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1 ABSTRACT

Good explanations are essential to efficiently learning introductory
programming concepts [10]. To provide high-quality explanations
at scale, numerous systems automate the process by tracing the
execution of code [8, 12], defining terms [9], giving hints [16],
and providing error-specific feedback [10, 16]. However, these ap-
proaches often require manual effort to configure and only explain
a single aspect of a given code segment. Large language models
(LLMs) are also changing how students interact with code [7]. For
example, Github’s Copilot can generate code for programmers [4],
leading researchers to raise concerns about cheating [7]. Instead,
our work focuses on LLMs’ potential to support learning by explain-
ing numerous aspects of a given code snippet. This poster features
a systematic analysis of the diverse natural language explanations
that GPT-3 can generate automatically for a given code snippet. We
present a subset of three use cases from our evolving design space
of AI Explanations of Code.

2 USE CASES

To understand the types of explanations GPT-3 [2] can generate,
we issued over 700 prompts across numerous code snippets. An
example prompt and resulting explanation is shown in Figure 1.
We discovered eight explanation types and Figure 2 includes three
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explanation types to illustrate the explanatory power of GPT-3. The
additional types include: 1) tracing the execution of code, 2) fixing
bugs and explaining how they were fixed, 3) generating analogies
to real world settings, 4) listing relevant programming concepts,
and 5) predicting the console output.

#Give a real world analogy for this code

public static void main(String[] args) {
for(int i=1;i<=3;i++)}{
for(int j=1;j<=3;j++){
System.out.printin(i+" "+j);

}

This code is similar to a recipe that has three steps, each with three sub-steps.

Figure 1: A prompt and explanation based on analogy.

2.1 Analyzing and explaining time complexity

Instructors rate time complexity as the most difficult programming
topic [17]. However, understanding time complexity is important [6,
13] because it facilitates decision-making so students choose an
appropriate algorithm for a given problem. This use case shows
GPT-3 can identify and explain time complexity.

2.2 Identifying common mistakes made by
beginner programmers

Commonality exists in how students solve programming prob-
lems [15] and the mistakes they make [1, 11]. Pedagogical tech-
niques, such as the ‘muddiest point’ highlight these common and
most confusing concepts [3, 14]. GPT-3 can automatically create
a checklist of common mistakes students might make regarding a
given code snippet.
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Code Snippet

Given Java Code:
int algorithm (int arr[], int I, int r, int x)
{
if (r>=1{

intmid=1+(r-1)/2;

if (arr[mid] == x)
return mid;

if (arr[mid] > x)
return algorithm(arr, I, mid - 1, x);

return algorithm(arr, mid + 1, 1, x);
}

return -1;

1. Time Complexity

What is the time complexity of this
code and why?

The time complexity of this code is O(log
n). This is because the code is using a
Binary Search algorithm, which halves the
search space each time it is called.

MacNeil et al.

2. Identifying Common Mistakes

List the common mistakes a beginner programmer might make while writing this code.
How can a beginner programmer avoid each of these mistakes?

A beginner programmer might make the following mistakes while writing this code:

1. Not understanding how binary search works - Binary search is a search algorithm that searches for an
element in a sorted array by repeatedly dividing the array in half and comparing the element to the middle
element of the array. If the element is not found, the search continues in the lower or upper half of the
array, depending on whether the element is less than or greater than the middle element, respectively.

2. Not correctly implementing the binary search algorithm - In order to correctly implement binary search,
the programmer must ensure that the array is sorted before beginning the search. Furthermore, the
programmer must correctly handle the case when the element is not found in the array.

3. Not using the proper data structures - Binary search can only be performed on an array. If the
programmer is using a linked list, for example, binary search cannot be used.

4. Not using the proper variable types - Binary search requires that the array be of type int. If the
programmer is using a different data type, binary search will not work.

5. Not understanding the time complexity of binary search - Binary search has a time complexity of O(log
n), which means that it is a very efficient algorithm. If the programmer is not aware of this, they may try to
improve the efficiency of the algorithm by making unnecessary changes.

3. Summarizing Code
Summarize and explain the goal of this code.

The goal of this code is to find the index of a given element in an array using a binary search algorithm.
The code takes in an array, the left and right indices of the array, and the element to be found as
parameters. If the element is found, the code returns the index of the element. If the element is not found,
the code returns -1.

Figure 2: Three example explanations automatically generated by GPT-3 for an ‘anonymized’ Binary Search code snippet.

2.3 Summarizing code at multiple levels of
abstraction

Before understanding how a code snippet executes, it is often useful

[5] Kathryn Cunningham, Yike Qiao, Alex Feng, and Eleanor O’Rourke. 2022. Bring-
ing "High-Level" Down to Earth: Gaining Clarity in Conversational Program-
mer Learning Goals. In Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education V. 1 (Providence, RI, USA) (SIGCSE 2022). As-

sociation for Computing Machinery, New York, NY, USA, 551-557. https:
to understand the purpose of the code [5]. The summary gener- //doi.org/lO.l145/357843%.3499370 4 P
ated by GPT-3 and shown in Figure 2 defines the goal, traces the [6] Elvina Elvina and Oscar Karnalim. 2017. Complexitor: An educational tool for

execution, and highlights relevant CS concepts such as arrays.

3 DISCUSSION

Our three use cases demonstrate the potential for GPT-3 to explain
code for intro CS students. Our poster presentation will feature all
eight explanation types as a design space of explanations to convey
the diversity of explanations that can be generated by LLMs. We will
highlight best practices for generating effective explanations and
pitfalls that lead to less effective explanations. We are evaluating
the usefulness of these explanations in a series of summer classes.
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