
Generating Diverse Code Explanations
using the GPT-3 Large Language Model

Stephen MacNeil
stephen.macneil@temple.edu

Temple University
Philadelphia, PA, USA

Andrew Tran
andrew.tran10@temple.edu

Temple University
Philadelphia, PA, USA

Dan Mogil
daniel.mogil@temple.edu

Temple University
Philadelphia, PA, USA

Seth Bernstein
seth.bernstein@temple.edu

Temple University
Philadelphia, PA, USA

Erin Ross
erinross@temple.edu
Temple University

Philadelphia, PA, USA

Ziheng Huang
z8huang@ucsd.edu

University of California—San Diego
La Jolla, CA, USA

KEYWORDS
large language models, natural language processing, code explana-
tions, computer science education
ACM Reference Format:
Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross,
and Ziheng Huang. 2022. Generating Diverse Code Explanations using the
GPT-3 Large Language Model. In Proceedings of the 2022 ACM Conference
on International Computing Education Research V.2 (ICER 2022), August 7–11,
2022, Lugano and Virtual Event, Switzerland. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3501709.3544280

1 ABSTRACT
Good explanations are essential to efficiently learning introductory
programming concepts [10]. To provide high-quality explanations
at scale, numerous systems automate the process by tracing the
execution of code [8, 12], defining terms [9], giving hints [16],
and providing error-specific feedback [10, 16]. However, these ap-
proaches often require manual effort to configure and only explain
a single aspect of a given code segment. Large language models
(LLMs) are also changing how students interact with code [7]. For
example, Github’s Copilot can generate code for programmers [4],
leading researchers to raise concerns about cheating [7]. Instead,
our work focuses on LLMs’ potential to support learning by explain-
ing numerous aspects of a given code snippet. This poster features
a systematic analysis of the diverse natural language explanations
that GPT-3 can generate automatically for a given code snippet. We
present a subset of three use cases from our evolving design space
of AI Explanations of Code.

2 USE CASES
To understand the types of explanations GPT-3 [2] can generate,
we issued over 700 prompts across numerous code snippets. An
example prompt and resulting explanation is shown in Figure 1.
We discovered eight explanation types and Figure 2 includes three

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9195-5/22/08.
https://doi.org/10.1145/3501709.3544280

explanation types to illustrate the explanatory power of GPT-3. The
additional types include: 1) tracing the execution of code, 2) fixing
bugs and explaining how they were fixed, 3) generating analogies
to real world settings, 4) listing relevant programming concepts,
and 5) predicting the console output.

Figure 1: A prompt and explanation based on analogy.

2.1 Analyzing and explaining time complexity
Instructors rate time complexity as the most difficult programming
topic [17]. However, understanding time complexity is important [6,
13] because it facilitates decision-making so students choose an
appropriate algorithm for a given problem. This use case shows
GPT-3 can identify and explain time complexity.

2.2 Identifying common mistakes made by
beginner programmers

Commonality exists in how students solve programming prob-
lems [15] and the mistakes they make [1, 11]. Pedagogical tech-
niques, such as the ‘muddiest point’ highlight these common and
most confusing concepts [3, 14]. GPT-3 can automatically create
a checklist of common mistakes students might make regarding a
given code snippet.

37

https://doi.org/10.1145/3501709.3544280
https://doi.org/10.1145/3501709.3544280
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501709.3544280&domain=pdf&date_stamp=2022-08-07


ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland MacNeil et al.

Figure 2: Three example explanations automatically generated by GPT-3 for an ‘anonymized’ Binary Search code snippet.

2.3 Summarizing code at multiple levels of
abstraction

Before understanding how a code snippet executes, it is often useful
to understand the purpose of the code [5]. The summary gener-
ated by GPT-3 and shown in Figure 2 defines the goal, traces the
execution, and highlights relevant CS concepts such as arrays.

3 DISCUSSION
Our three use cases demonstrate the potential for GPT-3 to explain
code for intro CS students. Our poster presentation will feature all
eight explanation types as a design space of explanations to convey
the diversity of explanations that can be generated by LLMs.Wewill
highlight best practices for generating effective explanations and
pitfalls that lead to less effective explanations. We are evaluating
the usefulness of these explanations in a series of summer classes.

REFERENCES
[1] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating

novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. 522–527.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[3] Adam Carberry, Stephen Krause, Casey Ankeny, and Cynthia Waters. 2013.
“Unmuddying” course content using muddiest point reflections. In 2013 IEEE
Frontiers in Education Conference (FIE). IEEE, 937–942.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[5] Kathryn Cunningham, Yike Qiao, Alex Feng, and Eleanor O’Rourke. 2022. Bring-
ing "High-Level" Down to Earth: Gaining Clarity in Conversational Program-
mer Learning Goals. In Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education V. 1 (Providence, RI, USA) (SIGCSE 2022). As-
sociation for Computing Machinery, New York, NY, USA, 551–557. https:
//doi.org/10.1145/3478431.3499370

[6] Elvina Elvina and Oscar Karnalim. 2017. Complexitor: An educational tool for
learning algorithm time complexity in practical manner. ComTech: Computer,
Mathematics and Engineering Applications 8, 1 (2017), 21–27.

[7] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference (Virtual Event, Australia) (ACE ’22). ACM, New York, NY, USA, 10–19.
https://doi.org/10.1145/3511861.3511863

[8] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[9] Andrew Head, Codanda Appachu, Marti A Hearst, and Björn Hartmann. 2015.
Tutorons: Generating context-relevant, on-demand explanations and demonstra-
tions of online code. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 3–12.

[10] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes. 2020.
Adaptive Immediate Feedback Can Improve Novice Programming Engagement
and Intention to Persist in Computer Science. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (Virtual Event, New
Zealand) (ICER ’20). Association for Computing Machinery, New York, NY, USA,
194–203. https://doi.org/10.1145/3372782.3406264

[11] DavinMcCall andMichael Kölling. 2014. Meaningful categorisation of novice pro-
grammer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE, 1–8.

[12] Greg L Nelson, Benjamin Xie, and Amy J Ko. 2017. Comprehension first: eval-
uating a novel pedagogy and tutoring system for program tracing in CS1. In
Proceedings of the 2017 ACM conference on international computing education
research. 2–11.

[13] Miranda Parker and Colleen Lewis. 2014. What makes big-O analysis difficult:
understanding how students understand runtime analysis. Journal of Computing
Sciences in Colleges 29, 4 (2014), 164–174.

[14] Daniel Perez, Leila Zahedi, Monique Ross, Jia Zhu, Tiffany Vinci-Cannava, Laird
Kramer, and Maria Charters. 2020. WIP: An exploration into the muddiest points

38

https://doi.org/10.1145/3478431.3499370
https://doi.org/10.1145/3478431.3499370
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3372782.3406264


Generating Diverse Explanations with Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

and self-efficacy of students in introductory computer science courses. In 2020
IEEE Frontiers in Education Conference (FIE). IEEE, 1–5.

[15] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Au-
tonomously generating hints by inferring problem solving policies. In Proceedings
of the second (2015) acm conference on learning@ scale. 195–204.

[16] Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: towards
intelligent tutoring in novice programming environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on computer science education. 483–488.

[17] Carsten Schulte and Jens Bennedsen. 2006. What do teachers teach in introductory
programming?. In Proceedings of the second international workshop on Computing
education research. 17–28.

39


	1 Abstract
	2 Use Cases
	2.1 Analyzing and explaining time complexity
	2.2 Identifying common mistakes made by beginner programmers
	2.3 Summarizing code at multiple levels of abstraction

	3 Discussion
	References

