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Abstract

In a variety of different systems, high-Z ion species show a marked tendency to accumulate in regions 
of high plasma density. It has previously been suggested that the apparent universality of this behavior 
could be explained thermodynamically, in terms of the maximum-entropy state attainable when the 
system must obey an ambipolarity condition. However, the previous treatment did not allow for the 
possibility of temperature gradients. Here, tools from non-equilibrium (Onsager) thermodynamics are 
used to show that ambipolarity continues to play a key role in producing this behavior in the presence 
of temperature gradients, and to recover well-known temperature screening effects that appear in these 
cases.
Keywords: Plasma thermodynamics, differential transport, impurity transport, impurity pinch, 
temperature screening, non-equilibrium thermodynamics

1. Introduction

The relative accumulation of different ion species 
is a topic of interest - and, often, of serious con­
cern - for a variety of plasma technologies. In 
fusion devices, it is important to ensure that fuel 
ions are mixed in the high-temperature region of 
the plasma. At the same time, it is necessary in 
steady-state operation to flush out fusion prod­
ucts (ash) lest they choke out the reaction. Mean­
while, the excessive accumulation of high-charge- 
state impurities can result in large radiative energy 
losses, and must be avoided. These issues are sim­
ilarly important for many non-fusion applications. 
For instance, for plasma mass filters (which are 
designed to separate out different constituents of
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a plasma based on mass), control over the relative 
transport of different particles is the most essential 
feature of the device.

In isothermal magnetically confined plasmas, 
in regimes where turbulence does not dominate, 
there is a classic result [1, 2, 3] that in steady state 
the density profiles of two ion species satisfy

n1/Z. oc n1/Zb
b (1)

Here na is the density profile of species a, nb is the 
density profile of species b, and Zae and Zbe are the 
two species’ charge states (where e is the elemen­
tary charge). The densities are assumed to vary 
only in the direction perpendicular to the magnetic 
field. Eq. (1) predicts a dramatic accumulation of 
high-Z species in the highest-density regions of a 
plasma. In the presence of some potentials Ta and 
Tb affecting the two species (for example, a gravi-
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tational potential), Eq. (1) becomes [4]

(nae*-/T)1/Za <x (nbeWT)1/Zb, (2)

where T is the temperature of the system.
Eqs. (1) and (2) appear across a very wide 

range of systems and parameter regimes. These 
expressions, and special cases thereof, appear in 
the theory of classical transport [1, 2, 3, 5, 4, 6,
7, 8, 9, 10, 11]; in neoclassical transport including 
the Pfirsch-Schluter, plateau, and banana regimes 
[12, 13, 14, 15]; in the theory of plasma mass fil­
ters [16, 17, 18, 19, 20, 21, 22]; in the study of 
non-neutral plasmas [23, 24, 25]; and, recently, in 
the theory of collisionally unmagnetized (low-Hall- 
parameter) cross-field transport [26]. The ubiquity 
of this behavior, even in different systems whose 
dynamics are understood in terms of mutually in­
applicable models, raises the question: can the ap­
pearance of this same behavior across all of these 
different systems be understood in terms of some 
kind of universal requirement?

Ref. [27] suggests that it can. If the maximum- 
entropy state is calculated subject to some fixed 
total energy and fixed particle populations, the 
result is the Boltzmann distribution. If an addi­
tional constraint fixes the net ion charge densities 
to some initial distribution, then the result is in­
stead Eq. (1) or (2), depending on the presence or 
absence of potentials $s. This constraint is phys­
ically motivated by the ambipolarity of cross-field 
collisional transport. This approach explains the 
behavior in Eqs. (1) and (2) without having to 
specify any of the details of the dynamics (other 
than that the system must tend toward its maximum 
entropy state and that it must respect the afore­
mentioned constraints).

However, the approach in Ref. [27] has a sig­
nificant drawback. Because that calculation ap­
proaches the problem in terms of the equilibrium 
thermodynamics of a closed system, it has no nat­
ural way to describe the effects of a temperature 
gradient. This is more important than it might 
sound. A properly oriented temperature gradient 
is known (both theoretically and experimentally) 
[28, 29, 30, 15, 31, 32] to mitigate and even re­
verse the accumulation of high-Z ions described 
in Eq. (1), under the right circumstances. This 
“temperature-screening” effect is one of the ma­
jor strategies used by the operators of real con­

finement devices to prevent the (otherwise rather 
dire) accumulation of heavy impurities predicted 
by Eq. (1).

The object of this paper is to demonstrate that 
the basic finding of Ref. [27] - that is, the univer­
sal role of an ambipolarity condition in giving rise 
to Eqs. (1) and (2) - still applies for systems that 
have temperature gradients. Moreover, this paper 
will show that the non-equilibrium theory can pre­
dict the temperature-screening effects observed in 
real systems, and that temperature screening de­
pends on the details of the system’s dynamics in a 
way that the results in Ref. [27] did not.

This paper is organized as follows. Section 2 
describes the linear non-equilibrium formalism and 
coordinates to be used in the rest of the paper. 
Section 3 shows how an ambipolarity condition 
gives rise to Eq. (1), Eq. (2), and their gener­
alizations with temperature screening. Section 4 
presents an example of how this formalism works 
in a simple slab system. Section 5 is a discussion 
of these results. Appendix A makes a connection 
between this problem and non-equilibrium varia­
tional principles.

2. Thermodynamic Fluxes, Forces, and the 
Linear Regime

The transport in a non-equilibrium system can 
be described in terms of thermodynamic fluxes J 
and forces X,, such that the entropy production 
density can be written as

a = JiXi. (3)

The choices of J and X, are not unique. In the 
literature on non-equilibrium thermodynamics, it 
is common to use

J

/ q X
minivi

(4)

\m-N n«\n/

where q is the heat flux, ms is the mass of species 
s, ns is the number density of species s, and vs is
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the velocity of species s, and Note that a = J X = J X.

/ V(1/T) \
-V(^i/miT) + Fi/miT

(5)

\-V(^n/mN T) + Fn/mN Tj

where T is the system temperature, ps is the inter­
nal chemical potential of species s, and Fs is any 
body force acting on species s (we will assume for 
simplicity that all species have the same local tem­
perature, though a version of this problem could 
be posed in which this was not the case).

However, it is more convenient for present pur­
poses to transform to a different set of forces and 
fluxes. This kind of transformation is described in 
Ref. [33]. If X, =J2j Xj for some non-singular 
matrix of coefficients M with inverse M-i, then 
the appropriate fluxes J to associate with X are 
given by J, = Jj(M-1)jj.

With that in mind, let

V(1/T)
-V log pi + Fi/T

(6)

\—V log pn + Fn/T)

where ps = nsT. The gradient of the chemical po­
tential can be written as V(ps/T) = V log(psT-5/2), 
so the appropriate transformation matrices are

1
- 5 T/ 2 m i

M = - 5 T/ 2 m 2

\-5T/2 mN//

(7)

and

1
5T/2mi m-1

M-i = 5T/2m2 m-i

5T/2mN

Then the associated flux J is

/q + (5/2) p«vs\
nivi

NvV
(8)

J (9)

nNvN

For a system that is sufficiently close to equi­
librium, J and X, are linearly related, so that

Ji = ^ Lj Xj (10)
j

for some matrix of coefficients Lj. This is some­
times called the linear or Onsager regime, and the 
associated matrix L is sometimes called the On­
sager matrix. Much of the theory of plasma trans­
port is concerned with detailed calculations of Lj 
for a particular system.

Onsager’s reciprocal relations state that the 
Onsager matrix is symmetric: that is, Lj = Lp. 
The original form of the theorem’s proof does not 
apply in the presence of a magnetic field; in the 
presence of B, the Onsager symmetry Lj = Lj 
has traditionally been replaced by the Onsager- 
Casimir symmetry Lj(B) = Ljj(-B) [34, 35, 36]. 
However, recent results suggest that the Onsager 
symmetry may apply to cases with magnetic fields 
after all [37, 38, 39, 40], and in any event the coeffi­
cients in plasma systems are very often even func­
tions of B, in which case the distinction is moot
[33].

3. From Flux Constraints to Impurity Pinch

Appendix A describes how the principle of 
minimum entropy production leads to a set of con­
straints on the fluxes through the system. Of course, 
even in cases where Onsager symmetry does not 
hold, or in which Prigogine’s minimum-entropy- 
production principle is otherwise inapplicable, it 
would be equally valid to consider a system in 
which all fluxes are fixed by the system’s bound­
ary conditions. Either way, this section will con­
sider the problem in which, for one reason or an­
other, the fluxes J are fixed, and especially the 
case where the J0 may not vanish but the particle 
fluxes do vanish.

For the calculation that follows, assume that 
Onsager symmetry does at least hold for the co­
efficients coupling the particle fluxes with thermo­
dynamic forces associated with different species’ 
pressure gradients (in other words, that Lss> = 
Ls/s for any s, s' = 0; we do not require On- 
sager symmetry for the coefficients that couple to 
the temperature gradient and heat flux). This
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is a weaker assumption than is required for the 
minimum-entropy-production principle in Appendix
A.

Consider a one-dimensional system in a mag­
netic field (so that all spatial functions can be con­
sidered to depend only on some coordinate that 
measures position perpendicular to the field). Sup­
pose the system obeys an ambipolarity constraint, 
much like the one discussed in Ref. [27]. Such a 
constraint could be written as

N
A ZJ =0. (11)
s = i

Eq. (11) should be understood to apply at all times 
(not just in steady state); in other words, it is a 
constraint on the Onsager matrix. For Eq. (11) 
to hold for all possible thermodynamic forces, it 
must be true for any vector Y that

NN
A z, A = 0. (12)
s=i ,=0

This implies that

N
A ZsLsk =0 Vk € {0,1,..., N}. (13)
s = i

Intuitively, this kind of constraint can be moti­
vated in terms of the response of a particle to a 
force. If a particle of species s is acted upon by a 
force F, it will drift across the local magnetic field 
at a velocity F x B/ZseB2. The 1/Zs dependence 
in the cross-field motion means that interactions 
between particles tend to rearrange the particles 
in a way that satisfies Eq. (11). Eq. (11) is not, in 
general, an exact conservation law. Small uncom­
pensated cross-field currents can appear for a wide 
variety of reasons (for example, inhomogeneities 
in the magnetic field). Ambipolarity is, however, 
typically a very good approximation for plasmas 
immersed in magnetic fields that are sufficiently 
strong and do not vary too quickly.

Suppose the flux constraints are chosen so that 
the heat-flux term J0 = 0, but so that the particle 
fluxes Js all vanish. Then for each species s,

Js =
LsoT'

T2

N

s'=i

F+ E Fp - P^) =0, (14)
Ps

as per Eqs. (6) and (10). In the special case where 
the thermal coupling term Ls0T' vanishes, this can

be rewritten as

AZs L-{ %- zS: 0. (15)

Keeping in mind Eq. (13), this is solved whenever

Fa
-s'

Ps
Zs' ns

= C (16)

for some constant C that is the same for all s'. 
This can be integrated directly to get the condition 
that

Pa
Pa0

exp
1/Za

Pb— exp
PbO

% Fbdx —
Xo T

l/Zb
(17)

for some integration constants pa0 and pb0 and ref­
erence point x0. This reduces to Eq. (2) in the 
case where T is constant, and to Eq. (1) in the 
case where Fs = 0. Note that this derivation 
had two key ingredients: the Onsager symmetry 
Lss' = Ls's and the ambipolarity condition. Also 
note that the Onsager coefficients themselves do 
not appear in Eq. (17).

The equilibrium conditions are further modi­
fied in the more general case where the thermal 
friction term Ls0T' does not vanish. In the most 
general case, the condition cannot be written much 
more compactly than Eq. (14), though it more 
nearly resembles some of the forms seen in the lit­
erature if it is rewritten as

LsoT' + 
T 2 +

Nyi Zs' Ls
s'=l

1 Fs
ZsA T

Ps_
Ps'

A ^Fs_ PsA! 
ZA T PsA

= 0. (18)

As is discussed in Ref. [26], the equilibrium condi­
tion cannot always be written in the “transitive” 
form seen in Eqs. (1), (2), or (17), where the con­
dition reduces to a self-consistent set of pairwise 
relations between all pairs of particle species.

However, it is often useful to look at the special 
cases where it can be expressed in the transitive 
form. It can be written in this form in the absence 
of thermal forces; this is Eq. (17). It can also be 
expressed in this form in the case where there are 
only two species. In that case, the zero-flux con-
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ditions on particle species a and b become

LaoT' + ^ ( Fb _ Pb A _! ( Fb_ pa A
ZbLabT2 + Z^ T pj Z^ T Pa/

= 0 (19)
LboT' 1 ( Fa_ Pa N 1_ ( Fb _ pb)

ZaLabT2 + Z^ T pj Z^ T Pb/

= 0, (20)

assuming Lab = 0. These two conditions are the 
same, since in the two-species case Eq. (13) implies 
La0/Zb = — Lb0/Za. In this case, the condition can 
be integrated to get

Pa
Pa0

exp

Pb= \ — exp
LPb0

' dxf l/Z.

La0T'
LabT 2

l/Zb

(21)

In cases without thermal frictions, Eq. (21) de­
scribes familiar behavior: precisely the peaking 
of high-Z species found in Eqs. (1) and (2). In 
cases with thermal frictions, the values of the On- 
sager coefficients begin to matter; depending on 
the dynamics of the particular system in question, 
temperature gradients may tend to flush high-Z 
species from high-density regions, or they may tend 
to pull them in.

Essentially the same formalism used in this sec­
tion to describe temperature screening can also 
be used to understand systems with steady-state 
particle fluxes: the difference is simply that Js is 
allowed to be nonzero for s = 0. This problem 
has received less attention in the literature than 
temperature screening has, but there are scenar­
ios in which it could be important; see Ref. [10]. 
The analytic expressions for ns in Ref. [10] can 
be recovered from Eqs. (6) and (10) by direct in­
tegration (or equivalently from Eq. (14) with a 
nonzero RHS). For cases with finite particle fluxes, 
the values of some Onsager coefficients appear in 
the equilibrium conditions.

4. A Simple Illustrative Example

Consider, for example, classical collisional trans­
port in a magnetized slab. Suppose the system has 
Cartesian coordinates with unit vectors (x, y, z), 
with a magnetic field B = Bz and all gradients in

the x direction. Furthermore, suppose the plasma 
consists of electrons, hydrogen ions, and some heavy 
impurity ion species. Variables referring to the 
hydrogen will be denoted with the subscript H ; 
variables related to the impurity will be denoted 
by the subscript I. Let the plasma be strongly 
magnetized, so that the cross-field transport of the 
electrons is slow enough to be ignored.

Then the thermodynamic forces can be written 
as

X
/ dx(1/T) 

—dx log PH 
\—dx log PI

(22)

and the corresponding fluxes can be written as

J
+ (5/2)pH VH,x + (5/2)pi v/,x 

nH vH,x 
\ nivi,x

(23)

Here vs,x is the x-directed velocity of species s. 
Suppose, for simplicity, that the plasma is inviscid.

Suppose boundary conditions fix some cross­
field heat flux while requiring that the x particle 
fluxes vanish. The relevant components of the lin­
ear response matrix Lj can be calculated directly 
by considering the equations of motion. For the 
purposes of calculating nH and n/, the thermal- 
conductivity-associated coefficient L00 is unimpor­
tant (so long as the solution is expressed in terms 
of some self-consistent T(x)). Otherwise, in steady 
state,

mH vH • VvH = evH x B — VPH + rh/ (24)
nH nH

m/v/ • Vv/ = Z/ev/ x B — Vp/ + R/h (25)
n/ n/

where e is the elementary charge and Rss' is the 
friction force density between species s and s'. 
This force will in general include both flow fric­
tions and thermal frictions. In the case of a heavy 
impurity, it can be expressed [6] as

Rh/ mH nH vh/ v/ — vh +
3T'
2eBy

R/H m/n/ v/h
3T'

vH—v/ —

(26)

(27)
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s and s', and the conservation of momentum re­
quires that mH nH vH/ = m/n/ v/H.



Dropping the advective vs • Vvs terms on the 
left-hand side of the equations of motion (since 
these are quadratic in J), and dropping the x com­
ponent of the flow frictions (since these ultimately 
contribute to J at a higher order in msvss//ZseB, 
which is a small parameter in a strongly mag­
netized plasma), the equations of motion can be 
rewritten as

J mH nH vh/T
e^B

4i0 4n 4l2 \
3T/2 1 — 1/Z/ I X

3T/2Z/ — 1/Z/ 1/Z?/
(28)

Here l00, l0l, and A>2 are arbitrary matrix entries. 
They would be specified by a temperature evo­
lution equation, but they are not necessary here. 
Note that Eq. (28) is consistent with Eq. (13). In 
this system, Eq. (21) becomes

-3Zl/2
P/0 VPH0 / VT0/

(29)

This is one of the simplest examples that can ex­
hibit temperature screening of impurities. In other 
regimes, peaked temperature profiles can have the 
opposite effect (pulling high-Z impurities into the 
high-temperature regions rather than pushing them 
away), according to differences in Ls0.

5. Discussion

In the absence of thermal frictions, in the linear 
(Onsager) non-equilibrium regime, this paper has 
shown that the relative cross-field accumulation 
of different ion species represented in results like 
Eqs. (1) and (2) follows from two key conditions: 
(1) an ambipolarity condition on the flows of differ­
ent species and (2) symmetry of the Onsager coef­
ficients coupling the flow of one particle species to 
a thermodynamic force acting on another species. 
Apart from these conditions, no other details of 
the system’s dynamics need to be specified. This 
extends the argument from Ref. [27] to provide a 
unified explanation for the accumulation of high- 
Z species in cases with temperature gradients but 
without thermal frictions.

In cases with thermal frictions, this paper has 
shown that temperature screening effects arise nat­
urally from the same formalism, and can be related 
in a simple way to the Onsager coefficients (though

of course, temperature screening has been derived 
for many particular systems using the Onsager for­
malism before). This dependence on the Onsager 
coefficients is a significant difference: temperature 
screening can still be explained in terms of a generic 
linear-response theory, but in order to calculate 
the resulting equilibria it is necessary to compute 
some of the Lj (as opposed to the case without 
thermal frictions, where nothing need be known 
about the Onsager coefficients except that they 
enforce ambipolarity).

The distinction between cases with and with­
out significant thermal frictions is formally a ques­
tion of the relative sizes of Ls0T'/T2 and the other 
terms in Eq. (13). It is clear that thermal frictions 
can be neglected when the temperature gradient 
vanishes or is sufficiently small. However, in gen­
eral, how small that gradient has to be will depend 
on the details of the dynamics of the particular 
system in question (that is, on the actual value of 
Ls0). For example, in the simple case discussed 
in Section 4, thermal frictions can be considered 
significant whenever T'/T is at least comparable 
to nH /nH or n//n^.

The emphasis on VT-dependent effects was mo­
tivated by the prominence of these effects in the 
field, both theoretically and in experimental stud­
ies [28, 29, 30, 15, 31, 32]. However, an essentially 
identical analysis could be used for cases in which 
the thermodynamic force vector X included forces 
other than the temperature and pressure gradi­
ent terms described in Eq. (6). There are a num­
ber of situations in which additional thermody­
namic forces may be important; see, for example, 
Refs. [33, 41, 42, 43].

The discussion in this paper treats the elec­
trons as stationary. In collisional cross-field trans­
port, this is typically a reasonable assumption. 
The smallness of the electron gyroradii means that 
classical processes move them across field lines on 
a timescale that is slow compared to ion-ion trans­
port. Indeed, this same assumption is at least im­
plicitly present in other derivations of Eqs. (1) and 
(2). However, if for a given system the electron 
transport was not slow, there is no reason why 
electrons could not be included in the transport 
matrices as a species with charge Ze = —1. Re­
sults like Eqs. (1) and (2) have very different im­
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plications if they also apply to the electron popu­
lation. For example, if applied to all electron and 
ion species in a quasineutral plasma, Eq. (1) im­
plies that the density profiles must be flat. This 
makes sense, since on the longer timescales over 
which electrons can cross field lines collisionally, 
the plasma typically escapes from magnetic con­
finement.

The focus here has been on cross-field dynam­
ics. Of course, a related set of issues are impor­
tant in unmagnetized plasma systems [44, 45, 46, 
47, 48], but these systems do not generally have 
the same ambipolarity constraints that appear in 
magnetized systems.

The present investigation is confined to the com­
paratively settled areas of near-equilibrium ther­
modynamics. Much of the literature on plasma 
transport is concerned with this regime. The fur­
ther reaches of non-equilibrium thermodynamics, 
particularly for systems far from equilibrium, would 
require a different theory. It is not necessarily 
clear that we should expect results like Eq. (1) 
and (2) to continue to apply outside of the near­
equilibrium regime.

Acknowledgements

The authors thank Per Helander, whose comments 
prompted this investigation. This work was sup­
ported by Cornell NNSA 83228-10966 [Prime No. 
DOE (NNSA) DE-NA0003764] and by NSF PHY- 
1805316.

Appendix A. Flux Constraints from a Vari­
ational Principle

The argument in Ref. [27] was based on calcu­
lating the maximum-entropy state in an equilib­
rium system. There is no single universally ac­
cepted variational principle that plays an anal­
ogous role in non-equilibrium systems. In fact, 
the use of variational principles in non-equilibrium 
thermodynamics is an active area of research, and 
a number of authors have undertaken to develop 
generally applicable variational principles for these 
systems [49, 50, 51, 52].

In cases where Onsager symmetry holds, one 
non-equilibrium variational principle is the prin­
ciple of minimum entropy production [53, 54, 55],

which is valid in systems close to equilibrium. This 
variational principle is not strictly necessary to 
the results in the rest of this paper, and it comes 
with a number of serious limitations [56], but it 
does establish a useful parallel with the maximum- 
entropy principle in Ref. [27], so we will briefly 
discuss it here, roughly following the discussion in 
Ref. [55].

In the Onsager regime, the total entropy pro­
duction over some volume V is given by

. N . N N
3= / d3r ^ JiXi = / d3r LjX^Xj.

V i=0 V i=0 j=0
(A.1)

In the absence of any further constraints, S is min­
imized when

N
^(L»j + Lji)Xj = °- (A.2)
j=0

In cases were Onsager symmetry holds, this be­
comes

J = 0. (A.3)

In other words, the entropy production vanishes 
when the fluxes vanish. In many cases of interest, 
there is some additional constraint on some of the 
fluxes or forces. If, for some k, Jk is fixed by a 
constraint, then this simply becomes

Ji=k = 0. (A.4)

That is, any unconstrained fluxes vanish.
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