N
Check for
Updates

Generating Diverse Code Explanations
using the GPT-3 Large Language Model

Stephen MacNeil Andrew Tran Dan Mogil
stephen.macneil@temple.edu andrew.tran10@temple.edu daniel. mogil@temple.edu
Temple University Temple University Temple University

Philadelphia, PA, USA

Seth Bernstein
seth.bernstein@temple.edu

Temple University
Philadelphia, PA, USA

KEYWORDS

large language models, natural language processing, code explana-
tions, computer science education

ACM Reference Format:

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross,
and Ziheng Huang. 2022. Generating Diverse Code Explanations using the
GPT-3 Large Language Model. In Proceedings of the 2022 ACM Conference
on International Computing Education Research V.2 (ICER 2022), August 7-11,
2022, Lugano and Virtual Event, Switzerland. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3501709.3544280

1 ABSTRACT

Good explanations are essential to efficiently learning introductory
programming concepts [10]. To provide high-quality explanations
at scale, numerous systems automate the process by tracing the
execution of code [8, 12], defining terms [9], giving hints [16],
and providing error-specific feedback [10, 16]. However, these ap-
proaches often require manual effort to configure and only explain
a single aspect of a given code segment. Large language models
(LLMs) are also changing how students interact with code [7]. For
example, Github’s Copilot can generate code for programmers [4],
leading researchers to raise concerns about cheating [7]. Instead,
our work focuses on LLMs’ potential to support learning by explain-
ing numerous aspects of a given code snippet. This poster features
a systematic analysis of the diverse natural language explanations
that GPT-3 can generate automatically for a given code snippet. We
present a subset of three use cases from our evolving design space
of AI Explanations of Code.

2 USE CASES

To understand the types of explanations GPT-3 [2] can generate,
we issued over 700 prompts across numerous code snippets. An
example prompt and resulting explanation is shown in Figure 1.
We discovered eight explanation types and Figure 2 includes three

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9195-5/22/08.

https://doi.org/10.1145/3501709.3544280

Philadelphia, PA, USA

Erin Ross
erinross@temple.edu

Temple University
Philadelphia, PA, USA

37

Philadelphia, PA, USA

Ziheng Huang
z8huang@ucsd.edu
University of California—San Diego
La Jolla, CA, USA

explanation types to illustrate the explanatory power of GPT-3. The
additional types include: 1) tracing the execution of code, 2) fixing
bugs and explaining how they were fixed, 3) generating analogies
to real world settings, 4) listing relevant programming concepts,
and 5) predicting the console output.

#Give a real world analogy for this code

public static void main(String[] args) {
for(int i=1;i<=3;i++)}{
for(int j=1;j<=3;j++){
System.out.printin(i+" "+j);

}

This code is similar to a recipe that has three steps, each with three sub-steps.

Figure 1: A prompt and explanation based on analogy.

2.1 Analyzing and explaining time complexity

Instructors rate time complexity as the most difficult programming
topic [17]. However, understanding time complexity is important [6,
13] because it facilitates decision-making so students choose an
appropriate algorithm for a given problem. This use case shows
GPT-3 can identify and explain time complexity.

2.2 Identifying common mistakes made by
beginner programmers

Commonality exists in how students solve programming prob-
lems [15] and the mistakes they make [1, 11]. Pedagogical tech-
niques, such as the ‘muddiest point’ highlight these common and
most confusing concepts [3, 14]. GPT-3 can automatically create
a checklist of common mistakes students might make regarding a
given code snippet.


https://doi.org/10.1145/3501709.3544280
https://doi.org/10.1145/3501709.3544280
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501709.3544280&domain=pdf&date_stamp=2022-08-07

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Code Snippet

Given Java Code:
int algorithm (int arr[], int I, int r, int x)
{
if (r>=1{

intmid=1+(r-1)/2;

if (arr[mid] == x)
return mid;

if (arr[mid] > x)
return algorithm(arr, I, mid - 1, x);

return algorithm(arr, mid + 1, 1, x);
}

return -1;

1. Time Complexity

What is the time complexity of this
code and why?

The time complexity of this code is O(log
n). This is because the code is using a
Binary Search algorithm, which halves the
search space each time it is called.

MacNeil et al.

2. Identifying Common Mistakes

List the common mistakes a beginner programmer might make while writing this code.
How can a beginner programmer avoid each of these mistakes?

A beginner programmer might make the following mistakes while writing this code:

1. Not understanding how binary search works - Binary search is a search algorithm that searches for an
element in a sorted array by repeatedly dividing the array in half and comparing the element to the middle
element of the array. If the element is not found, the search continues in the lower or upper half of the
array, depending on whether the element is less than or greater than the middle element, respectively.

2. Not correctly implementing the binary search algorithm - In order to correctly implement binary search,
the programmer must ensure that the array is sorted before beginning the search. Furthermore, the
programmer must correctly handle the case when the element is not found in the array.

3. Not using the proper data structures - Binary search can only be performed on an array. If the
programmer is using a linked list, for example, binary search cannot be used.

4. Not using the proper variable types - Binary search requires that the array be of type int. If the
programmer is using a different data type, binary search will not work.

5. Not understanding the time complexity of binary search - Binary search has a time complexity of O(log
n), which means that it is a very efficient algorithm. If the programmer is not aware of this, they may try to
improve the efficiency of the algorithm by making unnecessary changes.

3. Summarizing Code
Summarize and explain the goal of this code.

The goal of this code is to find the index of a given element in an array using a binary search algorithm.
The code takes in an array, the left and right indices of the array, and the element to be found as
parameters. If the element is found, the code returns the index of the element. If the element is not found,
the code returns -1.

Figure 2: Three example explanations automatically generated by GPT-3 for an ‘anonymized’ Binary Search code snippet.

2.3 Summarizing code at multiple levels of
abstraction

Before understanding how a code snippet executes, it is often useful

[5] Kathryn Cunningham, Yike Qiao, Alex Feng, and Eleanor O’Rourke. 2022. Bring-
ing "High-Level" Down to Earth: Gaining Clarity in Conversational Program-
mer Learning Goals. In Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education V. 1 (Providence, RI, USA) (SIGCSE 2022). As-

sociation for Computing Machinery, New York, NY, USA, 551-557. https:
to understand the purpose of the code [5]. The summary gener- //doi.org/lO.l145/357843%.3499370 4 P
ated by GPT-3 and shown in Figure 2 defines the goal, traces the [6] Elvina Elvina and Oscar Karnalim. 2017. Complexitor: An educational tool for

execution, and highlights relevant CS concepts such as arrays.

3 DISCUSSION

Our three use cases demonstrate the potential for GPT-3 to explain
code for intro CS students. Our poster presentation will feature all
eight explanation types as a design space of explanations to convey
the diversity of explanations that can be generated by LLMs. We will
highlight best practices for generating effective explanations and
pitfalls that lead to less effective explanations. We are evaluating
the usefulness of these explanations in a series of summer classes.

REFERENCES

[1] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating

(2]

learning algorithm time complexity in practical manner. ComTech: Computer,
Mathematics and Engineering Applications 8, 1 (2017), 21-27.

[7] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and

James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-

nAI Codex on Introductory Programming. In Australasian Computing Education

Conference (Virtual Event, Australia) (ACE ’22). ACM, New York, NY, USA, 10-19.

https://doi.org/10.1145/3511861.3511863

Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-

ization for cs education. In Proceeding of the 44th ACM technical symposium on

Computer science education. 579-584.

[9] Andrew Head, Codanda Appachu, Marti A Hearst, and Bjérn Hartmann. 2015.
Tutorons: Generating context-relevant, on-demand explanations and demonstra-
tions of online code. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 3-12.

[10] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes. 2020.
Adaptive Immediate Feedback Can Improve Novice Programming Engagement
and Intention to Persist in Computer Science. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (Virtual Event, New

[8

novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. 522-527.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877-1901.

Adam Carberry, Stephen Krause, Casey Ankeny, and Cynthia Waters. 2013.
“Unmuddying” course content using muddiest point reflections. In 2013 IEEE
Frontiers in Education Conference (FIE). IEEE, 937-942.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

38

[11

[12

[13

[14

Zealand) (ICER °20). Association for Computing Machinery, New York, NY, USA,
194-203. https://doi.org/10.1145/3372782.3406264

Davin McCall and Michael Kolling. 2014. Meaningful categorisation of novice pro-
grammer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE, 1-8.

Greg L Nelson, Benjamin Xie, and Amy J Ko. 2017. Comprehension first: eval-
uating a novel pedagogy and tutoring system for program tracing in CS1. In
Proceedings of the 2017 ACM conference on international computing education
research. 2-11.

Miranda Parker and Colleen Lewis. 2014. What makes big-O analysis difficult:
understanding how students understand runtime analysis. Journal of Computing
Sciences in Colleges 29, 4 (2014), 164-174.

Daniel Perez, Leila Zahedi, Monique Ross, Jia Zhu, Tiffany Vinci-Cannava, Laird
Kramer, and Maria Charters. 2020. WIP: An exploration into the muddiest points


https://doi.org/10.1145/3478431.3499370
https://doi.org/10.1145/3478431.3499370
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3372782.3406264

Generating Diverse Explanations with Large Language Models ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

and self-efficacy of students in introductory computer science courses. In 2020 [16] Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: towards
IEEE Frontiers in Education Conference (FIE). IEEE, 1-5. intelligent tutoring in novice programming environments. In Proceedings of the
[15] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Au- 2017 ACM SIGCSE Technical Symposium on computer science education. 483-488.
tonomously generating hints by inferring problem solving policies. In Proceedings [17] Carsten Schulte and Jens Bennedsen. 2006. What do teachers teach in introductory
of the second (2015) acm conference on learning@ scale. 195-204. programming?. In Proceedings of the second international workshop on Computing

education research. 17-28.

39



	1 Abstract
	2 Use Cases
	2.1 Analyzing and explaining time complexity
	2.2 Identifying common mistakes made by beginner programmers
	2.3 Summarizing code at multiple levels of abstraction

	3 Discussion
	References

