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Fueling limits in a cylindrical viscosity-limited reactor
T, Rubin,a) E, J, Kolmes, I, E, Ochs, M, E, Mlodik, and N, J, Fisch
Department of Astrophysical Sciences, Princeton University, Princeton, W // Jersey 08540,

(Dated: 31 July 2022)

Recently, a method to achieve a “natural hot-ion mode” was suggested, by utilizing ion viscous heating in 
a rotating plasma with a fixed boundary. We explore the steady-state solution to the Braginskii equations 
and find the parameter regime in which a significant temperature difference between ions and electrons can 
be sustained in a driven steady state. The threshold for this effect occurs at pt > 0.1 R. An analytic, leading 
order low flow solution is obtained, and a numerical, moderate Mach number M < 2 is investigated. The 
limitation is found to be at moderate Mach numbers.

I. INTRODUCTION

Magnetic plasma confinement assisted by rotation 
has been explored in several configurations, such as 
mirrors1-3 and toroidal devices4-5. Rotating mirrors in 
particular are receiving renewed interest, leading to new 
experimental devices in the near future6-8. Plasma mass 
filters9-17 are another rotating plasma application in 
which density gradients are of particular importance, and 
are similar to rotating mirrors in many respects.

Sufficiently long mirrors may be analyzed using classi­
cal transport theory. Radial cross field ion currents18-19 
in such devices appear to be an attractive fueling method, 
as they can induce rotation in the plasma due to their 
interaction with the magnetic field. The hydrodynamic 
variables - densities, momenta and pressures - in such 
configurations can be asymptotically solved for" or nu­
merically integrated21 using a variety of tools.

Nuclear fusion in magnetic devices is realized by con­
finement. of hot ions for sufficient time22. In these de­
vices, the plasma confinement is often limited by the total 
plasma pressure, which sums the electron and ion pres­
sures. As such, a hot-ion mode is preferable, as it can 
produce more fusion power for the same magnetic field 
strength23, in addition to a decrease in energy radiation 
losses through electrons.

Plasma heating can be accomplished using a variety of 
methods. One proposed method is to use viscous heating 
due to sheared rotation. Kolmes et al. 24 showed how 
heat dissipation channels in an axisymmetric cylindrical 
plasma could preferentially heat the ion population. Such 
a configuration may be realized by a radial flow of fuel 
ions into the hot center of the cylinder, and the removal 
of ash ions by a fast process other than classical transport 
- such as Q-channeling25-26. The heating is the result of 
the viscous dissipation of the ion fluid, i.e., the rate of 
work done by the viscous stress times strain-rate. The 
electron fluid viscous stress, and the resultant heating 
rate, is smaller by a factor of (me/mj)3''2.

11 Electronic mail: trubinceprinceton.edu

Kolmes et al.24 predicted that the ion temperature 
could be higher than the electron temperature, and sug­
gested that the temperature difference could be large in 
cases with sufficiently large radial influxes of fuel ions 
and high radial electric fields. However, that paper left, 
open the question of what, kinds of radial influxes and 
fields could be self-consist.ent.ly supported, and of pre­
cisely what, are the density, velocity, and pressure profiles 
in this case. The present, paper addresses that, question. 
One of the key results that, follows from this calculation 
is that, there are nontrivial limitations on these hot-ion- 
mode solutions.

In this paper, we explore a particular solution to the 
proposed concept. We consider a one-dimensional Bra­
ginskii fluid model27 to explore the nonlinear effects due 
to the density and temperature dependence of the vis­
cosity and heat, conductivities for a uniform volumetric 
charge extraction, i.e. a radial ion current. We compare 
analytic solutions using constant, coefficients to the full 
numerical non-linear solution.

Because the Braginskii fluid model is the most, usual 
model, it. serves well our purposes here. We do note that, 
several authors published corrections to the transport. 
coefficients28-32. In addition, a magnetic mirror machine 
would have a distribution function that, contains voids 
where particles are not. confined. In the magnetic mirror- 
case, it. is not. clear that. Braginskii, or other closures that, 
expand the distribution function in a polynomial basis, 
produce the precise transport, coefficients. However, the 
effects discussed in this work do not. rely on the specific 
transport, coefficients.

The limitation on the viscous heating arises because 
the radial ion current, into the center of the cylinder leads 
to a large rotation of the plasma, and the centrifugal 
force caused by this rotation empties out. the density at. 
the core. The quadratic dependence of the viscosity on 
the density means that, large angular velocity gradients 
are required to produce the viscous shear needed to bal­
ance the torque produced by the radial current, and the 
magnetic field - leading to progressively larger rotation. 
This effect, limits the amount, of charge extraction pos­
sible in this configuration. The viscous heating itself, 
which increases the plasma temperature, further reduces 
the viscosity coefficient. Of course, diverging angular ve­
locities are not. physical, and are the result, of an attempt.
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to balance a finite torque when the viscosity coefficient 
approaches 0. In a physical system, the torque would be 
limited.

As a result, the proposed “natural hot-ion mode” is 
limited. Beyond a certain radial ion flux, the nonlinear­
ities in the viscosity coefficient would cut off the shear- 
stress in the plasma. This limitation in shear limits the 
viscous heating; the limit depends on the magnetization 
of the plasma. We calculate a magnetization threshold 
above which the viscous heating is small compared to the 
rate of temperature equilibration between species.

This paper is organized as follows: In Sec. II we 
present the nondimensionalized two-fluid equations. In 
Sec. Ill we present the low-flux approximate solution, 
assuming constant coefficients. In Sec. IV we discuss 
the deviation of the full nonlinear (variable coefficients) 
solution from the linear approximation.

II. MODEL

Consider an axisymmetric, infinitely long plasma cylin­
der, in equilibrium, such that Jj = ^ = 4^ = 0, with 
a constant axial magnetic field. The plasma species to 
be considered, for simplicity, are fuel ions and electrons. 
This setting might be realizable in a steady-state rotat­
ing mirror machine, which is fueled radially rather than 
axially, and in which fusion ash is removed quickly radi­
ally using Q-channeling, before it can interact with the 
fuel ions or the electrons. It is assumed the Q-channeling 
does not affect electrons.

In steady state, fuel ions fuse, the ash is removed, and 
more fuel is supplied continuously from the outer edge, 
while the electrons have no average radial velocity. The 
ion sink term produces in steady state an inward-flowing 
ion current. The r (j B) torque due to this current 
induces rotation in the plasma. The plasma rotation, in 
addition to the other radial forces acting on it, determines 
the steady-state density profile.

The radial expulsion of the fusion ash produces the op­
posite r (j B ) torque on the ash ions. However, the fu­
sion ash is kept at such a low density, using Q-channeling, 
that its collisional interactions with other plasma con­
stituents can be ordered out of the momentum and en­
ergy equations. A density ration of n„/nj - pi is suffi­
cient, with the small parameter pt being the normalized 
ion Larmor radius, also defined later.

In this work, we consider only classical transport effects 
in order to determine the temperatures. In many real-life 
plasmas, other effects contribute to the energy balance 
- examples include radiative cooling, and RF heating. 
These, and energy exchange with fusion ash may even 
be the dominant mechanisms, over and above classical 
transport effects. However, one purpose of this paper 
is to determine the merit of the proposed natural ion 
mode, which cannot be separated from the other effects 
considered here

For each fluid, the continuity, radial momentum, an­
gular momentum, and pressure equations are,

0nt
Ot

1 0
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r Or

(1)
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Quantities with a subscript s represent a species- 
dependent quantity, with the index s representing ions, 
s = i, or electrons, s = e.

Number density, velocity, pressure, and temperature 
are denoted by n, v, p and T respectively, with pa = naTa. 
The quantity sB is a particle source or sink for species s. 
Time and radius (spatial coordinate) are denoted by f 
and r. Particle mass and charge number are denoted 
by m and Z, while the elementary charge is denoted by 
e. The (radial) electric field and (axial) magnetic field 
are denoted by E and B. The constant magnetic field 
assumption can be construed to stem from a low plasma 
/3 = ZiplQ with fio being the permeability of vacuum. The 
value used for the numerical simulations of the nonlinear 
equations is /3 = 0.002.

If the particle source is negative, as a sink term, the 
source temperature Tarc = Ta and velocity v‘rc = v„. 
If the source term is positive, T‘rc and v‘rc need to be 
specified.

The friction body force Rss/ and the thermal friction 
(“Nernst”) body force fss/ between species s and s' are 
expressed as

Rgg' = manavaa/(\ai - vs), (5)
c 3manavaaij ZaimaiTaVTa - ZamaTaiVTai 

= 2 ZaZa,eBb maTa, + ma,Ta ’

(6)
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The choice of the boundary conditions (26) and (27) 
drops the boundary term in (33), which is the work done 
by the boundary on the plasma. Boundary conditions 
(28) and (29) are a choice of normalization, where the 
equality of the ion and electron temperatures might re­
quire further justification (see appendix). The boundary 
conditions (30), (31), and (32) are the result of the cylin­
drical geometry.

B. Nondimensionalization

equation for a single fluid species is,

mg—or
c&Dg
df

f/gsTg / dln(f\,) 2 dln(ftg
df df

(46)

Nondimensionalizing the equations of motion allows us 
to factor out small parameters for use in an asymptotic 
expansion. Denoting A' = An A, with An being a refer­
ence quantity:

mo = 7%p, (34)

41 (35)

m
"

■ (36)
F0 = RncjVo, (37)

. y/2e4logA no
127rV2% (38)

,,0° = — (39)

. nnTnVn 2
T/10 = n2 = <= ^00' (40)

%0 = 7;— = fc'^oo, iZpo
(41)

Agg/o == monoz/Q^o, (42)
. mvnTn

Aa'O— ^ n — monoZ/Q^O/)*,
\lp0h.

(43)

. nnTnVn e2
%a0 = = f/00, (44)

= Q\ipo
(45)

In this paper, reference quantities are chosen as their 
value at the outer radius.

This fluid closure features two small parameters, the 
normalized ion Larmor radius, pt = vn/£lpnR, and the 
ratio of collision frequency to Larmor frequency t = 
vn/CLpu which is the inverse Hall parameter e = l/CH. 
We use the reference quantities to define the values of 
these constants, i.e., we use them as constants rather 
than as functions of radius. When dealing with electron- 
ion plasma, a third small parameter is present, the square 
root of the electron-to-proton mass ratio, \/mAn 
asymptotic expansion for a parameters A, in powers 
of the small parameters pt and e would be denoted by

The steady-state dimensionless angular momentum

The steady-state dimensionless radial force-balance equa­
tion for a single fluid species is,

dp,
df

= —Z.n, fE,. + fw.a ) + — 2?,

, . . f, , . . __2 j+ mBsB-rz- + m,n,rw, + t-tt rns r dr

£* _d_ / fjBo d 
e dr \ 3f dr

(47)

The steady-state dimensionless temperature equation for 
a single fluid species is,

1 d . 
rdf'

_ df, 1 _ _
Ks —7~Z---- 1-------- K- T \ U)sf — L0S )

dr p. 2 r dr

dpB f,
dr ptern,

-m-
3 g,f,
2

E - m,' p*-(v«-

1 j Tg" 2 d / fs y

f ftg
+i)if2 dr \ f2ns ) + [ df \

(48)

III. CONSTANT COEFFICIENTS SOLUTION

In this section, the leading order solution for the an­
gular velocities, density and temperatures are derived, 
assuming pi, n and vie are constants, and do not depend 
on the variation in density or temperature within the do­
main. This is an approximation that holds well for slow 
rotation (t> < 1), when the density and temperature are 
indeed nearly uniform.
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A. Electron angular velocity

For Fg = 0 the electron angular velocity equation (46) 
reads,

-W() +

(49)

The electron angular velocity can be solved asymptoti­
cally, to leading and first order in p,_,

3 p. dTe I
2Fb^7

' (50)

where h is the modified Bessel function of the first kind. 
This solution sets the azimuthal component of the total 
friction force RieS + fieg = 0, except for a boundary layer 
at f 1.

The electron viscosity coefficient is smaller by a fac­
tor of ifpj2 relative to the ion viscosity coefficient, and 
the contribution of the viscosity is of C(pj,me) relative to 
the ion angular velocity The ion angular velocity equa­
tion can be exactly solved if the sink term /Th /c.T . is 
dropped. This term would turn out to be of 0{p2te) later. 
The exact solution to w« (as a function of uje) without the 
sink term, with boundary conditions w,(l) = 0 is

df e -sc

z, j;' f.afw Vle^e
f/U

d In (hj) 
+ dr (51)

Notice that each term in (51) is proportional to

1
hi.

Vfi
'

(52)

If hi were to continuously decrease from 1 to near 0 when 
moving from f inwards or if the ion temperature 
should diverge, w« would diverge. This is due to the de­
crease in viscosity while the magnetic field torque remains 
the same.

The leading order solution for w«, taking \hf2,
which is the solution to the continuity equation with a 
uniform steady source term s, = const., and B = const., 
in addition to f]u = const, is,

-(0,0) . ZjBsj -(b=-i) fdf

It is useful to define the variables Ft = , which
is the mass flux over viscosity, and S% = ZpS. which is 
the dimensionless gyro-frequency. The solution is expo­
nentially dependent on the strength of the source term
Si-

The azimuthal velocity in this case is

= (54)

The angular velocity becomes 0(1) if Ft -- 0(pt). An 
azimuthal Mach 1 (% = 1) is obtained when Ft 
-GySpt/fij, corresponding to a source term ~ C(pj,e). 
The next corrections are of Oiih'J2) due to the electron 
viscosity and O(pl) due to the i;3i rotation term.

B. Temperatures

The ion temperature equation, when substituting = 
p^ef(2-1), and remembering ~ 1

= 3“W,.(t-f,)+%,(f^
\ ar

^4^
- P-tFT 7

4 i)o= I 1 d r!(24)

3 \ f df n.
.dir:

% I , f2v
0(2.1)

(55)

and the electron equation,

Id / dT«
rdf 1 df : 3“I'll', ! f> — Pi)

- die r
dile
df

(56)

with

4.66-
M.P

h [J7\
(57)

being the effective heat transfer coefficient for the elec­
trons, due to the contribution of the term. The 
plasma heat transfer coefficient, for Zi = 1, m, = 1, 
is ktot = hi + ketII :w 1.16/q, outside of the boundary 
layer.

This is a linear ODE for Tq with a single term - the col- 
lisional equilibration between ions and electrons -- p~2.
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Thus, in the low-flow case, Ft ~ 0(p„), Pi ~ O(ple), 
the temperature difference between the ion and electron 
fluids is of ~ C/(^//mI).

To leading order, with constant coefficients, the sum 
of the two equations is,

l_d_
f dr

| fktot df,im \
= fju (58)

yielding

than the square root of the 0(0.001), which is the com­
bined value of the reminder of (61), when substituting w« 
as a function of ss. In case of Braginskii coefficients for 
Zi = m( = 1, this source term is s< s» -20/^e. It is per­
haps easier to increase p„ rather than s,, as the maximal

temperature difference increases as p3 ) at large
p„ see Figure 3. In the figure, the temperature difference 
is -- 0.01 because the source term magnitude kept rela­
tively small for numerical reasons. This Larmor radius 
is becoming somewhat large for a small parameter, re­
quired for the fluid approximation. Some magnetic traps 
operate with this Larmor radius / machine size scale.

+ - 3) - e^(2f, - 3)) j + fi(l) (59)
C. Density

with rju/ki = 0.15m, and i/u/ktot 0.13?h,. These ra­
tios are related to the Prandtl number as i;/k = |?hPr. 
The function Ei(x) = |-dt is the exponential in­
tegral. For small values of Fit such as Ft -pt, the 
boundary term Tfl'l) = 1 is the dominant term in the 
leading-order temperature solution.

The temperature difference between electrons and ions 
ATei =Te — Ti, is determined, to leading order, by

_lT(>AZk)„_W!i(A- + l)AT„
rdrl, dr / X

+ | ()hePre - jhiPry) ( f ^ j . (60)

The leading order solution to this equation is

with In being the modified Bessel function of the first 
kind.

Since mePre < in,Pry, the solution is negative, indeed 
yielding a hot-ion mode, but it also contains a pre-factor 
of pl/s/m/. In order to achieve a temperature difference 
of 0(1), we identify a course of action, that does not suf­
fer from the fueling limit discussed later. In any case, one 
has to push u> to be as large as possible. However, the 
pH\/™/ pre-factor has to be dealt with as well: Use low 
magnetization, such that p,. > /m/ 0.1. This would
bring the pre-factor to be 0(1). In this case, can 
remain small such that the angular velocity is still linear- 
in a,. The source term magnitude must then be larger

The density profile is determined from the radial force 
balance. Summing electrons and ions, taking ne = Zjh,, 
and neglecting electron viscosity, the radial force balance 
of the plasma as a whole is

dpi
dr df

3
~ 2^ df + hif (in w2 +

)h,fi( l + din (hi) dln(^))
r2n

it
df dr j

+p> d / 1/0=0 dln(fi) dln(hi)
df \ 3fh, df df

+e

, d .
'dP

1/1=0

da/.i/3:
dln(F,

dr
dln(hy

dr
(62)

This is a second-order nonlinear ODE in h,, and solv­
ing the leading-order terms in it would both remove the 
non-linearity, and reduce it to a first-order differential 
equation. To leading order,

din (hi) 1 - \Zi dln(Tj) _ r (muif + Zimed>3)
dr + 1 + Zi dr T/l + Z/

(63)

or for Zi = 1,

-(0,0) (64)

This density profile is hollow - matter is pushed to outer 
radii from the center.
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n / n(l)

M=0.24
M=0.49
M=0.74
M=1.00

M=0.24
M=0.50
M=0.81
M=1.30

T/T(l)

ODE set
= 0.01— p* =

0.0 0.2 0.4 0.6 0.8 1.0
r/fi

FIG. 1. Comparison between solutions to the constant-coefficient leading order Braginskii equations in steady state (full line), 
and MITNS nonlinear results (dashed line with markers). The source term used for the ODE set and MITNS were the same. 
The nonlinear solution starts diverging from the leading order linear solution at Mach number of M % 0.5. At a Mach number 
of M % 1 in the linear solution, the difference between the linear and nonlinear solutions is quite significant.

D. Validity of the constant coefficients solution

The viscosity profile, to leading order, is

A
; (65)

Some solutions to the constant coefficient equations are 
presented in Figure 1. Notice how 7/u cc /q drops rapidly 
as the source term is increased. The disagreements be­
tween the linear and nonlinear solutions are visible at 
Mach number of M 0.5, and become increasingly se­
vere.

IV. VARIABLE COEFFICIENTS SOLUTION

Braginskii’s fluid model is inherently nonlinear, with 
collision frequencies that depend on the densities and 
temperatures. The diffusion coefficients (viscosities and 
heat transfer coefficients), present additional nonlinear­
ity. From the linear, constant coefficients solution, it is 
evident that the viscosity and heat transfer coefficients 
drop as the magnitude of the particle flux increases. The 
shorthand U would become larger at smaller radii, and 
the angular velocity increase beyond its constant coeffi­
cients solution values.

There are two ways in which a particle flux would fail 
to produce a physical solution:

1. The solution breaks the ordering p, <;c R.

2. The solution produces a negative pressure, or is 
unable to satisfy both boundary conditions.

For the first, case, even a constant coefficient solution 
with Fi 0(pt) would produce rotations that are w --
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C('Pt1'), and temperature that is 0(p~2). The Larmor 
radius pt cc \J%, and increasing the temperature above 
its reference value by a factor of p~2 puts us firmly in 
the kinetic regime, where the fluid model is inapplicable. 
Using a variable-coefficients solution would bring that 
threshold to smaller values of particle flux.

The second case is a feature of non-linear DDEs, where 
there is no guarantee for the existence of a boundary- 
value-problem solution in all cases. We can attempt solv­
ing initial value problems, and using a shooting method 
to pinpoint the correct values and derivatives at one 
boundary to hit the correct values at the other, or trans­
form the DDEs into PDEs, and attempt to relax the 
solution to a steady state at finite times.

Even at Mach numbers in which a solution for the non­
linear case exists, the solution might develop an angular- 
velocity boundary layer at f = 0 which might be non­
physical. This boundary layer enforces the axisymmetry 
condition cu-(O) = 0, which appears in (30). The bound­
ary layer width, shrinks rapidly around M = 2, while 
the temperature rises, as can be seen in Figure 2. When 
the boundary layer width becomes smaller than an ion 
Larmor radius, the solution becomes nonphysical. See 
appendix. Steady state solutions for M > 2 don’t exist 
in the full nonlinear case, as the viscosity drops quite sig­
nificantly, and it could not balance the torque produced 
by the magnetic field.

Figure 2 presents the values of the density, tempera­
ture, and angular velocity at the center of the cylinder, 
and the Mach number as a function of the particle sink 
magnitude.

Figure 3 shows the temperature difference between 
ions and electrons at the center of the cylinder, and the 
maximal value of the temperature difference between the 
species, as a function of p„. The sink term was chosen 
such that Fijp, would remain constant at the boundary, 
and the azimuthal Mach number would approximately 
be constant at M 0.93, with small variation due to 
the nonlinear nature of the system. This logarithmic 
plot shows a near-perfect power law, with the two curves 
crossing at pt = 0.11, when the center of the cylinder 
becomes the point of maximal temperature difference be­
tween species. The maximal temperature difference de­
pends very nearly on p2, even in the nonlinear case.

V. CONCLUSION

A solution to the flow and temperature profiles in 
a highly magnetized rotating cylindrical two-fluid (ion- 
electron) plasma, driven by constant ion charge extrac­
tion following Braginskii’s fluid was investigated. First, a 
leading-order solution in the low-flow limit was presented. 
Second, the physical validity of the asymptotic solution 
was considered, and the existence of a hot-ion mode was 
evaluated. It was shown that the collisional temperature 
coupling between the fluids is stronger than the differ­
ence in viscous heating between the fluids by a factor of

Particle sink size effects

IS,| le-5

|s,| te-5

FIG. 2. Values of angular velocity at the center of the cylin­
der and Mach number (maximal azimuthal velocity) (top), 
and values of density and temperature at the center of the 
cylinder, as a function of A (bottom). These nonlinear cal­
culations were performed using MITNS, with p, = 0.01 and 
e = 0.1.

VmJ/p2, and this limits the temperature difference to be 
of

The ratio of ion to electron heating is the same as 
the ratio of viscosity coefficients m'J2. Picking a p„ 
\/ml - 0.1 would bring the temperature difference to 
0(0.1 — 1), depending on the exact sink term magnitude. 
This would be a large p„ but not impossibly so - some 
magnetic traps or FRCs34 operate in this regime. Finally, 
the departure of the non-linear solution from the linear- 
approximation at moderate Mach numbers (M > 0.5) 
was demonstrated and is explained by the hollowing-out 
of the viscosity and heat conductivity profiles.

We have shown the inherent difficulties in achieving a 
significant hot-ion mode, even in the absence of electron 
heating, due to the limitation on ion heating. We have 
shown that low magnetization devices present an easier 
avenue for a hot-ion mode. Paradoxically, this is a point
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FIG. 3. Temperature difference between ions and electrons 
at the center of the cylinder, and the maximal temperature 
difference as a function of p, (top), and the power-law depen­
dence of the same curves (bottom). Results from the nonlin­
ear solution in MITNS. The ion sink term was .7 = —5pje, 
such that /, p . with e = 0.1.

in favor of devices that contain fewer ion Larmor radii - 
which can be accomplished using a smaller magnetic field 
or a smaller device size - in view of the large advantage 
a hot-ion mode might present for a fusion plasma.

There are other possible ion sink profiles, s,(f), and 
the details of such solutions may differ from the solution 
presented here. The main effect discussed here, however, 
the hollowing out of the density and the viscosity pro­
files, is weakly dependant on the specific s,(f) profile, 
and requires only the functional dependence % cc n2.
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Appendix A: Boundary layers

The above solution includes several boundary layers, 
in the electron angular velocity, effective heat transfer 
coefficient,, and the temperature difference between elec­
trons and ions. The arguments of the boundary layers 
are expressed in terms of the electron viscosity and heat, 
transfer coefficients. Using Braginskii’s classical trans­
port, coefficients, the argument, of the electron angular- 
velocity boundary layer term is

f_ jmenevei _ f B _ _ 1 4_>_

P* V T' P* V0.51 Teme vthe Pe

(Al)

Here, pe is the electron Larmor radius. This boundary 
layer is thinner than a Larmor orbit. As such, the classi­
cal transport, model breaks down at, these length scales, 
hence, we must, abandon this boundary layer solution and 
the boundary condition that, produced it, and resort, to a 
full slip condition for the electron fluid at, the outer edge 
of the cylinder. This same boundary layer appears in the 
effective electron heat, conduction, and must, be discarded 
there as well.

As such, in the limit, of Braginskii’s classical transport, 
equations (27), (50), and (57) should simply read

(V- e(l) = 0,
3 p. dTe 

:Ui ~ T2jB~df'

= 6.91

(A2)

(A3)

(AT)

However, some non-classical transport, effects35, such as 
turbulent, anomalous transport, or the effects of perturba­
tions to the magnetic field36, might, enhance the electron 
viscosity above Braginskii’s values, while still maintain­
ing the validity of the fluid approximation. In these cases, 
if the effective electron viscosity might, be large enough
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such that the boundary layer thickness might encompass 
several Larmor orbits, the boundary layer solution in the 
electron angular velocity might be a true physical effect.

The argument of the temperaturivdifference boundary 
layer, using Braginskii’s classical transport coefficients, is

— sJsfHVie (Up, +ki1) = -—=. (AS)
P* P* V

This boundary layer does encompass many electron gyro- 
orbits, and is plausible because of it. Physically, it must 
be enforced by some effect on the boundary. We are not 
concerned with modeling the plasma-surface interactions 
that might lead to this electron temperature boundary 
layer, and conclude that the fluid approximation is valid 
for a boundary layer, with, possibly a different boundary 
value for the electrons other than the ions.

Note that the magnitude of A7^, for the constant co- 
efflcient solution, is controlled by the scaling of the flux 
(&h or equivalently #), which directly affects wj, and is 
not dependent on the exact form of the viscosity or heat 
transfer coefficients. Trying to maximize — 7^ in equa­
tion (61), by changing Kg.,/ only, or in conjunction with 
?%g, using an anomalous electron transport, for example, 
would yield limited results.

In a fusion reactor, when a-channeling is missing or 
is insufficiently effective at removing the fusion ash, 
the ash would slow down on the electrons and intro­
duce significant electron heating. Indeed this mecha- 
nism typically causes a hot electron mode. Alternatively, 
Bremsstrahlung radiation introduces a heat sink in the 
electrons, which would help maintain a hot-ion mode, 
when dealing with mildly relativistic plasmas such as in 
p — reactors.
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