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Fueling limits in a cylindrical viscosity-limited reactor
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Department of Astrophysical Sciences, Princeton University, Princeton, W /| Jersey 08540,

(Dated: 31 July 2022)

Recently, a method to achieve a “natural hot-ion mode” was suggested, by utilizing ion viscous heating in
a rotating plasma with a fixed boundary. We explore the steady-state solution to the Braginskii equations
and find the parameter regime in which a significant temperature difference between ions and electrons can
be sustained in a driven steady state. The threshold for this effect occurs at pr > 0.1 R. An analytic, leading
order low flow solution is obtained, and a numerical, moderate Mach number M < 2 is investigated. The
limitation is found to be at moderate Mach numbers.

I.  INTRODUCTION

Magnetic plasma confinement assisted by rotation
has been explored in several configurations, such as
mirrorsl-3 and toroidal devices4-5. Rotating mirrors in
particular are receiving renewed interest, leading to new
experimental devices in the near future6-8. Plasma mass
filters9-17 are another rotating plasma application in
which density gradients are of particular importance, and
are similar to rotating mirrors in many respects.

Sufficiently long mirrors may be analyzed using classi-
cal transport theory. Radial cross field ion currents!8-19
in such devices appear to be an attractive fueling method,
as they can induce rotation in the plasma due to their
interaction with the magnetic field. The hydrodynamic
variables - densities, momenta and pressures - in such
configurations can be asymptotically solved for" or nu-
merically integrated2! using a variety of tools.

Nuclear fusion in magnetic devices is realized by con-
finement. of hot ions for sufficient time22. In these de-
vices, the plasma confinement is often limited by the total
plasma pressure, which sums the electron and ion pres-
sures. As such, a hot-ion mode is preferable, as it can
produce more fusion power for the same magnetic field
strength23, in addition to a decrease in energy radiation
losses through electrons.

Plasma heating can be accomplished using a variety of
methods. One proposed method is to use viscous heating
due to sheared rotation. Kolmes et al. 24 showed how
heat dissipation channels in an axisymmetric cylindrical
plasma could preferentially heat the ion population. Such
a configuration may be realized by a radial flow of fuel
ions into the hot center of the cylinder, and the removal
of ash ions by a fast process other than classical transport
- such as Q-channeling25-26. The heating is the result of
the viscous dissipation of the ion fluid, i.e., the rate of
work done by the viscous stress times strain-rate. The
electron fluid viscous stress, and the resultant heating
rate, is smaller by a factor of (me/mj)3'"2.
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Kolmes et al.24 predicted that the ion temperature
could be higher than the electron temperature, and sug-
gested that the temperature difference could be large in
cases with sufficiently large radial influxes of fuel ions
and high radial electric fields. However, that paper left,
open the question of what, kinds of radial influxes and
fields could be self-consist.ent.ly supported, and of pre-
cisely what, are the density, velocity, and pressure profiles
in this case. The present, paper addresses that, question.
One of the key results that, follows from this calculation
is that, there are nontrivial limitations on these hot-ion-
mode solutions.

In this paper, we explore a particular solution to the
proposed concept. We consider a one-dimensional Bra-
ginskii fluid model27 to explore the nonlinear effects due
to the density and temperature dependence of the vis-
cosity and heat, conductivities for a uniform volumetric
charge extraction, i.e. a radial ion current. We compare
analytic solutions using constant, coefficients to the full
numerical non-linear solution.

Because the Braginskii fluid model is the most, usual
model, it. serves well our purposes here. We do note that,
several authors published corrections to the transport.
coefficients28-32. In addition, a magnetic mirror machine
would have a distribution function that, contains voids
where particles are not. confined. In the magnetic mirror-
case, it. is not. clear that. Braginskii, or other closures that,
expand the distribution function in a polynomial basis,
produce the precise transport, coefficients. However, the
effects discussed in this work do not. rely on the specific
transport, coefficients.

The limitation on the viscous heating arises because
the radial ion current, into the center of the cylinder leads
to a large rotation of the plasma, and the centrifugal
force caused by this rotation empties out. the density at.
the core. The quadratic dependence of the viscosity on
the density means that, large angular velocity gradients
are required to produce the viscous shear needed to bal-
ance the torque produced by the radial current, and the
magnetic field - leading to progressively larger rotation.
This effect, limits the amount, of charge extraction pos-
sible in this configuration. The viscous heating itself,
which increases the plasma temperature, further reduces
the viscosity coefficient. Of course, diverging angular ve-
locities are not. physical, and are the result, of an attempt.
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to balance a finite torque when the viscosity coefficient
approaches 0. In a physical system, the torque would be
limited.

As a result, the proposed “natural hot-ion mode” is
limited. Beyond a certain radial ion flux, the nonlinear-
ities in the viscosity coefficient would cut off the shear-
stress in the plasma. This limitation in shear limits the
viscous heating; the limit depends on the magnetization
of the plasma. We calculate a magnetization threshold
above which the viscous heating is small compared to the
rate of temperature equilibration between species.

This paper is organized as follows: In Sec. II we
present the nondimensionalized two-fluid equations. In
Sec. Ill we present the low-flux approximate solution,
assuming constant coefficients. In Sec. IV we discuss
the deviation of the full nonlinear (variable coefficients)
solution from the linear approximation.

1. MODEL

Consider an axisymmetric, infinitely long plasma cylin-
der, in equilibrium, such that Jj = © = 4~ = 0, with
a constant axial magnetic field. The plasma species to
be considered, for simplicity, are fuel ions and electrons.
This setting might be realizable in a steady-state rotat-
ing mirror machine, which is fueled radially rather than
axially, and in which fusion ash is removed quickly radi-
ally using Q-channeling, before it can interact with the
fuel ions or the electrons. It is assumed the Q-channeling
does not affect electrons.

In steady state, fuel ions fuse, the ash is removed, and
more fuel is supplied continuously from the outer edge,
while the electrons have no average radial velocity. The
ion sink term produces in steady state an inward-flowing
ion current. Ther (j B) torque due to this current
induces rotation in the plasma. The plasma rotation, in
addition to the other radial forces acting on it, determines
the steady-state density profile.

The radial expulsion ofthe fusion ash produces the op-
positer (j B)torque on the ash ions. However, the fu-
sion ash is kept at such a low density, using Q-channeling,
that its collisional interactions with other plasma con-
stituents can be ordered out of the momentum and en-
ergy equations. A density ration of n,,/nj - pi is suffi-
cient, with the small parameter p¢ being the normalized
ion Larmor radius, also defined later.

In this work, we consider only classical transport effects
in order to determine the temperatures. In many real-life
plasmas, other effects contribute to the energy balance
- examples include radiative cooling, and RF heating.
These, and energy exchange with fusion ash may even
be the dominant mechanisms, over and above classical
transport effects. However, one purpose of this paper
is to determine the merit of the proposed natural ion
mode, which cannot be separated from the other effects
considered here

For each fluid, the continuity, radial momentum, an-
gular momentum, and pressure equations are,
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Quantities with a subscript s represent a species-
dependent quantity, with the index s representing ions,
s =1, or electrons, s = e.

Number density, velocity, pressure, and temperature
are denoted by n, v, p and 7 respectively, with pa = naTa.
The quantity sB is a particle source or sink for species s.
Time and radius (spatial coordinate) are denoted by f
and r. Particle mass and charge number are denoted
by m and Z, while the elementary charge is denoted by
e. The (radial) electric field and (axial) magnetic field
are denoted by £ and B. The constant magnetic field
assumption can be construed to stem from a low plasma
/3 = ZiplQ with fio being the permeability of vacuum. The
value used for the numerical simulations of the nonlinear
equations is /3 = 0.002.

If the particle source is negative, as a sink term, the
source temperature 7arc = Tu and velocity vre = v,,.
If the source term is positive, 7 7c and v rc need to be
specified.

The friction body force Rss/ and the thermal friction
(“Nernst”) body force fss/ between species s and s’ are
expressed as

Rgg' = manavaa/(\ai — vs), 5)
c 3manavaaij  ZaimaiTaVTu — ZamaTaiVTai
= 2 ZaZa,eBb maTa, + ma,Ta '
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The choice of the boundary conditions (26) and (27)
drops the boundary term in (33), which is the work done
by the boundary on the plasma. Boundary conditions
(28) and (29) are a choice of normalization, where the
equality of the ion and electron temperatures might re-
quire further justification (see appendix). The boundary
conditions (30), (31), and (32) are the result of the cylin-
drical geometry.

B. Nondimensionalization

Nondimensionalizing the equations of motion allows us
to factor out small parameters for use in an asymptotic
expansion. Denoting A' = AnA, with An being a refer-
ence quantity:

mo = 7%p, (34)
& 35)
' g (36)
Fo = Rngjvo, 37)
y/2e4logA  no
127tV2% (8)
00 = 39)
. nnTnVn 2
o= mn2 =¢ "0 (40)
%0 = 7,— = fc"oo, 41)
1Zpo
Agg/o = monoz/Q"o, (42)
. mvnTn
Aa'O— on J — monoZ/Q 0N, (43)
. nnTnVi e
%ao = =" foo, (44)
= 45
gp() ( )

In this paper, reference quantities are chosen as their
value at the outer radius.

This fluid closure features two small parameters, the
normalized ion Larmor radius, pt = vn/£flpnR, and the
ratio of collision frequency to Larmor frequency ¢ =
vn/CLpu which is the inverse Hall parameter ¢ = //CH
We use the reference quantities to define the values of
these constants, i.e., we use them as constants rather
than as functions of radius. When dealing with electron-
ion plasma, a third small parameter is present, the square
root of the electron-to-proton mass ratio, \.~zzzAn
asymptotic expansion for a parameters A, in powers
of the small parameters p¢ and ¢ would be denoted by

The steady-state dimensionless angular momentum

4
equation for a single fluid species is,
mga
o&Dg  f/gsTg /dIn(f\,) 2 din(ftg
df df df
(46)

The steady-state dimensionless radial force-balance equa-
tion for a single fluid species is,

P, — 7 B, +fw.a) +— 2,
ar

4 sin e+ E— Tjr
rns rdar

£% d /fBo d
e dr \ 3fdr

(47)

The steady-state dimensionless temperature equation for
a single fluid species is,

1d. daf, |1

p Re K- T\O)sf — LOS)
rd dr p- 2rdr
dps 1, e 3g.f,
dr ptern,
E 1 £V

b ml p
13 Tg”2 d/ 5y

Di + [ dfl
£ ohg DI gr \ f2ns ) Laf

(48)

III. CONSTANT COEFFICIENTS SOLUTION

In this section, the leading order solution for the an-
gular velocities, density and temperatures are derived,
assuming pi, # and vie are constants, and do not depend
on the variation in density or temperature within the do-
main. This is an approximation that holds well for slow
rotation (t> << 1), when the density and temperature are
indeed nearly uniform.



ACCEPTED MANUSCRIPT

Physics of Plasmas

Publishing

AIR

",

£=
cu

sQa O

g
e

T

o]

Voel

sQ Mo

— Q W

CL
CcD

cD
cD

-
el

=y yel-]

cm

=]

A.  Electron angular velocity

For Fg = 0 the electron angular velocity equation (46)
reads,

-WQ +
(49)

The electron angular velocity can be solved asymptoti-
cally, to leading and first order in p,_,

3 p. dTe |
2FB"N7

(50)

where /4 is the modified Bessel function of the first kind.
This solution sets the azimuthal component of the total
friction force RieS + fieg = 0, except for a boundary layer
at f° L

The electron viscosity coefficient is smaller by a fac-
tor of ifpj? relative to the ion viscosity coefficient, and
the contribution of the viscosity is of C(pj,me) relative to
the ion angular velocity The ion angular velocity equa-
tion can be exactly solved if the sink term /Th/c.T. is
dropped. This term would turn out to be of O¢p2e) later.
The exact solution to w« (as a function of uje) without the
sink term, with boundary conditions w,(1) = 0 is

df e -SC
z, j;' fLatw Viere
V44
d In(hj)
ar 51

Notice that each term in (51) is proportional to

LV <2
hi.
If hi were to continuously decrease from | to near 0 when
moving from f inwards or if the ion temperature
should diverge, w« would diverge. This is due to the de-
crease in viscosity while the magnetic field torque remains
the same.

The leading order solution for w«, taking \ 272,
which is the solution to the continuity equation with a
uniform steady source term s, = const., and B = const.,
in addition to fJu = const, is,

- ZjBsj (b=-i
00)  ZBy (=) cqp

5
It is useful to define the variables Ft = , which
is the mass flux over viscosity, and 1% = ZpS. which is

the dimensionless gyro-frequency. The solution is expo-
nentially dependent on the strength of the source term
Si-

The azimuthal velocity in this case is

= (54)

The angular velocity becomes O(1) if Ft - O(pz). An
azimuthal Mach | (% = 1) is obtained when Ft
-GySpt/fij, corresponding to a source term  ~ C(pj.e).
The next corrections are of Qiih'J2) due to the electron
viscosity and O(p/) due to the i;3i rotation term.

B. Temperatures

The ion temperature equation, when substituting =
p~ef(2-1), and remembering ~ 1

=3<°W._.(t-F)+%6. (£~

\ ar
Y« X
aip= 11 a 11@Y dirde
-P—tng\%df n. % 1 , f2v
(55)
and the electron equation,
Iad / dT« - P
< 1 Pi
rdf | df P =P
dile
- di 56
die r ar (56)
with
466, M.P
h [J7\
(57)

being the effective heat transfer coefficient for the elec-
trons, due to the contribution of the term. The
plasma heat transfer coefficient, for Zi = |, m, = 1,
is ktot = hi + ketll :w 1.16/q, outside of the boundary
layer.

This is a linear ODE for Tq with a single term - the col-
lisional equilibration between ions and electrons -- p~2.
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Thus, in the low-flow case, Ft ~ O(p,,), Pi ~ O(ple),
the temperature difference between the ion and electron
fluids is of ~ C/(/ml).

To leading order, with constant coefficients, the sum
of the two equations is,

1d dfjim \
R )

yielding

+ —-3) —en(2f, -3))j +fi) (59)

with rju/ki = 0.15m, and i/u/ktot  0.13?h,. These ra-
tios are related to the Prandtl number as i,k = |?hPr.

The function Ei(x) = |-dt is the exponential in-
tegral. For small values of Fit such as Ft -pt, the
boundary term Tfl'l) = 1 is the dominant term in the
leading-order temperature solution.

The temperature difference between electrons and ions
ATei =Te — Ti, is determined, to leading order, by

_IT(CAZK),, WIH(A-+1DAT,
rdrl, dr / X

+ | OhePre — jhiPry) (f~~j . (60)

The leading order solution to this equation is

with In being the modified Bessel function of the first
kind.

Since mePre < in,Pry, the solution is negative, indeed
yielding a hot-ion mode, but it also contains a pre-factor
of pl/s/m/. In order to achieve a temperature difference
of 0(1), we identify a course of action, that does not suf-
fer from the fueling limit discussed later. In any case, one
has to push > to be as large as possible. However, the
pH\/™/ pre-factor has to be dealt with as well: Use low
magnetization, such that p. > /727 0.1. This would
bring the pre-factor to be 0(1). In this case, can
remain small such that the angular velocity is still linear-
in a,. The source term magnitude must then be larger

than the square root of the 0(0.001), which is the com-
bined value of the reminder of (61), when substituting w«
as a function of ss. In case of Braginskii coefficients for
Zi = m( = 1, this source term is s< s» -20/%e. It is per-
haps easier to increase p, rather than s,, as the maximal

temperature difference increases as p3 ) at large

p., see Figure 3. In the figure, the temperature difference
is - 0.01 because the source term magnitude kept rela-
tively small for numerical reasons. This Larmor radius
is becoming somewhat large for a small parameter, re-
quired for the fluid approximation. Some magnetic traps
operate with this Larmor radius / machine size scale.

C. Density

The density profile is determined from the radial force
balance. Summing electrons and ions, taking ne = Zjh,,
and neglecting electron viscosity, the radial force balance
of the plasma as a whole is

dpi 3
;rl df — o df S hif(in Wi

hf7¢ 1+ din(hi)  dIn(™))

G )

r2n dr dr j

d /10=0 dIn(fi) din(hi)
df \ 3fh, dr df

dal.

—+p>

,d . .
‘4P if3
+ol/150 din(F, dinchy

62
dr dr ©2)

This is a second-order nonlinear ODE in h,, and solv-
ing the leading-order terms in it would both remove the
non-linearity, and reduce it to a first-order differential
equation. To leading order,

din(hi) | - \ZidIn(Tj) _ r (muif + Zimed>3)
dr + 1+Zi dr 771 + 2/
(63)
or for Zi = 1,
-(0,0) (64)

This density profile is hollow - matter is pushed to outer
radii from the center.



ACCEPTED MANUSCRIPT

Physics of Plasmas

o

",

£=
cc

Q@ ®mo

CL
CcD

cc
CcD

n/n(l)

M=0.24
M=0.49
M=0.74
M=1.00

M=0.24
M=0.50
M=0.81
M=1.30

T/T(D)
ODE set
p-=0.01

0.0 0.2 0.4 0.6 0.8 1.0

r/fi

FIG. 1. Comparison between solutions to the constant-coefficient leading order Braginskii equations in steady state (full line),
and MITNS nonlinear results (dashed line with markers). The source term used for the ODE set and MITNS were the same.
The nonlinear solution starts diverging from the leading order linear solution at Mach number of M % 0.5. At a Mach number
of M % 1 in the linear solution, the difference between the linear and nonlinear solutions is quite significant.

D. Validity of the constant coefficients solution

The viscosity profile, to leading order, is

) 65
A (65)

Some solutions to the constant coefficient equations are
presented in Figure 1. Notice how 7/u cc /q drops rapidly
as the source term is increased. The disagreements be-
tween the linear and nonlinear solutions are visible at
Mach number of A 0.5, and become increasingly se-
vere.

IV.  VARIABLE COEFFICIENTS SOLUTION

Braginskii’s fluid model is inherently nonlinear, with
collision frequencies that depend on the densities and
temperatures. The diffusion coefficients (viscosities and
heat transfer coefficients), present additional nonlinear-
ity. From the linear, constant coefficients solution, it is
evident that the viscosity and heat transfer coefficients
drop as the magnitude of the particle flux increases. The
shorthand U would become larger at smaller radii, and
the angular velocity increase beyond its constant coeffi-
cients solution values.

There are two ways in which a particle flux would fail
to produce a physical solution:

1. The solution breaks the ordering p, <c¢ R.

2. The solution produces a negative pressure, or is
unable to satisfy both boundary conditions.

For the first, case, even a constant coefficient solution
with Fi O(pt) would produce rotations that are w --
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C("Ptl'), and temperature that is O(p~2). The Larmor
radius pt cc \J%, and increasing the temperature above
its reference value by a factor of p~2 puts us firmly in
the kinetic regime, where the fluid model is inapplicable.
Using a variable-coefficients solution would bring that
threshold to smaller values of particle flux.

The second case is a feature of non-linear DDEs, where
there is no guarantee for the existence of a boundary-
value-problem solution in all cases. We can attempt solv-
ing initial value problems, and using a shooting method
to pinpoint the correct values and derivatives at one
boundary to hit the correct values at the other, or trans-
form the DDEs into PDEs, and attempt to relax the
solution to a steady state at finite times.

Even at Mach numbers in which a solution for the non-
linear case exists, the solution might develop an angular-
velocity boundary layer at = 0 which might be non-
physical. This boundary layer enforces the axisymmetry
condition cu-(0) = 0, which appears in (30). The bound-
ary layer width, shrinks rapidly around A = 2, while
the temperature rises, as can be seen in Figure 2. When
the boundary layer width becomes smaller than an ion
Larmor radius, the solution becomes nonphysical. See
appendix. Steady state solutions for A/ > 2 don’t exist
in the full nonlinear case, as the viscosity drops quite sig-
nificantly, and it could not balance the torque produced
by the magnetic field.

Figure 2 presents the values of the density, tempera-
ture, and angular velocity at the center of the cylinder,
and the Mach number as a function of the particle sink
magnitude.

Figure 3 shows the temperature difference between
ions and electrons at the center of the cylinder, and the
maximal value of the temperature difference between the
species, as a function of p,. The sink term was chosen
such that Fijp, would remain constant at the boundary,
and the azimuthal Mach number would approximately
be constant at M 0.93, with small variation due to
the nonlinear nature of the system. This logarithmic
plot shows a near-perfect power law, with the two curves
crossing at ptr = 0.11, when the center of the cylinder
becomes the point of maximal temperature difference be-
tween species. The maximal temperature difference de-
pends very nearly on p2, even in the nonlinear case.

V. CONCLUSION

A solution to the flow and temperature profiles in
a highly magnetized rotating cylindrical two-fluid (ion-
electron) plasma, driven by constant ion charge extrac-
tion following Braginskii's fluid was investigated. First, a
leading-order solution in the low-flow limit was presented.
Second, the physical validity of the asymptotic solution
was considered, and the existence of a hot-ion mode was
evaluated. It was shown that the collisional temperature
coupling between the fluids is stronger than the differ-
ence in viscous heating between the fluids by a factor of

Particle sink size effects

IS, le-5

|s,| te-5

FIG. 2. Values of angular velocity at the center of the cylin-
der and Mach number (maximal azimuthal velocity) (top),
and values of density and temperature at the center of the
cylinder, as a function of A (bottom). These nonlinear cal-
culations were performed using MITNS, with p, = 0.0l and
e=0.1.

VmlJ/p2, and this limits the temperature difference to be
of

The ratio of ion to electron heating is the same as
the ratio of viscosity coefficients 72 J2. Picking a p,
\VVml - 0.1 would bring the temperature difference to
0(0.1 — 1), depending on the exact sink term magnitude.
This would be a large p,, but not impossibly so - some
magnetic traps or FRCs34 operate in this regime. Finally,
the departure of the non-linear solution from the linear-
approximation at moderate Mach numbers (M > 0.5)
was demonstrated and is explained by the hollowing-out
of the viscosity and heat conductivity profiles.

We have shown the inherent difficulties in achieving a
significant hot-ion mode, even in the absence of electron
heating, due to the limitation on ion heating. We have
shown that low magnetization devices present an easier
avenue for a hot-ion mode. Paradoxically, this is a point
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Ton-electron temperature difference

P

FIG. 3. Temperature difference between ions and electrons
at the center of the cylinder, and the maximal temperature
difference as a function of p, (top), and the power-law depen-
dence of the same curves (bottom). Results from the nonlin-
ear solution in MITNS. The ion sink term was .7 = —5pje,
such that /, p . withe=0.1.

in favor of devices that contain fewer ion Larmor radii -
which can be accomplished using a smaller magnetic field
or a smaller device size - in view of the large advantage
a hot-ion mode might present for a fusion plasma.
There are other possible ion sink profiles, s,(f), and
the details of such solutions may differ from the solution
presented here. The main effect discussed here, however,
the hollowing out of the density and the viscosity pro-
files, is weakly dependant on the specific s,(f) profile,
and requires only the functional dependence % cc n2.
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Appendix A: Boundary layers

The above solution includes several boundary layers,
in the electron angular velocity, effective heat transfer
coefficient,, and the temperature difference between elec-
trons and ions. The arguments of the boundary layers
are expressed in terms of the electron viscosity and heat,
transfer coefficients. Using Braginskii’s classical trans-
port, coefficients, the argument, of the electron angular-
velocity boundary layer term is

f jmenevei _ f° B o 14>
P*V T P* 10.51Teme vthe Pe
(AD

Here, pe is the electron Larmor radius. This boundary
layer is thinner than a Larmor orbit. As such, the classi-
cal transport, model breaks down at, these length scales,
hence, we must, abandon this boundary layer solution and
the boundary condition that, produced it, and resort, to a
full slip condition for the electron fluid at, the outer edge
ofthe cylinder. This same boundary layer appears in the
effective electron heat, conduction, and must, be discarded
there as well.

As such, in the limit, of Braginskii's classical transport,
equations (27), (50), and (57) should simply read

V- e =0, (A2)
3 p. dTe

Ui ~ 2/B~df’ (A3)

=691 (AT)

However, some non-classical transport, effects3S, such as
turbulent, anomalous transport, or the effects of perturba-
tions to the magnetic field36, might, enhance the electron
viscosity above Braginskii’s values, while still maintain-
ing the validity of the fluid approximation. In these cases,
if the effective electron viscosity might, be large enough



ACCEPTED MANUSCRIPT

Physics of Plasmas

Publishing

AIR

",

£=
cc

sQa O

g

CL
CcD

cc

such that the boundary layer thickness might encompass
several Larmor orbits, the boundary layer solution in the
electron angular velocity might be a true physical effect.

The argument of the temperaturivdifference boundary
layer, using Braginskii’s classical transport coefficients, is

— sJsfHVie (Up, +kZl) = ——. (AS)
P PtV

This boundary layer does encompass many electron gyro-
orbits, and is plausible because of it. Physically, it must
be enforced by some effect on the boundary. We are not
concerned with modeling the plasma-surface interactions
that might lead to this electron temperature boundary
layer, and conclude that the fluid approximation is valid
for a boundary layer, with, possibly a different boundary
value for the electrons other than the ions.

Note that the magnitude of A7, for the constant co-
efflcient solution, is controlled by the scaling of the flux
(& or equivalently #), which directly affects wj, and is
not dependent on the exact form of the viscosity or heat
transfer coefficients. Trying to maximize —7” in equa-
tion (61), by changing Kg.,/ only, or in conjunction with
2%g, using an anomalous electron transport, for example,
would yield limited results.

In a fusion reactor, when a-channeling is missing or
is insufficiently effective at removing the fusion ash,
the ash would slow down on the electrons and intro-
duce significant electron heating. Indeed this mecha-
nism typically causes a hot electron mode. Alternatively,
Bremsstrahlung radiation introduces a heat sink in the
electrons, which would help maintain a hot-ion mode,
when dealing with mildly relativistic plasmas such as in
pP— reactors.

REFERENCES

1B. Lehnert, Nucl. Fusion 11, 485 (1971).

2A. Bekhtenev, V. Volosov, V. Palchikov, M. Pekker, and
Y. Yudin, Nuclear Fusion 20, 579 (1980).

3A. B. Hassam, Physics of Plasmas 6, 3738 (1999).

4.J.-M. Rax, R. Gueroult, and N. J. Fisch,
Phys. Plasmas 24, 032504 (2017).

5L E. Ochs and N. J. Fisch, Phys. Plasmas 24, 092513 (2017).

6R. F. Ellis, A. B. Hassam, S. Messer, and B. R. Osborn,
Physics of Plasmas 8, 2057 (2001).

10

7R. F. Ellis, A. Case, R. Elton, J. Ghosh, H. Griem,
A. Hassam, R. Lunsford, S. Messer, and C. Teodorescu,
Phys. Plasmas 12, 055704 (2005).

8C. Teodorescu, W. C. Young, G. W. S. Swan, R. F.
Ellis, A. B. Hassam, and C. A. Romero-Talamas,
Phys. Rev. Lett. 105, 085003 (2010).

9J.-M. Rax and R. Gueroult,
J. Plasma Phys. 82, 595820504 (2016).

10S. J.  Zweben, R.  Gueroult, and N. J. Fisch,
Phys. Plasmas 25, 090901 (2018).

nL E. Ochs, R. Gueroult, N. J. Fisch, and S. J. Zweben,
Phys. Plasmas 24, 043503 (2017).

12R. Gueroult and N. J. Fisch, Phys. Plasmas 19, 122503 (2012).
13R.  Gueroult, D. T. Hobbs, and N. J. Fisch,
J. Hazard. Mater. 297, 153 (2015).

14R. Gueroult, J.-M. Rax, and N. J. Fisch,
Phys. Plasmas 26, 122106 (2019).

I5A. J. Fetterman and N. J. Fisch,
Phys. Plasmas 18, 094503 (2011).

16B. Bonnevier, Ark. Fys. 33, 255 (1966).

17B. Bonnevier, Plasma Phys. 13, 763 (1971).

18E. J. Kolmes, I. E. Ochs, M. E. Mlodik, J.-M. Rax, R. Gueroult,
and N. J. Fisch, Physics of Plasmas 26, 082309 (2019).

19J.-M. Rax, E. J. Kolmes, I. E. Ochs, N. J. Fisch, and R. Gueroult,
Phys. Plasmas 26, 012303 (2019).

20T. Rubin, E. J. Kolmes, I. E. Ochs, M. E. Mlodik, and N. J.
Fisch, Physics of Plasmas 28, 122303 (2021).

21E. J. Kolmes, I. E. Ochs, and N. J. Fisch,
Comp. Phys. Communications 258, 107511 (2021).

22J. D. Lawson, Proceedings of the Physical Society. Section B 70,

23J. Clarke, Nuclear Fusion 20, 563 (1980).

24E. J. Kolmes, I. E. Ochs, M. E. Mlodik, and N. J. Fisch,
Phys. Rev. E 104, 015209 (2021).

25N. J. Fisch and J.-M. Rax, Phys. Rev. Lett. 69, 612 (1992).

26N. J. Fisch and M. C. Herrmann, Nucl. Fusion 34, 1541 (1994).

27S. L. Braginskii, Transport processes in a plasma, in Revievjs of
Plasma Physics, Vol. 1, edited by M. A. Leontovich (Consultants
Bureau, New York, 1965) p. 205.

28E. M. Epperlein and M. G. Haines, Phys. Fluids 29, 1029 (1986).

29A. N. Siniakov, Physics of Plasmas 29, 022304 (2022).

30J.-Y. Ji and E. D. Held, Physics of Plasmas 20, 042114 (2013).

317. D. Sadler, C. A. Walsh, and H. Li,
Phys. Rev. Lett. 126, 075001 (2021).

32J. R. Davies, H. Wen, J-Y. Ji, and E. D. Held,
Physics of Plasmas 28, 012305 (2021).

33W. Fundamenski and O. Garcia, Report No. EFDA-JET-R (07)
01 (2007).

34L. C. Steinhauer, Physics of Plasmas 18, 070501 (2011).

35T. Rognlien and D. Ryutov, Plasma Physics Reports 25, 943
(1999).

36J. M. Finn, P. N. Guzdar, and A. A. Chernikov,
Physics of Fluids B: Plasma Physics 4, 1152 (1992).



AIP Physics of Plasmas ACCEPTED MANUSCRIPT

Publishing



AIP Physics of Plasmas ACCEPTED MANUSCRIPT

Publishing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0101271



AIP Physics of Plasmas ACCEPTED MANUSCRIPT

Publishing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0101271

O O 1-1 1-1



AIP Physics of Plasmas ACCEPTED MANUSCRIPT

Publishing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0101271



AIP Physics of Plasmas ACCEPTED MANUSCRIPT

Publishing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0101271

dlog(AT/e)/dlog(jO¥)

h-L M M M M M u>
[o]0] O k> a4n <T> (o]0} O



