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ABSTRACT Graph Analytics. In 51st International Conference on Parallel Processing (ICPP

We present Atos, a task-parallel GPU dynamic scheduling frame-
work that is especially targeted at dynamic irregular applications.
Compared to the dominant Bulk Synchronous Parallel (BSP) frame-
works, Atos exposes additional concurrency by supporting task-
parallel formulations of applications with relaxed dependencies,
achieving higher GPU utilization, which is particularly significant
for problems with concurrency bottlenecks. Atos also offers im-
plicit task-parallel load balancing in addition to data-parallel load
balancing, providing users the flexibility to balance between them
to achieve optimal performance. Finally, Atos allows users to adapt
to different use cases by controlling the kernel strategy and task-
parallel granularity. We demonstrate that each of these controls is
important in practice.

We evaluate and analyze the performance of Atos vs. BSP on
three applications: breadth-first search, PageRank, and graph col-
oring. Atos implementations achieve geomean speedups of 3.44x,
2.1x, and 2.77x and peak speedups of 12.8x, 3.2x, and 9.08x across
three case studies, compared to a state-of-the-art BSP GPU imple-
mentation. Beyond simply quantifying the speedup, we extensively
analyze the reasons behind each speedup. This deeper understand-
ing allows us to derive general guidelines for how to select the
optimal Atos configuration for different applications. Finally, our
analysis provides insights for future dynamic scheduling framework
designs.
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1 INTRODUCTION

Bulk-synchronous parallel (BSP) programming [27] is the tradi-
tional model for GPU applications. It is a natural fit for statically
schedulable, regular problems, such as many dense-matrix, image-
analysis, and structured-grid computations. Programming envi-
ronments like NVIDIA’s CUDA and Khronos’s SYCL support this
relatively simple model, which maps efficiently to the massive
fine-grained parallelism on GPUs and can deliver near-peak perfor-
mance.

However, some important problems are instead irregular, with
frequent control flow branches, non-unit-stride memory accesses,
variable amounts of work across loop iterations, and dynamically
varying degrees of parallelism. Algorithms that operate on graphs or
trees or those with recursive formulations often exhibit such irreg-
ularity. These more naturally use a task-based programming model.
Programming systems like Legion [2], PTask [22], and StarPU [1]
use tasking on the CPU to feed GPUs with kernels to mask the
latency of communication and keep the GPU busy. In contrast, we
consider the problem of very fine-grained tasking where (tradition-
ally) a set of similar application-level tasks are aggregated to form
a data-parallel GPU task. This idea is used in state-of-the-art GPU
graph libraries like Gunrock [28], where the application-level tasks
are vertices or edges. In Gunrock and similar frameworks, each
frontier in a graph sweep is launched as a separate GPU kernel
in the BSP model. In practice, this may result in insufficient paral-
lelism, uneven finish times, and high kernel launch overhead for
small frontiers.

To address the above issues, we present of Atos, a task-scheduling
framework for GPUs, that is adaptable to different usage scenarios:

e It supports both expensive and inexpensive frontiers by pro-
viding persistent and non-persistent task schedulers. The
persistent scheduler is a GPU kernel that runs continuously
to minimize launch overhead.

o It allows the user to trade off task and data parallelism by se-
lecting the worker size, which is the number of GPU threads
within each worker, and the number of items in each task.

o It uses a single shared task queue, which balances load more
quickly than a distributed queue, yet is fast enough to keep
GPU workers occupied.
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e It supports asynchronous execution across frontiers to max-
imize available parallelism, while mostly preserving cross-
frontier ordering and thus minimizing overwork.

We study three graph algorithms on a variety of graph datasets
that stress the importance of this adaptability. These algorithms
have nested parallelism with outer-loop dependencies, and the
ability to relax those dependencies comes at the cost of possible
overwork. Thus a second major theme in this paper is this tradeoff
between increased parallelism and overwork. Each of our three
algorithms explores this tradeoff in a somewhat different manner,
which we discuss and analyze in Sections 5 and 6.

Our contributions include:

e Developing a generalized GPU task-parallel framework that
explores a broad design space of possible task-parallel im-
plementations;

o A demonstration of the benefits of mixed task and data par-
allelism for fine-grained parallel applications;

o Identifying relaxed-synchronization applications as a strong
candidate for acceleration with a GPU task-parallel frame-
work; and

e A detailed analysis of application performance that high-
lights the impact of design decisions both within the task
scheduler and at the application level.

2 A DYNAMIC, IRREGULAR APPLICATION
PATTERN
Atos handles a broad set of applications with fine-grained task

and data parallelism, but we choose to focus here on a particularly
challenging class of irregular nested loops with the following form:

Listing 1 A program with nested loops, expressed with a frontier
abstraction.

in_frontier = initialize()
while (stop condition not met): // outer loop
for (i in in_frontier): // inner loops
for (j = 0 to workload(i).size()):
out_frontier.append(f(in_frontier[i], j))
cudaDeviceSynchronize()
in_frontier = out_frontier

The inner loops produce data parallelism that may be flattened
as in NESL [6] or Gunrock [28] to maximize parallelism and to
implement a data-parallel load-balancing technique. For example,
if the inner loops iterate over graph vertices and outgoing edges,
some pre-analysis may be used to evenly distribute the edges rather
than the vertices. Our work also relaxes the outer loop iterations,
which will expand opportunities to find parallelism.

Our applications exhibit one or more of the following forms of
dynamic, irregular parallelism:

o The number of tasks varies across outer loop frontiers: Work
is generated dynamically and the number of output tasks
produced from each input task is not fixed.

o The cost of each inner loop task (lines 4-5 in Listing 1) may
vary: The loop bound (workload(i).size())in line 5 is not
fixed.
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o Total work may vary: The outer loop has a loop-carried de-
pendence, so while dynamic generation of tasks will en-
force some dependencies, parallel execution of tasks across
frontiers can change program behavior, including the total
number of tasks processed.

The pattern in Listing 1 is not specific to graph algorithms. Atos
could also address a range of problems that also match this pattern,
including ray tracing, where reflected/refracted photons are created
dynamically when they collide with objects; complex rendering
pipelines such as Reyes where recursive stages require dynamic
processing; and iterative algorithms with a similar computation
pattern to PageRank, such as federated learning algorithms.

2.1 Performance Challenges of Dynamic,
Irregular Problems

Traditional BSP implementations of such applications usually launch

a series of kernels, with each kernel corresponding to a bulk-synchronous

step (one iteration of the outer loop). Between each step is a global
synchronization barrier. The kernels themselves parallelize over the
inner loops, with the list of work passed between iterations form-
ing the “frontier”. While optimized BSP implementations of many
dynamic irregular applications achieve impressive performance,
we identify three performance challenges with this approach.

Small frontier problem The runtime of a kernel is the sum
of fixed costs (the cost of the global synchronization barrier plus
the kernel launch cost) and the amount of time to process the
input frontier. The size of input frontiers across iterations may vary
significantly over the lifetime of the program. A small frontier has
two performance consequences: (1) The fixed costs dominate the
overall processing cost; the GPU is spending a significant amount of
time setting up or waiting for computation rather than performing
it. (2) A small frontier may not be large enough to fill the GPU with
work, leaving processing units idle [24].

Load imbalance Because of the irregular nature of work in the
inner loop, efficiently assigning work to GPU threads is critical to
achieve the highest performance. Statically computing work assign-
ment is infeasible because work is produced dynamically, so lines
4-6 in Listing 1 are usually implemented with data-parallel load
balancing techniques [9, 21, 28] that compute work assignment at
runtime. However, the optimal load-balancing technique is problem-
dependent and even for a fixed problem may be input-dependent.
And the runtime cost of that technique may be high.

Loss of concurrency opportunities The BSP model enforces
an ordering between every operation in iteration i with every opera-
tion in iteration i+1, even if some of those pairs may be independent.
We relax this cross-frontier ordering in two ways. One is to consider
problems whose typical formulation is as nested loops but whose
computation is amenable to reordering across BSP iterations. Two is
to speculate that work in later iterations is not dependent on work
in earlier iterations and to repair the misspeculation or retry the
computation if it is incorrect.

3 OUR TASK-PARALLEL PROGRAMMING
MODEL AND DESIGN SPACE

Our programming model allows implementations of task-parallel
formulations of the workloads we discussed in Section 2, with
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a focus on providing solutions to BSP’s three challenges: small-
frontier, load-imbalance, and loss of concurrency opportunities. We
use the following terminology:
worker: one or a group of GPU threads.
task: one or more pieces of work that are scheduled as a single
unit in our system.
application function f(): the code that processes each task.

Listing 2 SPMD code of each thread worker in Atos.

for each worker:
while not queue.empty():
task = queue.concurrent_pop(task.size())
new_tasks = f(task)
queue.concurrent_push(new_tasks)

At a high level, our model maintains a queue of tasks. Work-
ers fetch a task from the queue, process the task, and add newly
generated tasks (if any) to the queue. The program runs until ei-
ther a stop condition is met or the queue is empty (Listing 2). This
programming model addresses the performance challenges from
Section 2.1:

e We can implement Listing 2 with a single kernel invocation,
avoiding multiple launches of small kernels.

o Task parallelism is implicitly load-balanced because workers
can run independent tasks and stay busy even if tasks require
different amounts of work.

e Listing 2 has no global synchronization; instead the program-
mer controls the scheduling of work, allowing more flexible
dependencies and thus more opportunities for concurrency.

Managing task dependencies In Atos’s programming model,
tasks themselves (run inside a worker) are executed synchronously,
but different tasks (across workers) are executed asynchronously.
For this execution model to work, tasks are only added to the task
queue when their dependencies are satisfied. Our current implemen-
tation of Atos supports tree-structured task dependency graphs,
which is sufficient for the graph applications considered in this pa-
per (and we believe most graph algorithms). Atos can be extended
in a straightforward way to DAGs by adding (atomic) counters for
each join; the last worker to reach the join would continue the
computation beyond the join. This strategy does put a burden on
the programmer, but the overall advantage of this approach is to
support task-based computations that are generated dynamically
(in contrast to Legion [2], StarPU [1], Juggler [4], etc. that must
build a static task-dependency graph in advance).

The primary focus of this paper is how to best implement List-
ing 2 on the GPU. We identify below the four key design decisions
in such an implementation.

Relaxing barriers A BSP implementation separates work in
each iteration with a global barrier. Can we benefit from
relaxing this global barrier constraint?

Worker size We can choose what GPU resources we assign
to each worker. What is the worker size that yields the best
performance?

Data vs. Task Parallelism We expect to leverage the paral-
lelism between tasks. We can also choose the size of our
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tasks, and within each task, potentially leverage data par-
allelism. What is the right balance between task and data
parallelism?

Kernel strategy Listing 2 is written in a “persistent” style,
implementable with a single kernel call. We could alterna-
tively interchange its outer and inner loops, making one
“discrete” kernel call per iteration. Which is best for optimal
performance?

3.1 Relaxing Barriers

As discussed in Section 2, many applications have the nested loop
structure from Listing 1 and their BSP implementations may lose
concurrency opportunities because of the global barrier between
the outer loops. In many cases, we can remove the barrier and relax
the outer loop dependency while still computing the correct result.
How? Consider two tasks A and B that, in a BSP implementation,
are ordered: A is in an iteration that precedes B and thus must run
before B.

o One possibility is to speculate that we can compute A and
B at the same time, or even in the order B then A, without
changing the correctness of the computation. If our specu-
lation is correct, then we expose more concurrency. If our
speculation is incorrect, then we must fix it. This fix might
be cheap or costly.

o A second possibility is a problem formulation that is robust
to computing items out of order. This is also called Dijkstra’s
don’t care non-determinism [11].

In either case, we can relax global barriers and expose additional
concurrency; depending on the problem and dataset, we may see
significant performance gains. However, relaxing barriers may in-
cur additional costs: the cost of performing incorrectly speculated
work, the cost of repairing incorrectly speculated work, and less
predictable convergence rates when compared to the BSP coun-
terpart. Overall, if the performance improvements from increased
concurrency outweigh these costs, we can deliver performance
gains.

Related work: Hassaan et al. [16] studied unordered and or-
dered versions of several algorithms, demonstrating a tradeoff be-
tween parallelism and work efficiency. However, the relaxed bar-
rier formulations we study differ from unordered ones. Consider
breadth-first search (BFS). Both Hassaan et al. and we begin with a
work-efficient Dijkstra BFS, but they compare to a work-inefficient
Bellman-Ford BFS, while we compare to a relaxed (speculative)
Dijkstra BFS (Section 5.1). The speculative Dijkstra BFS is more
work-efficient than Bellman-Ford BFS. Empirically, speculative Di-
jkstra’s workload is within a small constant factor of that of BSP
Dijkstra, which is #edges (see Table 4). This is much smaller than
Bellman-Ford’s workload of diameter X #edges. Kulkarni et al. [19]
studied an abstraction and runtime scheme for workloads with opti-
mistic parallelism, which differ from the relaxing barriers we study
in this paper. Their notion of optimistic parallelism assumes many
tasks can run in parallel and stops a task the moment it violates a
dependency. In contrast, we allow the computation to commit, even
if it violates a dependency, and only fix the mistake afterwards.
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3.2 Worker Size

Previous task-parallelism work [1, 7, 8, 22] uses the whole GPU as a
single worker. They maintain a task dependency graph on the CPU
side and orchestrate the execution by launching a CUDA kernel for
each task when dependencies are satisfied. We use GPU-wide-worker
to describe such an organization. Tasks in those GPU-wide-worker
task-parallel frameworks are usually very large to better utilize the
entire GPU’s resources. This organization is easy to program and
has low scheduling overhead.

However, the GPU-wide-worker scheme is a poor match when
task dependencies require finer management. Consider the follow-
ing extreme example: Task A and Task B both contain 10,000 data
items, and only a single data item in B depends on a single item in A.
A GPU-wide-worker implementation must wait for A to complete
before beginning work on B, even though most of the data items
can be processed independently and concurrently. We use the term
false dependency to describe the situation when a data item has all
its dependencies satisfied, but cannot be processed because another
data item in the same task has unresolved dependencies. One can
reduce such false dependencies by decomposing a large task into
many smaller tasks to expose more parallelism. As a result, work-
ers should be smaller, matching the size of tasks and allowing full
utilization of the GPU’s resources. This approach has motivated a
number of recent task-parallelism frameworks [4, 23, 26, 29], which
use workers sized as either warps or Cooperative Thread Arrays
(CTAs). The resulting additional complexity in scheduling many
smaller workers motivates also moving scheduling decisions from
the CPU to the GPU.

Most task-parallelism frameworks only provide one worker size.
Our framework provides thread-, warp-, and CTA-sized workers,
to support tasks of different size and different synchronization re-
quirements. The only prior work that uses multiple granularities is
Whippletree [23]. Whippletree’s thread and warp worker sizes are
primarily a programming model concept and suffer from synchro-
nization penalties at the implementation level. In Whippletree’s
implementation, threads are still synchronized within entire CTAs,
suffering from false dependencies if tasks require finer synchro-
nization than at CTA granularity.

For graph analytics frameworks in particular, data-parallel bulk-
synchronous execution models are by far the most common on
GPUs because of their high GPU utilization and effective use of data-
parallel load-balancing techniques (e.g. Gunrock [28], cuGraph [12],
Medusa [30], SIMD-X [20], GraphBLAST [10]). Current multi-GPU
task-based asynchronous graph libraries—Groute [5], Lux [18], and
Galois [17]—use a data-based bulk-synchronous model for the com-
putation kernels launched on each GPU.

3.3 Balance Between Data and Task Parallelism

Many parallel applications have work items that require different
amounts of processing. Traditional BSP applications address this
challenge with explicitly coded data-parallel load balancing tech-
niques. We describe two different approaches in the context of List-
ing 1: One widely used technique is load balancing search [9], which
dynamically computes the prefix-sum of workload(i) .size() for
i € in_frontier, then flattens the two for-loops into one big array
and redistributes the work in the array to each CUDA thread (see
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Baxter [3] for details). Another popular data-parallel load balancing
technique separates the work in in_frontier into different buck-
ets based on workload(i).size() and launches a separate kernel
with the best processing strategy for that size for each bucket [21].

Task parallelism is a natural fit for these irregular applications.
Workers in our framework do not directly synchronize with each
other. One of the primary advantages of this lack of coordination is
that it allows workers to attend to any available work items as soon
as they become available (“implicit task-parallel load balancing”).

Task parallelism and data parallelism are not exclusive—individual
tasks of sufficient size may also exploit data parallelism in their
execution. Thus we consider a continuous spectrum with pure task-
parallel and pure data-parallel load balancing at the extremes, and
expect that the optimal trade-off will be application-dependent.
Our framework supports two worker sizes larger than a thread
(warp and CTA) and offers the programmer the ability to exploit
data parallelism within each warp-sized or CTA-sized task. In the
framework, workers operate on tasks asynchronously, but an in-
dividual worker itself is executed synchronously. Therefore, we
can use a worker’s capacity as a parameter to control the trade-
off between data and task parallelism. Given a fixed number of
threads available, increasing a worker’s capacity reduces the total
number of workers available for a given application. At the same
time, an increase in worker capacity results in more opportunities
to perform data-parallel load balancing within each worker. In the
extreme, setting a worker’s capacity to the entire GPU leaves no
room for task parallelism and is equivalent to the BSP model. We
found that data-parallel load balancing inside the worker combined
with task-parallel load balancing provided by Atos results in better
overall load balancing (Section 6). We are not aware of any previous
work that combines these two types of load balancing.

3.4 Kernel Strategy

Traditional GPU kernels divide a variable amount of input work into
fixed-size CTAs and launch a kernel over a CTA count proportional
to the amount of input work. Persistent kernels [14] decouple the
relationship between data size and launched CTAs. A persistent
kernel launches only enough CTAs to fill the GPU. These CTAs
remain resident for the entire kernel and run a loop that maps
naturally to the task-parallelism model in Listing 2.

Advantages of persistent kernels Persistent kernels reduce
kernel launch overhead and CPU/GPU communication. This is
particularly significant when many small kernels are required. The
persistent kernel approach reduces CPU involvement in favor of
programmer-written GPU logic within the persistent kernel.

Disadvantages of persistent kernels GPU workers in the per-
sistent kernel concurrently pop from a shared queue; this requires
atomic operations to ensure exclusive pops. Persistent kernels have
higher register usage than discrete kernels (requiring extra registers
to maintain the queue loop).

Intuitively, if a discrete-kernel application suffers from large
kernel overhead (exhibits the small frontier problem), a persistent
kernel may be preferred. Otherwise, it may be better and simpler
to choose a discrete kernel. Previous task-parallelism frameworks
either use discrete kernels [1, 7, 22] or persistent kernels [4, 8, 23, 25,
26, 29], but none of them provide both and/or expose that decision
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to the programmer. In Section 6.5, we discuss the results of our
experiments with respect to this choice.

4 FRAMEWORK API

Listing 3 Atos framework APIs

template<typename T, typename COUNTER_T>
struct Queues {
__host__ void init (COUNTER_T capacity, int num_queues, int iteration);

template<typename F1, typename F2, typename... Args>
__host__ void launchThread (bool ifPersist, int numBlock,
int numThread, int shareMem_size, F1 f1, F2 f2, Args... arg);

template<typename F1, typename F2, typename... Args>
__host__ void launchWarp (bool ifPersist, int numBlock,
int numThread, int sharedMem_size, F1 f1, F2 f2, Args... arg);

template<int FETCH_SIZE, typename F1, typename F2, typename... Args>
__host__ void launchCTA (bool ifPersist, int numBlock,
int numThread, int shareMem_size, F1 f1, F2 f2, Args... arg);

With the discussion from Section 3 in mind, we introduce the
Atos API shown in Listing 3. launch* API functions are used to
launch workers who repeatedly pop tasks from the work queue;
each worker then applies function f1 to the task popped. When the
worker fails to pop, it runs function 2 (default noop) instead. Under
the persistent-kernel mode, numThread x numBlock cannot exceed
the maximum number of threads that can concurrently reside on
the GPU based on the application’s register and shared memory
usage. By default, these are set to the maximum allowed values,
but can be overridden by users. As discussed in Section 3, when we
execute launchCTA, the choice of numThread will determine the
tradeoff between task and data parallelism. Argument FETCH_SIZE
defines how many data items constitute a task to be popped from
the queue by a worker. Given numThread, the FETCH_SIZE should
be set accordingly. Increasing (decreasing) FETCH_SIZE will reduce
(increase) the number of available tasks for other workers but in-
crease (reduce) local data parallelism.

To illustrate the use of the framework API, we use the example
of speculative BFS with warp granularity:

In Listing 4, we create a BFS class and define and allocate memory
for its relevant variables. The code defines a SIMD function BFSWarp,
in which all threads in a warp participate, collectively iterating over
all neighbors of node and updating their depth values. If the depth
of a neighbor is improved, neighbor is pushed into the queue.
Lastly, we pass BFSWarp() and its arguments onto launchWarp
and invoke it.

5 THREE CASE STUDIES

In this paper we select three classic nested loop problems in the
domain of graph computation for in-depth study. We choose them
because their implementations are well-studied in the BSP model
so we can be confident that our results are meaningful. Also, when
run on particular datasets, their BSP implementations exhibit one
or more of the challenges described in Section 2.1.

5.1 Breadth-First Search

The pseudocodes of BSP BFS and relaxed-barrier BFS (“Speculative
BFS”) are shown in Algorithms 1 and 2. Algorithm 1 shows that BSP
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Listing 4 Atos-based relaxed BFS (worker size: warp)

struct BFS {
int num_nodes;
int num_edges;
CSR *csr;
int *depth;
Queues worklists;

BFS(Csr _csr, int capacity, int num_queues) {
csr = &_csr;
worklists.init(capacity, num_queues);
cudaMalloc(&depth, sizeof(int) * num_nodes);

}

void BFSStartWarp(int numBlock, int numThread) {
worklists.launchWarp(1, numBlock, numThread, @, BFSWarp(), *this);
}
3

template <typename VertexId = int, typename SizeT = int>
class BFSWarp {
public:
__device__ void operator()(VertexId node, BFS bfs) {
VertexId depth = bfs.depth[nodel;
SizeT node_offset = bfs.csr.get_neighbor_list_start(node);
SizeT neighborlen = bfs.csr.get_neighbor_list_length(node);
for (int item = LANE; item < neighborlen; item = item + 32) {
VertexId neighbor = bfs.csr.get_neighbor(node_offset + item);
VertexId old_depth = atomicMin(bfs.depth + neighbor, depth + 1);
if (old_depth > depth + 1) bfs.worklists.push_warp(neighbor);
}

__syncwarp();

BFS is exactly Dijkstra’s algorithm: BSP BFS advances the outer
iteration only when all vertices in the in_frontier are traversed;
thus strict breadth-first ordering is preserved, ensuring every vertex
will first be reached via its optimal path.

In contrast, in Algorithm 2, Speculative BFS relaxes the barrier
constraints of the outer loop of BSP BFS. Speculative BFS has a
single dynamic frontier, and many independent CUDA workers
asynchronously push and pop vertices to the frontier. Consequently,
vertices at different distances can be processed simultaneously. This
raises the possibility of extra work, since out-of-order iteration may
require visiting vertices multiple times in order to find the shortest
path.

Despite this difference, we stress that both algorithms are based
on a similar vertex traversal. Speculative BFS is more precisely seen
as Dijkstra with relaxed barrier constraints, and differs from SSSP
algorithms such as Bellman-Ford.

5.2 PageRank

PageRank computes the importance (rank) of nodes in a graph.
PageRank has a “push” and a “pull” formulation. Both BSP and
relaxed-barrier PageRank (asynchronous PageRank) use push and
their pseudocodes are shown in Algorithm 3 and 4. The algorithm
begins with an initial rank and residue value per node. In Algo-
rithm 3, BSP PageRank is computed by two kernels that are re-
peatedly called in an outer loop until all vertices converge. The
first kernel pushes a fraction of the residue of each vertex on the
frontier to its neighbors. The second kernel aggregates all ver-
tices with residue > € and adds them to the frontier. Having two
separate kernels allows threads to be remapped for more flexible
load balancing.
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Asynchronous PageRank (Algorithm 4) removes the global syn-
chronization and fuses the two kernels from the BSP implemen-
tation together. In asynchronous PageRank, CUDA workers pop
vertices from the queue asynchronously, push their residue to their
neighbors, then exclusively reserve Check_Size number of vertices
and push those vertices onto the queue if their residue > e.

PageRank is an iterative unordered algorithm as it is essentially
a random walk. In theory, the BSP global barrier is not necessary
or beneficial. In our experiments, BSP PageRank does not converge
faster than asynchronous PageRank.

5.3 Graph Coloring

Graph coloring is usually implemented using either an indepen-
dent-set-based approach or a greedy approach. In this paper, both
the BSP and relaxed barrier graph coloring use a speculative greedy
graph coloring algorithm [13] shown in Algorithms 5 and 6. In
Algorithm 5, the BSP implementation uses a double buffer and
consists of two kernels that are called in the outer loop until all
vertices are appropriately colored. The first kernel assigns colors
to vertices from in_frontier while avoiding color conflicts with
their neighbors. The second kernel aggregates each vertex that,
after the first kernel’s color assignment, still has a color conflict
with a neighbor, and adds it to out_frontier. The speculative part
of this algorithm is in the first kernel: it allows a vertex to be colored
using the outdated color information from its neighbors and if the
vertex color assignment fails (and is detected in the second kernel),
that vertex is re-added to the frontier for recoloring.

In contrast, in Algorithm 6, the relaxed barrier version fuses the
two kernels by an uberkernel [15]; we use the sign of the vertex ID
to distinguish between the color assignment task and the conflict
detection task. Specifically, if we pop a vertex with positive ID, we
perform color assignment (lines 8-11 of Algorithm 6, identical to
lines 11-14 of Algorithm 5), and if we pop a vertex with negative ID,
we perform conflict detection (lines 16-18 of Algorithm 6, identical
to lines 21-23 of Algorithm 5). Thus, Algorithm 6 is almost identical
to Algorithm 5. The only difference is that Algorithm 6 does not
enforce a global barrier between the color assignment and conflict
detection kernels.

Algorithm 1 Bulk Synchronous BFS

# Initialization
Graph G
in_frontier = [sourcel]
for vertex in G:
vertex.dist = MAX_UINT32
# Start BFS
while not in_frontier.empty():
out_frontier = []
UDA_KERNEL
for vertex in in_frontier:
for neighbor in vertex.neighbors:
neighber_dist=atomicMin(&neighbor.dist, vertex.dist+1)
if vertex.dist + 1 < neighbor_dist:
out_frontier.append(neighbor)

cudaDeviceSynchronize()
in_frontier = out_frontier

The above three graph algorithms show different approaches to
managing asynchrony that can all be addressed within the Atos
framework: (1) PageRank: a robust asynchronous algorithm; (2) BFS:

[ Y G C I
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Algorithm 2 Speculative BFS

#Same initialization as Algorithm 1
#Start BFS

while not frontier.empty():
vertex = frontier.pop()
for neighbor in vertex.neighbors:
neighber_dist=atomicMin(&neighbor.dist, vertex.dist+1)
if vertex.dist + 1 < neighbor_dist:
frontier.append(neighbor)

Algorithm 3 Bulk Synchronous PageRank

# Initialization
Graph G
rank[G.total_vertices] = {1-lambda}
residue[G.total_vertices] = {0}
for vertex in G.all_vertices():
atomicAdd(residue+vertex, (1-lambda)/lambda*vertex.neighborLen)
frontier.append(vertex)
# Start PageRank
while not frontier.empty():
UDA_KERNEL
for vertex in frontier:
res = atomicExch(residuetvertex,0)
rank[vertex] = rank[vertex]+res
res = res*lambda/vertex.neighborlLen
for neighbor in vertex.neighbors:
atomicAdd(residue+neighbor, res)

cudaDeviceSynchronize()
frontier = []
UDA_KERNEL
for vertex in G.all_vertices():
if residue[vertex] > epsilon:
frontier.append(vertex)

cudaDeviceSynchronize()

Algorithm 4 Asynchronous PageRank

#Same initialization as Algorithm 3
#Start PageRank

while not frontier.empty():
vertex = frontier.pop()
res = atomicExch(residuetvertex,0)
atomicAdd(rank+vertex, res)
res = resxlambda/vertex.neighborlLen
for neighbor in vertex.neighbors:
atomicAdd(residue+neighbor, res)

check_start = atomicAdd(check, Check_Size)
for check_id in check_start+Range[®,Check_Size):
if residue[check_id%G.total_vertices] > epsilon:
frontier.append(check_id%G. total_vertices)

benign speculation at the cost of extra work; (3) Graph Coloring:
explicit correction for misspeculation.

6 EXPERIMENTS AND ANALYSIS

All experiments in this paper are run on a Linux workstation with
2.20 GHz Intel(R) hyper-threaded E5-2698 v4 Xeon(R) CPUs, 128 GB
of main memory, and an NVIDIA V100 GPU with 32 GB on-board
memory. All programs were compiled with NVIDIA’s nvce compiler
(version 11.1.168) with the -O3 flag and gcc 9.3.0 with the -O3 flag.
All results ignore transfer time and are averaged over 20 runs.

6.1 Experimental Overview

We evaluate the design principles discussed in Section 3 using three
implementation variants based on a combination of Atos configu-
rations. (1) “persist-32” utilizes persistent kernels with warp-sized
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Algorithm 5 Bulk Synchronous speculative Graph Coloring

# Initialization
Graph G
in_frontier = G.all_vertices()
for vertex in in_frontier:
vertex.color = -1;
# Start graph coloring
while not in_frontier.empty():
# Assign each vertex a color different from neighbors'
UDA_KERNEL
for vertex in in_frontier:
forbidden[G.max_degree] = {0}
for neighbor in vertex.neighbors:
forbidden[neighbor.color] = 1
vertex.color = find_min_color(forbidden[color] == false)

cudaDeviceSynchronize()
# Collect vertices whose colors collide with neighbors'
out_frontier = []
UDA_KERNEL
for vertex in in_frontier:
for neighbor in vertex.neighbors:
if vertex.color == neighbor.color:
out_frontier.append(vertex)

cudaDeviceSynchronize()
in_frontier = out_frontier

Algorithm 6 Asynchronous speculative Graph Coloring

#Same initialization as Algorithm 5
#Start graph coloring

while not frontier.empty():
# Assign each vertex a color different from neighbors'
vertex = frontier.pop()
if vertex > 0
forbidden[G.max_degree] = {0}
for neighbor in vertex.neighbors:
forbidden[neighbor.color] = 1
vertex.color = find_min_color(forbidden[color] == false)
frontier.append(-1*xvertex)
# push vertices whose colors collide with neighbors'
else if vertex < 0
vertex = -1 * vertex
for neighbor in vertex.neighbors:
if vertex.color == neighbor.color:
frontier.append(vertex)

workers. It has no data-parallel load balancing within a worker,
instead only using implicit task-parallel load balancing. (2) “persist-
worker_size-FETCH_SIZE” utilizes persistent kernels with CTA-
sized workers. (3) “discrete-worker_size-FETCH_SIZE” utilizes dis-
crete kernels and CTA-sized workers. Both CTA variants use load
balancing search [21] (a data-parallel load balancing technique)
inside workers in conjunction with implicit task-parallel load bal-
ancing.

For BFS and PageRank, we compare the performance of our im-
plementations to Gunrock [28], a state-of-the-art single-GPU BSP-
based graph framework, which extensively uses data-parallel load-
balancing techniques. For Graph Coloring, Gunrock’s independent-
set graph coloring algorithm is not comparable, so we faithfully
implemented a BSP graph coloring using the same speculative
greedy graph coloring algorithm. Our BSP implementation uses
Gunrock’s bucket-based data-parallel load balancing method [28],
described in Section 3.3.

We run the three case studies on three scale-free and two mesh-
like datasets (Table 2) and summarize the runtime (speedup) results
for four implementations in Table 1.
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Table 1: Runtime with speedup comparing to BSP in the
paraphrase of BSP and three Atos implementations. Graph
types are s (scale-free) and m (mesh-like). Runtime unit: ms

Application: BES (BSP=Gunrock)

Dataset BSP persist warp  persist CTA  discrete CTA
soc-LiveJournal1® 15.3 22.3 (x0.68) 12.4 (x1.23) 10.7 (x1.42)
hollywood 20095 926  12.2(x0.75)  6.23 (x1.48)  4.56 (x2.02)
indochina_2004 132 156 (x0.84)  8.03 (x1.65)  7.42 (x1.79)
road_usa™ 604 327 (x1.84) 46.9 (x12.8) 174 (x3.46)
roadNet_ca™ 55.9 39.6 (x1.41)  4.35 (x12.8) 15.5 (x3.58)
Application: PageRank (BSP=Gunrock)
Dataset BSP persist warp  persist CTA  discrete CTA
soc-LiveJournall® 262 156 (x1.68) 113 (x2.31) 116 (x2.25)
hollywood_2009°  87.1  80.0 (x1.08) 685 (x1.27)  72.4 (x1.20)
indochina_2004° 159 847 (x1.88)  52.6 (x3.02)  49.6 (x3.20)
road_usa™ 221 169 (x1.30) 121 (x1.81) 112 (x1.95)
roadNet_ca™ 20.5 16.2 (x1.26) 10.1 (x2.03)  8.28 (x2.47)

Application: Graph Coloring

Dataset BSP persist warp  persist CTA  discrete warp
soc-LiveJournal1® 96.5 20.4 (x4.71)  36.1(x2.67)  63.2 (x1.52)
hollywood_2009°  77.9  31.9(x24)  59.3(x1.31) 274 (x0.28)
indochina_20045 673 74.1 (x9.08) 184 (x3.65) 2073 (x0.32)
road_usa™ 38.2 51.4 (x0.74)  19.3 (x1.97)  81.9 (x0.46)
roadNet_ca™ 911  4.18(x2.18)  3.52(x2.58)  12.0 (x0.75)

Table 2: Summary of datasets used in our experiments. Graph
types are s (scale-free) and m (mesh-like)

Max. Max. Avg.
Dataset Vertices ~ Edges  Diam. indeg.  outdeg.  degree
sochivejoumallS 4.8M 68M 20 13,905 20,292 14
hollywood_2009° 1.1M 1M 11 11,467 11,467 105
indochina_2004° 7.4M 191IM 26 256,425 6,984 8
road_usa™ 23.9M 57M 6,809 9 9 2
roadNet_ca™ 1.9M 5M 849 12 12 2

6.2 Performance Challenges in Three Study
Cases

Each of our study cases embodies a subset of the BSP performance
challenges discussed in Section 2.1, which informs our choice of
design decisions in the Atos framework. We summarize the BSP
performance challenges in Table 3.

Load Imbalance Problem: All three algorithms involve iter-
ating over a vertex’s neighbor list; thus variance in the vertices’
degrees leads to load imbalance. This issue is much more severe on
scale-free datasets where vertex degree variance is high. In contrast,
mesh-like graphs have low maximum degree, and hence low degree
variance (see Table 2).

Small Frontier Problem: In Figures 1, 2, and 3, we plot through-
put against timeline for each BSP implementation of the three algo-
rithms. Low throughput over a long duration of time indicates the
presence of the small-frontier problem.

BFS: In Figure 1, Gunrock has high throughput on scale-free
datasets, and thus does not have the small-frontier problem. This is
because scale-free datasets have low diameter (leading to a small
number of BSP iterations) and high average degree (leading to
a large amount of work per iteration). In contrast, Gunrock on
mesh-like datasets does exhibit the small frontier problem, because
these datasets have high diameters and small average degree; con-
sequently, there is a large number of iterations, with little work per
iteration, leading to low throughput over many iterations.
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Table 3: Summary of performance challenges for each case
study.

BFS PageRank Graph Coloring
Scale-Free Load Imbalance ~ Load Imbalance ~ Load Imbalance + Small Frontier
Mesh-Like Small Frontier None None

Table 4: Upper: Workload ratio of three Atos implementa-
tions relative to Gunrock’s implementations for BFS and
PageRank. A workload ratio of n means that our implemen-
tation does n times as much work as Gunrock. Lower: the
workload ratio of four implementations relative to the input
graph’s total vertex count for graph coloring.

Application: BFS ‘ Application: PageRank

Dataset persist persist discrete persist persist discrete
atase warp CTA CTA warp CTA CTA
soc-LiveJournal1® 1.43 1.06 1.01 0.73 0.72 0.72
hollywood_2009° 2.26 1.19 1.07 1.08 1.18 0.9
indochina_2004% 1.28 1.00 1.00 0.76 0.73 0.75
road_usa™ 3.56 1.05 1.04 0.79 0.79 0.92
roadNet_ca™ 2.05 1.02 1.04 118 111 0.97
Application: Graph Coloring
persist persist discrete
Dataset BSP warp CTA warp
soc-LiveJournal1® 1.17 1.00 1.74 2.78
hollywood72009s 3.31 115 5.24 37.34
indochina_2004° 1.96 1.04 4.45 16.97
road_usa™ 1.22 1.00 1.46 141
roadNet_ca™ 2.55 1.00 1.74 2.44

PageRank: In Figure 2, for Gunrock PageRank, both scale-free
and mesh-like datasets do not exhibit the small frontier problem,
as they have high throughput over most of the execution time
and converge in fewer than 35 iterations (though Indochina-2004
exhibits a long flat tail in the latter half of execution).

Graph Coloring: In Figure 3, for BSP graph coloring, scale free
datasets have low throughput for more than 70% of execution time,
and thus have the small frontier problem. Mesh-like datasets termi-
nate in fewer than 40 iterations, and have short tails, and thus do
not have the small frontier problem. This is because on scale-free
datasets, the high-degree vertices will need to be recolored many
times, leading to a large number of iterations, during which the
frontier contains a few high-degree vertices with color conflicts. In
contrast, mesh-like datasets have low average degree, and are less
likely to have color conflicts.

6.3 Relaxing Barriers

As discussed in Sections 2-3, relaxing barriers exposes more con-
currency, giving higher throughput and shorter execution time.
However, relaxing barriers may result in extra work. If the perfor-
mance improvement from increased concurrency outweighs the
cost of extra work, we obtain a net performance gain.

There are two key factors influencing this tradeoff. First, we find
that in the presence of a small frontier problem, the increase in con-
currency from relaxing barriers is always more significant than the
cost of extra work. Second, on naturally unordered algorithms such
as PageRank, one can always relax the barrier: although the barrier
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Figure 1: Normalized throughput vs. time on BFS. The top
charts are scale-free; bottom charts are mesh-like.
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Figure 2: Normalized throughput vs. time on PageRank.

gives the BSP implementation a more predictable convergence rate,
the barrier generally does not make the convergence faster.

Table 4 summarizes the extra work for three study cases. Fig-
ures 1, 2 and 3 plot the throughput of four implementations (BSP +
three Atos variants) of three study cases against timeline for four
datasets. Notably, these plots show the normalized throughput,
which is the measured throughput divided by the overwork factors
in Table 4. This gives a fair measure of overall performance, as it
incorporates both the benefits of improved concurrency (higher
absolute throughput) and the cost of extra work. Essentially, nor-
malized throughput measures “useful” throughput rather than raw
absolute throughput. We provide detailed analysis below for each
application.
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Figure 3: Normalized throughput vs. time on graph coloring.

BFS: Figure 1 shows that for the two mesh-like datasets, all 3 Atos
implementations achieve considerably higher normalized through-
put than Gunrock. Why? Table 3 shows that Gunrock on mesh-like
datasets has a severe small frontier problem. Therefore, the increase
in concurrency in the 3 Atos implementations offers a significant
performance advantage. Table 4 indicates that the persistent-warp
implementation generates 3.5x extra work vs. Gunrock, but despite
this extra work, Atos’s normalized throughput is still significantly
higher than Gunrock. Scale-free graphs, on the other hand, exhibit
more parallelism and do not suffer from the small-frontier problem.
Atos’s fastest implementations are still faster than Gunrock’s, but
not nearly as much as for the mesh networks.

On all BFS experiments, Atos’s CTA implementations are faster
than its warp ones. Atos’s CTA implementations use a combination
of task-parallel and data-parallel load balancing techniques (see
Section 6.4 for details), and thus have better load balancing than its
warp implementations, which only use task-parallel load balancing.
This leads to higher GPU utilization and hence higher absolute
throughput. Second, CTA implementations produce less extra work
than warp (see Table 4). Due to better load balancing in CTA, the
workload of each worker has lower variance. If a worker receives too
much work, there will be a long delay before the vertices’ updated
depths are visible to other workers; this increases the likelihood
that downstream vertices are first reached via other sub-optimal
paths, which leads to extra work.

PageRank: Unlike BFS, PageRank is naturally unordered, as
it satisfies Dijkstra’s don’t care non-determinism [11]. Therefore,
relaxing the barrier in the outer loop does not generate any misspec-
ulations and hence results in no wasted work. In fact, Table 4 shows
that the Atos implementations perform less work than Gunrock in
general. This is because the BSP barrier forces each vertex to be
processed at most once per iteration. By relaxing this barrier, the
Atos implementations can update certain important vertices (e.g.,
vertices with high centrality) more frequently than other vertices,
thus leading to more efficient propagation of rank.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Figure 2 shows that all three Atos implementations compact the
workload and process it with higher normalized throughput (persist-
CTA has a higher profiling cost). Though PageRank does not suffer
from the small frontier problem, the three Atos implementations
nonetheless have superior performance over Gunrock, because
relaxing the barrier increases concurrency. In addition, relaxing the
barrier lowered the overall workload in practice, even though in
theory it may lead to a more unpredictable convergence rate.

Graph Coloring: Unlike BFS and PageRank, all graph color-
ing implementations (including BSP) use a speculative approach
(greedy graph coloring) and thus all have extra work. Table 4 sum-
marizes the multiplicative factor of extra work, which is defined as
a ratio vs. the number of vertices in the graph (the lowest possible
workload). Atos’s persist warp has the least extra work; on some
datasets, the extra work is less than 1%, which means after the first
color assignment, only 1% of vertices have a color conflict and must
be recolored. Atos’s discrete warp has the most extra work (on
hollywood-2009, 37.34x). The extra work is due to the combination
of two factors:

1. Conflicts tend to arise when neighboring vertices are colored
concurrently: From Section 5.3, given a vertex, the algorithm first
checks its neighbors’ colors, then assigns a color to the vertex that
does not conflict with its neighbors. The color assignment is specu-
lative because it is done using possibly outdated color information
from the vertex’s neighbors. When neighboring vertices are colored
simultaneously, they read outdated colors from each other, leading
to conflicts and recoloring.

2. Consecutive vertices on the work queue are likely to be neighbors:
On many if not most graphs, the vertex ID is semantically meaning-
ful: vertices whose vertex ID are numerically close are more likely
to be neighbors. At the beginning of graph coloring, all vertices are
initially inserted onto the work queue in order of vertex ID.

Since consecutive vertices on the work queue tend to be assigned
colors concurrently, the above implies a high likelihood of color
conflicts. We verify that the large amount of extra work is indeed
due to semantically meaningful vertex IDs: running the exact same
experiment with randomly permuted vertex IDs, the amount of
extra work drops to less than 1.5x for all four implementations on
all datasets. ID permutation leads to the following runtime improve-
ments (in ms) on scale-free datasets:

Impl. soc-LiveJournall  hollywood  indochina
discrete-warp 63 — 31 274 —> 26 2073 — 222
persist-CTA 36 — 21 59 — 28 184 — 50
BSP 96 — 89 77 — 61 673 — 485

The BSP implementation has a more modest improvement because
BSP’s thread-warp-CTA load balancing scheme [21] already divides
each bucket into three individually-load-balanced subbuckets, re-
ducing inter-bucket conflicts. Persist-warp has little change as there
is almost no extra work even before permutation. Notably, after
permutation, all three Atos variants are faster than BSP implemen-
tation on scale-free datasets.

Comparing persist-warp and persist-CTA: persist-CTA has
better load balancing, allowing for more (potentially adjacent) ver-
tices to be colored simultaneously, resulting in more extra work
than persist-warp. We verify this from Table 4. Roughly speaking,
the amount of extra work for persist-CTA is more significant on
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scale-free graphs, as a vertex can have a large number of neigl
bors, leading to more potential conflicts. Therefore, persist-CT.
outperforms persist-warp on mesh-like graphs, where the increase
concurrency and better load-balancing outweigh the cost of waste
work; conversely, on scale-free datasets, persist-CTA is slower tha
persist-warp, because the cost of extra work is too high (see Tables
and 4).

Comparing persist-warp and discrete-warp: Discrete-war
has more extra work than persist-warp, hurting its performanc
for two reasons.

(1) The scheduling policies of discrete and persistent kernel
are different. When kernels are launched from the CPU (discret:
kernel strategy), the kernel launched earlier always has a highe
scheduling (hardware) priority than the kernel launched later. This
effectively causes vertices to always be colored in roughly the same
order as their initial ordering (by vertex ID, which causes many
conflicts). In contrast, the persistent kernel only incurs one kernel
launch and warps within it are scheduled by the hardware scheduler,
whose decisions are much less ordered by vertex ID. Thus persist-
warp has fewer coloring conflicts caused by adjacencies and hence
less overwork.

(2) Discrete-warp has lower register usage than persistent-warp
(72 vs. 42), so persist-warp only achieves 43% occupancy per SM and
discrete-warp achieves 62%. Therefore the discrete-wrap assigns
colors to more vertices simultaneously, leading to a greater likeli-
hood of conflicts than persist-warp. Unlike our other applications,
in graph coloring, the cost of extra work largely reduces the benefit
of increased concurrency. On scale-free datasets (without random
permutation), our highest performance is achieved with lower con-
currency and less overwork (persist-warp variant), which achieves
a lower absolute throughput but a higher normalized throughput
(and hence higher performance overall).

6.4 Worker Size and Trade-off between Task-
and Data-Parallelism Load Balancing

As discussed in Section 3, Atos enables the user to trade off between
task-parallelism and data-parallelism load balancing by adjusting
the worker size and FETCH_SIZE. Atos’s persist-CTA, like persist-
warp, uses a persistent kernel to exploit task parallelism, but now
the task-parallel work units are fewer and larger (the size of a
CTA) and we can leverage more data parallelism within a CTA.
In most cases, persist-CTA outperforms persist-warp with both
higher normalized/absolute throughput, except for the graph color-
ing on scale-free datasets, where it achieves only higher absolute
throughput. Figure 4 illustrates this tradeoff for BFS and PageRank
on soc-LiveJournal (scale-free) and road_usa (mesh-like). We ex-
clude graph coloring because it can only be run with one CTA
size, due to high register usage (72) and high shared memory usage
(46 KB).

6.5 Kernel Strategy

From Section 3, the chief advantage of the persistent kernel is re-
moving the overhead associated with kernel invocation, which is
most significant for fine-grained tasks that involve many small
kernel launches. Based on the performance results in Table 1 and
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Figure 4: Runtime (ms) heatmap plotted with different
worker size and fetch size for BFS and PageRank on soc-
LiveJournal® and road_usa™. Note only the lower triangle is
valid.

Figure 1, the performance gap between persistent kernel and dis-
crete kernel is particularly large for BFS on mesh-like graphs, which
require many small kernel launches due to the high diameter and
small workload per iteration. Graph coloring on indochina-2004
also shows a large kernel launch overhead. Using a random permu-
tation of vertex IDs (see Section 6.3), Atos’s persistent variant is
4.3x faster than its discrete variant.

7 CONCLUSION

In this paper, we present our task-parallel GPU dynamic scheduling
framework, Atos, and analyze its performance across numerous
design parameters on three case studies. Our analysis provides the
following guidelines on what applications are suitable to run in a ca-
pable task-parallel framework, as well as what Atos configurations
to use, given an application’s characteristics:

(1) If the dynamic application either exhibits the small frontier
problem or has load imbalance, Atos will have a performance
advantage.

(2) If the application exhibits the small frontier problem, it
should be run with a persistent kernel.

(3) If the application exhibits load imbalance, it should be run

with both task- and data-parallelism load balancing in tan-

dem to achieve better performance. For different applications,
the optimal tradeoff point varies.

By relaxing the outer loop dependency in the application,

Atos increases concurrency at the cost of extra work due to

mis-speculation, or less predictable convergence rates. The

optimal tradeoff between the increased concurrency and
additional cost is application-dependent. When an applica-
tion is naturally unordered (e.g., PageRank) or has the small
frontier problem (e.g., BFS on mesh-like datasets and graph
coloring on scale-free datasets), the increased concurrency
usually outweighs the cost. Conversely, on problems such
as BFS on scale-free graphs or graph coloring on mesh-like
graphs, the cost of extra work can hurt performance. The
best way to reduce extra work is application-dependent and

—~
N
=
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may include better load balancing (e.g., BFS) or reducing
concurrency (e.g., graph coloring).
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