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1 ABSTRACT
Good explanations are essential to efficiently learning introductory
programming concepts [10]. To provide high-quality explanations
at scale, numerous systems automate the process by tracing the
execution of code [8, 12], defining terms [9], giving hints [16],
and providing error-specific feedback [10, 16]. However, these ap-
proaches often require manual effort to configure and only explain
a single aspect of a given code segment. Large language models
(LLMs) are also changing how students interact with code [7]. For
example, Github’s Copilot can generate code for programmers [4],
leading researchers to raise concerns about cheating [7]. Instead,
our work focuses on LLMs’ potential to support learning by explain-
ing numerous aspects of a given code snippet. This poster features
a systematic analysis of the diverse natural language explanations
that GPT-3 can generate automatically for a given code snippet. We
present a subset of three use cases from our evolving design space
of AI Explanations of Code.

2 USE CASES
To understand the types of explanations GPT-3 [2] can generate,
we issued over 700 prompts across numerous code snippets. An
example prompt and resulting explanation is shown in Figure 1.
We discovered eight explanation types and Figure 2 includes three
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explanation types to illustrate the explanatory power of GPT-3. The
additional types include: 1) tracing the execution of code, 2) fixing
bugs and explaining how they were fixed, 3) generating analogies
to real world settings, 4) listing relevant programming concepts,
and 5) predicting the console output.

Figure 1: A prompt and explanation based on analogy.

2.1 Analyzing and explaining time complexity
Instructors rate time complexity as the most difficult programming
topic [17]. However, understanding time complexity is important [6,
13] because it facilitates decision-making so students choose an
appropriate algorithm for a given problem. This use case shows
GPT-3 can identify and explain time complexity.

2.2 Identifying common mistakes made by
beginner programmers

Commonality exists in how students solve programming prob-
lems [15] and the mistakes they make [1, 11]. Pedagogical tech-
niques, such as the ‘muddiest point’ highlight these common and
most confusing concepts [3, 14]. GPT-3 can automatically create
a checklist of common mistakes students might make regarding a
given code snippet.
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Figure 2: Three example explanations automatically generated by GPT-3 for an ‘anonymized’ Binary Search code snippet.

2.3 Summarizing code at multiple levels of
abstraction

Before understanding how a code snippet executes, it is often useful
to understand the purpose of the code [5]. The summary gener-
ated by GPT-3 and shown in Figure 2 defines the goal, traces the
execution, and highlights relevant CS concepts such as arrays.

3 DISCUSSION
Our three use cases demonstrate the potential for GPT-3 to explain
code for intro CS students. Our poster presentation will feature all
eight explanation types as a design space of explanations to convey
the diversity of explanations that can be generated by LLMs.Wewill
highlight best practices for generating effective explanations and
pitfalls that lead to less effective explanations. We are evaluating
the usefulness of these explanations in a series of summer classes.
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