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Abstract. In this work, we study the optimal design of two-armed clinical trials to maximize
the accuracy of parameter estimation in a statistical model, where the interaction between
patient covariates and treatment are explicitly incorporated to enable precision medication
decisions. Such a modeling extension leads to significant complexities for the produced opti-
mization problems because they include optimization over design and covariates concur-
rently. We take a min-max optimization model and minimize (over design) the maximum
(over population) variance of the estimated interaction effect between treatment and patient
covariates. This results in a min-max bilevel mixed integer nonlinear programming problem,
which is notably challenging to solve. To address this challenge, we introduce a surrogate
optimization model by approximating the objective function, for which we propose two so-
lution approaches. The first approach provides an exact solution based on reformulation and
decomposition techniques. In the second approach, we provide a lower bound for the inner
optimization problem and solve the outer optimization problem over the lower bound. We
test our proposed algorithmswith synthetic and real-world data sets and compare themwith
standard (re)randomizationmethods. Our numerical analysis suggests that the proposed ap-
proaches provide higher-quality solutions in terms of the variance of estimators andprobabil-
ity of correct selection.We also show the value of covariate information in precisionmedicine
clinical trials by comparing our proposed approaches to an alternative optimal design ap-
proach that does not consider the interaction terms between covariates and treatment.
Summary of Contribution: Precision medicine is the future of healthcare where treatment
is prescribed based on each patient information. Designing precision medicine clinical tri-
als, which are the cornerstone of precision medicine, is extremely challenging because sam-
ple size is limited and patient information may be multidimensional. This work proposes a
novel approach to optimally estimate the treatment effect for each patient type in a two-
armed clinical trial by reducing the largest variance of personalized treatment effect. We
use several statistical and optimization techniques to produce efficient solution methodolo-
gies. Results have the potential to save countless lives by transforming the design and im-
plementation of future clinical trials to ensure the right treatments for the right patients.
Doing so will reduce patient risks and reduce costs in the healthcare system.

History:Accepted by J. Paul Brooks, Area Editor for Applications in Biology, Medicine, & Healthcare.
Funding: This research is supported by the National Science Foundation [Grant 1651912].
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1. Introduction
The average cost of bringing a new treatment to market
has surpassed $2.6 billion, and expensive clinical trials
are the major driver of such a high cost (Tufts 2014). In
particular, the total cost of clinical trials can reach
$300–$600 million for large global trials; the costs usu-
ally increase with each phase of the trial (Giffin et al.
2010). Clinical trial costs depend on a variety of factors,
such as the number of participants, number and loca-
tions of research facilities, complexity of the trial proto-
col, and reimbursement provided to investigators. In
particular, the top three cost drivers of clinical trial

expenditures are clinical procedure, administrative
staff, and site monitoring costs (Sertkaya et al. 2016).
Several different communities, including statistics/bio-
statistics, public health sciences, economics, machine
learning, and operations research, have studied differ-
ent aspects of this complex procedure.

Specifically, we aim to incorporate patients’ covariate
information into the optimal design. This is motivated
by the recent significant interest in precision medicine
(sometimes it is also referred to as personalized medicine,
and we use both terms interchangeably throughout the
paper). Precision medicine seeks to maximize the
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quality of healthcare by providing individual-level
healthcare for each patient and has recently gained
prominence as the future of healthcare (Kosorok and
Laber 2019). In fact, there is significant evidence that ig-
noring patient individualized information in prescrib-
ing medicine can impact the efficacy of treatment and
potentially be harmful. For example, Schork (2015) pro-
vided surprising statistics that the top 10 highest-gross-
ing drugs help between 1 in 25 and 1 in 4 of the pa-
tients. This number for statins can be as low as 1 in 50.
Motivated by such evidence, governments and health-
care institutions have emphasized precision medicine
and allocated significant resources for research and de-
velopment in this area (Hayden 2015). The majority of
the literature investigates the optimal decision making
of personalized treatment based on statistical analysis,
see, for example, Shi et al. (2018).

A key step in personalized medicine is the ability to
design clinical trials that focus on an individual, not av-
erage, response to treatment (Schork 2015). The key dif-
ference between precision medicine and population-
level treatment in terms of their statistical analysis lies
in the difference between their respective statistical
models. This means that experiment designs originally
developed for population-level treatment analysis may
be inappropriate for precision medicine: it may deterio-
rate the accuracy and efficiency of their model estima-
tion. It is critically important to investigate optimal de-
sign specifically for precision medicine, that is, how to
collect experimental data aiming to optimize the effec-
tiveness of the subsequent statistical analysis for preci-
sion medication in the present of patient covariates. To
the best of our knowledge, this setting has not been ad-
dressed in the literature. To fill this gap, this paper ex-
tends a conventional approach for optimal design of
clinical trials by incorporating patients’ personalized
covariate information, focusing on two-armed clinical
trials. Formally, given a set of patients with covariate
information, we study how to allocate them to two dif-
ferent treatments in order to maximize the worst-case
accuracy (over covariates) of statistical inferences about
the treatment efficacy. Note that there are many other
types of designs for clinical trials in the literature, such
as response adaptive and Bayesian; for a survey of dif-
ferent types of designs for clinical trials, see Berry
(2006), Press (2009), Kotas and Ghate (2018), and refer-
ences therein.

In this study, we consider the optimal design of clin-
ical trials with two treatment options. This includes
Phase III clinical trials, where a novel treatment is usu-
ally tested against a standard treatment or a placebo.
Phase III clinical trials are the most expensive ones,
and improving the accuracy of statistical inferences
about the treatment efficacy can significantly improve
the quality of the procedure (Giffin et al. 2010). Our
proposed design also applies to a class of Phase II

clinical trials where two dosage levels are involved
and the decision maker is interested in the dose with
the highest response. Phase II clinical trials usually in-
volve finding the minimum effective dose, maximum
tolerable dose, and 95% effective dose (Berry et al.
2002). Our proposed design is not directly applicable
to Phase I clinical trials, in which the safe dose range is
usually found by dose escalation principles such as
3+ 3 design (Le Tourneau et al. 2009).

The theory of optimal experiment design started with
the early development by Fisher (1936). Classical optimal
designs focus on reducing the variabilities of parameter
estimation in a statistical model. Different types of opti-
mal designs are often led by optimizing different utility
functions of the variance-covariance matrix of the esti-
mated parameters (Wu and Hamada 2011, Morris et al.
2015). For example, the D-optimal design corresponds to
an optimal solution ofminimizing the determinant of the
generalized variance matrix of the parameter estimates
for the underlying statistical model. As a result of the
complex objective function employed in an optimal de-
sign problem, the corresponding optimization problem
is usually challenging to solve. Off-the-shelf optimization
solvers are usually incapable of providing exact optimal
solutions of these optimization problems; see, for exam-
ple, Singh andXie (2020).

Specialized solution methodologies must be devel-
oped to address this computational challenge. For in-
stance, Bertsimas et al. (2015) have proposed a design
problem that minimizes the maximum discrepancy in
mean and variance among different treatment groups.
Their proposed designs yield a significant improve-
ment over (re)randomized designs in terms of statisti-
cal inference in the population level. Our paper incor-
porates precision medication in statistical modeling
and develops optimal designs to improve the accuracy
of this task. Thus, the resulting structure of our optimi-
zation formulations is significantly different from the
one proposed in Bertsimas et al. (2015). Specifically, in
the context of two-armed clinical trials, their problem
reduces to a single-level mixed integer linear program,
which can be adequately handled by an off-the-shelf
optimization solver. In contrast, our problem corre-
sponds to a min-max bilevel mixed integer nonlinear
program, for which we propose specialized algo-
rithms. One other related work is by Bhat et al. (2020),
who studied optimal design of experiments with cova-
riates for A-B testing both in offline and online settings.
In their offline setting, similar to our work, they stud-
ied an optimal design of experiments with a linear re-
sponse model. The major difference is that we incorpo-
rate the interaction effects between patient information
and treatment allocation, while they do not. This sim-
plification allows them to use a tractable approxima-
tion for the optimal design problem that minimizes the
variance of the estimator. This is in stark contrast with
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ourmin-max bilevel mixed integer nonlinear program-
ming formulations, which are computationally diffi-
cult to solve. In particular, the inclusion of the interac-
tion terms between patient covariates and treatments
is highly valuable in that it delivers different treatment
effects for different covariates representing different
individuals, which is the goal of precision medicine.
We demonstrate the value of incorporating this inter-
action in our numerical experiments.

1.1. Main Contributions
We summarize our main contributions as follows:

• First, we formulate the optimal design problem for
a two-armed clinical trial by incorporating the interac-
tion between treatment allocation and patient covariate
information. In the literature of two-armed clinical tri-
als, previous attempts do not consider the interaction
between treatment and patient covariates in the context
of optimal design in the presence of patient covariates.
In contrast, our model explicitly incorporates covariate
information in treatment effects, for which the optimi-
zation of statistical accuracy is formulated as a min-
max bilevel optimization problem: the decision maker
seeks to minimize the worst case (over covariates) vari-
ance of the estimates of individualized treatment effect.

• Second, we propose a surrogate model by approxi-
mating the variance of the estimator. The core of the
approximation is adopting an asymptotic balance de-
sign in the Taylor expansion of the objective function.
Despite this approximation, the optimization problem
is still a min-max bilevel mixed integer nonlinear pro-
gram, for which we propose two solution approaches
to solve it. The first approach solves the surrogate mod-
el exactly and is based on a reformulation of the min-
max problem using decomposition techniques. The sec-
ond approach provides a lower bound for the inner
maximization problem and the outer minimization is
carried out over this lower bound. The appealing fea-
ture of the lower bounding approach is that it yields a
single-level optimization problem, which scales well
with the size of the problem including large clinical tri-
als with hundreds of patient covariates.

• Finally, we apply our algorithms on several sets of
synthetic data and a case study with real data for pa-
tient covariates from a large clinical trial for Warfarin, a
popular anticoagulant medication used to treat blood
clots. Our numerical results show that the proposed al-
gorithms outperform the standard randomization and
rerandomization methods that are widely used in the
literature in all tested settings. We also compare our
proposed design with that of Bhat et al. (2020) as a
benchmark to shed light on the value of incorporating
patient covariates into treatment effect. In particular,
our results show that the proposed lower bounding ap-
proach performs robustly in terms of the correspond-
ing objective values of both the surrogate model and

the original model. This observation suggests that the
lower bounding approach can be a fast and reliable op-
tion for optimal design of precision clinical trials.

1.2 Paper Organization
Section 2motivates and formulates the problem. Section 3
provides a surrogate model and introduces two solu-
tion approaches for the proposed optimal design prob-
lem. Section 4 summarizes our numerical study, and
Section 5 gives a case study of the proposed approaches.
Section 6 concludes the paper.

2. A Min-Max Optimal Design Problem for
Precision Medicine Clinical Trials

This section develops an optimal design objective that
is oriented toward the goal of improving the accuracy
of precision medicine decisions. Following classical
assumptions in the literature (Qian and Murphy 2011,
Atkinson 2015, Laber et al. 2016), we consider a linear
model to describe the treatment-response relationship
in the presence of patient covariate information. In
particular, let x ∈ {−1, 1} denote the two treatment lev-
els, z � (1, z1,: : : , zp−1)� ∈ Z ⊂ R

p with p > 1 denote the
noncontrollable patient covariates, and y ∈ R be a nu-
merical response. The treatment-response relationship
is then given by

y � z�α+ xz�β+ ε, (1)

where α � (α0, α1,: : : , αp−1)� and β � (β0,β1,: : : ,βp−1)�
are the linear coefficients and ε models randomness in
response and follows a normal distribution N(0,σ2).
The purpose of personalized medicine is to recom-
mend patient-specific treatment. To that end, the deci-
sion maker seeks to find the best (in terms of maximal
response) treatment for each patient given its covari-
ate z ∈ Z, which is defined by

x∗ z( ) :� argmax
x∈ −1,+1{ }

z�α+ xz�β
{ } � argmax

x∈ −1,+1{ }
xz�β
{ }

: (2)

Apparently, the optimal decision in (2) can be viewed as
a function of the individual’s covariate information z.
We observe that the objective in (2) can be expressed by

xz�β � xβ0 +
∑p−1
i�1

xziβi:

Thus, the difference between the two treatment deci-
sions for each individual depends on the significance
of the coefficient parameters associated with covari-
ates xz1, : : : ,xzp−1, that is, the interaction between
treatment x and the patient covariates. If coefficients
β1, : : : ,βp−1 are zeros in the model, we see that the per-
sonalized optimal decision x∗(z) is reduced to the pop-
ulation level optimal decision

x∗ � argmax
x∈ −1,+1{ }

xβ0, (3)

Zhang, Khademi, and Song: Minimax Optimization of Two-Armed Trials
INFORMS Journal on Computing, 2022, vol. 34, no. 1, pp. 165–182, © 2021 INFORMS 167

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

30
.1

27
.2

38
.2

33
] o

n 
20

 F
eb

ru
ar

y 
20

23
, a

t 1
1:

41
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



as studied in Bhat et al. (2020). Compared with the
work of Bhat et al. (2020), Model (1) significantly im-
proves the relevance to precisionmedicine. On the oth-
er hand, it also notably increases the complexity of the
statistical analysis and computation, as the resulting
estimators are multidimensional and include patient
covariates.We next elaborate on these challenges.

2.1. Optimal Design with Covariates: A Min-Max
Bilevel Optimization Problem

Suppose that n patients are recruited for the clinical
trial; the covariate information of each patient i is given
by hi ∈ Z; and all patient covariate information is repre-
sented by an n × p matrix H � (h1,: : : ,hn)�, where � de-
notes matrix transpose. Let xi ∈ {−1, 1} denote the treat-
ment prescribed to patient i and let x � (x1,: : : ,xn)� be
the treatment allocation of n patients. After the trial
is finished and all the responses of patients are col-
lected, the estimated coefficients α and β in (1) can
be expressed by α̂(x,H) and β̂(x,H), which are func-
tions of the design x and patient covariate informa-
tion H. Based on estimates of the model parameters,
the decision maker is able to infer the best treatment
for each patient type with covariate z ∈ Z. Let
x̂(z;H,x) denote the suggested treatment to patients
with covariates z where the trial has patient infor-
mation H and allocation prescribed is x. A natural
choice for x̂(z;H,x) is then given by

x̂ z;H,x( ) :� argmax
x∈ −1,+1{ }

z�α̂ x,H( ) + xz�β̂ x,H( )

� argmax
x∈ −1,+1{ }

xz�β̂ x,H( ): (4)

Recall that the treatment effect in Model (1) is identi-
fied by z�β, which can be estimated by z�β̂(x,H). In
order to have a higher precision in statistical infer-
ence, it is natural to minimize the variance of
z�β̂(x,H) for each individual value of z. According to
our assumptions, ε in (1) follows a normal distribution
ε ~N(0,σ2); thus z�β̂(x,H) also follows a normal dis-
tribution with mean z�β and variance z�Σβ(x,H)z,
where Σβ(x,H) is the variance-covariance matrix of
β̂(x,H). In other words, the quality of estimates de-
pends on the allocation x and can be a subject for opti-
mization. From an optimization perspective, we aim
to minimize the worst-case (maximum) variance of
the estimated interaction effect z�β̂(x,H) among all
patient covariates z ∈ Z, which yields the following
optimization problem:

min
x∈ −1,1{ }n

max
z∈Z z�Σ

β
x,H( )z: (5)

Notice that, if the interaction between treatment and
covariates is not included, the treatment and covari-
ates follow an additive structure in the model. The ac-
curacy of population-level optimal decision in (3) is

determined by the accuracy of β̂0(x,H), which is the
estimator of the global treatment effect. Therefore, as
studied in Bhat et al. (2020), the optimal design in this
case corresponds to minimizing the variance of
β̂0(x,H), which can be written as

var β̂0 x,H( )
[ ]

∝ 1

x� I−H H�H( )−1H�
[ ]

x
:

This is equivalent to solving the following convex
quadratic 0-1 integer program:

min
x∈ −1,1{ }n

x�H H�H( )−1H�x, (6)

which can be handled, for example, by a modern com-
mercial solver such as Gurobi.

2.2. Challenges for Solving the Min-Max Bilevel
Optimization (5)

We next characterize the variance-covariance ma-
trix Σβ(x,H) in the objective function of (5) and
point out the challenges in solving this optimal de-
sign problem. Notice that the dimension of covari-
ates in (1) is 2p by including the main effect z and
the interaction xz. After stacking all the covariates
from all n patients, we denote the n × 2p covariates
matrix by

X � H DxH
[ ]

,

where Dx � diag(x1, : : : ,xn) is a diagonal n × n matrix
and H and DxH are the matrices of patient covariates
and the matrices that characterize interactions be-
tween treatment allocation and patient covariates, re-
spectively. Thus, the variance matrix of the estimated
parameters (α�, β�)� in (1) can be expressed by

σ2 X�X( )−1 � σ2
H�H H�DxH

H�DxH H�H

[ ]−1
:

By taking the inversion of the above block matrix, the
variance of the estimator for β corresponds to the sec-
ond diagonal block entry, which is given by

Σ
β x,H( ) � σ2 H�H−H�DxH H�H( )−1H�DxH

( )−1
: (7)

Plugging Equation (7) into optimization Problem (5)
results in a min-max bilevel nonconvex mixed integer
nonlinear program, which is notoriously difficult to
solve even when the inner problem is a mixed integer
program (DeNegre 2011, Tang et al. 2016). Further-
more, the covariate matrix in (7) makes the optimiza-
tion problem challenging to handle directly because of
the matrix inverse. The next section introduces our
proposed approaches to address the computational
challenges in solving (5).
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3. Solution Methodology
Our proposed solution approaches are based on an ap-
proximation to optimization Problem (5) using a surro-
gate objective function. We describe this surrogate ob-
jective function in Section 3.1. The construction of the
surrogate model is based on a natural asymptotic result
on the number of patients allocated to each treatment;
that is, as the number of patients increases, the optimal
design converges to a balanced design, which is the
gold standard in the literature; see, for example, Kallus
(2018). After applying this surrogate function, the prob-
lem remains a min-max bilevel nonconvex mixed inte-
ger nonlinear program; we subsequently describe two
solution approaches. In Section 3.2, we provide an exact
algorithm to solve this surrogate model based on de-
composition and reformulation methods. In Section 3.3,
we derive a lower bound for the inner optimization
problem, which allows the min-max bilevel optimiza-
tion problem to be further approximated by a single-
level optimization problem by replacing the inner opti-
mization problem with this lower bound.

3.1. A Surrogate Optimization Model
In this section, we approximate Σβ(x,H) based on some
natural assumptions in our problem context and then
use this approximation to construct a surrogate optimi-
zation problem for (5). Let n+ and n− denote the num-
ber of patients that are allocated to treatments 1 and
−1, respectively. In addition, let Pz denote the proba-
bility measure defined over the covariate space and Ez

denote the expectation with respect to the said proba-
bility measure. The next lemma is crucial in our con-
struction, which ensures that under an asymptotically
balanced design, the following matrix behaves asymp-
totically as n−1Ip, where Ip is a p × p identity matrix.

Lemma 1. Let Ez(zlzk) � γlk and assume that |γll| ≥ γ >
0, ∀l ∈ {1, 2, : : : ,p} and n−1(n+ − n−) �O(n−1), then

H�H( )−1H�DxH �Op n−1( )Ip:
Proof. By law of large numbers, we have

n−1
∑n
i�1

zilzik � γlk + op 1( ):
Let Γ be a (p+ 1) × (p+ 1) matrix with ij-th entry γij.
As a result,

H�H=n � 1
n

∑n
i�1

ziz�i � Γ+ op 1( ):

H�DxH=n � 1
n

∑n
i�1

xiziz�i � 1
n

∑
i:xi�1{ }

ziz�i − 1
n

∑
i:xi�−1{ }

ziz�i

� n+
n
n−1+

∑
i:xi�1{ }

ziz�i − n−
n
n−1−

∑
i:xi�−1{ }

ziz�i

� n+
n
− n−

n

( )
Γ+ op 1( )
( )

Consider that n−1(n+ − n−) �O(n−1), we have

H�H( )−1H�DxH �Op n−1( )I: w

The assumption n−1(n+ − n−) �O(n−1) formalizes an
asymptotically balanced design concept, which is con-
sidered a gold standard in the optimal design of ex-
periments. The covariate matrix in (7) is difficult to
manage because it does not give an explicit formula
on x, as a result of the matrix inverse. To simplify this
expression, we apply the Taylor expansion of (7) and
use results provided in Lemma 1.

Proposition 1. Under the assumptions ofLemma 1,we have

Σβ x,H( ) �σ2
(
I + H�H( )−1H�DxH H�H( )−1

× H�DxH
)
H�H( )−1 +O n−4( )A x,H),(

(8)

where A(x,H) is the remainder matrix for coefficients with
n−4 and polynomials of higher degrees in the Taylor’s
expansion.

Proof. Recall that

Σ
β
(x,H) � σ2(H�H −H�DxH (H�H)−1H�DxH)−1

� σ2((H�H)(I− (H�H)−1H�DxH (H�H)−1× H�DxH))−1
� σ2(I − (H�H)−1H�DxH (H�H)−1H�DxH)−1(H�H)−1

According to the Taylor expansion of matrix inver-
sion, if a matrix A has a spectral radius less than one

I −A( )−1 �∑∞
k�0

Ak:

According to Lemma 1, we have that this condition
holds when n is large enough. Therefore,

I− H�H( )−1H�DxH H�H( )−1H�DxH
( )−1

� I + H�H( )−1H�DxH H�H( )−1H�DxH

+∑∞
k�2

H�H( )−1H�DxH H�H( )−1H�DxH
( )k

According to Lemma 1, the above higher order term
becomes∑∞
k�2

H�H( )−1H�DxH H�H( )−1H�DxH
( )k

�O n−4( )A x,H( ),

where A(x,H) represents the reminder matrix. Then
the conclusion holds. w

Proposition 1 paves the way to construct the surro-
gate model. In fact, it is natural to replace Σβ(x,H) by
the first term of (8). To streamline notation, let

Ψ x,H( ) � H�H( )−1H�DxH H�H( )−1H�DxH H�H( )−1:
(9)
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Then, a surrogate model for optimization Problem (5)
can be formulated as

min
x

max
z∈Z z� H�H( )−1 +Ψ x,H( )

( )
z, (10a)

s:t: − 1 ≤∑n
i�1

xi ≤ 1, (10b)

x ∈ −1,+ 1{ }n: (10c)

We provide numerical evidence regarding the quality
of the surrogate model in Section 4.1.

Note that compared with the original Problem (5),
we add an additional Constraint (10b) to the outer opti-
mization problem to ensure a balanced design. Particu-
larly, if n is an even number, this constraint becomes
the exact balancing constraint, that is,

∑n
i�1xi � 0. If

n is an odd number, exact balancing over x is im-
possible; thus we relax the constraint to be
−1 ≤∑n

i�1xi ≤ 1. Before proceeding, the following
lemma shows that the objective function of
(10a)–(10c) can be rewritten as a quadratic function
of x given a fixed z.

Lemma 2. The following equality holds

z�Ψ x,H( )z � x�Υ z,H( )x, (11)

where

Υ z,H( )� H H�H( )−1H�
( )

� H H�H( )−1z z( )� H�H( )−1H�
( )

,

and � denotes the Hadamard product (i.e., matrix elementa-
ry-wise product). In addition, matrix Υ(z,H) is positive
semidefinite (PSD) for any z.

Proof. Let tr(·) denote the trace of a matrix. The result
follows by

z( )� H�H( )−1H�DxH H�H( )−1H�DxH H�H( )−1z
� tr z( )� H�H( )−1H�DxH H�H( )−1H�DxH H�H( )−1z

{ }
� tr DxH H�H( )−1H�DxH H�H( )−1z z( )� H�H( )−1H�

{ }
� x� H H�H( )−1H�

� H H�H( )−1z z( )� H�H( )−1H�
{ }

x: w

Because both H(H�H)−1H� and H(H�H)−1z(z)�
(H�H)−1H� are PSD, their Hadamard product Υ(z,H)
is also PSD.

Although problem (10) is still a min-max bilevel
mixed integer nonlinear program, its objective func-
tion is much easier to handle: given a fixed x, the ob-
jective function is a convex quadratic function of z
(see (10a)), and given a fixed z, the objective func-
tion is a convex quadratic function of x (see (11)).
We next develop exact and approximate ap-
proaches to solve it.

3.2. An Exact Algorithm for Solving the
Surrogate Formulation

In this section, we develop an exact algorithm to solve
formulation (10) by applying a cutting plane procedure
on a reformulation of formulation (10). This reformula-
tion is motivated by the fact that the objective function
of problem (10) is a convex quadratic function of x giv-
en a fixed z, and a convex quadratic function of z given
a fixed x. Before proceeding, we make an assump-
tion on the patient covariate space to facilitate the
derivation of the algorithm. In particular, we as-
sume that zi ∈ {−1, 1} for all i � 1, 2, : : : ,p− 1, that is,
each covariate can be represented by a binary vari-
able. This assumption results in Z � 1 × {−1,1}p−1,
where the first “1” indicates that the first covariate
is set to be one (as the intercept). Note, however,
that this assumption is made without loss of gener-
ality, because it is well known that a linear model
with categorical covariates can be transformed
into an equivalent linear model in which all the co-
variates are binary (Rencher and Schaalje 2008).
Also, in the context of clinical trials, the covariates
are usually categorical, such as age group, gender,
and health category, which are discrete and
bounded. Specifically for precision medicine, the
covariates of interest include genomic biomarkers,
which are typically discrete (Majewski and Ber-
nards 2011). Therefore, one can easily construct a
linear model with binary covariates. We denote
Z � {Z1,Z2, : : : ,Z2p−1}.

First, the surrogate model (10) can be reformulated as

min θ

s:t: θ ≥ z� H�H( )−1z+x�Υ z,H( )x, ∀z ∈ Z,

− 1 ≤ ∑n
i�1

xi ≤ 1,

x ∈ −1,1{ }n:

(12)

The above formulation is a convex integer quadratic
program, and we propose a cutting-plane-based exact
solution approach. In particular, let Zm ⊂ Z and define
the following so-called master problem that gives a re-
laxation of (12):

min θ

s:t: θ ≥ z� H�H( )−1z+ x�Υ z,H( )x, ∀z ∈ Zm,

−1 ≤∑n
i�1

xi ≤ 1,

x ∈ −1,1{ }n:

(13)

Let xm and θm be an optimal solution to the Master
Problem (13). If xm and θm satisfy all of the constraints
in Formulation (12), then, xm and θm are optimal to
(12). Otherwise, we should add elements in Z \Zm to
Zm and resolve the Master Problem (13) to obtain a

Zhang, Khademi, and Song: Minimax Optimization of Two-Armed Trials
170 INFORMS Journal on Computing, 2022, vol. 34, no. 1, pp. 165–182, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

30
.1

27
.2

38
.2

33
] o

n 
20

 F
eb

ru
ar

y 
20

23
, a

t 1
1:

41
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



tighter relaxation. To find these elements (if any), we
solve the following subproblem:

δm �max
z∈Z z� H�H( )−1 +Ψ xm,H( )

( )
z: (14)

If θm ≥ δm, the optimal solution is xm; otherwise, we
add an optimal solution of (14) to Zm and continue
the procedure by resolving the Master Problem (13).
Because Z is finite, this procedure converges to an op-
timal solution of (12) in a finite number of steps. In
our implementation of the algorithm though, we use
the stopping criteria of θm ≥ δm − ε for some prespeci-
fied threshold ε > 0. Observe that Subproblem (14) is a
nonconvex quadratic integer program, which is diffi-
cult to solve in general. However, recall that each
zi ∈ {−1, 1}, then one can apply McCormick reformula-
tion of bilinear and quadratic terms and the resulting
reformulation will be a mixed integer linear pro-
gram, which can be solved by an off-the-shelf op-
timization solver.

3.3. A Lower Bounding Approximation to the
Inner Maximization Problem of (10)

In this section, we propose a lower bound for the in-
ner maximization problem of (10) and we propose a
heuristic approach for solving the surrogate model
(10) by solving a single-level optimization problem,
which is obtained by replacing the inner maximiza-
tion problem with this lower bound. To that end, we
assume that Z � {h1, : : : ,hn}, that is, the collection of
covariate vectors of patients coincide with the space of
all possible covariates of interest. This assumption,
though, is not restrictive because when decision mak-
ers set up a clinical trial to investigate the efficacy of a
drug for a specific set of covariates, they recruit pa-
tients with these covariates. More importantly, al-
though the validity of the lower bounding technique
relies on this assumption, the solutions produced by
following this heuristic approach can be used even for
settings where the assumption is not satisfied. Our nu-
merical results show that the solutions provided by
this approach are competitive with those derived by
the exact algorithm presented in Section 3.2 for the
surrogate model, and it outperforms the exact algo-
rithm in terms of the original objective (5) when the
number of covariates is large; see Section 4.1.

Proposition 2. For any given x, the inner maximization
problem of (10) is lower bounded by

p
n
+ 1
n
x� H H�H( )−1H�

( )
� H H�H( )−1H�
( )[ ]

x,

where � denotes the Hadamard product as in (11).

Proof. By letting Z � {h1, : : : ,hn}, we observe that∑n
i�1hih

�
i �H�H. Let tr(·) denote the trace of a ma-

trix, then for a given x, the inner problem in (10),

max
z∈Z z� H�H( )−1z+ z�Ψ x,H( )z
�max

z∈Z tr H�H( )−1zz�
( )

+ x�Υ z,H( )x

≥ n−1
∑n
i�1

tr H�H( )−1hih
�
i

( )
+ x�Υ hi,H( )x

( )
� n−1tr H�H( )−1∑n

i�1
hih

�
i

( )

+n−1x�
[
H H�H( )−1H�
( )

� H H�H( )−1∑n
i�1

hi hi( )� H�H( )−1H�
( )]

x

� p
n
+ 1
n
x� H H�H( )−1H�

( )
� H H�H( )−1H�
( )[ ]

x: w

Therefore, we settle to optimize the above lower
bound, which depends on x only, instead of the inner
maximization problem of (10). This results in the fol-
lowing single-level optimization problem of x:

min x� H H�H( )−1H�
( )

� H H�H( )−1H�
( )[ ]

x,

s:t: − 1 ≤∑n
i�1

xi ≤ 1,

x ∈ −1,+ 1{ }n:
(15)

Optimization Problem (15) is a convex quadratic integer
program (matrix (H (H�H)−1H�) � (H (H�H)−1H�) in
the objective of (15) is PSD), which can be handled by
certain off-the-shelf optimization solvers such as Gurobi.

4. Numerical Results
In this section, we present numerical results of our pro-
posed algorithms on synthetic data sets. In order to
streamline the exposition, we consider the following labels
for our proposed algorithms and benchmark algorithms:

• EXACT is the cutting-plane-based approach for solving
the surrogate model (10) described in Section 3.2. We use a
time limit of 300 seconds for each iteration of this approach.

• LB_APPROX is the lower bound approximation
for the surrogate model (10) described in Section 3.3.

• RAND is a standard (re)randomization technique
used in the design of experiments. In the randomized
allocation approach, we randomly allocate n=2 treat-
ments of option −1 and n=2 treatments of option 1 to n
patients (assuming n is an even number).

• ADDITIVE is the optimal design from solving the
optimization problem in (6), which is based on the
model with an additive structure between treatment ef-
fect and patient covariates, that is, the interaction be-
tween treatment and covariates is not included.
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Next we present numerical results to evaluate the
value of optimal design and quality of the surrogate
model in Section 4.1, and then we present the value of
including the interaction between treatment and pa-
tient covariates for precision medicine clinical trials in
Section 4.2. The source code and data for experiment
results shown in this section can be found at https://
github.com/qiongzhangclemson/optimaldesign.

4.1. Value of Optimal Design and Quality of
Surrogate Model

This section evaluates the accuracy of the surrogate
model and the performance of the proposed optimization
approaches with respect to random designs. Specifically,
we use the objective value of the original problem in (5)
(we refer to it as the “Original Objective Value”) and the
objective value of the surrogate model in (10) (we refer to
it as the “Surrogate Objective Value”) as the measure-
ments. Because the optimal design “ADDITIVE” is con-
structed under a different objective (as expressed in (6)),
we do not include it into the comparison in this subsection.
The comparison via the surrogate objective demonstrates
the value of optimal design compared with random de-
sign, and the comparison via the original objective shows
the quality of the surrogate model.

For any given allocation x, the optimal value of the
inner problem of the original Problem (5) is given by

max
z∈Z z�

∑
β
x,H( )z,

and the optimal value of the inner problem of the sur-
rogate model (10) is given by

max
z∈Z z� H�H( )−1z+ z�Ψ x,H( )z:

For RAND, we generate 100 random allocations. The
1%, 5%, and 50% quantiles of the values from the 100
random allocations are denoted by “RAND(1%),”
“RAND(5%),” and “RAND(50%),” which are com-
pared with the optimal objective values (including the
“Original Objective Value” and the “Surrogate Objec-
tive Value”) obtained by EXACT and LB_APPROX.
The purpose of including multiple quantiles of objec-
tive values from the random design is to show the
spread of the objective value over the random designs,
highlighting the value of optimal design.

We generate the synthetic data sets with random
covariates matrix H in (2). Recall that H is an n × pma-
trix. The first column of H is loaded by ones, and we
randomly generate the entries of the remaining p− 1
columns with −1 or 1 of equal probability.

We first consider the performances of different ap-
proaches with small n and p values: n ∈ {60, 100, 120,
150}, and p ∈ {4, 10, 15, 20}. In order to provide a variety
of estimates for the objective functions with respect to
the random matrix H, we consider five randomly gen-
erated H matrices for each n and p combination. The

objective values of the original optimization Problem
(5) are depicted in Figure 1 for different algorithms, and
the objective values of the surrogate model are depicted
in Figure 2. In these two figures, each color represents re-
sults from one realization of the covariatesmatrixH (recall
that we consider five realizations for each combination).
From Figures 1 and 2, we observe that both EXACT and
LB_APPROX provide more competitive results compared
with the random allocation. We also observe that al-
though EXACT produces the smallest objective value for
the surrogate model in most instances, LB_APPROX is
more robust in producing smaller objective values for
both the original and the surrogate model. A few more
observations from these two figures are in order:

• There are a few cases, especially when n is relative-
ly small compared with p (e.g., n � 60 and p � 15 or 20),
that the solution from EXACT is inferior compared
with RANDwith respect to the original objective value.
The reason is that, in these cases, the surrogate model
is a poor approximation to the original problem.

• When both n and p are large (e.g., n � 120 or 150
and p � 20), LB_APPROX may outperform EXACT in
terms of both original and surrogate model objective
values. The reason is that EXACT is time consuming to
solve for these instances; for example, we observe that
each iteration of the cutting plane algorithm often ex-
ceeds the given time limit of 300 seconds. Thus, the re-
ported solution from EXACT could be a suboptimal so-
lution of the surrogate model on these instances.

We now consider large-scale instances with n � 300.
When n is greater than 150, and p is greater than 30,
the EXACT algorithm becomes computationally in-
tractable. Therefore, we only compare the performance
of LB_APPROX with that of RAND for p � 50 and 100.
The objective values of the original problem and the
surrogate model are depicted in Figures 3 and 4, re-
spectively. As can be seen from Figure 3, for p � 4 and
p � 10, EXACT and LB_APPROX outperform random-
ized algorithms in terms of both the original and sur-
rogate objective values. For p � 30, EXACT performs
poorly with respect to both objectives because only a
suboptimal solution of a low quality is available when
the time limit is reached. On the other hand, LB_AP-
PROX outperforms randomized algorithms and pro-
duces robust performance in all ranges of p with re-
spect to both original and surrogate models.

Next, we discuss the quality of our surrogate objective
function compared with the original objective function.
Figures 5 and 6 show the results of the instances as in
Figures 1 and 3, respectively. In each subfigure, the x-
axis is the value of the original objective and the y-axis is
the value of the surrogate objective. The ideal case to
make a good approximation from the surrogatemodel to
the original problem is that the dots are roughly aligned
along the diagonals. The results in Figures 5 and 6 show
that the surrogate model is a good approximation to the
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Figure 1. (Color online) Objective Values of the Original Problemwith Different n and p Values

Note. Each color represents the results from one realization ofH.
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Figure 2. (Color online) Objective Values of the Surrogate Formulation with Different n and p Values

Note. Each color represents the results from one realization ofH.
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original problem when p is relatively small compared
with n, whereas the approximation is not accurate if p is
relatively large comparedwith n.

In summary, the comparison via surrogate objective
shows that the optimal design given by the proposed so-
lution approaches greatly improves random designs,
and the comparison via the original objective indicates
that the approximation of the original objective is accu-
rate, especially for the cases with a larger ratio between
n and p.

4.2. Value of Treatment-Covariate Interaction
For precisionmedicine, it is crucial to investigate the per-
formance of the proposed approaches at the individual
level. Notice that our optimization problem is formulat-
ed to optimize the worst-case scenario among all covari-
ates. Therefore, it does not necessarily guarantee that the
optimal designs can achieve better accuracy for every
single individual. Throughout this subsection, we only
consider the optimal design solutions to the model with
treatment-covariate interactions that are obtained by the
LB_APPROX approach, as we have seen in Section 4.1
that the LB_APPROX approach yields superior perfor-
mance. To investigate the performance at the individual
level, we compute the variance of z�β̂(x,H) associated
with the resulting optimal design and compare it with
the mean variance associated with random designs for a
randomly generated set of patient information. Given a
patient information vector z0, the expected variance of
the estimated interaction effect from randomdesigns is

Ex z�0 Σβ x,H( )z0[ ] � z�0 ExΣβ x,H( )[ ]
z0, (16)

where the expectation is taken with respect to the ran-
dom design x and can be approximated empirically,
for example, via a Monte Carlo sample. Given an opti-
mal design, x∗, for example, computed by approach
EXACT or LB_APPROX, the variance of the interac-
tion effect is

z�0 Σβ x∗,H( )z0: (17)

For a given vector z0 of patient information, the per-
centage of variance reduction yielded by the optimal
design x∗ compared with random designs can be ex-
pressed by

100 × z�0 ExΣβ x,H( )[ ]
z0 − z�0 Σβ x∗,H( )z0

z�0 ExΣβ x,H( )[ ]
z0

%: (18)

We randomly generate 1,000 random designs to em-
pirically estimate the above variance reduction mea-
sure for 1,000 randomly generated patient information
vector z0 s. Empirically, this variance reduction indi-
cates the extent at which the accuracy of the estimated
interaction effect in (1) is improved by the proposed
approach compared with a random allocation, which
in turn shows the value of the proposed approach in
accurately selecting personalized treatment.

We now evaluate the variance reduction measure in
(18) of optimal designs with respect to the mean vari-
ance from random designs in Figure 7. According to

Figure 3. (Color online) Objective Values of the Original Problemwith n � 300

Note. Each color represents the results from one realization ofH

Figure 4. (Color online) Objective Values of the SurrogateModel with n � 300

Note. Each line represents the results from one realization ofH.
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the results in Figures 1–4, we see that the performan-
ces with different realizations are consistent. To make
the comparison concise, we use the same realization
for each p and n in Figure 7 for all approaches. By
comparing (16) and (17) over 1,000 randomly

generated patient instances z0, almost 100% patients
achieve smaller variance of the estimated interaction
effect by using the optimal design from LB_APPROX.
As shown in the bottom panel of Figure 7, the percent-
age of variance reduction ranges from 5%–50% for

Figure 5. Original Objective Value Verse Surrogate Objective Value for the Instances in Figure 1
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different individuals. The variance reduction results
from ADDITIVE are shown in the top panel of Figure
7; for most cases, the median variance reduction is
around zero, which indicates that optimal design
from the ADDITIVE approach is not necessarily lead-
ing to variance reduction compared with the random
design. Over different cases, 50%–90% of patient cova-
riates achieve a smaller variance of the estimated in-
teraction effect by using our proposed optimal design
compared with random design, whereas the ADDI-
TIVE approach usually leads to a variance reduction
for less than 50% of the patients. This comparison
demonstrates the value of adding the interaction be-
tween treatment and covariates in optimal designs for
precision medicine clinical trials.

We next compare different approaches by the prob-
ability of correct selection for each individual. Given
the covariates information z0, z�0 β̂(x,H) follows a nor-
mal distribution with mean z�0 β and variance
z�0 Σβ(x∗,H)z0. Then the probability of correct selection
can be expressed by

P x̂ z0( ) � x z0( )( ) � P z�0 β̂ x,H( ) ≥ 0
( )

if x z0( ) � 1

P z�0 β̂ x,H( ) ≤ 0
( )

if x z0( ) � −1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

� Φ
|z�0 β=σ|�����������������

z�0 Σβ x,H( )z0
√

=σ

( )
,

where Φ(·) is the cumulative distribution function of
the standard normal random variable. We can see that
the probability of correct selection monotonically de-
creases as the variance (i.e., our original objective) in-
creases. Also, it monotonically increases as the signal-
to-noise ratio |z�0 β=σ| increases.

In Figure 8, we compare different design approaches
under different levels of the signal-to-noise ratio. For
each level, we generate 1,000 patient covariates as de-
scribed earlier and group these patients according to
their quantiles of variances. To demonstrate how the
results change with the signal-to-noise ratio, we gener-
ate a constant vector β=σ and scale the values of its en-
try by 0.01, 0.05, and 0.1 to produce different levels of
signal-to-noise ratio. We see from Figure 8 that as ei-
ther the signal-to-noise ratio or the sample sizes n in-
creases, the probability of correct selection increases for
all approaches. The advantage of the proposed optimal
design approach (LB_APPROX) compared with the
ADDITIVE is more significant when the signal-to-noise
ratio is small and/or the sample size is small. These re-
sults reflect the value of modeling the interaction terms

Figure 6. Original Objective Value Verse Surrogate Objective Value for the Instances in Figure 3

Figure 7. Percentage of Variance Reduction of the Design Attained fromDifferent Optimal Design Approaches with Respect to
the Mean of the RandomDesigns
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between treatment effect and patient covariates in pre-
cision medicine clinical trial designs, especially in cases
when the variance tends to be large because of a small
signal-to-noise ratio and/or small sample size.

Tomake this comparisonmore explicit, in Figure 9, we
depict the improvement in probability of correct selection
obtained by LB_APPROX comparedwithADDITIVE:

Φ
|z�0 β=σ|��������������

z�0 Σβ xI,H( )z0√
=σ

( )
−Φ

|z�0 β=σ|���������������
z�0 Σβ xA,H( )z0√

=σ

( )
Φ

|z�0 β=σ|���������������
z�0 Σβ xA,H( )z0√

=σ

( ) ,

where xI represents the optimal design resulting from
our proposed model that includes the interaction term

between treatment and patient covariates (i.e., LB_AP-
PROX) and xA represents the optimal design resulting
from ADDITIVE. We see from Figure 9 that LB_AP-
PROX achieves improvement in the percentage of cor-
rect selection with respect to ADDITIVE for over 98%
and 80% of patient covariates, respectively. We also
see that the improvement is more significant for cova-
riates corresponding to higher variances than the ones
corresponding to lower variances. This phenomenon is
attributed to the min-max optimal design formulation,
which targets the worst-case covariates in terms of their
corresponding variances. The superiority of the perfor-
mance of LB_APPROX throughout this section high-
lights the value of incorporating the treatment-covariate
interaction information into the model.

Figure 8. (Color online) Probability of Correct Selection of Different Design Approaches for the Cases with p � 20
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5. Case Study
Warfarin is an anticoagulant medication, which is used
to treat blood clots. In the United States, more than
30 million patients were prescribed warfarin in 2010
(ClinCalc 2016). However, taking an incorrect dose of
warfarin can cause significant adverse effects (Wysow-
ski et al. 2007). Therefore, there has been significant in-
terest from the medical community to improve dose
prescription strategies by taking patients’ covariates
into account. In particular, the International Warfarin
Pharmacogenetics Consortium collected clinical and ge-
netic data from 5,700 patients who were treated with

warfarin (Pharmacogenetics Consortium 2009). This
data set was used to design a personalized dosing algo-
rithm and it is publicly available. Their analysis shows
that the following covariates are significant: age, height,
weight, race, use of enzyme inducers, use of amiodar-
one, VKORC1, and CYP2C9. Specifically, the VKORC1
gene provides the instructions to produce an enzyme
that activates clotting proteins, and the CYP2C9 gene
provides the instructions to produce an enzyme that
helps protein processing. This result confirms that ge-
netic factors can play a notable role in optimal warfarin
dosage (White 2010).

Figure 9. Improvement in the Probability of Correct Selection of the Optimal Design (LB_APPROX) Over theModelWithout In-
teraction (i.e, ADDITIVE) for p � 20
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In our case study, we consider the optimal design of
the aforementioned trial retrospectively. That is, if the
decision makers were to design the trial with the cova-
riates that they observed, what would have been the
optimal way? Recall that our goal in the clinical trial
optimal design is to gain the maximum improvement
on the statistical power of the best personalized treat-
ment identification for a large variety of patients with
heterogeneous covariate information, which can poten-
tially be achieved by reducing the variance of the esti-
mates of individualized treatment effects. We use this
data set to test different policies for optimal design pur-
poses, but it does not necessarily mean that the trial
was designed based on optimal design principles. Note
that in the case study, there were three dosages: low
(≤21 mg per week), medium (>21 and <49 mg per
week), and high (≥49 mg per week). Because we only
consider two levels, we extract the data for patients
that had a low and high prescription. In addition, the
end point is the maximal response, which makes our
framework applicable to this setting. We assume that
the covariates are those that are considered significant
in the literature and mentioned above. Following the
results given by Pharmacogenetics Consortium (2009),
age is categorized to nine groups ([10,20), [20,30),… ,
[90,-)), height to three groups ([0, 160), [160, 180), [180,
-)), weight to three groups ([0,60), [60, 90), [90, -)), race
to four groups (White, Asian, Black, and others), use of
enzyme inducer is binary (Yes, No), use of amiodarone
is binary (Yes, No), VKORC1 to three groups (A/A,
A/G, G/G), and CYP2C9 to six groups (∗1=∗1, ∗1=∗2,
∗1=∗3, ∗2=∗2, ∗2=∗3, ∗3=∗3). By excluding the patients
with missing/censored data, we have the data for
1,476 patients and 21 covariates.

For this large data set, the EXACT algorithm is com-
putationally intractable; therefore, we only compare
the performances of LB_APPROX with RAND. The
results are provided in Table 1. We observe that
LB_APPROX outperforms RAND in terms of both the
original and the surrogate model objective value. This

observation is consistent with the results shown in
Section 4. With over 1,000 randomly generated patient
information z0, LB_APPROX achieves variance reduc-
tion for all 1,000 patients; the percentage of variance
reduction of LB_APPROX ranges from 1%–8%. This
modest variance reduction is somewhat expected, be-
cause when n is much larger than p, as is the case
here, random design can already perform well in fit-
ting the linear Model (1), which does not leave much
room for further improvement.

To evaluate the performance of EXACT and compare
it with alternative approaches on this real data set, we
truncate the problem size by randomly selecting 100
patients to conduct a relatively small-scale experiment.
To ensure that there is no numerical issue in evaluating
the true objective, we only include 17 columns of the co-
variates matrix out of 21 in this experiment. The results
are given in Table 2. The results show that the EXACT
algorithm outperforms other algorithms in terms of
both the original model and the surrogate model objec-
tive value. The LB_APPROX algorithm is located at or
under the 1% quantile among the objective values gen-
erated from 100 randomdesigns.

With over 1,000 randomly generated patient infor-
mation z0, LB_APPROX reduces the variance of all

Table 2. Objective Values of the Real Data Set with 100
Patients

Method Original objective value Surrogate objective value

EXACT 6.9999 (b1%) 6.8642 (b1%)
LB_APPROX 7.1715 (b1%) 7.1396 (1%)
RAND (1%a) 7.5634 7.2928
RAND (5%) 7.8390 7.4735
RAND (50%) 9.2347 8.2819

aThe percentage in the parenthesis refers to the percentile among
all RAND solutions.

bThe 1% indicates that the objective value is smaller than the 1%
percentile among the 100 RAND solutions, that is, it gives the small-
est objective.

Table 1. Objective Values of the Real Data Set with 1,476
Patients

Method Original objective value Surrogate objective value

LB_APPROX 0.8265 (b1%) 0.8265 (b1%)
RAND (1%a) 0.8316 0.8314
RAND (5%) 0.8340 0.8337
RAND (50%) 0.8522 0.8502

aThe percentage in the parenthesis refers to the percentile among
all RAND solutions.

bThe 1% indicates that the objective value is smaller than the 1%
percentile among the 100 RAND solutions, that is, it gives the small-
est objective.

Figure 10. Percentage of Variance Reduction of the Design
Attained from LB_APPROX and EXACT with Respect to the
Mean of the Random Designs for the Real Example with
n � 100
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1,000 patients with respect to the mean variance,
whereas EXACT reduces the variance of 896 patients
with respect to the mean variance. We show the box-
plot of the percentage of variance reduction for both
LB_APPROX and EXACT in Figure 10.

6. Conclusion
This study introduced a novel model to incorporate
patient covariates into treatment effect as significant
evidence is established in precision medicine literature
that patients may respond differently to a treatment.
We studied the optimal design of two-armed clinical
trials using the introduced model, which helps practi-
tioners design clinical trials that more accurately esti-
mate treatment effects. Our extended model posed sig-
nificant challenges in the optimization problems that
emanated from optimal design of such experiments,
which has optimization over design and patient cova-
riates simultaneously. In particular, we minimized
(over design) the maximum (over patient covariates)
variance of the estimated individualized treatment ef-
fect, which is a min-max bilevel mixed-integer nonlin-
ear program. We proposed a solution methodology by
replacing the variance of the estimated individualized
treatment effect with its natural approximation, moti-
vated by asymptotically balanced trials. We proposed
an exact algorithm to solve the surrogate optimization
problem via reformulation and decomposition techni-
ques. In addition, we created a lower bound for the in-
ner optimization problem and solved the outer optimi-
zation over the lower bound. We tested our algorithms
on hypothetical and real-world data sets. Our numeri-
cal analysis concluded the following insights: (1) The
quality of approximation for the surrogate objective
function is high if the number of covariates is small
compared with the total number of patients in the trial,
that is, low-dimensional settings. (2) Our proposed al-
gorithms outperformed the standard (re)randomiza-
tion techniques used in the optimal design literature.
Our result echoes that of Bertsimas et al. (2015), which
showed the power of optimization over randomization
in a different optimal design setting. Through the com-
parison with optimal design from the model in Bhat
et al. (2020), we also demonstrated the value of includ-
ing interaction between treatment and patient covari-
ates. (3) Our lower bounding algorithm produced
high-quality solutions with respect to the surrogate
and original objective function across all settings. This
observation suggests that the lower bounding algo-
rithm, which is easy to implement via off-the-shelf
solvers, can be used instead of the proposed exact al-
gorithm in practice.

Furthermore, our modeling approach to incorporate
patient covariates into treatment effect can be

generalized to other settings. In particular, our frame-
work generalizes the A-B testing framework in Bhat
et al. (2020) in incorporating side information into treat-
ment effect. Therefore, it can be used for other applica-
tions, such as e-commerce, on-line advertising, and
assortment, where one seeks to investigate covariate-
dependent treatment effect. Furthermore, our frame-
work is flexible in incorporating a variety of operation-
al constraints. Specifically, one can add constraints on
design variables x into the outer optimization problem
and all of our methodology still holds. This is an ap-
pealing feature because practitioners may face some
limitations in the design phase upfront, and our meth-
odology can provide robust solutions in those settings.
We note, however, that these constraints should not in-
validate the balanced structure of the design as the ap-
proximation technique that we employ may no longer
hold without this structure.

Finally, we remark on some future research direc-
tions. First, it is important to consider how to extend
the optimal design of two-armed trials to multiarm
trials. By incorporating more than two treatments in
experimental design, the resulting optimal design ob-
jective and decisions will be different from the ones
that we present in this paper. It is desirable to investi-
gate new optimization approaches to tackle this chal-
lenge. Second, it is of interest to theoretically investi-
gate the range of n and p such that our proposed
approximation is near optimal. This can be achieved
by, for example, creating a theoretical lower bound on
the objective function, which we leave for future
study. Third, it is interesting to extend the framework
for clinical trials where the objective of the decision
maker is to identify the minimum effective dose, max-
imum tolerable dose, or 95% effective dose, which is
considered in Phase II clinical trials.
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Appendix. Additional Numerical Comparison
We first provide the numerical results for the case with
covariates information generated as continuous variables.
Specifically, the first column of H is loaded by ones, and
we randomly generate the entries of the remaining p− 1
columns as independent standard normal random varia-
bles. The remaining experimental settings are the same as
in Section 4.1. The results are provided in Figure A.1,
which demonstrate that although the lower bound of
LB_APPROX is developed based on the assumption that
the covariates are discrete, the performance of this ap-
proach on continuous covariates is still superior compared
with ADDITIVE and RAND designs.
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