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Abstract—The recent advancements related to big data an-
alytics in the era of Industry 4.0 are fueled by development
and deployment of decision models based on neural network
(NN) architectures. In addition to the data represented in
Euclidean space, like, images, text, or videos, there are increasing
applications which demand data representation in non-Euclidean
domains. Such data are typically represented as graphs with com-
plex interactions and interdependencies between various entities.
The complexity of graph data imposes substantial challenge on
the traditional Deep NN models, and Graph Neural Networks
(GNN) are a powerful extension for modeling and analysis of
networked data. The training of these computational models
requires large amounts of labeled data. Active Learning (AL)
helps to overcome this issue by selecting the most informative
instances for labeling during the training process. This paper
combines AL with GNN for semi-supervised classification of
nodes in attributed graphs. The AL framework is portrayed
as a convex optimization problem by employing Dissimilarity-
based Sparse Modeling Representative Selection (DSMRS). The
experimental evaluation demonstrates that using the selected
graph-specific metrics (centrality and robustness measures) as AL
heuristics leads to an improvement in classification performance
by upto 10%.

Index Terms—Active Learning, Graph Neural Networks, Con-
vex Optimization, Node Classification, Graph-specific metrics

I. INTRODUCTION

In recent years, there has been a substantial development
in Artificial Intelligence (AI) engines and machine learning
technologies to harness the power of data and build efficient
decision models that are capable of making accurate pre-
dictions and inferences. However, a huge amount of labeled
data is required to train these computational models. Semi-
supervised learning approaches like Active Learning (AL)
helps to address this limitation by actively and strategically
choosing the most informative samples from the pool of
unlabeled data. Consequently, it is possible to accomplish
a better predictive performance with a significantly reduced
training sample size.

There is an increasing research interest in analyzing and
learning from data in non-Euclidean space, like graphs. It has
a wide variety of applications in several interesting areas like
social networks, knowledge graphs, protein-protein interaction
networks, combinatorial optimization and molecular finger-
printing. Graph Neural Networks (GNN) provide an elegant
framework for effective inferencing on such graph-structured
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data. Given the extensive applications of learning from graph-
structured data and the benefits of semi-supervised learning
techniques, it would be highly beneficial to consolidate AL
with GNN for many downstream tasks like node classification,
link prediction, community detection and graph classification.
This article presents an AL framework combined with GNN
for node classification in attributed graphs using a convex
optimization approach.

A. Related Work

There is only a limited number of AL models for graph-
structured data as compared to other types of data that are
represented in Euclidean space, like images, text or numerical
data [1]. It has also been established that the use of graph
theoretic measures as acquisition functions in AL provide
better performance than using traditional heuristics like classi-
fier uncertainty, entropy of class probabilities or classification
margin [2]. The early works related to application of AL on
graph data are based on cluster assumption and local and
global consistency [3], [4]. In these techniques, it is assumed
that nearby points on the same structure (i.e., cluster or
manifold) are likely to have the same labels. This category of
AL methodologies do not mimic realistic settings and restricts
the modeling capacity.

Some of the works related to implementing AL of graph-
structured data are linked to earlier classification models like
Gaussian random fields [5], [6], [7]. However, these models
do not incorporate node features and label information in the
learning process. Moreover, some of these models are not
adaptive in the sense that the active learner is not updated
based on the newly labeled instances. These limitations are
addressed by approaches that employ AL models coupled
with GNN architectures [8], [2]. However, such studies are
very limited and the corresponding acquisition functions are
based only on matrix concepts for centrality formulation. This
results in a lack of intuition related to the underlying network
topology.

In this article, we present a convex optimization driven AL
framework combined with GNN that uses four graph theoretic
measures, namely, eigenvector centrality, closeness centrality,
betweenness centrality and Effective Graph Resistance (EGR)
as AL heuristics for active node selection in attributed graphs.
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B. Contributions

This work addresses the node classification task in attributed
graphs by utilizing a framework that combines AL and GNN
using a rigorous convex optimization approach. The novel
contributions of this paper are as follows:

o Four graph-theoretic metrics are used as AL heuris-
tics/acquisition functions for active selection of nodes.
Both node attributes and topological information are in-
corporated in the learning scheme. The node features are
exploited while training the GNN-based decision model
and topological information is considered during selective
sampling of the nodes.

An inductive GNN approach is used for building node
classification models. This allows the approach to be scal-
able across graphs of different sizes as well as subgraphs
within the given graph.

The remainder of this article is organized as follows: back-
ground on GNN and AL via convex optimization is provided
in Section II, and convexity analysis is presented in Section
III. Section IV elaborates upon the proposed methodology,
followed by experimental evaluation in Section V. The article
ends with concluding remarks in Section VI.

II. PRELIMINARIES
A. Graph Neural Networks

Recently, there has been a surge of interest in learning
with graph-structured data, like, biological, financial and social
networks, and knowledge graphs. There are several advantages
of representing data in form of graphs. Firstly, they provide
an intuitive approach to visualize concepts of interactions and
relationships. Additionally, it allows us to elucidate a complex
problem by transforming it into simpler representations. The
concepts of graph theory can be exploited to model and ana-
lyze such forms of data representations. However, it is difficult
to analyze and interpret graph-structured data using traditional
Deep Neural Network (DNN)-based learning algorithms. This
is primarily because graphs cannot be described in Euclidean
space, which makes it difficult to interpret as compared to
other types of data like images or text. Furthermore, the
irregular structure of graphs, inconsistent size of unordered
nodes and variable neighborhood configuration of the nodes
prevents crucial mathematical operations like convolutions to
be applied on graph-structured data. GNN help to overcome
these limitations by extending DNN architectures for graph
domain.

GNNs are typically based on recursive message passing
(i.e., neighborhood aggregation), wherein every node in the
graph aggregates attributes of its neighbors in order to com-
pute its own feature vector [9], [10]. This allows a node
to be represented by its transformed feature vector or node
embedding after a specific number of aggregation iterations,
thereby capturing the structural information across its p-hop
neighborhood. Several variants of GNN with diverse neigh-
borhood aggregation functions and different pooling schemes
have been presented in the literature [11], [12], [13], [14],
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[15], [16], [17], [18], [19], [201, [9], [21], [22], [23], [24],
[25]. These GNN methodologies have been empirically shown
to achieve state-of-the-art performance on many downstream
tasks such as link prediction, node classification and graph
classification. In this work, we use GraphSAGE [15], an
inductive node embedding approach that concurrently learns
both the topological structure and distribution of features for
a node in its local neighborhood. The operation executed at
i node embedding layer is given by eq. (1).

_, [egw—n DAY
Here, hg) represents the node embedding of node u at it
layer; A denotes the aggregation operation; ¢ and 6 4 are the
parameters of the combination and aggregation operation of
GNN, respectively; N (u) describes the neighborhood of node
u and g[-] denotes the activation function.

P = O (hG0, G

)

B. Active Learning via Convex Optimization

AL constitutes a category of machine learning techniques
where the fundamental premise is to improve the performance
of a leaner by iteratively querying (i.e., seeking labels for
selected unlabeled samples in the dataset) the Oracle (i.e.,
external source of labeling, like the domain experts) [26].
The key idea is to allow the learner to be active and collab-
orate with the Oracle to obtain labels for most informative
samples, thereby achieving better performance with much
fewer labelled training instances as compared to conven-
tional supervised machine learning techniques. Such a semi-
supervised learning strategy is very beneficial in applications
exploiting contemporary machine learning pipelines, where
the labeling procedure might be expensive, difficult or time-
consuming [27]. In this work, we employ AL strategy along
with GNN for node classification in attributed graphs. We use
an AL framework based on convex programming [28] that
leverages Dissimilarity-based Sparse Modeling Representative
Selection (DSMRS) algorithm [29], [30] for selecting most
informative nodes in the given graph-structured data. There
are numerous advantages of using a convex optimization-
based AL framework as compared to the traditional iterative
querying mechanism [28]. Firstly, it incorporates aspects of
both uncertainty sampling as well as sample diversity while
formulating the convex optimization problem. This allows to
select multiple samples from the dataset which are not only
informative but are also diverse with respect to each other.
Moreover, the data distribution is assimilated via a dissimilar-
ity matrix in the problem formulation. The formulation of AL
as a convex optimization problem is discussed next.

Given a graph G with N nodes and dissimilarity matrix
D = {d;;}i j=123,. n, the goal is to find a small subset of
nodes that are well representative of the entire graph. Here,
d;; represents how well the node j is represented by another
node . The smaller values of d;; denotes better representation
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and vice-versa. The dissimilarity values are assumed to be
non-negative and d;; < d;; for all ¢, j. In order to find the
representative nodes of the graph, Z = {z;;}i j=123, ..~
is introduced as an optimization variable. z;; € [0,1] is
associated to d;; and indicates the probability of node 4 being
a representative of node j. The optimization function consists
of two components: (i) encoding cost of all N nodes using
the representative nodes, and (ii) penalizing the number of
selected representatives. The encoding cost of node j via ¢
can be expressed as d;;z;; € [0,d;;]. So, the total encoding
cost for all the nodes in the graph is given by eq. (2).

Z dijzij = tI'(DTZ)

(2%

2

The number of representative nodes can be directly associ-
ated to the the number of non-zero rows in Z [29]. Conse-
quently, a convex surrogate for the cost related to number of
selected representatives is given by eq. (3), where ¢ € {2, 0}

N
> llzilla £ 1121164
i=1

Combining both the components in egs. (2) and (3) together,
the overall convex optimization problem is given in eq. (4).

3)

min \|Z||,1 +te(DTZ) st. Z > 0,172 =17 (4)

Here, the \ parameter balances the costs associated with
encoding and number of representatives, and controls the batch
size in AL. A smaller value of A lays more importance on
better encoding, thereby obtaining more representative nodes.
On the other hand, a higher value of A\ corresponds to more
emphasis on penalizing, thereby obtaining less representative
nodes. The constraints ensure that each column of Z is a
probability vector.

This DSMRS-based problem formulation can be well ex-
tended to AL by incorporating sample informativeness score
and sample diversity score. The informativeness score for a
node u, s;ns(u) € [0,1], represents the degree of its impor-
tance or informativeness. A higher value of s;,¢(u) signifies
that that node w is highly representative of the given graph. On
the other hand, a lower value of s;,, f(u) represents that node
u is not so representative and conveys less information about
the given graph. The diversity score for a node w is given by

eq. (5).

minjep djy,

&)

saiv(¥) maxyey Minje g dji

Here, £ and U are the sets of indices of labeled and
unlabeled nodes respectively.

If the closest labeled node to an unlabeled node w is very
similar to it, s4;,(u) — 0, and selecting such a node doesn’t
promotes diversity. On the contrary, when all the labeled nodes
are very dsisimilar from an unlabeled node u, sg;,(u) — 1,
and selecting such a node for labeling would be beneficial as it
would be different from the other labeled nodes. The combined
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score matrix (S) is given by eq. (6), where the overall score
for each node s(u;) is evaluated as shown in eq. (7).

S = diag (s(ul), s(ug), s(ug), ..., s(uw)) (6)

s(u;) = max{snr(ui), Saiv (i)} (7

Other mathematical operations like mean or minimum can
be used instead of max to compute the overall score for each
node in eq. (7). Finally, AL process can be represented in the
form of an optimization problem as shown in eq. (8).

min \|SZ||,1 +t(DTZ)st. Z>0,17Z =17  (8)

If an unlabeled node w; has lower score s(u;), the opti-
mization program puts less penalty on the i row of Z being
non-zero, and vice-versa. In the next section, we will analyze
the convexity of the optimization problem (8).

IIT. CONVEXITY ANALYSIS

The following result formalises the convexity of the opti-
mization problem for Active Learning.

Theorem 1. The optimization problem for Active Learning,
given by:

min \|SZ||,1 +tr(DYZ) s.t. Z>0,1TZ =17

over the optimization variable Z € RMIXUL s convex, where
D is the dissimilarity matrix indicating the degree of dissim-
ilarity between samples (nodes) in the dataset (graph), S is
the overall score matrix formed by combining informativeness
and diversity scores of all the samples in the dataset and \ is
a parameter that balances the costs associated with encoding
all the samples and number of representatives.

Proof. It is well known that a function f : R® — R is convex
if dom(f) is a convex set and if for all 1, zo € dom(f), and
0 <0 <1, we have

flOz1+ (1= 0)x2) <Of(x1) + (1 —0)f(x2) (9
Consider ||SZ]
IS(0A; + (1 - 0)A2)[| = [|[0SA; + (1 - 6)SAs||  (10)
By triangle inequality for matrix norms,
18641+ =0 A)]| < [0S AL +II(1-0)S Aol |

= 0[S AL+ (1 - 0)[[SA.||

This indicates that ||SZ]| is convex. Further, \ is a positive
constant multiplier. Hence, A||SZ]| is also convex.
- T
Consider the second term, tr(D* Z) = 3, . di;zi;.
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tr(DT(0A; + (1 —0)Ay)) = Zdj,- (Bay + (1 — B)az) ;i

< Zedjla’ljl + Z ]- - 0 j1a2]1
= gzdjlaljl ]- - Zdjla2jl

= 9tr(DTA1) +(1-9) tr(DTAg)
(12)

This indicates that tr(D7 Z) is convex. Since both the terms
of eq. (8) are convex, their sum is also convex. The linear
equality constraints ensures that the overall formulation in eq.
(8) is convex. O]

IV. METHODOLOGY

This work proposes an AL framework for active node
classification on attributed graphs. The proposed framework is
shown in Figure 1. The raw input graph-structured data is pre-
processed so as to convert it into a format suitable for further
operations and analysis. After appropriate preprocessing steps,
training, validation and test masks are generated to split the
original graph-structured dataset into respective components.
This is followed by definition of GNN model architecture (no.
of GNN layers, no. of feed-forward layers, hidden dimensions,
dropout, optimizer, epochs, etc.) and training an initial model
using the initial labeled dataset. The dissimilarity matrix
D = {d;;}i =123, n~ is evaluated by computing normalized
Euclidean distances between node embeddings of all node
pairs 4, j.

The selection of representative nodes is initiated by calcula-
tion of informativeness (s;,,#(u)) and diversity (sq;, (u)) scores
for all the nodes in the unlabeled pool. s;,,s(u) is obtained
based on the values of AL heuristics. This step is similar to
computing heuristics like classifier uncertainty, classification
margin or entropy of class probabilities in conventional itera-
tive querying AL frameworks [31], [32]. In this work, we use
the following graph theoretic measures as acquisition functions
to select the representative nodes in the graph-structured data.

1) Eigenvector centrality
The most informative node from the unlabeled pool of
nodes is given as:

—argmaxf E Aujcj
j=1

(13)

Here, c; is the centrality of node j, A,; ensures that only
the neighbors of node u contribute to the sum and « is
the largest eigenvalue of A.

This metric tries to select the node which is connected to
many other nodes in the network, while simultaneously
weighing all the neighbors based on their importance or
influence. It overcomes the limitation of degree centrality
measure (already used in the literature [1]), which con-
siders equal weights for all the neighbors of the node.
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2) Closeness centrality

The most informative node is selected using:
N
u* duj

= arg max (14)

N
v e
Here, d,,; is the shortest distance between the nodes u
and j.
The closeness centrality metric tries to select the node
whose average distance to other nodes in the graph is
smaller.

3) Betweenness centrality
The most representative node is expressed as:
—argmaXZZn (15)
s=1t=1
ot — { 1,if u lies on the shortest path from s to ¢
st 71 0, otherwise
(16)
This measure selects the nodes which have maximum
control over information passing between other nodes in
the graph.
4) Effective Graph Resistance (EGR)

The most informative node from the unlabeled pool of
nodes is selected using:

u* = argmax(Rg — Ragu)

u

Here, R is the EGR of complete graph G and Rg,
represents the EGR of GG after removal of node .
This metric leads to selection of the nodes whose removal
maximizes the decrease in graph robustness.

The aforementioned graph theoretic measures have not been
used as AL heuristics/acquisition functions in the literature
of node classification using active learning, and is a novel
contribution of this work. The advantages of the proposed
AL framework are multifold. Firstly, it incorporates both node
attributes and topological information in the learning scheme.
The node features are used while training the GNN-based
decision model and topological information is considered
during selective sampling of the nodes. Unlike a majority of
existing works in the literature, we use inductive GraphSAGE
[15] approach for building node classification models. This
allows the approach to be scalable across graphs of different
sizes as well as subgraphs within the given graph.

A7)

V. EXPERIMENTAL EVALUATION
A. Datasets Description

The proposed AL framework is evaluated by performing
experiments over two datasets, namely, Cora [33] and CiteSeer
[34]. These are the citation networks consisting of scientific
publications. Every node in the graphs represents a publica-
tion characterized by a set of binary features indicating the
presence/absence of unique words from the dictionary. The
edges in the graphs signify citation links among different
publications. The properties of the datasets are summarized
in Table I.
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Fig. 1. Proposed Active Learning framework.

TABLE I
SUMMARY OF THE DATASETS CONSIDERED. AVG. DEG.: AVERAGE
DEGREE, AVG. CC: AVERAGE CLUSTERING COEFFICIENT

Dataset | Nodes | Links | Features | Classes | Avg. Deg. | Avg. CC
Cora 2708 5429 1433 7 4.00 0.24
CiteSeer | 3312 4732 3703 6 2.84 0.17

B. Experimental Settings

All the downstream tasks related to representing and pro-
cessing graphical data are handled using NetworkX [35]
library in Python. PyTorch [36] is used to implement aspects
of deep learning and GNN-specific tasks are integrated using
Deep Graph Library (DGL) [37]. The detailed architecture of
the GNN is as follows: depth (i.e., number of node embedding
modules): 2; number of neurons in 2 layers: 48, 48; number
of multi-layer perceptron (MLP) layers: 2; activation function:
ReLU (except last layer with softmax); aggregation function:
mean.

The training of GNNSs is carried out in a mini-batch manner.
1.5 - 2% of the total nodes in the graph-structured datasets
are randomly chosen to construct the initial labeled dataset.
Around 20 - 25% of the nodes (uniformly selected over all
classes) are kept aside for testing and are not used during
training and validation steps. We make a total of 100 queries
on Cora and 120 queries (~ 3.5 - 4% of the total nodes)
on CiteSeer datasets. AL models are trained by considering
four different graph-theoretic measures, namely, eigenvector
centrality, closeness centrality, betweenness centrality and

EGR (described in Section IV) as heuristics for selecting
the most informative nodes. The evaluation is repeated for
100 times and the average values of classification accuracy
scores are reported in Section V-C. The degree centrality and
clustering coefficient (CC) metrics, used in [1] are treated as
the baselines. Degree centrality of a node u represents the
fraction of nodes in the networks that are connected to u. The
use of this metric as an AL heuristic results in selection of a
node that is connected to maximum number of nodes in the
network. On the contrary, CC of a node u is evaluated by
computing the fraction of triangles possible through it. When
used an acquisition fuction in AL framework, it tries to select
nodes that possess high tendency to form clusters together.

C. Results and Discussion

The values of classification accuracy using all the four
graph-theoretic measures (eigenvector centrality, closeness
centrality, betweenness centrality and EGR) as well as the
baselines (degree centrality and clustering coefficient) for Cora
and CiteSeer datasets are tabulated in Table II and Table III
respectively. The corresponding plots are shown in Figure 2
and Figure 3 respectively. It can be observed that two of
the metrics, i.e., betweenness centrality and EGR consistently
exhibit better performance as compared to both the baselines
for Cora and CiteSeer datasets.

Degree centrality is a naive graph theoretic measure which
quantifies the number of connections of a node to other nodes
in the graph. On the other hand, the metrics like betweenness
centrality and EGR incorporate topological information in a
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TABLE II
RESULTS FOR CORA DATASET

Query Strategy Initial Classification | Classification Accuracy after no. of queries
Accuracy 25 50 75
Degree 29.43% 46.42% | 58.57% | 68.28% 75.14%
Clustering Coefficient 27.66% 43.51% | 52.17% | 65.96% 69.86%
Eigenvector 32.64% 45.79% | 64.43% | 75.84% 77.92%
Closeness 29.71% 42.06% | 50.28% | 54.42% 60.97%
Betweenness 30.42% 54.71% | 67.85% 70% 80.57%
EGR 31.75% 52.36% | 68.79% | 75.53% 83.81%
TABLE III

RESULTS FOR CITESEER DATASET

Query Strategy Initial Classification | Classification Accuracy after no. of queries
Accuracy 25 50 75 100
Degree 27.64% 34.06% | 46.18% | 60.69% 71.56%
Clustering Coefficient 24.33% 37.57% | 40.82% | 58.48% 63.12%
Eigenvector 28.14% 39.51% | 50.42% | 67.31% 75.73%
Closeness 26.53% 35.56% | 44.10% | 62.54% 72.02%
Betweenness 30.27% 41.78% | 52.37% | 63.22% 77.82%
EGR 30.91% 43.88% | 56.25% | 68.48% 79.38%

more elegant way as compared to degree centrality. In the
context of AL framework, betweenness centrality tries to select
the node having maximum control over information passing
between other nodes in the graph. EGR is a robustness measure
which picks up the nodes whose removal maximizes the
decrease in graph robustness. Therefore, the use of these graph
theoretic metrics as AL heuristics leads to an improvement in
classification performance by upto 10% as compared to the
baseline.

VI. CONCLUSION

This article presents an AL framework to address node
classification task in attributed graphs using a convex op-
timization approach. The proposed method integrates both
topological information as well as node attributes within the
learning scheme. The decision models are trained and updated
using GraphSAGE, an inductive node embedding approach
that learns both the topological structure and distribution of
features for a node in its local neighborhood. Graph theo-
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Fig. 2. Plots of classification accuracy scores vs. no. of queries for Cora
dataset.
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Fig. 3. Plots of classification accuracy scores vs. no. of queries for CiteSeer
dataset.

retic measures are used as AL heuristics to select the most
informative nodes in the graph for annotation. It is observed
that betweenness centrality and EGR consistently outperform
the baseline and improve the classification performance by
upto 10%. Future extensions of this work include exploring
the utility of other graph theoretic measures and evaluating
the proposed framework over larger graphs as well as graphs
from different application domains.
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