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The Fermi acceleration model was introduced to describe how cosmic ray particles are accelerated
to great speeds by interacting with moving magnetic fields. We identify a new variation of the
model where light ions interact with a moving wall while undergoing pitch angle scattering through
Coulomb collisions due to the presence of a heavier ionic species. The collisions introduce a stochas-
tic component which adds complexity to the particle acceleration profile and sets it apart from
collisionless Fermi acceleration models. The unusual effect captured by this simplified variation of
Fermi acceleration is the non-conservation of phase space, with the possibility for a distribution of
particles initially monotonically decreasing in energy to exhibit an energy peak upon compression. A
peaked energy distribution might have interesting applications, such as to optimize fusion reactivity
or to characterize astrophysical phenomena that exhibit non-thermal features.

I. INTRODUCTION

The Fermi acceleration model was introduced to de-
scribe how cosmic ray particles are accelerated to great
speeds by interacting with moving magnetic fields [1].
Since then, many variations of the model have been stud-
ied. One well known example is the Fermi-Ulam model
which describes the acceleration of an ensemble of non-
interacting particles bouncing between a moving wall and
a stationary wall [2]. Several studies have examined dif-
ferent billiard shapes [3–6], wall movement setups [3, 7–
9], and particle forces [10, 11] and how this affects particle
acceleration and accessible points in phase space.

Consider another variation where particles interact
with a moving wall while also undergoing pitch angle
scattering. Suppose that the pitch angle scattering,
also called Lorentz scattering, is effected by means of
Coulomb collisions of light ions with a background of
heavy ions. We assume that other types of collisions oc-
cur on a much greater timescale, and therefore do not
consider their effects in our model. We also assume that
the moving wall has a negligible effect on the density of
the heavy ions either by allowing these particles to pass
through, or stick to the wall as it compresses. Fig. 1
shows a graphic of this system. This setup is not unique
in that it considers Fermi acceleration with pitch angle
scattering, as other studies have investigated aspects of
this collisional effect [12–15]. However, these studies have
added many features simultaneously such as electromag-
netic fields, fluid effects, and complex scattering systems
which do not isolate the effects we report in this paper.

The unique aspect of our problem is the simplicity of
our system, paired with the limits in which we study the
collisions, which results in a distinctive scaling between
the change in energy and the initial energy of a parti-
cle. Since we are setting the Coulomb collision time as
the smallest time scale in the system, pitch angle scat-
tering will be the primary mechanism for reflecting par-
ticles back towards the moving wall, rather than being
reflected by any wall on the other side. Introducing this
stochastic effect into the system will influence the fre-
quency at which particles interact with the moving wall,

and therefore also affect the total evolution of the particle
distribution function. In particular, due to the relation-
ship between the mean free path for Coulomb collisions
and the speed of a particle, the rate at which a particle
is accelerated by the moving wall may be heavily depen-
dent on its initial speed and the collision frequency with
the background species. This would imply that such a
system could be tuned with these parameters to acceler-
ate distributions of particles in a desired way to achieve
a peaked energy distribution.

Figure 1: Particles interacting with a wall moving at
speed vw while pitch angle scattering with a background
species.

To get an idea of the underlying physics in the sys-
tem, first we study a simpler 1-D problem where we treat
Lorentz scattering by having particles reflected back to-
wards the moving wall after traveling one collisional mean
free path. We call this the plasma wall approximation,
since particles are being reflected at a fixed length. This
setup results in a new invariant conserved during com-
pression which significantly differs from the collisionless
adiabatic invariant. In a more sophisticated model, we
use a random walk representation of Lorentz scattering
and calculate the expected increase in energy from the
wall movement. This model predicts an inverse relation-
ship between the change in energy and the initial energy.
Specifically, it predicts that in the limit of small com-
pression (∆E � E0) with many pitch angle scattering
collisions (τcol � Tcomp), the change in energy scales
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with E
−1/4
0 , where E0 is a particle’s initial energy, τcol is

the time between collisions, and Tcomp is the total com-
pression time. We also further confirm the scaling in this
limit through a basic computational particle simulation.
The inverse relationship allows less energetic particles to
experience a greater increase in energy than more ener-
getic ones, resulting in narrower distributions compressed
in velocity space. This is the opposite relationship of that
described by the well known example of slowly compress-
ing a container of non-interacting particles. This unique
relationship and the non-Hamiltonian nature of the sys-
tem makes this problem interesting to study, particularly
because of the possibility of non-thermal features and
phase space non-conservation.

The paper is organized as follows. In Sec. II, we con-
sider a simple 1-D problem where particles are reflected
after traveling a mean free path and identify an invariant.
In Sec. III, we describe the implications of our 1-D ran-
dom walk model and determine how the energy increase
scales with a particle’s initial energy. Sec. IV features a
summary of our study and a discussion of the results.

II. 1-D PLASMA WALL APPROXIMATION

Many Fermi acceleration models can be simply de-
scribed by interactions of bouncing balls with moving
and stationary rigid walls. Our variation is characterized
by the inclusion of two species of ions with significantly
different masses and the interactions between them. To
get an idea of the physics of this system, we start by
studying a simpler problem where particles are reflected
after traveling a mean free path. This simple plasma wall
approximation captures the key physics phenomena.

A. Model and Assumptions

Consider a 1-D model of an ensemble of ions in a box
interacting with a rigid wall moving at constant speed vw,
much smaller than any particle speed. A second ensemble
of more massive ions is assumed to be nearly stationary in
the background and either passes through or sticks to the
moving wall as it compresses. The interspecies Coulomb
collision time is assumed to be the smallest time scale,
followed by the total compression time and then the col-
lision time for the light ions interacting with themselves.
This time ordering prevents the light species from ther-
malizing during compression. In the collisionless limit,
particles bounce back and forth between the moving wall
and a stationary wall at the other end of the box, sepa-
rated by distance L and conserving action. In the highly
collisional limit, pitch angle scattering is considered to
be the primary mechanism of reflecting particles back to-
wards the moving wall. A simple way to model this effect
in the 1-D problem is to have particles be reflected after
traveling one mean free path, λmfp = αv4, into the box,
where α is a constant, and v is the particle speed. The

length of the box L is much greater than any particle’s
mean free path, so most particles are reflected before ever
reaching the stationary wall on the other side. Therefore,
that wall can be neglected. Fig. 2 shows a graphic of the
plasma wall approximation.

Figure 2: Particles interacting with a moving wall while
being reflected after traveling a mean free path.

B. Invariants of Motion

Key aspects of the pitch angle scattering can be ex-
pressed by the 1-D plasma wall model. In particular, the
nature of the interaction is non-Hamiltonian, allowing for
phase space non-conservation, although the system still
exhibits invariants. The adiabatic invariant for collision-
less particles being compressed in a 1-D box with width
L is the well known

J1 = vL, (1)

and it turns out that the plasma wall model holds the
invariant

J2 = ∆L+
1

4
αv4, (2)

where ∆L is the total distance compressed, taken to be
negative. The moving wall displacement over a particle
bounce time is given by

dL = −vwtbounce, (3)

where tbounce = 2αv3 is the amount of time a particle
with speed v spends between interactions with the mov-
ing wall. By making this substitution and using the re-
lation dv = 2vw, the equation becomes

dL = −αv3dv. (4)

Finally, by integrating and rearranging we are left with

∆L+
1

4
αv4 = C, (5)

where C is some constant which we will denote as J2.
Although this invariant is a direct result of vw being a
small parameter, it is not formally an adiabatic invariant.
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Adiabatic invariants are synonymous with action conser-
vation in slowly varying Hamiltonian systems, however
this system is non-Hamiltonian, and we will show it does
not conserve total phase space.

These two invariants have a stark physical difference
since particles which conserve J1 will experience a greater
acceleration rate if they begin with a greater initial ve-
locity, while the opposite is true for J2. This relationship
occurs because in the plasma wall model, fast particles
spend a greater amount of time away from the wall since
the mean free path scales with v4 which is a phenomena
unique to Lorentz scattering. The fact that less energetic
particles achieve a greater increase in energy over some
compression time causes velocity space compression.

To gain some insight on how the particle distribution
function evolves as a whole, we can consider that there is
some distribution of the amount of time a particle spends
between bounces. The evolution of the particle distribu-
tion function f(v, t) during some small compression is
then described by the advection-diffusion equation

t
∂f(v, t)

∂t
+ 2vw

∂f(v, t)

∂v
=
δt2

2

∂2f(v, t)

∂t2
, (6)

where t and δt are the mean and standard deviation of
the bounce time distribution. This equation is derived in
a similar way as the Fokker-Planck equation. For both
collisional limits, the solution mean follows the respective
invariant with variance

σ2 =
δt2vw(v − v0)

2
. (7)

Fig. 3 shows the evolution of a uniform energy distribu-
tion during compression as it conserves the invariant J2

with no time variance in the bounce distribution (δt = 0).
Since the particles with greater energy experience less
acceleration, the distribution becomes compressed in ve-
locity space, resulting in a narrower peaked distribution.

Figure 3: Evolution of a step energy distribution con-
serving the invariant J2 = ∆L+ 1

4αv
4.

C. Phase Space Volume

Although we have identified compression in velocity
space, this does not necessarily mean that total phase
space is compressed. As particles gain energy from inter-
acting with the moving wall, they will occupy a greater
amount of physical space since the mean free path in-
creases with an increased speed.

To understand how these effects compete, consider an
initial distribution uniformly distributed in 2-D (x, v)
phase space between (v = v0, v = v1) and (x = 0, x =
λmfp). When the rigid wall begins to move, particles
will gain energy from interacting with this wall. As pre-
viously shown, the less energetic particles will experience
the greatest increase in speed (∆v0 > ∆v1). The initial
and final phase space volumes are given by

Pi =

v1∫
v0

αv4dv (8)

and

Pf =

v1+∆v1∫
v0+∆v0

αv4dv, (9)

respectively. In the limit of small wall compression
(∆v/v << 1) the change in phase space volume to first
order in ∆v0,1 is

∆P = α(v4
1∆v1 − v4

0∆v0). (10)

In this limit we can also approximate the form of ∆v as

∆v = 2vw
Tcomp

2αv3
. (11)

Making this substitution into (10) yields

∆P = vwTcomp(v1 − v0), (12)

which clearly is greater than zero. Therefore, the expan-
sion in physical space causes a net phase space volume
increase despite the compression in velocity space.

III. RANDOM WALK MODEL

The plasma wall model described in Sec. II of ions
reflecting after traveling one mean free path provides in-
sight into the physics of Fermi acceleration with Lorentz
scattering, however it fails to fully capture the effect and
cannot easily be scaled to three dimensions. A more accu-
rate model of pitch angle scattering can be described with
a random walk rather than forcing particle reflection at
a mean free path. This is also relatively straightforward
to extend from 1-D to higher dimensions. The random
walk model turns out to retain the most important fea-
ture, which is the inverse relationship between a particle’s
change in energy and its initial energy. Furthermore, in
the limit of many collisions during the compression time,
we can estimate the exact form of this relationship.
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A. Additional Assumptions

Particles now take a random walk with the step size
equal to one mean free path rather than being reflected.
After each particle collision time τcol = αv3, a parti-
cle will either continue on in the same direction or be
reflected, exhibiting a random walk. This permits a
stochastic component into the system since a particle
bounce time is now described by a probability distribu-
tion rather than a set time. A graphic of the random
walk model is shown in Fig. 4.

Figure 4: Particles interacting with a moving wall while
taking a 1-D random walk with a step size equal to a

collisional mean free path.

B. 1-D Energy Scaling

In a 1-D random walk of n steps, the expected number
of equalizations (or returns to the origin) r in the limit
of large n is interestingly given by

E[r] =

√
2

π

√
n (13)

[16, 17]. The number of steps in our particle system can
be expressed in terms of the total compression time Tcomp

and the collision time, τcol as n = Tcomp/τcol. Therefore,
for small compression (∆v � v0) the expected increase
in velocity for a particle with initial speed v0 is

E[∆v] =
2
√

2√
π

√
Tcomp

αv3
0

vw. (14)

This yields an unusual dependence of the speed in-
crease with v−3/2 or equivalently the energy increase with
E−1/4. The inverse dependence implies that slower, less
energetic particles will receive a greater kick in energy
than more energetic particles, resulting in the expected
velocity space compression. Fig. 5 shows the evolu-
tion of a uniform energy distribution adhering to the
expected velocity gain given by (14). Here, we define
Tcomp = −∆L/vw.

Figure 5: Evolution of a step energy distribution from
compression while following the rate of the expected
number of wall interactions given by (14).

The compression of the distribution in velocity space
is similar to that demonstrated in Fig. 3, although to a
lesser degree. This is caused by the random walk model
having a weaker inverse scaling between a particle’s speed
and the acceleration it will experience. In this figure we
have also assumed that all particles evolve according to
the expected energy gain and have not accounted for the
full distribution of energy gains from the random walk
model. Nevertheless, we still see the expected compres-
sion in velocity space. As the distribution evolves, it be-
comes narrower and develops a peak in the lower energy
regime of the distribution. Since the system is stochastic,
the total phase space is consequently also not conserved
as in the plasma wall approximation.

C. Higher Dimensions

For systems of higher dimension, the scaling law given
by (13) for the 1-D problem is expected to hold, with
the only difference being the constant factor. To demon-
strate this, consider an m-dimensional spatial system
with the wall moving parallel to any one of the dimen-
sions. Suppose that particles randomly walk along a uni-
form m-dimensional lattice with gridpoints separated by
a mean free path distance. If each scattering direction
is equally likely to occur at a step and a particle takes a
total number of n steps, then the total number of these
steps expected to be along the direction parallel to the
wall’s movement is n/m. Since the system has trans-
lation symmetry in all directions perpendicular to the
wall’s movement, this setup is equivalent to a 1-D random
walk of n/m steps, and therefore the expected number of
particle-wall interactions is given by

E[r] =

√
2

πm

√
n. (15)
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Understandably, this is less than the strictly 1-D case
since particles can now ‘waste’ steps on other degrees
of freedom. In a realistic 3-D system, particles are not
restricted to a grid so the constant factor in (15) will be
different to account for scattering at any spherical angle.

D. Numerical Results

A simple particle simulation was written to investigate
the effect of Coulomb pitch angle scattering in the 3-D
random walk case. A total of 105 particles were initial-
ized at the surface of a moving, rigid wall with velocities
directed away from the wall. The particles were divided
into ten groups with different initial velocities in order
to determine how the speed increase scaled with the ini-
tial speed. There was no stationary wall implemented
on the other side of the simulation domain, so pitch an-
gle scattering was the only mechanism responsible for
turning particles back towards the moving wall. Colli-
sions were simulated by randomly changing a particle’s
pitch angle every time it traveled one mean free path,
λmfp = αv4. Fig. 6 shows the average change in velocity
for each subgroup as a function of their initial velocity
after a compression time of about 5000 collisions for the
least energetic group of particles.

Figure 6: Velocity increase following compression as a
function of initial velocity. In this simulation, α = 0.1,
vw = 10−9v0, and Tcomp = 5000τcolv0 .

Clearly the result shows an inverse relationship
between the two variables as shown earlier in the 1-D
case. The scaling is near ∆v ∼ v

−3/2
0 (or equivalently

∆E ∼ E
−1/4
0 ) as shown by the fitting curve, which

is also consistent with our analytic prediction from
earlier in the section. This inverse scaling is the key to

obtaining the non-thermal peaked distributions shown
in Fig. 3 and Fig. 5 from velocity space compression.

IV. SUMMARY AND DISCUSSION

We presented a simple model for a two species ion
ensemble interacting with a moving wall while also
undergoing pitch angle scattering. We predicted an
interesting inverse relationship between the change in
energy from compression and the initial particle energy.
It follows that less energetic particles experience greater
acceleration, resulting in compression of the particle
distribution in velocity space. This velocity space
compression could generate potentially favorable peaked
energy distributions as shown in Fig. 3 and Fig. 5.

The non-thermal phenomena predicted by these mod-
els could be of interest to various areas of plasma physics
since we are considering Lorentz scattering of charged
particles. In particular, due to the mass difference
between the two species, the model could describe some
aspects of p11B interactions. This is a potential fuel
source for aneutronic fusion [18] and the velocity space
compression could provide a mechanism for obtaining
favorable proton energy distributions to increase fusion
reactivity [19–21]. The moving wall in this case could
represent either a physical wall compressing, or a
moving magnetic field structure in a magnetic mirror
confinement setup [22]. The model could also be used
to describe a variation of cosmic ray acceleration, where
the Lorentz scattering mean free path is small compared
to the system size. Identifying acceleration mechanisms
in astrophysical settings using Fermi acceleration models
is an ongoing area of study [23–25] and the phenomena
outlined in this paper may be applicable to the field.

We opted for simplicity in our models to isolate the
important effects described in this paper. However, in
real plasmas there are more complex features such as
collisions within a species itself which allows ions to ther-
malize. Thermalization could significantly dampen any
velocity space compression, which is why we examined
the limit where interspecies collisions dominate over the
light ion collisions with themselves. In this limit we have
identified some unique effects of Fermi acceleration with
Lorentz scattering. The most interesting aspect of the
results is the potential for non-thermal, non-Hamiltonian
features in the compression due to the non-conservation
of phase space.
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