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Abstract

In a variety of different systems, high-Z ion species show a marked tendency to accumulate in regions
of high plasma density. It has previously been suggested that the apparent universality of this behavior
could be explained thermodynamically, in terms of the maximum-entropy state attainable when the
system must obey an ambipolarity condition. However, the previous treatment did not allow for the
possibility of temperature gradients. Here, tools from non-equilibrium (Onsager) thermodynamics are
used to show that ambipolarity continues to play a key role in producing this behavior in the presence
of temperature gradients, and to recover well-known temperature screening effects that appear in these

cases.
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1. Introduction a plasma based on mass), control over the relative

transport of different particles is the most essential

The relative accumulation of different ion species .
feature of the device.

is a topic of interest — and, often, of serious con- . .
p ’ ’ In isothermal magnetically confined plasmas,

cern — for a variety of plasma technologies. In . . .
Y p £ in regimes where turbulence does not dominate,

fusion devices, it is important to ensure that fuel . . .
’ b there is a classic result [1, 2, 3] that in steady state

ions are mixed in the high-temperature region of
& b & the density profiles of two ion species satisfy

the plasma. At the same time, it is necessary in
steady-state operation to flush out fusion prod- n}l/Za x n;/ Zv (1)
ucts (ash) lest they choke out the reaction. Mean-

while, the excessive accumulation of high-charge-  Here ng is the density profile of species a, ny, is the

state impurities can result in large radiative energy
losses, and must be avoided. These issues are sim-
ilarly important for many non-fusion applications.
For instance, for plasma mass filters (which are

designed to separate out different constituents of
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density profile of species b, and Z,e and Z,¢ are the
two species’ charge states (where ¢ is the elemen-
tary charge). The densities are assumed to vary
only in the direction perpendicular to the magnetic
field. Eq. (1) predicts a dramatic accumulation of
high-Z species in the highest-density regions of a
plasma. In the presence of some potentials ¢, and

®;, affecting the two species (for example, a gravi-
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tational potential), Eq. (1) becomes [4]
(naeéa/T)l/Za = (nb6<1>b/T)1/Zb7 2)

where T is the temperature of the system.

Egs. (1) and (2) appear across a very wide
range of systems and parameter regimes. These
expressions, and special cases thereof, appear in
the theory of classical transport [1, 2, 3, 5, 4, 6,
7, 8,9, 10, 11]; in neoclassical transport including
the Pfirsch-Schliiter, plateau, and banana regimes
[12, 13, 14, 15]; in the theory of plasma mass fil-
ters [16, 17, 18, 19, 20, 21, 22]; in the study of
non-neutral plasmas [23, 24, 25]; and, recently, in
the theory of collisionally unmagnetized (low-Hall-
parameter) cross-field transport [26]. The ubiquity
of this behavior, even in different systems whose
dynamics are understood in terms of mutually in-
applicable models, raises the question: can the ap-
pearance of this same behavior across all of these
different systems be understood in terms of some
kind of universal requirement?

Ref. [27] suggests that it can. If the maximum-
entropy state is calculated subject to some fixed
total energy and fixed particle populations, the
result is the Boltzmann distribution. If an addi-
tional constraint fixes the net ion charge densities
to some initial distribution, then the result is in-
stead Eq. (1) or (2), depending on the presence or
absence of potentials ®,. This constraint is phys-
ically motivated by the ambipolarity of cross-field
collisional transport. This approach explains the
behavior in Egs. (1) and (2) without having to
specify any of the details of the dynamics (other

than that the system must tend toward its maximum-

entropy state and that it must respect the afore-
mentioned constraints).

However, the approach in Ref. [27] has a sig-
nificant drawback. Because that calculation ap-
proaches the problem in terms of the equilibrium
thermodynamics of a closed system, it has no nat-
ural way to describe the effects of a temperature
gradient. This is more important than it might
sound. A properly oriented temperature gradient
is known (both theoretically and experimentally)
[28, 29, 30, 15, 31, 32| to mitigate and even re-
verse the accumulation of high-Z ions described
in Eq. (1), under the right circumstances. This
“temperature-screening” effect is one of the ma-

jor strategies used by the operators of real con-

finement devices to prevent the (otherwise rather
dire) accumulation of heavy impurities predicted
by Eq. (1).

The object of this paper is to demonstrate that
the basic finding of Ref. [27] — that is, the univer-
sal role of an ambipolarity condition in giving rise
to Egs. (1) and (2) — still applies for systems that
have temperature gradients. Moreover, this paper
will show that the non-equilibrium theory can pre-
dict the temperature-screening effects observed in
real systems, and that temperature screening de-
pends on the details of the system’s dynamics in a
way that the results in Ref. [27] did not.

This paper is organized as follows. Section 2
describes the linear non-equilibrium formalism and
coordinates to be used in the rest of the paper.
Section 3 shows how an ambipolarity condition
gives rise to Eq. (1), Eq. (2), and their gener-
alizations with temperature screening. Section 4
presents an example of how this formalism works
in a simple slab system. Section 5 is a discussion
of these results. Appendix A makes a connection
between this problem and non-equilibrium varia-
tional principles.

2. Thermodynamic Fluxes, Forces, and the

Linear Regime

The transport in a non-equilibrium system can
be described in terms of thermodynamic fluxes J;
and forces X;, such that the entropy production

density can be written as

The choices of J; and X; are not unique. In the
literature on non-equilibrium thermodynamics, it

is common to use

q
minivi

J= : ; (4)
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where q is the heat flux, m, is the mass of species

s, ns is the number density of species s, and vy is



the velocity of species s, and

Vv(1/T)
£ —V(u1/m1f) +Fi/miT )

—V(MN/mNT) + FN/mNT

where T is the system temperature, 1 is the inter-
nal chemical potential of species s, and Fy is any
body force acting on species s (we will assume for
simplicity that all species have the same local tem-
perature, though a version of this problem could
be posed in which this was not the case).

However, it is more convenient for present pur-
poses to transform to a different set of forces and
fluxes. This kind of transformation is described in
Ref. [33]. If X; = >, M;; X; for some non-singular
matrix of coefficients M with inverse A/ ! then
the appropriate fluxes J to associate with X are
given by J; =3~ T (M%),

With that in mind, let

V({1/T)

—Vlogps +F1/T

X = , (6)

—Vlogpn +Fy/T

where p, = n,T". The gradient of the chemical po-
tential can be written as V (1, /1) = Vlog(psT%/?),
so the appropriate transformation matrices are

1
—5T/2 miq
M= |-5T/2

ma

_5T7/2

my
and

1
5T/2m1
5T/ 2mq my *

1
my

M=
5T/2mpy my
Then the associated flux J is
a+(5/2) 2N pevs

nivy

NNVN

Note that o =J - X =J - X.

For a system that is sufficiently close to equi-

librium, J; and X; are linearly related, so that

Ji = Li;X; (10)

J

for some matrix of coefficients L;;. This is some-
times called the linear or Onsager regime, and the
associated matrix L is sometimes called the On-
sager matrix. Much of the theory of plasma trans-
port is concerned with detailed calculations of Ly
for a particular system.

Onsager’s reciprocal relations state that the
Onsager matrix is symmetric: that is, L;; = L.
The original form of the theorem’s proof does not
apply in the presence of a magnetic field; in the
presence of B, the Onsager symmetry L;; = Ly
has traditionally been replaced by the Onsager-
Casimir symmetry L;;(B) = L;;(—B) [34, 35, 36].
However, recent results suggest that the Onsager
symmetry may apply to cases with magnetic fields
after all [37, 38, 39, 40], and in any event the coeffi-
cients in plasma systems are very often even func-

tions of B, in which case the distinction is moot
[33].

3. From Flux Constraints to Impurity Pinch

Appendix A describes how the principle of
minimum entropy production leads to a set of con-
straints on the fluxes through the system. Of course,
even in cases where Onsager symmetry does not
hold, or in which Prigogine’s minimum-entropy-
production principle is otherwise inapplicable, it
would be equally valid to consider a system in
which all fluxes are fixed by the system’s bound-
ary conditions. Either way, this section will con-
sider the problem in which, for one reason or an-
other, the fluxes J; are fixed, and especially the
case where the Jy may not vanish but the particle
fluxes do vanish.

For the calculation that follows, assume that
Onsager symmetry does at least hold for the co-
efficients coupling the particle fluxes with thermo-
dynamic forces associated with different species’
pressure gradients (in other words, that Lgys =
Lgs for any s, 8" # 0; we do not require On-
sager symmetry for the coefficients that couple to

the temperature gradient and heat flux). This



is a weaker assumption than is required for the
minimum-entropy-production principle in Appendix
Al

Consider a one-dimensional system in a mag-
netic field (so that all spatial functions can be con-
sidered to depend only on some coordinate that
measures position perpendicular to the field). Sup-
pose the system obeys an ambipolarity constraint,
much like the one discussed in Ref. [27]. Such a
constraint could be written as

N
> Z.J=o0.
s=1

Eq. (11) should be understood to apply at all times

(11)

(not just in steady state); in other words, it is a
constraint on the Onsager matrix. For Eq. (11)
to hold for all possible thermodynamic forces, it

must be true for any vector Y that

N N
D Zsy LY =0.
s=1 =0

This implies that

(12)

N
> ZiLy=0 Vke{0,1,...,N}.  (13)
s=1

Intuitively, this kind of constraint can be moti-
vated in terms of the response of a particle to a
force. If a particle of species s is acted upon by a
force F, it will drift across the local magnetic field
at a velocity F x B/Z,eB?. The 1/Z, dependence
in the cross-field motion means that interactions
between particles tend to rearrange the particles
in a way that satisfies Eq. (11). Eq. (11) is not, in
general, an exact conservation law. Small uncom-
pensated cross-field currents can appear for a wide
variety of reasons (for example, inhomogeneities
in the magnetic field). Ambipolarity is, however,
typically a very good approximation for plasmas
immersed in magnetic fields that are sufficiently
strong and do not vary too quickly.

Suppose the flux constraints are chosen so that
the heat-flux term .Jy #£ 0, but so that the particle

fluxes Js all vanish. Then for each species s,

LoT & F, p,
J, = — Lo _ Py o) (14

Ps’

as per Egs. (6) and (10). In the special case where

the thermal coupling term L,o7" vanishes, this can

be rewritten as
N
FS/ p//
Lo Ly | =— — =2 =0. 15
3 db () <o

Keeping in mind Eq. (13), this is solved whenever

FS/ i p;/
Zy

=C 16
P (16)
for some constant C' that is the same for all s’.
This can be integrated directly to get the condition
that

|:pa o < /zd Fa>:|1/Za
e _ r -2
pao p o T
x 1/Zy
Db Fy
— | = ex — dox — 17
L?bo P ( /zo T ﬂ ( )

for some integration constants p,o and ppo and ref-
erence point zg. This reduces to Eq. (2) in the
case where 7' is constant, and to Eq. (1) in the
Note that this derivation
had two key ingredients: the Onsager symmetry

case where F, = 0.

L,s = Lgs and the ambipolarity condition. Also
note that the Onsager coefficients themselves do
not appear in Eq. (17).

The equilibrium conditions are further modi-
fied in the more general case where the thermal
friction term L.oT’ does not vanish. In the most
general case, the condition cannot be written much
more compactly than Eq. (14), though it more
nearly resembles some of the forms seen in the lit-
erature if it is rewritten as

LsoT”

T2
fon [ (5 2) 552

T Zo\NT  pe)  ZA\T  ps

s/=1

+

—0. (18)

As is discussed in Ref. [26], the equilibrium condi-
tion cannot always be written in the “transitive”
form seen in Egs. (1), (2), or (17), where the con-
dition reduces to a self-consistent set of pairwise
relations between all pairs of particle species.
However, it is often useful to look at the special
cases Where it can be expressed in the transitive
form. It can be written in this form in the absence
of thermal forces; this is Eq. (17). It can also be
expressed in this form in the case where there are

only two species. In that case, the zero-flux con-



ditions on particle species a and b become

LT’ +1 Fy o p, L (F, p,
ZpyLpT?  Zp\T  py Zo\T  pa

= (19)

LyoT’ 1 (Fo p, 1 (Fy p,
‘W*z—a(?—;@) ‘Z<T‘p_b>
=0, (20)

assuming L., # 0. These two conditions are the
same, since in the two-species case Eq. (13) implies
Lao/Zy = —Lgo/Z,. In this case, the condition can
be integrated to get

paO xo T
pbo o Labjz

(21)

In cases without thermal frictions, Eq. (21) de-
scribes familiar behavior: precisely the peaking
of high-Z species found in Egs. (1) and (2). In
cases with thermal frictions, the values of the On-
sager coefficients begin to matter; depending on
the dynamics of the particular system in question,
temperature gradients may tend to flush high-Z
species from high-density regions, or they may tend
to pull them in.

Essentially the same formalism used in this sec-
tion to describe temperature screening can also
be used to understand systems with steady-state
particle fluxes: the difference is simply that J; is
allowed to be nonzero for s # 0. This problem
has received less attention in the literature than
temperature screening has, but there are scenar-
ios in which it could be important; see Ref. [10].
The analytic expressions for ns in Ref. [10] can
be recovered from Eqs. (6) and (10) by direct in-
tegration (or equivalently from Eq. (14) with a
nonzero RHS). For cases with finite particle fluxes,
the values of some Onsager coefficients appear in

the equilibrium conditions.

4. A Simple Illustrative Example

Consider, for example, classical collisional trans-
port in a magnetized slab. Suppose the system has
Cartesian coordinates with unit vectors (&, 9, 2),
with a magnetic field B = BZ and all gradients in

the Z direction. Furthermore, suppose the plasma
consists of electrons, hydrogen ions, and some heavy
impurity ion species. Variables referring to the
hydrogen will be denoted with the subscript H;
variables related to the impurity will be denoted
by the subscript I. Let the plasma be strongly
magnetized, so that the cross-field transport of the
electrons is slow enough to be ignored.

Then the thermodynamic forces can be written
as

9.(1/T)
_az 1ngH
_8z IngI

X = (22)

and the corresponding fluxes can be written as

a+ (5/2)puvn. + (5/2)pror .

J — nHvH,z (23)

nivr «

Here v, , is the z-directed velocity of species s.
Suppose, for simplicity, that the plasma is inviscid.

Suppose boundary conditions fix some cross-
field heat flux while requiring that the & particle
fluxes vanish. The relevant components of the lin-
ear response matrix L;; can be calculated directly
by considering the equations of motion. For the
purposes of calculating ny and ny, the thermal-
conductivity-associated coefficient Log is unimpor-
tant (so long as the solution is expressed in terms
of some self-consistent T'(z)). Otherwise, in steady

state,
\Y R
mHVH~VVH:6VHXB—ﬂ+£ (24)
ng ng
\Y R
m[V[~VV[:Z[€V[XB—ﬂ+ IH7 (25)
nr nr

where e is the elementary charge and R, is the
friction force density between species s and s’.
This force will in general include both flow fric-
tions and thermal frictions. In the case of a heavy
impurity, it can be expressed [6] as

/

3T
Ryr = mugngrgr |:V[ —vyg+ 2B y:| (26)

Ry = 3T 5 (27)
ITH =— MniVig |\VHE —VJ 2eBy .

Here vy, is the collision frequency between species
s and s’, and the conservation of momentum re-

quires that mpgngVgr — mmnrryg.



Dropping the advective vs - Vv, terms on the
left-hand side of the equations of motion (since
these are quadratic in J), and dropping the 4 com-
ponent of the flow frictions (since these ultimately
contribute to J at a higher order in mgvss /ZseB,
which is a small parameter in a strongly mag-
netized plasma), the equations of motion can be

rewritten as

e e T oo 4ot )

HWHVH]

e el WAL 1 -1z | X
_3T/22; —1/%; 12

(28)

Here €40, €51, and £y are arbitrary matrix entries.
They would be specified by a temperature evo-
lution equation, but they are not necessary here.
Note that Eq. (28) is consistent with Eq. (13). In
this system, Eq. (21) becomes

pro_ (P_H>ZI (Z) s
Pio PHO Ty '

This is one of the simplest examples that can ex-

(29)

hibit temperature screening of impurities. In other
regimes, peaked temperature profiles can have the
opposite effect (pulling high-Z impurities into the
high-temperature regions rather than pushing them

away), according to differences in L.

5. Discussion

In the absence of thermal frictions, in the linear
(Onsager) non-equilibrium regime, this paper has
shown that the relative cross-field accumulation
of different ion species represented in results like
Eqgs. (1) and (2) follows from two key conditions:
(1) an ambipolarity condition on the flows of differ-
ent species and (2) symmetry of the Onsager coef-
ficients coupling the flow of one particle species to
a thermodynamic force acting on another species.
Apart from these conditions, no other details of
the system’s dynamics need to be specified. This
extends the argument from Ref. [27] to provide a
unified explanation for the accumulation of high-
7 species in cases with temperature gradients but
without thermal frictions.

In cases with thermal frictions, this paper has
shown that temperature screening effects arise nat-
urally from the same formalism, and can be related

in a simple way to the Onsager coefficients (though

of course, temperature screening has been derived
for many particular systems using the Onsager for-
malism before). This dependence on the Onsager
coefficients is a significant difference: temperature
screening can still be explained in terms of a generic
linear-response theory, but in order to calculate
the resulting equilibria it is necessary to compute
some of the L;; (as opposed to the case without
thermal frictions, where nothing need be known
about the Onsager coefficients except that they
enforce ambipolarity).

The distinction between cases with and with-
out significant thermal frictions is formally a ques-
tion of the relative sizes of LsoT’/T? and the other
terms in Eq. (13). It is clear that thermal frictions
can be neglected when the temperature gradient
vanishes or is sufficiently small. However, in gen-
eral, how small that gradient has to be will depend
on the details of the dynamics of the particular
system in question (that is, on the actual value of
Lso). For example, in the simple case discussed
in Section 4, thermal frictions can be considered
significant whenever 17/T is at least comparable
to nly/nyg or nf/n;.

The emphasis on VT'-dependent effects was mo-
tivated by the prominence of these effects in the
field, both theoretically and in experimental stud-
ies [28, 29, 30, 15, 31, 32]. However, an essentially
identical analysis could be used for cases in which
the thermodynamic force vector X included forces
other than the temperature and pressure gradi-
ent terms described in Eq. (6). There are a num-
ber of situations in which additional thermody-
namic forces may be important; see, for example,
Refs. [33, 41, 42, 43].

The discussion in this paper treats the elec-
trons as stationary. In collisional cross-field trans-
port, this is typically a reasonable assumption.
The smallness of the electron gyroradii means that
classical processes move them across field lines on
a timescale that is slow compared to ion-ion trans-
port. Indeed, this same assumption is at least im-
plicitly present in other derivations of Eqgs. (1) and
(2). However, if for a given system the electron
transport was not slow, there is no reason why
electrons could not be included in the transport
matrices as a species with charge Z. = —1. Re-

sults like Egs. (1) and (2) have very different im-



plications if they also apply to the electron popu-
lation. For example, if applied to all electron and
ion species in a quasineutral plasma, Eq. (1) im-
plies that the density profiles must be flat. This
makes sense, since on the longer timescales over
which electrons can cross field lines collisionally,
the plasma typically escapes from magnetic con-
finement.

The focus here has been on cross-field dynam-
ics. Of course, a related set of issues are impor-
tant in unmagnetized plasma systems [44, 45, 46,
47, 48], but these systems do not generally have
the same ambipolarity constraints that appear in
magnetized systems.

The present investigation is confined to the com-
paratively settled areas of near-equilibrium ther-
modynamics. Much of the literature on plasma
transport is concerned with this regime. The fur-
ther reaches of non-equilibrium thermodynamics,
particularly for systems far from equilibrium, would
require a different theory. It is not necessarily
clear that we should expect results like Eq. (1)
and (2) to continue to apply outside of the near-
equilibrium regime.
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Appendix A. Flux Constraints from a Vari-
ational Principle

The argument in Ref. [27] was based on calcu-
lating the maximum-entropy state in an equilib-
rium system. There is no single universally ac-
cepted variational principle that plays an anal-
ogous role in non-equilibrium systems. In fact,
the use of variational principles in non-equilibrium
thermodynamics is an active area of research, and
a number of authors have undertaken to develop
generally applicable variational principles for these
systems [49, 50, 51, 52].

In cases where Onsager symmetry holds, one
non-equilibrium variational principle is the prin-

ciple of minimum entropy production [53, 54, 55],

which is valid in systems close to equilibrium. This
variational principle is not strictly necessary to
the results in the rest of this paper, and it comes
with a number of serious limitations [56], but it
does establish a useful parallel with the maximum-
entropy principle in Ref. [27], so we will briefly
discuss it here, roughly following the discussion in
Ref. [55].

In the Onsager regime, the total entropy pro-
duction over some volume V is given by

N N N
S:/dngJiXi:/dngZLinin‘
[— Vo i=0j=0

(A1)

In the absence of any further constraints, S is min-
imized when

N
§=0

In cases were Onsager symmetry holds, this be-
comes

Ji = 0. (A.3)

In other words, the entropy production vanishes
when the fluxes vanish. In many cases of interest,
there is some additional constraint on some of the
fluxes or forces. If, for some k, Jj is fixed by a

constraint, then this simply becomes

Jisy = 0. (A4)

That is, any unconstrained fluxes vanish.
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