
PredART: Towards Automatic Oracle Prediction of Object
Placements in Augmented Reality Testing

Tahmid Rafi
md.tahmidulislam.rafi@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

Xueling Zhang
xueling.zhang@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Xiaoyin Wang
xiaoyin.wang@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

ABSTRACT

While the emerging Augmented Reality (AR) technique allows a

lot of new application opportunities, from education and communi-

cation to gaming, current augmented apps often have complaints

about their usability and/or user experience due to placement er-

rors of virtual objects. Therefore, identifying noticeable placement

errors is an important goal in the testing of AR apps. However,

placement errors can only be perceived by human beings and may

need to be confirmed by multiple users, making automatic testing

very challenging. In this paper, we propose PredART, a novel ap-

proach to predict human ratings of virtual object placements that

can be used as test oracles in automated AR testing. PredART is

based on automatic screenshot sampling, crowd sourcing, and a

hybrid neural network for image regression. The evaluation on a

test set of 480 screenshots shows that our approach can achieve an

accuracy of 85.0% and a mean absolute error, mean squared error,

and root mean squared error of 0.047, 0.008, and 0.091, respectively.

KEYWORDS

Augmented Reality, Virtual Objects, Placement Error

ACM Reference Format:

Tahmid Rafi, Xueling Zhang, and Xiaoyin Wang. 2022. PredART: Towards

Automatic Oracle Prediction of Object Placements in Augmented Reality

Testing. In 37th IEEE/ACM International Conference on Automated Software

Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.3561160

1 INTRODUCTION

Augmented Reality (AR) is an emerging technology that allows soft-

ware users to view real-world scenes and objects with computer-

enhanced perceptual information [10]. There have been tens of

thousands of AR apps available for various AR devices (e.g., Android

phones with ARCore support [7], iPhones with ARKit support [2],

Hololens [3], Oculus [4]), and they have found numerous appli-

cation scenarios such as computer-aided manual operations (e.g.,

driving support [35], medical treatments [19]), navigation [41],

education [49], remote conference [27], and entertainment [38].

Compared with traditional GUI apps, AR applications can affect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3561160

users’ daily lives in a deep and seamless manner, so bugs in AR

apps may lead to more severe consequences [51]. For example, the

misbehavior of an AR driving navigation app may cause immediate

damage to the physical world surrounding the users.

In AR apps, to enable experiences that make virtual content ap-

pear to be attached to real-world objects (e.g., surfaces such as tables,

floors, walls, or human faces), virtual objects are typically placed at

certain points (called anchors) [22] relative to the real-world objects

(called trackables) [22] identified by AR devices. However, bugs in

the applications and platforms, as well as limitations of existing

computer vision and sensoring techniques, may cause miscalcu-

lation of trackables’ positions and imperfect placement of virtual

objects. These will cause human users to feel the added virtual ob-

ject as being floating or misplaced. In certain cases, such placement

errors may even occlude real-world objects or other virtual objects,

leading to dysfunction or more severe consequences. To make sure

AR systems and apps meet users’ expectations, precision of virtual

object placement is an important measurement of AR applications’

usability during AR software testing [29]. In this paper, we refer to

the distance from a virtual object’s placed location at run-time to

its desired location (on the trackables) as its Placement Gap.

AR software testing is very difficult in real-world scenarios be-

cause it is typically infeasible to construct enough physical scenes

(e.g., various indoor rooms and outdoor settings under different

lighting conditions) to exercise AR apps. Therefore, frameworks

often provide virtual reality scenes for testing purposes. For ex-

ample, Figure 1 and Figure 2 show two virtual scenes provided

by GoogleAR [7] and Unity [6], respectively, for testing purposes.

Within virtual reality scenes, although a test script can automat-

ically move the camera to view different parts of the scene and

place virtual objects at different locations, the testing process is

still often manual because a human tester needs to either watch

the test execution or watch videos or screenshots recorded during

test execution to decide whether an object placement is noticeably

imprecise. Furthermore, as shown later in our dataset (section 4),

different users may have different feelings about the same object

placement gap, especially when the wrong placement is not far

from the proper position. Therefore, multiple human testers may

be required to acquire an unbiased and thorough understanding

of object placement accuracy in a test execution. Note that the

distance between the object placement position and the ground

truth position (which is often not accessible in physical scenes but

accessible in virtual scenes) may not be a good oracle, because

various factors such as the viewing angle, distance, and the object

size/character may have influence on whether an object placement

looks real or unrealistic.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

Figure 1: Virtual AR Testing scene provided by Unity MARS

Figure 2: Virtual scene provided with Google ARCore

To reduce human effort and potential bias in the testing of object

placements, in this paper, we develop a novel technique, PredART,

to explore the feasibility of predicting whether the placement of an

object is noticeably imprecise according to human users. The pre-

diction results can be used for automatic assertions in AR software

testing and raise warnings to human testers only when a poten-

tial imprecise placement is found. Our research process follows

the general practice of design science [24] [59]. In particular, we

first analyzed the problem domain to find out that the judgment

of whether object placements are realistic relies on cognition from

multiple human users. Furthermore, we found that it is possible

to automatically move cameras in test scenes to generate a large

number of screenshots for the training and testing of deep learn-

ing models. Based on these observations, we designed our deep

learning-based solution in three major steps. First, we use a simple

virtual test scene and an automatic scene controller to create screen-

shots of virtual objects with different placement gaps from various

viewing angles and distances. Second, we send the screenshots to a

crowd-sourcing website (e.g., Amazon Mechanical Turk [9]) to ask

for multiple normal users to label each screenshot and calculate

a reality score based on the labels. Third, we train a deep image

regression model with the labeled screenshots together with their

recorded camera meta information and use the model for test oracle

prediction. The major challenge in the third step is that the image

forms a much larger feature vector than the meta information, so

off-the-shelf deep regression tools train a model dominated by the

image features. To address the challenge, we combine a convoluted

neural network (CNN) and a multiple-layer perceptron (MLP) to

construct a hybrid deep learning model, so that the two parts of

the features can be better balanced.

The goal of our solution is to achieve high accuracy in the predic-

tion of human judgements on object placements, and to outperform

state-of-the-art directly applicable learning models. The solution

should also be applicable in different scenarios. To evaluate whether

PredART achieves these goals, we studied the accuracy of PredART

by applying it to four test scenes from the Unity MARS Test Frame-

work [6] to explore the effectiveness of oracle prediction with deep

image regression. In particular, we randomly moved the camera in

the test scene, placed virtual objects on different surfaces, and col-

lected 480 testing screenshots. Then, we used Mechanical Turk [9]

to label them, and applied PredART to predict their user ratings as

test oracles. Our empirical evaluation has the following findings:

• PredART can achieve a Mean Absolute Error (MAE) of 0.047,

a Mean Squared Error (MSE) of 0.008 and a Root Mean

Squared Error (RMSE) of 0.091. PredART can achieve an

accuracy of 85.0% on predicting the average user ratings.

• PredART largely outperforms ResNet [23], the state-of-the-

art image regression technique, by 56.9 percentage points,

showing that the combination of CNN and MLP to balance

feature weights in a hybrid neural network is effective.

• The object type and scene have a minor influence on predic-

tion accuracy.

• PredART can still achieve an MAE of 0.101 and an MSE of

0.041 when performing cross-object prediction.

In sum, this paper makes the following major contributions:

• A novel method for predicting the reality of virtual objects

with placement errors that can be used as a test oracle in

augmented reality testing.

• A labeled public dataset1 for future research efforts.

• An empirical evaluation based on 480 screenshots taken

during a random exploration of four Unity Mars testing

scenes with three different virtual object placements.

The remainder of the paper is organized as follows. In Section 2,

we will introduce some background knowledge of AR Testing and

the techniques used in PredART. In Section 3, we will describe

the details of each step in our approach. After that, we present

our empirical evaluation results in Section 4, and discuss some

important issues in Section 5. Before we conclude the paper in

Section 7, we further summarize related works in Section 6.

2 BACKGROUND

In this section, we introduce the background knowledge of several

tools and techniques used in our research. Unity Mars is the testing

environment we target. Amazon Mechanical Turk is the platform

1Our dataset and scripts are all available at https://sites.google.com/view/predart2022

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

we use to label our dataset, and image regression, CNN, and ResNet

are techniques we leverage or compare to.

2.1 Unity Mars Test Framework

Unity [1] is a real-time 3D development platform that includes a

game-engine (Unity game engine) and an editor. It is used in a

variety of industries, including cross-platform game development

(mobile, PC/console, and AR/VR), automotive, transportation, and

manufacturing (design and prototyping), architecture, engineering,

and construction (engineering design, simulation), and film (ani-

mation, cinematic). Currently, there are multiple platforms for XR

development (ARCore [22], ArKit [2], Hololense [3], Occulus [4],

etc.) with their own unique implementations and device-dependent

sets of features, which introduces additional complexity for soft-

ware testing. As a cross-platform development tool, Unity provides

a superset of XR2 features in different package structures. To sepa-

rate platform and device-specific implementations from the core

game engine, Unity introduced a plug-in framework called the

XR plug-in framework [5]. This enables software and hardware

providers to develop their own Unity plugins to integrate with the

Unity engine and make full use of its features via a common API.

The XR plug-in framework exposes APIs for common function-

alities supported by Unity. These APIs are grouped into multiple

subsystems (Figure 3) (e.g., display, faces, image tracking, object

tracking, etc.), collectively called XR subsystems.

Unity introduced MARS (Mixed and Augmented Reality Subsys-

tem) in 2020 [37], which provides a suite of specialized AR software

tools to help developers author, test, and launch cross-compatible

AR apps [36]. Unity MARS provides extensive testing facilities for

app developers. The MARS basic environment simulation pack in-

cludes a variety of virtual scenes that mimic real-world settings in

indoor scenes (living room, bedroom, kitchen, dining room, and

office), large indoor scenes (museum, factory, and warehouse), and

outdoor scenes (park, and backyard). Unity MARS comes with sepa-

rate templates of pre-authored scenes and support scripts represent-

ing single use-case examples of Unity MARS features. The MARS

simulation system supports simulation of planes, body tracking,

facial landmarks, point clouds, and raycasting.

A MARS session contains a programmable ARCamera which

simulates the movement of a human user (called a MARS user)

inside the virtual scene. There are three ways the programmable

ARCamera can be controlled: 1) Connected Device—feeding move-

ment and position information from an actual device connected via

USB in real time; 2) Playables—playing back a pre-recorded motion

along a path inside a virtual scene; 3) Custom Script—moving in-

side the virtual scene on a pre-programmed path using a custom

ARPose driver script. Connected Device—feeding and Playables are

commonly used in regression testing with manual test cases, while

custom scripts can facilitate automatic testing. In our approach and

evaluation, we rely on custom scripts to automatically move the

camera and create the training set and the evaluation set.

2XR is an umbrella term that includes virtual reality, augmented reality, and mixed
reality.

Figure 3: Unity Platform Architecture

2.2 Amazon Mechanical Turk

Amazon Mechanical Turk [9] is a crowdsourcing website provided

by Amazon that allows individuals or organizations (called re-

questers) to outsource their processes and work to remotely located

workers who can perform the tasks online. The requesters post

tasks called HITs (Human Intelligence Tasks), which could include

anything from simple data labeling, such as identifying the content

in an image, to more subjective efforts such as filling out surveys,

summarizing texts, and fixing language errors. Amazon Mechani-

cal Turk provides worker filters for the requesters to choose only

qualified workers. Some common criteria include the number of

HITs being approved and the percent of HITs being approved. More

advanced filter criteria may further select a specific group, such as

females, senior citizens, or students. However, Amazon Mechanical

Turk does not provide any criteria on worker expertise, so tasks

that rely on common sense can be relatively well finished, while

tasks requiring strong expertise, such as software bug fixing, may

not be suitable for it. In this paper, we are using it to judge the

reality of virtual objects with placement gaps, which relies mostly

on intuition rather than expertise.

2.3 Image Regression, CNN and ResNet

Regression analysis is a statistical process that estimates the rela-

tionships between a dependent variable and a number of indepen-

dent variables, called features. Image regression is a technique to

predict a numeric value from an image. The basic difference be-

tween image classification and image regression tasks is the target

variable. In image regression, the target value is continuous, while

in image classification, the target value is discrete. For example, if

we need to predict house prices based on the images of houses, it

will be an image regression task.

CNN is a powerful neural network architecture mainly used for

both image classification and image regression. CNNs are regular-

ized versions of MLP, which usually mean fully connected networks.

In the fully connected network, each neuron in one layer is con-

nected to all neurons in the next layer. This characteristic of “full

connectivity” makes them prone to overfitting. Therefore, it needs

regularization to prevent it from overfitting. CNN takes advantage

of hierarchical patterns in the data points and assembles patterns

of increasing complexity by using smaller and simpler patterns

embedded in filters.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

ResNet [23], which was proposed in 2015, introduced a new

architecture called the Residual Network. In order to solve the

problem of the vanishing and exploding of gradient functions, this

architecture introduced the concept of a Residual Network. There

is a technique called skip connections in this network. The skip

connection skips the training of a few layers and connects directly

to the output. By allowing the network to fit the residual mapping,

it learns the underlying mapping instead of layers. ResNet is the

most popular neural network used in computer vision. It is able

to handle image inputs as well as additional meta information by

concatenating them to image features. In our paper, we use ResNet

as our baseline approach and propose a hybrid neural network

combining MLP and CNN to solve our specific problem.

3 APPROACH

As shown in Figure 4, our approach has three main steps. The

first step is the automatic generation of training screenshots, in

which we use an automatically moving camera to take pictures

of different virtual objects being placed with different placement

gaps. The second step is data labelling, in which we use Amazon

Mechanical Turk to have multiple users label the screenshots and

calculate their user ratings. The third step is deep image regression,

in which we use the labeled screenshots to train a hybrid deep

neural network combining CNN (Convolutional Neural Network)

and MLP (Multi-Layer Perceptron) network for prediction.

3.1 Creating Screenshots

Whether the placement of a virtual object is realistic depends on

various factors, e.g., distance, viewing angle, height of the observer

(represented as horizontal angle), and the dimension of the virtual

object itself with respect to the surrounding items. Therefore, we

need a dataset that exhaustively covers a wide range of values for

these variables. Therefore, our first step involves manually setting

up a testing scene with an object to be placed, and automatically

placing the ARCamera in different poses (positions and viewing

angles) with custom scripts. The screenshots are grouped into two

sets for deep image regression. These two groups served as the

training set and the test set.

For the first group of screenshots (training set), we consider a

basic indoor living room scene with only a table (Figure 5). We

choose an object model from a set of three models of different

sizes (small sized object—apple, medium sized object—table lamp,

and large sized object—chair) to be placed on a horizontal plane

(Placement Plane). The small and medium-sized objects are placed

on the tabletop plane, while the large-sized object is placed on the

floor plane. The objects are placed at varying placement gaps3,

ranging from −2 cm to 8 cm for small-sized objects, −4 cm to 8 cm

for medium-sized objects, and−4 cm to 10 cm for large-sized objects.

Positive and negative placement gap thresholds are chosen by trial

and error until the results are visually significantly imprecise.

For each object placed at a different placement gap, we use a

custom ARPose driver script to set the camera pose (position and

3Placement gap refers to the distance between the placement plane and the plane
parallel to the placement plane passing through the object’s bottom-most point, where
0cm means the object’s bottom-most point is touching the placement plane, negative
placement gap means the object is submerged into the placement plane, and positive
placement gap means the object is floating over the placement plane.

rotation). We consider the distance of the camera from the center

of the target object to be 2 ft and 4 ft for small and medium-sized

objects and 4 ft and 6 ft for large-sized objects. We choose these

distances because when using them, the placed object fits well on

the screen. For each combination of object, placement gap, and

distance, we then consider the horizontal viewing angle (with re-

spect to the horizontal plane) and the vertical viewing angle (with

respect to an arbitrary vertical plane). The horizontal viewing angle

is chosen from 20◦, 40◦, and 60◦, and the vertical viewing angle

is chosen from a range from 0◦ to 300◦ with 60◦ increment. Refer

to Table 1 for a detailed description of the combination of feature

values.

Given the position of the object and other feature values (place-

ment gap, distance, horizontal and vertical viewing angle), the

ARPose drive script calculates the position and rotation of the cam-

era by solving a spherical equation. For each camera position, Unity

renders a new frame and the ARPose driver script takes a screenshot

using Unity’s ScreenCapture API.

For the second group of screenshots (test set), we consider a

set of three indoor scenes (dining room, living room, and office),

one large indoor scene (factory/warehouse), and one outdoor scene

(backyard) as the test scene. Compared to the scenes used for the

first group of screenshots, the scenes used in this phase contain

more objects, making them closer to real scenes. Therefore, we can

also test whether a model trained in simpler scenes can be used in

more complicated scenes. We further use a pseudo-random number

generator to choose different feature values within a range.

Four different placement gaps are chosen for each scene and

object combination, ranging from −2 cm to 8 cm for small-sized

objects, −4 cm to 10 cm for medium-sized objects, and −6 cm to

12 cm for large-sized objects with a 1 cm increment step. Similarly,

for each scene, virtual object, and placement gap combination, two

different floating-point distance values are chosen from the range

of 1 ft to 5 ft for small and medium-sized objects, and from the range

of 3 ft to 8 ft for large-sized objects. For horizontal and vertical

viewing angles, we chose values ranging from 10◦ to 80◦ with 1◦

increment and from 0◦ to 359◦ with 1◦ increment step, respectively.

3.2 Data Labelling

Determining whether virtual object placement is realistic relies

on users’ perception. Therefore, screenshot labeling needs to be

done by multiple qualified and responsible users, and Amazon

Mechanical Turk is the most popular platform to support it. We

collect all of the screenshots and package them as HITs on Amazon

Mechanical Turk. For each HIT, we ask the worker to observe the

colored virtual object and choose one of two labels: realistic and

floating or cutoff. We do not use the term unrealistic because it may

mislead the worker to consider factors other than the placement

gap (e.g., the color of the object). To further help them, we give

example screenshots as shown in Figure 6, where virtual objects

are placed exactly on the surface, largely above the surface, and

largely below the surface, respectively. To make sure the workers

are qualified and responsible, we use the filter to select only workers

who have finished more than 10,000 approved HITs and have had

more than 98% of their finished HITs approved, according to an

existing guideline [40].

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Camera Driver
Scripts

Training Scene

Screenshots Mechanical
Turk

Virtual Objects

Labeled
Dataset Training Oracle

Prediction Model

Testing
Screenshots

Pass and
Failure Reports

Figure 4: PredART Overview

Table 1: Training Set Feature Description

Features
Small sized object

(apple)

Medium sized object

(table lamp)

Large sized object

(chair)

Placement Gap −2cm / 0cm / 2cm / 4cm / 6cm / 8cm −4cm / −2cm / 0cm / 2cm / 4cm / 6cm / 8cm −4cm / −2cm / 0cm / 2cm / 4cm / 6cm / 8cm / 10cm

Distance 2ft / 4ft 2ft / 4ft 4ft / 6ft

Horizontal viewing angle 20◦, 40◦, 60◦

Vertical viewing angle 0◦, 60◦, 120◦, 180◦, 240◦, 300◦

Total # of combination 6 × 2 × 3 × 6 = 216 7 × 2 × 3 × 6 = 252 8 × 2 × 3 × 6 = 288

Total # of training screenshot 180 + 252 + 288 = 720

Figure 5: Automatically generated training screenshots (a)

a small object placed on table top plane at 4cm placement

gap, (b) a medium object placed on table top plane at 6cm

placement gap, (c) a large object placed on floor plane at 0cm

placement gap.

Table 2: # of screenshots generated for test data

Scene and object combination 12

Placement Gap 4

Distance, horizontal, and vertical

viewing angle combination
10

total 12 × 4 × 10 = 480

Judgment of realistic object placement can be difficult for some

screenshots, but we do not provide an intermediate option (e.g., not

very realistic) because wewant the workers to try their best to make

a decision instead of retreating to a simple intermediate option.

Instead, we use multiple (i.e., five in our experiment) workers and

average their votes to handle the controversial cases. For example,

a screenshot with unanimous realistic votes will get a label of 1.0,

Figure 6: An Exemplar HIT and Instructions

while a screenshot with only three realistic votes out of five will

get a label of 0.6. PredART uses a regression model instead of

a classification for prediction so that it is able to provide a user

rating as a test oracle not only when the object placement is clearly

realistic or unrealistic, but also when it is disputable among users.

3.3 Hybrid Image Regression

Once we have the labeled screenshots along with the other vari-

ables, i.e., horizontal angle, vertical angle, distance from the object,

dimension of the object, etc., the next challenge is to feed the data

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

to a machine learning model. As the screenshots have at least thou-

sands of pixels to be clear enough for human judgement, simply

concatenating the other variables as features will significantly un-

dermine their effects, resulting in a bias model. Therefore, a hybrid

method needs to be employed to achieve more sensible results.

In particular, tomake sure the feature vectors of the image (which

are high-dimensional) are not dominating over meta-information

features and to take advantage of CNN for image data, we developed

a hybrid neural network with the structure shown in Figure 7.

Numeric Features Image Feature

Convolutional
Neural Network

Multilayer
Perceptrons

Concatenation Layer

Outputs Lower Dimension
Outputs

Dense Layers

Single
Value
Output

Figure 7: Structure of the Hybrid Image Regression Model

From the figure, we can see that the neural network model uses

two separate networks to process numerical and image inputs. In

particular, PredART feeds the numerical features of screenshot

meta information (vertical viewing angle, horizontal viewing angle,

distance, and placement gap) into an MLP network. At the same

time, it feeds the screenshot as an image input into the CNN, which

generates lower-dimension output. The first branch (numerical fea-

tures) in particular accepts 32-d input, whereas the second branch

(image features) accepts 128-d input. These branches operate inde-

pendently of each other until they are concatenated.

To combine the features, we designed a concatenation layer

where the output of theMLP network (formeta information) and the

CNN (for image) are concatenated. With further dense layers, the

concatenated output is finally reduced to a single-dimensional value,

which is the final prediction output. The weights in the neural net-

work are randomly initialized. Neural networks are stochastic algo-

rithms. The model is compiled with "𝑚𝑒𝑎𝑛_𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_
𝑒𝑟𝑟𝑜𝑟 " loss (which computes the mean absolute percentage error be-

tween 𝑦𝑡𝑟𝑢𝑒 and 𝑦𝑝𝑟𝑒𝑑) and an Adam optimizer [28] with learning

rate decay (Learning rate decay is a technique for training modern

neural networks. It starts training the network with a large learn-

ing rate and then slowly reduces/decays it until a local minima is

obtained. It is empirically observed to help both optimization and

generalization). To be specific, the MLP module contains 3 layers

, while the CNN module contains 5 layers with 3x3 convolution

kernels and padding size = 1.

4 EVALUATION

In this section, we present an evaluation of PredART on 480 screen-

shots taken from test scenes of the Unity Mars framework.

Figure 8: Automatically generated test set screenshot (a)

small object, red, misplacement: −1cm, distance: 3.5925ft, x-
angle: 12◦, y-angle: 287◦; (b) small object, green, misplace-

ment: 2cm, distance: 1.794ft, x-angle: 29◦, y-angle: 67◦; (c)
medium object, red, misplacement: 9cm, distance: 4.22ft, x-
angle: 28◦, y-angle: 50◦; (d) medium object, blue, misplace-

ment: 3cm, distance: 2.1555ft, x-angle: 11◦, y-angle: 348◦; (e)
large object, red, misplacement: −3cm, distance: 4.8533ft, x-
angle: 29◦, y-angle: 138◦; (f) large object, green, misplacement:

7cm, distance: 5.6611ft, x-angle: 11◦, y-angle: 122◦;

4.1 Research Questions

In our evaluation, we try to answer the following five research

questions.

• RQ1: Is it feasible to predict users’ reality judgements on

virtual objects with deep image regression?

• RQ2: Does our proposed hybrid deep neural network out-

perform the state-of-the-art image regression technique?

• RQ3: Do testing scenario-related factors such as test scenes

and virtual object types affect the prediction accuracy?

• RQ4: Is PredART able to perform cross-object prediction of

users’ reality judgement?

• RQ5: Is PredART able to detect unrealistic object placement

during testing of AR apps in Unity Mars virtual scenes?

For RQ1, we answer the basic question of how accurately PredART

can predict the realisticness of object placement. For RQ2, we com-

pare PredART with ResNet to find out whether PredART outper-

forms state-of-the-art approaches that can be directly applied to the

problem. ResNet [23] is a widely used, state-of-the-art model for its

superior performance over other popular CNN-based methods (e.g.,

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

VGG [53] and MobileNet [25, 34]). We chose ResNet-18 for a fair

comparison as it has comparable architectural parameter sizes. For

RQ3, we explore the applicability of PredART to find out whether

it can achieve similar accuracy in different scenarios. For RQ4, we

look into whether PredART can address a practical challenge (i.e.,

it is impossible to train a model with all of the virtual objects on

which it will make predictions). So, we evaluate PredART on cross-

object prediction tasks to find out its accuracy when the virtual

object in the prediction is unknown at the training phase. For RQ5,

we validate the practical usefulness of PredAT by checking whether

it can detect unrealistic object placements in the testing process of

real AR apps in Unity Mars virtual scenes.

4.2 Evaluation Configuration

The construction process of our testing set is described in Section 3.1

(generation of testing screenshots) and Section 3.2 (labelling ground

truth of the testing set), respectively. Figure 8 shows six screen-

shots in the testing set from different scenes, with different virtual

objects being placed and using different meta information for the

camera. Due to labelling budget and multiple labels required for

each screenshot, our data set is limited to 1,200 screenshots with

480 screenshots in the test set. However, our test set covers differ-

ent virtual objects, AR test scenes, misplacement values, angles,

and distances. Unity Mars has a limited number of built-in AR test

scenes, and thus taking more screenshots of the same scenes may

not be very helpful. We consider the dataset to be representative

because AR app developers are likely to use the built-in AR test

scenes. Therefore, our evaluation set is close to the actual data to

be used in AR app testing. We plan to expand our evaluation by

incorporating AR test scenes released in new versions of Unity

Mars and other popular open-source VR scenes that could be used

by AR developers in their testing.

To make sure our labeling is not largely affected by irresponsible

workers, we performed an outlier analysis [8] on the labels of the

testing set. In particular, if a worker chooses a label different from

all four other workers, the worker is considered an outlier for the

specific screenshot. Since the judgement of object placement can

be subjective, it is fine if a worker is sometimes an outlier. But if

a worker is often an outlier (close to 50% or higher), it indicates

unreliable labeling. We performed outlier analysis on the labels in

our testing set, and found only 36 out of 480 (7.5%) screenshots were

labeled by an (>30%) outlier (indicating theworker is an outlier more

than 30% of the time). Considering each screenshot is labeled by

five workers, the influence of potential unreliable labels is minimal.

We evaluate the model’s performance in two different settings.

In the first setting, we use all three objects’ screenshots to train the

model and predict realism values for all three objects’ screenshots.

In the second setting (cross-object setting), we use two of the objects’

screenshots during training and predict the realism values for the

third object. We then compare the predicted realism value 𝑦 with

the gathered label data 𝑦 as described in section 3.2. For ResNet as

the baseline technique, we use its default network structure in the

research paper [23] and directly concatenate numeric features and

image features.

4.3 Image Regression Metrics

In data regression, the commonly used metrics are mean average

error (MAE), mean squared error (MSE), and root mean squared error

(RMSE) [57]. The three metrics measure how predicated values

are different from ground truth values. The formulas for the three

metrics are presented as follows. In the formula, 𝑁 denotes the

number of data points, 𝑦 denotes the predicated value of each data

point, and 𝑦 denotes the ground truth value of each data point.

𝑀𝐴𝐸 =
1

𝑁

∑
|𝑦 − 𝑦 | (1)

𝑀𝑆𝐸 =
1

𝑁

∑
(𝑦 − 𝑦)2 (2)

𝑅𝑀𝑆𝐸 =

√
1

𝑁

∑
(𝑦 − 𝑦)2 (3)

To gain a more intuitive understanding of the prediction results,

we further introduce two metrics: accuracy and accuracy(±). To

calculate these metrics, we first convert the predicted rating 𝑦 to

the closest discrete rating 𝑦 (Equation 4). We define accuracy as the

percentage of screenshots where category(𝑦) = 𝑦. For accuracy(±)
we consider predictions that were one category above or below to

be accurate and calculate the percentage.

category(𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0, if 0.0 ≤ 𝑦 < 0.1

0.2, if 0.1 ≤ 𝑦 < 0.3

0.4, if 0.3 ≤ 𝑦 < 0.5

0.6, if 0.5 ≤ 𝑦 < 0.7

0.8, if 0.7 ≤ 𝑦 < 0.9

1.0, if 0.9 ≤ 𝑦 < 1.0

(4)

4.4 Evaluation Results

4.4.1 Overall Prediction Accuracy. To answer research question

RQ1, we calculated all the metrics for the basic setting where we

apply PredART with all the training data for training and all the

testing data for testing. For the basic setting, as shown in the second

row of Table 4, we are able to achieve an accuracy (column Acc.)

of 85.0 and an accuracy(±) (column Acc. (±)) of 96.0, indicating

for 96% of the cases we are able to predict a user rating at least

one level above or below the ground truth. We also achieve MAE,

MSE, and RMSE of 0.047, 0.008, and 0.091, respectively, showing

that on average our predicted rating is less than 0.05 away from

the ground truth. To better understand the prediction results of

PredART, we further draw an X-Y table as in Table 3. In the X-Y table,

Column 1 presents all labeled ratings, and Columns 2–7 present the

percentage of all screenshots with corresponding labeled ratings

and predicated ratings. For example, the cell at Column 2 and Row

2 shows 9.8%, indicating 9.8% of screenshots are labeled as 0.0 and

predicted as 0.0 (predicted score less than 0.1). In the X-Y table,

the diagonal cells present the correctly predicted data points, and

cells far from the diagonal cells present the percent of data whose

predicted values are far away from ground truth. From the table,

we can see that, for the least realistic categories (i.e., ratings of

0.0 and 0.2), sometimes PredART predicts the rating wrong, but

the prediction never goes higher than 0.4; for the most realistic

categories (i.e., ratings of 0.8 and 1.0), the prediction never goes

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

Table 3: The X-Y Table for the prediction

Label

Pred.
0.0 0.2 0.4 0.6 0.8 1.0

0.0 9.8% 2.5% 0.0% 0.0% 0.0% 0.0%

0.2 2.3% 8.5% 0.0% 0.0% 0.0% 0.0%

0.4 1.5% 2.3% 9.8% 0.0% 0.0% 0.0%

0.6 0.0% 1.0% 0.8% 9.4% 0.6% 0.2%

0.8 0.0% 0.0% 0.0% 0.0% 18.1% 3.8%

1.0 0.0% 0.0% 0.0% 0.0% 0.0% 29.4%

Table 4: Comparison with ResNet

Approach MAE MSE RMSE Acc. Acc. (±)

PredART 0.047 0.008 0.091 85.0 96.0

ResNet 0.175 0.041 0.202 28.1 56.9

under 0.8; for the blurred area (0.4 and 0.6), the prediction can go

further to 0.0 and 1.0, but the likelihood is very low.

4.4.2 Comparison with Resnet. To answer research question RQ2,

we compare PredART metrics with a state-of-the-art image regres-

sion technique, ResNet, in the basic setting where we use training

data and test data of all three different sized objects. We present

the findings in Table 4, where Columns 2–6 present the MAE, MSE,

RMSE, accuracy, and accuracy (±), respectively. From the table, we

can observe that PredART outperforms ResNet in all the metrics:

MAE, MSE, and RMSE. PredART achieves MAE, MSE, and RMSE

of 0.047, 0.008, and 0.041 respectively, while ResNet achieves MAE,

MSE, and RMSE of 0.175, 0.041, and 0.202 respectively.

In terms of accuracy and accuracy (±) PredART significantly out-

performs ResNet. PredART achieves an accuracy and an accuracy

(±) of 85.0 and 96.0, respectively. ResNet achieves an accuracy and

an accuracy (±) of 28.1 and 56.9. PredART can correctly predict

ranking in situations where ResNet fails. Therefore, even when we

consider one category above or below, PredART is able to outper-

form ResNet.

It should be noted that we compare with ResNet because ResNet

can be directly applied to our problemwith feature concatenation. It

is possible to apply some more advanced image classification mod-

els [17] [60] with some adaptations (e.g., transfer learning). Since

these adaptations themselves can be a research problem and have

technical challenges, we do not consider them in our evaluation

but plan to explore their effectiveness in our future work.

4.4.3 Influence of Test Scenarios. To answer research question

RQ3, in our testing set, we consider different testing scenes in

Unity Mars, which are much more complicated than our training

scene, with many other objects as additional noises. It should be

noted that for training PredART we use only one scene with one or

two additional objects to offer a sense of scale for human workers.

However, for testing screenshots, we use virtual scenes of three

different scales: indoor scenes (dining room, living room, and office),

large indoor scenes (factory, warehouse), and outdoor scenes (back-

yard). Each scene contains numerous objects of various shapes and

sizes, unseen by the model. In some cases, the objects are partially

occluded by the surrounding objects. We present the evaluation

results on all five metrics for different scenes in Table 5.

Table 5: Results on Different Testing Scenes

Scene Name MAE MSE RMSE Acc. Acc. (±)

Backyard 0.038 0.007 0.083 87.5 95.8

Dining Room 0.035 0.003 0.055 92.5 100.0

Factory 0.022 0.002 0.049 92.5 100.0

Living Room 0.043 0.006 0.079 84.2 97.5

Office 0.077 0.017 0.13 75.8 90.8

Table 6: Results on Different Objects

Object MAE MSE RMSE Acc. Acc. (±)

Apple 0.043 0.005 0.072 88.8 98.1

Lamp 0.034 0.005 0.073 90.0 97.5

Chair 0.064 0.014 0.119 76.3 92.5

From the table, we can observe that PredART obtains the lowest

accuracy of 75.83 and the lowest accuracy (±) of 90.83 in the office

scene. The reason behind these results may be that the office scene

contains a lot of additional objects such as monitors, mice, pens,

chairs, etc., resulting in more noise for the image regression model.

As the number of surrounding objects in the vicinity becomes

smaller, PredART’s performance increases. In the living room, we

achieve an accuracy of 84.17 and 87.5. For the backyard scene, the

dining room scene, and the factory scene, we achieved the best

performance. We achieve an accuracy and accuracy (±) of 97.5 and

95.83, respectively, for the backyard scene. For the dining room

scene and the factory scene, we achieve an accuracy and accuracy

(±) of 92.5 and 100, respectively.

We further studied how different virtual objects might affect the

prediction results. The comparison of prediction results is shown in

Table 6. We compute the metrics values for each of the three virtual

objects used in the testing for each row of row 2-4 in the table. From

the table, we can see that for the apple and the lamp, our image

regression model predicts precise results, with an accuracy of 88.8

and 90.0, respectively. The accuracy (±) is also very high, reaching

98.1 and 97.5. In contrast, the model does not perform very well

for the chair. The reason may be that the chair is much larger and

is placed on the ground (while the other two are both placed on

tables). Furthermore, the shape of the chair is less regular than that

of the apple and the lamp.

4.4.4 Cross-Object Prediction. Cross-object prediction is very im-

portant in the application of PredART because it could be difficult

to label training data for all virtual objects to be tested. To answer

research question RQ4, we calculated all the metrics for the cross-

object setting, in which we applied PredART with screenshots of

two objects as training data and screenshots of the third object

as testing data. The metric in Table 7) shows that our prediction

results are comparable to the results in Table 6. We even get better

results for the apple. In particular, for the apple, we achieved an

accuracy of 97.5 and an accuracy (±) of 98.8. The training data of

the apple may have caused some overfitting issues.

As the object size gets bigger, the results become worse, espe-

cially for the chair, which is understandable because training data

on smaller virtual objects may not be able to cover the cases of

larger objects. From this result, we can see that object size matters,

so it is important to include virtual objects of all sizes in the training

data.

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 7: Cross Object Prediction

Object MAE MSE RMSE Accuracy Accuracy (±)

Apple 0.048 0.006 0.079 97.5 98.7

Lamp 0.087 0.041 0.203 86.2 90.6

Chair 0.167 0.075 0.273 63.1 78.8

Table 8: The X-Y Table for cross-object prediction on apple

Label

Pred.
0.0 0.2 0.4 0.6 0.8 1.0

0.0 22.5% 0.0% 0.0% 0.6% 0.0% 0.0%

0.2 0.0% 16.2% 0.0% 0.0% 0.0% 0.0%

0.4 0.0% 0.0% 11.9% 0.0% 0.0% 0.0%

0.6 0.0% 0.0% 0.0% 9.4% 0.6% 0.0%

0.8 0.0% 0.0% 0.0% 0.0% 10.6% 1.2%

1.0 0.0% 0.0% 0.0% 0.0% 0.0% 26.9%

Table 9: The X-Y Table for cross-object prediction on lamp

Label

Pred.
0.0 0.2 0.4 0.6 0.8 1.0

0.0 6.9% 0.0% 0.6% 0.0% 0.0% 0.0%

0.2 0.0% 3.1% 0.0% 0.0% 0.0% 3.1%

0.4 0.0% 0.0% 11.2% 0.0% 0.0% 4.4%

0.6 0.0% 0.0% 0.0% 5.0% 0.0% 1.2%

0.8 0.0% 0.0% 0.0% 0.0% 20.0% 4.4%

1.0 0.0% 0.0% 0.0% 0.0% 0.0% 40.0%

We further draw three X-Y tables for each virtual object to under-

stand more detailed prediction results. Table 8 represents the X-Y

table for cross-object prediction results on the small-sized object—

apple, where medium-sized and large-sized objects are used for

training. We see that 97.5% of the values fall on the diagonal col-

umn (also represented in row 2 and the accuracy column of Table 7).

As we move to the medium-sized object—lamp, where small and

large-sized objects are used for training, we find 13.75% of the data

outside of the diagonal column (Table 9). Finally, we apply PredART

to small and medium-sized objects for training and the large-sized

object—chair for testing. where we have 63.125 accuracy and 78.75

accuracy (±) (row 4, column 4-5 of Table 7).

We also notice that, in all three cases, the most inaccurate pre-

dictions fall in the last column of the corresponding X-Y tables.

This means that we are predicting some unrealistic screenshots as

realistic, which could result in false negatives in testing. Such cases

are especially severe for the lamp with a ground truth label of 0.2,

where half of the screenshots are predicted as 1.0. Therefore, we can

see that, although the general metrics show acceptable results, the

X-Y table can be more helpful in understanding the details. We may

need to develop further techniques to lead the prediction result bias

to the unrealistic side, so that even if there are prediction errors,

they will be false positives, which are less harmful.

4.5 Validation on AR Apps

To further validate whether our approach can detect unrealistic

object placements in AR apps, we applied PredART to screenshots

Table 10: The X-Y Table for cross-object prediction on chair

Label

Pred.
0.0 0.2 0.4 0.6 0.8 1.0

0.0 2.5% 1.2% 0.6% 0.0% 0.0% 1.9%

0.2 0.0% 7.5% 0.0% 0.0% 0.0% 2.5%

0.4 0.0% 0.6% 8.1% 0.0% 1.2% 3.1%

0.6 0.6% 0.0% 0.0% 8.8% 1.2% 9.4%

0.8 0.0% 0.0% 0.6% 1.2% 16.9% 10.6%

1.0 0.0% 0.0% 0.0% 0.0% 1.9% 19.4%

taken from three AR apps: SimpleAR, Interaction, and Feathered-

Planes. They are part of the official open-source showcase apps4

from Unity, and we chose these three because they are mostly re-

lated to the object placement feature in AR. In particular, SimpleAR

automatically places a yellow semi-transparent plane on each of

the detected surfaces. There are buttons on the screen to let the

users pause or resume the AR experience. Interaction allows a user

to place a 3D model on a detected surface and perform some inter-

actions such as movement, rotation, and resizing. FeatheredPlanes

allows a user to place a 3D model on a feathered plane, representing

a detected surface with dotted mesh fading toward the edges.

Figure 9: Screenshots of SimpleAR (left) and FeatheredPlane

(right) in real scenes (upper) and Unity Mars virtual scenes

(lower)

To perform the validation, we load the source code of each of the

three apps into Unity and then manually test them in the virtual

scenes of Unity Mars. To be consistent with prior evaluations, we

tested each app on the same five virtual scenes: living room, dining

room, backyard, office, and factory. The upper row of Figure 9 shows

the screenshots of the apps SimpleAR (left) and FeatheredPlanes

(right) in real scenes. During the testing process, we randomly take

screenshots from different distances, horizontal angles, and vertical

angles. Since unrealistic object placements can be sparse in reality,

to make sure they are observable in the evaluation, we plant some

unrealistic object placements when taking screenshots by randomly

mutating the placed object’s position. It should be noted that we

mutate an object together with the detected surface it is placed on

because objects can be placed on only detected surfaces in most

AR frameworks, and object misplacement happens mainly due to

imprecisely detected surfaces. So, for unrealistic object placement,

4https://github.com/Unity-Technologies/arfoundation-samples

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

Table 11: Prediction on AR App Screenshots

App MAE MSE RMSE Accuracy Accuracy (±)

SimpleAR 0.093 0.027 0.163 73.3 86.7

Interaction 0.107 0.059 0.242 73.3 86.7

Feathered 0.080 0.024 0.155 66.7 93.3

Table 12: The X-Y Table for Predict on AR App Screenshots

Label

Pred.
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.2 0.0% 0.0% 4.4% 0.0% 0.0% 2.2%

0.4 0.0% 0.0% 4.4% 0.0% 0.0% 0.0%

0.6 0.0% 0.0% 0.0% 2.2% 0.0% 8.9%

0.8 0.0% 0.0% 0.0% 0.0% 0.0% 15.6%

1.0 0.0% 0.0% 0.0% 0.0% 0.0% 62.2%

if the underlying plane is visible, it will be floating together with

the object. The lower row of Figure 9 shows the screenshots of

mutated object placements from SimpleAR and FeatheredPlanes.

From the three AR apps, we took 15 screenshots from each app

to form a dataset of 45 screenshots5. Then, we uploaded all of

them to Amazon Mechanical Turk for labeling (each screenshot

was labeled by five turks), and applied our pre-trained prediction

model (trained with the whole training set of 720 screenshots) to the

dataset to acquire the predicted scores of each screenshot. Finally,

we compared the labeled scores and predicted scores, and the results

are presented in Table 11 and Table 12.

From Table 11, we can observe that the results of PredART on

real AR app screenshots are comparable to those of cross-object

prediction in Table 7. This is understandable because we are also

performing cross-object prediction (all the objects in the AR apps

are unseen by the model) for AR app screenshots. From Table 12, we

can see that for all score ranges, PredART is able to precisely predict

the scores of most screenshots, and for most of the non-realistic

object placement screenshots (score < 0.5), PredART can correctly

predict their scores to be less than 0.5. It should be noted that

when mutating objects with their planes, for consistency we used

the same range of placement gaps as described in Section 3.1 for

generating test sets. It seems that the placement gap range resulted

in fewer non-realistic screenshots in the AR app testing dataset.

This is probably caused by the visible planes (e.g., yellow planes,

feathered planes) in our subject apps, which are mutated together

with the objects. Since planes are much larger, the placement gap

can be less observable. On the other hand, the more sparse the

distribution of non-realistic object placements, the closer to the

realistic testing case where placement errors are sparse and the

data is more unbalanced. Nevertheless, our evaluation results show

that PredART can effectively identify non-realistic screenshots in

such scenarios.

4.6 Summary of Findings

In this subsection, we summarize our findings to answer our re-

search questions as follows.

5The dataset is available at the project website.

• PredART is effective because it can achieve very high metric

values in predicting user ratings of virtual objects’ place-

ment.

• PredART outperforms ResNet, the state-of-the-art image

regression technique.

• Noises in scenes and objects’ sizes all moderately affect pre-

diction results.

• On cross-object prediction, PredART achieves acceptable

metric values. Techniques making the results lean to the

unrealistic side may help PredART in its practical usage.

• On screenshots from real AR apps tested on Unity Mars,

PredArt is able to achieve results comparable to those from

controlled testing scenarios.

4.7 Threats to Validity

The major external threat to our validity is that our evaluation only

covers a small number of scenes and virtual objects [58] [20]. Due

to the cost of labeling with multiple workers, we are not able to

create a huge dataset as an initial study, but we cover all the differ-

ent styles of scenes (small indoor scenes, large indoor scenes, and

outdoor scenes) in Unity Mars, and objects of different sizes. We

also studied the influence of these factors to indicate directions for

future research. To further reduce the threats, we plan to enlarge

our dataset to consider more test scenes and more types of virtual

objects. The major internal threat to our validity is the potential

mistakes made by labelling workers. Since we have five workers

for each screenshot, the influence of one mistake is lessened. Fur-

thermore, we performed outlier analysis to further confirm that the

potential mistakes made by labeling workers are limited to a very

small portion of the dataset. To further reduce this threat, we plan

to consider using more workers for the labeling, and then study

whether the labeling results stay stable when more workers are

added. Using this approach, we can find out how many workers we

need to achieve a stable rating of screenshots.

5 DISCUSSION

In this section, we discuss how our technique can help detect bugs

in AR software in practice.

5.1 Limitations of PredART

PredART mainly has two limitations. The first limitation is that our

approach is designed to be used in testing scenes (i.e., Unity Mars).

If we want to apply PredART to physical phones and real-world

scenes, the potential challenge is whether the feature values used in

our model are still accessible. In particular, the screenshots can be

easily acquired at runtime, and the horizontal angle and distance can

be calculated from sensor information. But the vertical angle and

misplacement could be hard to acquire at runtime. Therefore, we

may need to adapt our feature set. Meanwhile, oncemigrated to real-

world scenes, our approach has the potential to automatically make

object placement more accurate. We can change our prediction goal

from whether the object’s placement is realistic or not to whether

the object has a positive or negative misplacement. We plan to work

on this direction in the following projects. The second limitation is

that PredART handles only screenshots, which are more suitable

for static virtual objects. To determine the realisticness of moving

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

virtual objects, video clips may be needed and more features (e.g.,

the change of positions and angles) may also need to be considered.

5.2 Industrial Relevance

PredART can directly help AR software quality engineers in their

testing tasks by providing automatic test oracles so that they do not

need to keep watching test videos and hire multiple people to judge

whether the placement of objects is realistic. The warnings raised

by PredART may help AR developers find bugs in their application

code. Theymay also help product managers predict user satisfaction

with their product, determine whether the AR feature is mature

enough to be released, and help software architects select more

compatible AR underlying platforms.

6 RELATEDWORK

6.1 VR and AR Application Testing

The authors are not aware many research effots on VR and AR Test-

ing. Recently, Wang proposed VRTest [55], a test framework for VR

software. It extracts information about virtual objects at runtime,

and automatically guide the player camera towards these objects

to interact with them. Besides the research effort on VR/AR soft-

ware testing, there are also some research efforts on game testing.

Wuji [63] is a technique that supports automatic testing of games

based on evolutionary algorithms and reinforcement learning. It

explores the game spaces and branches, as well as makes progress

by passing stages. Zhao et al. [62] proposed an approach to enhance

playing tactics in game testing by learning from player action se-

quences. Bergdahl et al. [13] proposed an approach to augment

existing manually written test scripts with reinforcement learn-

ing. ARCHIE [31] is a framework to collect feedback from manual

testers and system state to identify and debug issues. Scheibmeir et

al. [52] present a framework that uses machine learning techniques

to detect object presentation in the physical world. Compared with

these efforts, our research focuses on the impact of virtual object

placement errors, which is an important factor affecting the success

of AR apps.

6.2 Test Oracle Generation

Test oracle generation has long been a bottleneck in automatic test-

ing. A lot of earlier work proposed promising approaches but were

not very effective due to the limitations of techniques at the time.

These efforts have been summarized in two surveys in 2014 [11, 47].

Metamorphic testing takes advantage of the known correlations

between test input changes and test oracle changes (e.g., feeding a

subset of input should always result in an output that is a subset

of the original output). It has been widely applied to the testing

of scientific software [26] and security testing [16]. Donaldson et

al. [18] propose to use metamorphic testing to test the compilation

of shader scripts based on known correlations among rendering

transformations. Langdon et al. [30] propose using deep learning to

predict partial test oracles for mutation testing. Goffi et al. [21] pro-

pose mining texts from Java API Documents to generate test oracles

on exceptional behaviors. Ceccato et al. [14] propose using machine

learning to learn a model for legal SQL statements and then use it

as an oracle in SQL injection testing. Mariani et al. [39] propose

Augusto, which creates GUI test cases with oracles for common GUI

operations such as log-in and CRUD (Creation, Reading, Update,

and Deletion). Menghi et al. [42] proposed using simulink models

to automatically create test oracles for continuous and uncertain

output, although the specification process is still manual. Walsh et

al. [54] propose to use the relationship among multiple layout out-

puts to automatically detect layout errors without using an oracle.

Test migration techniques [12] [48] create test oracles by migrating

oracles from existing tests. Chen et al. [15] propose GLIB to detect

game GUI glitches by machine learning. GLIB uses a code-based

data augmentation technique to automatically enlarge the training

data. PredART is different from all of the above efforts because it

targets a different application domain (i.e., AR applications) and a

type of failure that heavily relies on human perception.

6.3 Studies on VR, AR, and Game Software

There have also been some empirical studies on VR software and

video game software. Murphy-Hill et al. [44] presented results from

a survey and interviews with video game developers to understand

the major challenges between video game development and tradi-

tional software development. Later, Washburn et al. [56] performed

an empirical study on the failure of game projects to find out what

the major pitfalls in game projects are. Lin et al. [33] studied the

characteristics of updates on the Steam platform to understand

the priority of game updates in practice. Rodriguez and Wang [50]

investigated the popularity trends and common project structures

of open source virtual reality software projects. Li et al. [32] studied

bug reports for web applications supporting extended reality to

find out their commonalities. Molina et al. [43] studied code-asset

dependency within VR software projects by extracting the direct

association between VR objects and script files, the compositional

relations between VR objects, and event triggering relations be-

tween scripts and VR objects. Pascarella et al. [46] studied open

source video game projects to understand their characteristics and

the difference between game and non-game development. Nusrat

et al. [45] studied the major types of performance optimization

in Unity-based virtual reality applications. Zhang et al. [61] stud-

ied possible solutions to detect potential privacy leaks in mobile

augmented reality apps.

7 CONCLUSIONS

In this paper, we studied the feasibility of predicting users’ per-

ception of realisticness on virtual object placement with gaps. The

predicted user rating can be used as an automatic test oracle in AR

testing. We propose an approach called PredART which concate-

nates the output of convolutional neural networks and multi-layer

perceptrons to better balance feature weights. Our empirical eval-

uation based on mechanical turk labeling shows that PredART is

able to achieve an average accuracy of 85.0%, an MAE of 0.047, an

MSE of 0.008, and an RMSE of 0.091. The evaluation also reveals

that PredART outperforms the state-of-the-art image regression

technique ResNet, and it is effective in cross-object prediction and

prediction of screenshots of real AR apps tested in Unity Mars vir-

tual scenes. In the future, we plan to (1) expand the training and

evaluation set of our evaluation with more scenes and (2) study the

predictability of realisticness from short video clips.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

ACKNOWLEDGMENTS

We would like to thank Dongfang Liu and Cheng Han from the

Department of Computer Engineering at Rochester Institute of

Technology for their kind help on the setup and configuration of

computer vision tools. This research is supported in part by NSF

awards 1736209, 1846467, 2007718, and 2221843.

REFERENCES
[1] 2005. Unity. https://unity.com.
[2] 2018. Apple ARKit. https://developer.apple.com/augmented-reality/.
[3] 2018. Microsoft Hololens. https://www.microsoft.com/en-us/hololens.
[4] 2018. Oculus Rift. https://www.oculus.com/.
[5] 2019. XR Plug-in Framework. https://docs.unity3d.com/Manual/

XRPluginArchitecture.html.
[6] 2020. Unity MARS. https://unity.com/products/unity-mars.
[7] 2021. Google AR Core. https://developers.google.com/ar.
[8] Charu C Aggarwal. 2017. An introduction to outlier analysis. In Outlier analysis.

Springer, 1–34.
[9] Amazon. 2005. Amazon Mechanical Turk. https://www.mturk.com.
[10] Ronald T Azuma. 1997. A survey of augmented reality. Presence: Teleoperators &

Virtual Environments 6, 4 (1997), 355–385.
[11] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.

The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[12] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 54–65.

[13] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. 2020.
Augmenting automated game testing with deep reinforcement learning. In 2020
IEEE Conference on Games (CoG). IEEE, 600–603.

[14] Mariano Ceccato, Cu D. Nguyen, Dennis Appelt, and Lionel C. Briand. 2016.
SOFIA: An automated security oracle for black-box testing of SQL-injection
vulnerabilities. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). 167–177.

[15] Ke Chen, Yufei Li, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and Wei Yang.
2021. Glib: towards automated test oracle for graphically-rich applications. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1093–
1104.

[16] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Jef-
frey Voas, and Zhi Quan Zhou. 2016. Metamorphic Testing for Cybersecurity.
Computer 49, 6 (2016), 48–55.

[17] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. 2021. Coatnet: Marrying
convolution and attention for all data sizes. Advances in Neural Information
Processing Systems 34 (2021), 3965–3977.

[18] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated Testing of Graphics Shader Compilers. Proc. ACM Program. Lang.
OOPSLA, Article 93 (oct 2017).

[19] Henry Fuchs, Mark A Livingston, Ramesh Raskar, Kurtis Keller, Jessica R Craw-
ford, Paul Rademacher, Samuel H Drake, Anthony A Meyer, et al. 1998. Aug-
mented reality visualization for laparoscopic surgery. In International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, 934–
943.

[20] Smita Ghaisas, Preethu Rose, Maya Daneva, Klaas Sikkel, and Roel J Wieringa.
2013. Generalizing by similarity: Lessons learnt from industrial case studies.
In 2013 1st International Workshop on Conducting Empirical Studies in Industry
(CESI). IEEE, 37–42.

[21] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic Generation of Oracles for Exceptional Behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. 213–224.

[22] Google. 2021. Google ARCore. https://developers.google.com/ar/discover/concepts.
[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. https://doi.org/10.48550/ARXIV.1512.03385
[24] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. 2004. Design

science in information systems research. MIS quarterly (2004), 75–105.
[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[26] Upulee Kanewala, James M Bieman, and Asa Ben-Hur. 2016. Predicting metamor-
phic relations for testing scientific software: a machine learning approach using
graph kernels. Software testing, verification and reliability 26, 3 (2016), 245–269.

[27] Hirokazu Kato and Mark Billinghurst. 1999. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Proceedings 2nd

IEEE and ACM International Workshop on Augmented Reality (IWAR’99). IEEE,
85–94.

[28] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[29] Sang Min Ko, Won Suk Chang, and Yong Gu Ji. 2013. Usability principles for
augmented reality applications in a smartphone environment. International
journal of human-computer interaction 29, 8 (2013), 501–515.

[30] William B. Langdon, Shin Yoo, and Mark Harman. 2017. Inferring Automatic Test
Oracles. In 2017 IEEE/ACM 10th International Workshop on Search-Based Software
Testing (SBST). 5–6.

[31] Sarah M. Lehman, Haibin Ling, and Chiu C. Tan. 2020. ARCHIE: A User-Focused
Framework for Testing Augmented Reality Applications in the Wild. In 2020
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE. https:
//doi.org/10.1109/vr46266.2020.00013

[32] Shuqing Li, Yechang Wu, Yi Liu, Dinghua Wang, Ming Wen, Yida Tao, Yulei
Sui, and Yepang Liu. 2020. An exploratory study of bugs in extended reality
applications on the web. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 172–183.

[33] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. 2017. Studying the urgent
updates of popular games on the Steam platform. Empirical Software Engineering
22, 4 (2017), 2095–2126.

[34] Dongfang Liu, Yiming Cui, Wenbo Tan, and Yingjie Chen. 2021. Sg-net: Spatial
granularity network for one-stage video instance segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9816–9825.

[35] Lutz Lorenz, Philipp Kerschbaum, and Josef Schumann. 2014. Designing take over
scenarios for automated driving: How does augmented reality support the driver
to get back into the loop?. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, Vol. 58. SAGE Publications Sage CA: Los Angeles, CA,
1681–1685.

[36] Unity Technologies Ltd. 2020. Unity MARS (Mixed and Augmented Reality
Subsystem). https://blog.unity.com/technology/introducing-unity-mars-a-first-
of-its-kind-solution-for-intelligent-ar.

[37] Unity Technologies Ltd. 2021. What’s new in Unity Mars. https://blog.unity.com/
technology/whats-new-in-unity-mars.

[38] Michael R Lyu, Irwin King, TT Wong, Edward Yau, and PW Chan. 2005. Ar-
cade: Augmented reality computing arena for digital entertainment. In 2005 IEEE
Aerospace Conference. IEEE, 1–9.

[39] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Exploiting
Popular Functionalities for the Generation of Semantic GUI Tests with Oracles. In
Proceedings of the 40th International Conference on Software Engineering. 280–290.

[40] Winter Mason and Sidharth Suri. 2011. How to use mechanical turk for cognitive
science research. In Proceedings of the Annual Meeting of the Cognitive Science
Society, Vol. 33.

[41] Zeljko Medenica, Andrew L Kun, Tim Paek, and Oskar Palinko. 2011. Augmented
reality vs. street views: a driving simulator study comparing two emerging
navigation aids. In Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services. 265–274.

[42] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019.
Generating Automated and Online Test Oracles for Simulink Models with Contin-
uous and Uncertain Behaviors. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 27–38.

[43] Jacinto Molina, Xue Qin, and Xiaoyin Wang. 2021. Automatic extraction of
code dependency in virtual reality software. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). IEEE, 381–385.

[44] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. 2014.
Cowboys, ankle sprains, and keepers of quality: How is video game development
different from software development?. In Proceedings of the 36th International
Conference on Software Engineering. 1–11.

[45] Fariha Nusrat, Foyzul Hassan, Hao Zhong, and Xiaoyin Wang. 2021. How Devel-
opers Optimize Virtual Reality Applications: A Study of Optimization Commits
in Open Source Unity Projects. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 473–485.

[46] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development in
open source?. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, 392–402.

[47] Mauro Pezzè and Cheng Zhang. 2014. Chapter One - Automated Test Oracles: A
Survey. Advances in Computers, Vol. 95. Elsevier, 1–48.

[48] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test
cases from ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 284–295.

[49] Iulian Radu. 2012. Why should my students use AR? A comparative review of the
educational impacts of augmented-reality. In 2012 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). IEEE, 313–314.

[50] Irving Rodriguez and Xiaoyin Wang. 2017. An empirical study of open source
virtual reality software projects. In 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 474–475.

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

[51] Franziska Roesner, Tadayoshi Kohno, and David Molnar. 2014. Security and
privacy for augmented reality systems. Commun. ACM 57, 4 (2014), 88–96.

[52] Jim Scheibmeir and Yashwant K. Malaiya. 2019. Quality Model for Testing
Augmented Reality Applications. In 2019 IEEE 10th Annual Ubiquitous Computing,
Electronics Mobile Communication Conference (UEMCON). 0219–0226. https:
//doi.org/10.1109/UEMCON47517.2019.8992974

[53] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[54] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. 2017. Automated
Layout Failure Detection for Responsive Web Pages without an Explicit Oracle.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 192–202.

[55] X. Wang. 2022. VRTest: An Extensible Framework for Automatic Testing of
Virtual Reality Scenes. In 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 232–236.

[56] Michael Washburn, Pavithra Sathiyanarayanan, Meiyappan Nagappan, Thomas
Zimmermann, and Christian Bird. 2016. WhatWent Right andWhatWentWrong:
An Analysis of 155 Postmortems from Game Development. In Proceedings of the
38th International Conference on Software Engineering Companion (Austin, Texas)
(ICSE ’16). 280–289.

[57] Sanford Weisberg. 2005. Applied linear regression. Vol. 528. John Wiley & Sons.

[58] Roel Wieringa and Maya Daneva. 2015. Six strategies for generalizing software
engineering theories. Science of computer programming 101 (2015), 136–152.

[59] Roel J Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer.

[60] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael
Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Si-
mon Kornblith, et al. 2022. Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time. In International
Conference on Machine Learning. PMLR, 23965–23998.

[61] Xueling Zhang, Rocky Slavin, Xiaoyin Wang, and Jianwei Niu. 2019. Privacy
Assurance for Android Augmented Reality Apps. In 2019 IEEE 24th Pacific Rim
International Symposium on Dependable Computing (PRDC). IEEE, 114–1141.

[62] Yan Zhao, Weihao Zhang, Enyi Tang, Haipeng Cai, Xi Guo, and Na Meng.
2021. A Lightweight Approach of Human-Like Playtesting. arXiv preprint
arXiv:2102.13026 (2021).

[63] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang
Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic
online combat game testing using evolutionary deep reinforcement learning. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 772–784.

