ =
�
J
�1(�⌦⇥ J⌦�mg⇢⇥R

T
e3)�B⌦

�
dt+HcdWt,(4.1b)279280

where J 2 R3⇥3 is the moment of inertia about the pivot, and m 2 R is the mass. The281

coordinates of the center of mass are given by ⇢ 2 R3 in the body-fixed frame. The fixed282

gravitational acceleration is denoted by g 2 R. There is a damping torque proportional to the283

angular velocity scaled by the matrix B = diag(B1, B2, B3) 2 R3⇥3. Finally, Wt 2 R3 is the284

standard Wiener process, representing random external torques.285

We make the following assumptions to simplify the continuous dynamics: (i) the pendulum286

is axially symmetric, i.e., J = diag(J1, J1, J3), and ⇢ = [0, 0, ⇢z]T is along the axis ~b3; (ii)287

Init({⌦3 = 0}) = 1, i.e., the initial angular velocity along the axis of symmetry is zero with288

probability one; (iii) the third row ofHc is zero. Under these assumptions, it is straightforward289

to verify that P(⌦3(t) = 0) = 1 for any t > t0. As a consequence, we may ignore ⌦3 and290
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10 W. WANG AND T. LEE

reduce the continuous state space into G = SO(3)⇥ R2. The resulting SDE is given by291

R
TdR =

⇣⇥
⌦̃T 0

⇤T⌘^
dt,(4.2a)292

d⌦̃ =

✓
mg⇢z

J1


R32

�R31

�
� B̃⌦̃

◆
dt+ H̃cdWt,(4.2b)293

294

where ⌦̃ = [⌦1,⌦2]T , B̃ = diag(B1, B2), and H̃c is the first two rows of Hc.295

Discrete Dynamics. A planar wall is placed perpendicular to the inertial ~e1 axis, at dwall > 0296

from the pivot point P . As the pendulum swings, it may collide with the wall and rebound.297

We further assume the pendulum is a cylinder with the height h and the radius r. Then, all298

possible collision points between the pendulum and the wall form a circle, as illustrated in299

Figure 4.1a. Let the angle between the ~e1-~e2 plane and ~b3 be denoted by ✓ = arcsin(~b3 · ~e1).300

A collision occurs when301

✓ � ✓0 = arcsin
dwallp
h2 + r2

� arcsin
rp

h2 + r2
,(4.3a)302

(R⌦⇥ %) · e1 > 0,(4.3b)303304

where % 2 R3 is the coordinates of the vector
��!
PC = (h � r tan ✓)~b3 + r sec ✓~e1 in the inertial305

frame, and C is the point on the pendulum that has the largest coordinate along ~e1.306

The first equation states that the pendulum penetrates through the wall, and the second307

equation implies that the pendulum is rotating towards the wall. Equation (4.3) represents308

a guard set defined such that whenever the continuous state enters it, the discrete jump is309

triggered. This corresponds to a deterministic forced jump of hybrid systems. In the presented310

GSHS, a Poisson process can be designed to approximate this forced jump, with a rate function311

�(R,⌦) being very large when (4.3) is satisfied, and zero otherwise. However, one must make312

a compromise on the space variation of �. Specifically, the ideal � would make the probability313

density p
c large outside the guard set, and close to zero inside, i.e., there is a large space314

variation of p
c caused by the discontinuity at the boundary. This is unfavorable for the315

spectral method, since a high bandwidth must be used to capture the large space variation,316

at the cost of increased computational load. Here we design a rate function corresponding to317

(4.3) with a relatively small space variation as318

(4.4) �(R,⌦) =

8
>><

>>:

�max
2

sin
⇣

pi

2✓t
(✓ � ✓0)

⌘
+ �max

2
, if � ✓t  ✓ � ✓0  ✓t, R⌦⇥ % · e1 > 0

�max, if ✓ � ✓0 > ✓t, R⌦⇥ % · e1 > 0

0, otherwise

.319

Namely, a threshold ✓t > 0 is used to mark a “boundary region” of the guard set, and the sine320

function is used to make a smooth connection between the large �max > 0 inside the guard321

set, and zero outside (Figure 4.2).322

Next, we formulate the stochastic kernel describing the state distribution immediately323

after a jump. During the collision, an impulse �j~ei with j > 0 is applied to the pendulum324

at the collision point C (Figure 4.1b) that redirects the linear velocity of the pendulum at C325
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Figure 4.2: �(R,⌦) versus ✓(R) when (R⌦⇥ %) · e1 > 0.

along ~e1. First assume there is no noise, then the collision response can be summarized in326

terms of the change of angular velocity and linear velocity at C, as follows:327

⌦̄+ � ⌦� = J
�1

R
T (%⇥ (�je1)) ,(4.5a)328

(R⌦̄+ ⇥ %) · e1 = �"(R⌦� ⇥ %) · e1,(4.5b)329330

where ⌦�, ⌦̄+ denote the angular velocities before and after collision respectively, and 0 < " 331

1 is the coe�cient of restitution. Note that t , (%⇥ e1)/|%⇥ e1| is perpendicular to b3, since332

J = diag(J1, J1, J3), it can be verified that J�1
R

T
t = 1

J1
R

T
t. This indicates that ⌦̄+ �⌦� is333

along R
T
t and is perpendicular to R

T
b3, thus ⌦̄+

3
= ⌦�

3
and we may ignore ⌦3 as we did in334

the continuous dynamics where P(⌦3 = 0) = 1. Furthermore, (4.5b) can be simplified into335

(4.6) ⌦̄+ = ⌦� � (1 + ")(⌦� ·RT
t)RT

t,336

which gives the continuous state ⌦ right after the collision in an ideal case. Here we further337

assume that the angular velocity is also perturbed by a Gaussian noise during collision, i.e.,338

(4.7) ⌦+ = ⌦̄+ +


Hd⇠

0

�
,339

where ⌦+ is the perturbed angular velocity after collision, Hd 2 R2⇥2, and ⇠ is a 2-dimensional340

standard Gaussian random vector.341

In short, the stochastic kernel for discrete jump caused by the collision can be written as342

(4.8)

(R�
, ⌦̃�

, R
+
, ⌦̃+) =�SO(3)

�
R

+(R�)T
�

⇥ 1

2⇡
p
det⌃d

exp

⇢
�1

2

⇣
⌦̃+ � ˜̄⌦+

0

⌘
T

⌃�1

d

⇣
⌦̃+ � ˜̄⌦+

0

⌘�
,

343

where ⌃d = HdH
T

d
, and �SO(3) is the Dirac-delta function on SO(3). In other words, the344

discrete jump does not alter the attitude R, while it resets the angular velocity from ⌦̃� to345
˜̄⌦+ with Gaussian distributed random noises.346
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12 W. WANG AND T. LEE

4.2. Harmonic Analysis on SO(3)⇥T2. One obstacle in applying the proposed approach347

to the pendulum model is that the continuous state space, namely SO(3)⇥R2 is not compact.348

Nevertheless, since the angular velocity is uniformly bounded by the initial mechanical energy349

of the pendulum, as long as p(t0, R, ⌦̃) is compactly supported, we may assume p(t, R, ⌦̃)350

is compactly supported, uniformly in time t. Therefore, the continuous state space can be351

regarded as SO(3) ⇥ T2, where T2 = S1 ⇥ S1 is the 2-dimensional torus. Noncommutative352

harmonic analysis on SO(3) has been presented in [8, 37], and harmonic analysis on S is353

widely available. Here we review those materials needed to formulate harmonic analysis on354

SO(3)⇥ T2.355

Representation. Let the representations of SO(3) be denoted by {U l(R)}l2N, where the356

dimension of U l(R) is d(l) = 2l + 1. Suppose that R 2 SO(3) is parameterized by the 3-2-3357

Euler angles as358

(4.9) R(↵,�, �) = exp(↵ê3) exp(�ê2) exp(�ê3),359

where ↵, � 2 [0, 2⇡), � 2 [0,⇡]. For �l  m1,m2  l, the elements of the l-th representation360

U
l(R) can be explicitly written as361

(4.10) U
l

m1,m2
(R(↵,�, �)) = e

�im1↵d
l

m1,m2
(�)e�im2� ,362

where d
l
m1,m2

(�) is the real valued Wigner-d function [37]. Next, the representations of T2363

are given by364

(4.11) V
n(⌦̃) = exp

✓
i⇡n1⌦1

L
+

i⇡n2⌦2

L

◆
365

for n = (n1, n2) 2 Z2, where (⌦1,⌦2) is normalized by its uniform bound L > 0, such that366

⇡⌦j/L 2 [�⇡,⇡), j = 1, 2, so ⌦̃ 2 T2. Then, the representations of SO(3) ⇥ T2 are given by367

the tensor product of U l and V
n, and more explicitly {{U l

m1,m2
(R) ·V n(⌦̃)}l

m1,m2=�l
}l2N,n2Z2 ,368

which forms a complete orthonormal basis for the function space L
2(SO(3)⇥ T2).369

Sampling Theorem. Consider a band-limited function on SO(3)⇥ T2 spanned by the rep-370

resentations with l  l0 � 1 and �n0  n1, n2  n0 � 1. According to the sampling theorem,371

its Fourier coe�cients can be exactly recovered by the sample values on a certain grid and372

the associated quadrature rule. The grid on SO(3) can be designed in terms of Euler angles,373

with 2l0 points along each dimension:374

(4.12) ↵⌫1 =
⇡⌫1

l0
, �⌫2 =

⇡(2⌫2 + 1)

4l0
, �⌫3 =

⇡⌫3

l0
,375

for ⌫1, ⌫2, ⌫3 = 0, . . . , 2l0 � 1. The quadrature rule associated with this grid [16] is376

(4.13) w⌫ =
1

4l3
0

sin(�⌫2)
l0�1X

j=0

1

2j + 1
sin((2j + 1)�⌫2).377

Similarly, a grid on T2 can be defined as378

(4.14)
⇡(⌦1)µ1

L
=

µ1⇡

n0

,
⇡(⌦2)µ2

L
=

µ2⇡

n0

,379
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for µ1, µ2 = �n0, . . . , n0 � 1. The quadrature rule is simply380

(4.15) wµ =
1

(2n0)2
.381

Using the above orthonormal basis and quadrature rules, the forward Fourier transform382

(3.3) can be computed using the following finite summation:383

(4.16)

F l,n

m1,m2
[f ] =

n0�1X

µ1,µ2=�n0

2l0�1X

⌫1,⌫2,⌫3=0

w⌫wµf

⇣
R(↵⌫1 ,�⌫2 , �⌫3), (⌦1)µ1 , (⌦2)µ2

⌘

· eim1↵⌫1d
l

m1,m2
(�⌫2)e

im2�⌫3 · exp
✓
� in1⇡(⌦1)µ1

L
� in2⇡(⌦2)µ2

L

◆
,

384

for any 0  l  l0�1, �l  m1,m2  l, and �n0  n1, n2  n0�1. Conversely, the backward385

Fourier transform (3.6) can be explicitly written as386

(4.17)

f

⇣
R(↵⌫1 ,�⌫2 , �⌫3), (⌦1)µ1 , (⌦2)µ2

⌘
=

n0�1X

n1,n2=�n0

l0�1X

l=0

lX

m1,m2=�l

(2l + 1)F l,n

m1,m2
[f ]

· e�im1↵⌫1d
l

m1,m2
(�⌫2)e

�im2�⌫3 · exp
✓
in1⇡(⌦1)µ1

L
+

in2⇡(⌦2)µ2

L

◆
,

387

to recover the function values on the grid. The summations in (4.16) and (4.17) can be388

computed using a combination of the classic Cooley-Tukey FFT algorithm, and the FFT389

developed specifically for SO(3) [16].390

4.3. Implementation. Now, the proposed method is implemented to the pendulum model391

as follows.392

Continuous Dynamics. First, for the continuous dynamics (4.2), the corresponding FP393

equation (3.1a) can be written as394

(4.18)

@p
c(t, R, ⌦̃)

@t
=�

2X

j=1

dj
�
⌦jp

c(t, R, ⌦̃)
�
�

2X

j=1

@

@⌦j

�
a
g

j
(R)pc(t, R, ⌦̃)

�

+
2X

j=1

Bj

@

@⌦j

�
⌦jp

c(t, R, ⌦̃)
�
+

2X

j,k=1

D̃jk

@

@⌦j@⌦k

p
c(t, R, ⌦̃),

395

where a
g(R) = mg⇢z

J1
[R32,�R31]T , and D̃ = 1

2
H̃cH̃

T
c . Next, we present selected operational396

properties of the representations that are required to perform the Fourier transform for the397

right hand side of the above expression. For the representation U
l(R) of SO(3), the associated398

Lie algebra representation has explicit forms:399

u
l

m1,m2
(ê1) = �1

2
ic

l

m2
�m1�1,m2 � 1

2
ic

l

�m2
�m1+1,m2 ,(4.19a)400

u
l

m1,m2
(ê2) = �1

2
c
l

m2
�m1�1,m2 +

1

2
c
l

�m2
�m1+1,m2 ,(4.19b)401

u
l

m1,m2
(ê3) = �im1�m1,m2 ,(4.19c)402403

This manuscript is for review purposes only.



14 W. WANG AND T. LEE

where clm =
p
(l �m)(l +m+ 1). These can be used to calculate F l,n[dj(⌦jp

c)], the first term404

on the right hand side of (4.18), as in (3.4). Also, the Lie algebra representation associated405

with V
n(⌦̃) is406

(4.20) v
n(ej) =

i⇡nj

L
, j = 1, 2,407

which can be used to obtain those terms involving F l,n[ @

@⌦j
] and F l,n[ @

2
p
c

@⌦j@⌦k
] in (4.18). Fur-408

thermore, utilizing the inverse convolution theorem specific to the Fourier series on TN , for409

any f 2 L
2(SO(3) ⇥ T2) and g 2 L

2(T2), we may calculate the Fourier coe�cient of f · g410

directly from those of f and g:411

(4.21) F l,n

m1,m2
[fg] =

n0�1X

n
0
1,n

0
2=�n0

F l,n�n
0

m1,m2
[f ]Fn

0
[g],412

where n� n
0 = (n1 � n

0
1
, n2 � n

0
2
). This can be used for F l,n[⌦jp

c] as an intermediate step to413

calculate F l,n[dj(⌦jp
c)]. Using these properties, the Fourier transform of the right hand side414

for the continuous dynamics (4.18) can be constructed.415

Discrete Dynamics. Next, we consider the discrete dynamics of the pendulum given by416

(4.4) and (4.8). The FP equation (3.1b) can be simplified as417

@p
d(t, R, ⌦̃)

@t
=

Z

⇡⌦̃
�

L
2T2

⌦(R, ⌦̃�
, ⌦̃)�(R, ⌦̃�)pd(t, R, ⌦̃�)d⌦̃� � �(R, ⌦̃)pd(t, R, ⌦̃)(4.22)418

419

where ⌦(R�
,⌦�

,⌦+) is the second term of the right hand side of (4.8), and d⌦� is the420

Lebesgue measure on R2. As the attitude remains unchanged after any collision, the do-421

main of integration in the above expression has been reduced to T2. More specifically,422

we have used the property of Dirac-delta function: for any continuous f and R0 2 SO(3),423 R
R2SO(3)

�(RR
T

0
)f(R)dR = f(R0).424

For numerical implementation, the integral in (4.22) can be evaluated with a finite sum-425

mation using the grid (4.14) on T2 as in (4.23), where the quadrature weights corresponding426

to d⌦̃� is w0
µ = L

2

(2n0)
2 .427

(4.23)

@p
d(t, R⌫ , ⌦̃µ)

@t
⇡

n0�1X

µ
0
1,µ

0
2=�n0

w
0
µ0⌦(R⌫ , ⌦̃

�
µ0 , ⌦̃µ)�(R⌫ , ⌦̃

�
µ0)p

d(t, R⌫ , ⌦̃
�
µ0)

� �(R⌫ , ⌦̃µ)p
d(t, R⌫ , ⌦̃µ).

428

The density values propagated over the discrete dynamics on the grid can be directly utilized in429

the subsequent propagation over the continuous dynamics according to the splitting method.430

4.4. Simulation Results. The attitude and angular velocity uncertainties of the pendu-431

lum model are propagated using Algorithm 3.1, with the explicit computations developed in432

Section 4.2 and Section 4.3. These are implemented in c with Nvidia GPU computing toolkit433

11.2, along with a MATLAB interface. The standard FFT on TN is computed using cuFFT,434
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Table 4.1: Simulation Parameters

Dimensions
h

0.2m

r

0.025m

⇢z

0.1m

dwall

0.12m

Inertia
m

1.0642 kg

J1

0.0144 kgm
2

g

9.8m s
�2

Cont. Dynamics
B̃

diag(0.2, 0.2) [s
�1

]

H̃c
1 0 0

0 1 0

�
[rads

�3/2
]

Dist. Dynamics
✓t

5 deg

�max

100

"

0.8

Hd

diag(0.05, 0.05) [rad s
�1

]

Computation
l0, n0

30

L

14.5 rad s
�1

�t

0.0025 s

and the discrete convolution in (4.21) and the finite summation in (4.23) are computed using435

cuTENSOR 1.2.2. All of the computations are in double precision. The code is available at [40].436

For l0 = n0 = 30, the computation time of propagating over one time step is 245 seconds in437

average with a Nvidia A100-40GB GPU.438

The initial uncertainty distribution is chosen as follows. The initial attitude follows a ma-439

trix Fisher distribution [25] with parameter F = exp(�2⇡

3
ê2) diag(15, 15, 15), i.e., the mean at-440

titude is exp(�2⇡

3
ê2), and the variance is approximately 1

30
rad2 along each axis (Figure 4.3(a)).441

The initial angular velocity is Gaussian with zero mean and the standard deviation 2 rad s�1442

(Figure 4.5(a)). The initial attitude and angular velocity are independent. The parameters for443

the pendulum model and those designed for the computation are listed in Table 4.1. Equation444

(3.1a) is integrated using the fourth order Runge-Kutta method, and (3.1b) is propagated by445

the forward Euler’s method. The simulation is carried out for eight seconds with the step size446

of �t = 0.0025 s.447

Propagation of Continuous Dynamics. We first propagate the uncertainty of the pendulum448

without collisions, i.e., only (3.1a) is integrated. The attitude uncertainty is depicted by449

the marginal distribution of the coordinates of body-fixed base axes via color shading in450

Figure 4.3. In other words, the red, greed, and blue shades represent the marginal density of451

the ~b1, ~b2, and ~b3 axes respectively, and darker color indicates larger density value. Initially,452

the attitude is concentrated where ~b3 is about 60 deg to the vertical position (Figure 4.3(a)).453

After the pendulum is released, it swings about the ~e2 axis until it reaches the opposite limit454

position (Figure 4.3(d)), and swings back to somewhere slightly below the initial position455

(Figure 4.3(g)), which is repeated later on. At the same time, the uncertainty spreads about456

the ~b3 axis, i.e., the rotation about ~b3 axis becomes more and more dispersed. After several457

cycles, the ~b3 axis becomes concentrated near the vertical direction (Figure 4.3(q)-(t)), since458

the energy is dissipated by the damping of the pendulum. Also, the rotation about ~b3 finally459

becomes almost uniformly distributed. The same process can be observed from the bottom460

view for the distribution of ~b3 axis shown in Figure 4.4.461

The marginal density for the angular velocity is shown in Figure 4.5. Initially, it is con-462

centrated around zero (Figure 4.5(a)). After the pendulum is released, the angular velocity463

around ~b2, i.e., ⌦2 accelerates and decelerates in the negative direction (Figure 4.5(b)-(d)), as464
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Figure 4.3: Marginal distribution of attitude without collisions.

the pendulum swings and reaches the opposite limit. Then ⌦2 accelerates into the positive465

direction as the pendulum swings back, and this is repeated. Finally, ⌦ becomes concentrated466

near zero again, after the energy is mostly dissipated (Figure 4.5(t)). During the process, the467

distribution of angular velocity displays some interesting shapes (Figure 4.5(i)-(o)). This is468

because the area with smaller ⌦1 leads to oscillations compared to other areas with larger469

⌦1. This illustrates one of the benefits of the proposed method that is capable of represent-470

ing an arbitrary density function, and this cannot be achieved with the common Gaussian471

distribution.472

Next, the numerical results of the proposed method are compared against a Monte Carlo473

simulation with one million samples in Figure 4.6. The di↵erences of the mean attitude474

and the b3 direction between the Monte Carlo simulation and the proposed method with475

l0 = n0 = 20, 30 are shown in Figure 4.6(a)(b), in terms of angles. It is shown that the476

di↵erence of the mean direction of ~b3 is below 1.5 deg, which is very small compared to the477

standard deviation of attitude that is around 15 deg. The di↵erence of the mean attitude478
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Figure 4.4: Marginal distribution of b3 without collisions.

becomes relatively large (above 5 deg) after 6 s. However, this is contributed by the fact that479

the rotation around ~b3 becomes close to a uniform distribution as seen in Figure 4.3(q)-(t),480

thereby making the mean value less distinctive. The standard deviations of attitude around481

~e1 and ~e2 axes are compared in Figure 4.6(c), with their discrepancies more explicitly shown482

in Figure 4.6(d). Again the di↵erences between the Monte Carlo simulation and the proposed483

method are small compared to their absolute magnitudes. Similarly, the mean and standard484

deviation of angular velocity are compared in Figure 4.6(e)(g), with the di↵erences depicted485

in Figure 4.6(f)(h). In general, the larger bandwidth b0 = n0 = 30 makes the uncertainty486

propagation more accurate compared to b0 = n0 = 20, especially for the dispersion represented487

by standard deviations. The moments computed by the proposed method are consistent488

with the Monte Carlo simulation. However, the proposed method provides the probability489

distribution that carries the complete stochastic properties of the hybrid state beyond the490

moments.491

As another comparison, we also propagate the uncertainty using a Gaussian distribution492
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Figure 4.5: Marginal distribution of angular velocity without collisions.

in the tangent space of SO(3) at the nominal attitude. This is the conventional approach493

when dealing with uncertainties involving 3D attitude. The dynamics in (4.1) is linearized494

according to [20]. The nominal state, i.e., the mean attitude and angular velocity, is obtained495

by integrating (4.2) with H̃c = 0 using the Lie group variational integrator developed in [21]496

from the initial mean. The covariance matrix is integrated using the 4th order Runge-Kutta497

method along the standard di↵erential equation obtained through linearization. The compar-498

ison of this uncertainty propagation scheme and Monte Carlo simulations is demonstrated in499

Figure 4.7. Compared to Figure 4.6, the di↵erence is a lot larger than that using the proposed500

spectral method, rendering the incapability of using a Gaussian distribution in the tangent501

space of SO(3) for uncertainty propagation of this complex pendulum dynamics. By observing502

Figure 4.3-Figure 4.5, it is straightforward that Gaussian distribution is deficient in describing503

the complex shape of the uncertainty.504

Propagation of GSHS. Next, we propagate the uncertainty of the pendulum with collisions,505

i.e., both (3.1a) and (3.1b) are integrated. The marginal distribution of attitude is shown in506
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Figure 4.6: Comparison of proposed method with Monte Carlo simulation without collisions.
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Figure 4.7: Comparison of uncertainty propagation using a Gaussian distribution in the tan-
gent space of SO(3) with Monte Carlo simulation without collisions.

Figure 4.8, and in Figure 4.9 where only the marginal distribution of ~b3 is observed from507

bottom. The wall is depicted by a gray plane. Similar to the case without collisions, initially508

the attitude is concentrated where ~b3 is 60 deg from the vertical. And after the pendulum is509

released, it swings about the ~e2 axis. When the pendulum collides with the wall (Figure 4.8(c)),510

it cannot penetrate through the wall, but rebounds backwards (Figure 4.8(d)). This is more511

clearly seen by comparing Figure 4.9(c) with Figure 4.4(c). Then the pendulum swings back to512

somewhere below the initial position (Figure 4.8(e)) due to the friction. These are repeated for513

several cycles until the energy is mostly dissipated, when~b3 is concentrated around the vertical514

direction, and no longer reaches the wall (Figure 4.8(r)-(t)). Compared with the case without515

collisions, the energy is dissipated more quickly, since it is also lost during the collision due516

to the coe�cient of restitution less than one, besides the damping. Note that there are some517

densities of b3 that are slightly on the left of the wall during the collision (Figure 4.9(c),(h)).518

This is because the rate function (4.4) is not infinitely large in the guard set, thus there is a519

small probability that the discrete jump is not triggered when the pendulum is on the left.520

But this probability becomes smaller when the pendulum further penetrates through the wall,521

since the rate function increases. This can be interpreted as that the probability of rebounds522

increases as the third body-fixed axis ~b3 becomes closer to the wall. The computational523

benefit is that the density changes gradually around the boundary of the guard set, instead524
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Figure 4.8: Marginal distribution of attitude with collisions.

of becoming zero abruptly like a step function, which allows capturing the space variation of525

the density function without excessively high bandwidth.526

The marginal density of angular velocity is shown in Figure 4.10. Similar to the case527

without collisions, the angular velocity is concentrated around zero initially (Figure 4.10(a)),528

and accelerates into the negative ⌦2 direction after the pendulum is released (Figure 4.10(b)).529

Nevertheless, instead of decelerating to zero, the angular velocity undergoes jump due to530

the collision, i.e., the negative ⌦2 is reset to be positive instantly during the discrete jump531

(Figure 4.10(c)) according to the reset kernel (4.8), thereby separating the angular velocity532

distribution into two parts. Later, most of the angular velocity has completed the collision and533

⌦2 continuous to accelerate (Figure 4.10(d)) until the pendulum reaches the vertical position,534

and begins to decelerate (Figure 4.10(e)) afterwards. These are repeated by several cycles,535

until the energy is mostly dissipated and the angular velocity is concentrated around zero536

again (Figure 4.10(r)-(t)). These illustrate that the proposed method successfully captures537

the complex interplay between the uncertainty distributions of attitude and angular velocity,538
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Figure 4.9: Marginal distribution of b3 with collisions.

as well as the collision, while generating the propagated density function for the hybrid state.539

The propagated uncertainty using the proposed method with l0 = n0 = 30 is also compared540

with a Monte Carlo simulation with a million samples in Figure 4.11. It is seen the di↵erences541

of mean attitude and mean direction of ~b3 are small compared with the attitude standard542

deviation. The di↵erences of attitude standard deviation, mean and standard deviation of543

angular velocity are in general within 10% of their absolute magnitudes.544

5. Conclusions. In this paper, we propose a computational framework to propagate the545

uncertainty of a general stochastic hybrid system where the continuous state space is a com-546

pact Lie group. The Fokker-Planck equation for the GSHS is split into two parts: a partial547

di↵erential equation corresponding to the continuous dynamics, and an integro-di↵erential548

equation corresponding to the discrete dynamics. The two split equations are solved alterna-549

tively and combined using a first order splitting scheme. In particular, the PDE is solved using550

the classic spectral method, by invoking noncommutative harmonic analysis on a compact Lie551
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Figure 4.10: Marginal distribution of angular velocity with collisions.

group. The proposed method is applied to a 3D pendulum that collides with a planar wall.552

It is exhibited that the proposed method is able to capture complex uncertainty distributions553

with arbitrary shapes or large dispersion, and the computed density function can be directly554

used for visualization or for constructing any stochastic properties.555
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