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Abstract. A key and challenging step toward personalized /precision medicine is the abil-
ity to redesign dose-finding clinical trials. This work studies a problem of fully response-
adaptive Bayesian design of phase II dose-finding clinical trials with patient information,
where the decision maker seeks to identify the right dose for each patient type (often
defined as an effective target dose for each group of patients) by minimizing the expected
(over patient types) variance of the right dose. We formulate this problem by a stochastic
dynamic program and exploit a few properties of this class of learning problems. Because
the optimal solution is intractable, we propose an approximate policy by an adaptation of a
one-step look-ahead framework. We show the optimality of the proposed policy for a set-
ting with homogeneous patients and two doses and find its asymptotic rate of sampling.
We adapt a number of commonly applied allocation policies in dose-finding clinical trials,
such as posterior adaptive sampling, and test their performance against our proposed pol-
icy via extensive simulations with synthetic and real data. Our numerical analyses provide
insights regarding the connection between the structure of the dose-response curve for
each patient type and the performance of allocation policies. This paper provides a practi-
cal framework for the Food and Drug Administration and pharmaceutical companies to
transition from the current phase II procedures to the era of personalized dose-finding clin-

ical trials.
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1. Introduction

1.1. Research Motivation

Personalized /precision medicine is widely believed to
be the future of medicine and the most promising path
toward higher quality of care (Bates 2010). Recently, a
significant amount of research has been devoted to pre-
cision medicine highlighting the importance of consider-
ing patients’ personal differences in treatment selection
and finding the right therapeutic dose (Hayden 2015).
That is all due to the growing evidence that as a result
of disregarding personalization, many commonly pre-
scribed treatment procedures and medications are in-
effective or even potentially harmful to some patients
(Schork 2015). In the broad literature of precision me-
dicine, the goal of this study is to design adaptive trials
to find dose levels in situations where the “right” dos-
age may depend on a set of already-identified patient
characteristics.

The main motivation for this work is to address the
growing need for designing innovative methods for
personalized dose-finding trials. Peck (2021) defined
precision dosing as the process of individually tailor-
ing the dosage to have the greatest treatment benefit
and the least health risk for different patient types.

273

Maxfield and Zineh (2021, pp. 1505-1506) emphasized
the necessity of precision dosing, which maximizes the
balance between the benefits and potential risks at the
level of individual patients. They highlighted the most
important steps toward this goal by emphasizing on
“optimizing dosing in patient subpopulations during
drug development, understanding the determinants of
response variability in patient populations, and enabling
clinical practice for treatment decisions at the patient lev-
el.” Peck (2018) urged practitioners to consider all rele-
vant personal aspects of a patient in specifying optimal
dose of a drug, emphasizing that the only way to achieve
personalization is to redesign dose-finding trials. Using
the advanced search tool on clinicaltrials.gov, as of May
2022, there are over 3,800 studies that are generally work-
ing on some personalized treatment or precision medi-
cine, from which 200 trials are actively focused on dose-
finding studies (U.S. National Library of Medicine—
National Institutes of Health 2021).

The goal of these dose-finding trials is usually to
identify an effective target dose corresponding to a cer-
tain level of drug efficacy. Motivated by toxicity and
side effects concerns, the target dose, denoted by EDy,
is defined as the minimum dose that achieves at least
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L x100% (0 <L <1) of the maximal response. In our
numerical results, similar to Berry et al. (2002), we
focus on identifying EDy 95 as the target dose, defined
as the minimum dose, which achieves 95% efficacy of
the maximal-response dose. One key element to iden-
tify EDy. is to estimate the dose-response curve, which
we will explain next.

1.2. Proposed Framework
Motivated by the abovementioned evidence that opti-
mal dosing may depend on patient characteristics, this
study relaxes the patient homogeneity assumption of
Berry et al. (2002). In particular, we consider a setup
where the dose-response curve may be a function of
patient covariates. We assume that the set of patient
covariates (types) is finite, discrete, low dimensional
(in a sense that will be discussed later), prespecified,
and observable. Moreover, we assume that all covari-
ates are predictive (see Section 9 for discussions on
predictive versus prognostic covariates). Because we
consider patient covariates, the target doses for differ-
ent patient types may be quite variant. For example,
the problem instances in Figure 1 could represent the
response behavior of two distinct patient types to a
single drug for which their target dose is different. Fig-
ure 1(a) shows an instance of a dose-response curve in
which EDyj 95 and the maximal-response dose coincide
at dose 3, whereas Figure 1(b) represents another
instance in which EDg g5 occurs at dose 4; the maximal
response is met at dose 5.

In fact, a key component of our setup is to construct
a dose-response model in the presence of patient cova-
riates. Such a model should (i) be flexible to incorpo-
rate a wide range of dose-response shapes, (ii) result
in a low-dimensional dynamic programming formula-
tion for analytical investigation, and (iii) incorporate
the correlation between covariates and doses because,

for instance, one may expect that assigning patients
with related covariates to closer doses would result in
similar responses. To that end, we propose a first-order
normal dynamic linear model (NDLM) to approximate
the response of each dose for a given patient type,
where the mean response at each dose is a linear model.
Although the NDLM is nonparametric in approximat-
ing the dose-response curve, our approach is semipara-
metric as we are considering linear models for the
mean responses at each dose.

1.3. Model Properties and Distinction

First, the proposed model is flexible in characterizing
a wide range of dose-response curves. Because for any
given covariate, we use a first-order NDLM, which is a
nonparametric model. In fact, for each pair of dose
and patient type, we estimate a mean response and
then by connecting the points of doses and corre-
sponding mean responses, we construct a piecewise
linear curve (presented by red dashed lines in Figure 1)
as an approximation for the true dose-response curve
(presented by the continuous blue curves in Figure 1)
for each patient type. The motivation for such a con-
struction is due to the results in Nasrollahzadeh and
Khademi (2021), where they showed that the first-
order NDLM is a competitive and robust approach to
model dose-response curves.

Second, the dynamic programming formulation for
the sequential allocation problem based on the proposed
model is low dimensional. This is because by assuming
a multivariate normal prior on the unknown model
parameter ® and normal responses, the posterior distri-
bution on ® will be multivariate normal. Therefore, the
state space will be the vector of posterior mean and cor-
relation matrix instead of the set of all probability distri-
butions for the unknown parameter ®. Although the
state space is still multidimensional and continuous, the

Figure 1. Examples of Dose-Response Curves and Their Piecewise Linear Approximation in Dose-Finding Trials
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dynamic programming formulation is amenable to ana-
lytical investigation.

Third, the proposed model is able to incorporate the
correlation among doses and covariates. This is
because we can construct the prior on © ~ N (u°, )
such that it specifies a given correlation. For example,
if we initially believe that for a covariate x, the dose-
response shape is bell shaped, we can initialize the
segment in u’, which corresponds to x to have a bell-
shaped trend. Or if we believe that closer doses have
similar responses, we can construct X’ such that closer
doses have a higher correlation. For details regarding
the choice of prior, see Sections 4 and 7.

Hence, the sequence of events in each decision
epoch in our fully sequential setup is as follows. At
the beginning of each epoch, a patient arrives to the
trial. The covariates of the arrived patient is a realiza-
tion of an independent and identically distributed
multivariate random variable with a known distribu-
tion. A dose is allocated based on all the information
available to the decision maker (DM) so far, and the
patient response becomes available at the beginning
of the next epoch. The allocation decisions are based
on the objective of reducing the uncertainty regarding
the target dose of each patient type. This objective is
achieved by minimizing the expected (over patient
covariates) variance of the personalized target dose at
the end of the trial, which is often used in dose-
finding studies. In fact, in early stage trials, the focus
is on improving the accuracy of the estimates of the
target dose because it will be used later in phase III
clinical trials on a large patient population. An incor-
rect target dose choice may result in severe conse-
quences in later stages: Low doses expose patients to
nontherapeutic dosages of drugs and high doses
expose patients to excessive toxicity, both resulting in
failure for regulatory approval. See Section 4 for more
on the choice of the objective function.

1.4. Paper Structure

We formulate this sequential sampling problem as a
stochastic dynamic program (Section 3) by which we
show a few natural properties of the learning problem
(Section 6). Because the state space is multidimen-
sional and continuous, the problem is not amenable to
exact solutions. Instead, we apply the one-step look-
ahead framework to our formulation in general (Sec-
tion 5) and provide a closed-formed decision rule with
two doses under the assumption that the belief about
alternative doses are independent. In addition, in the
impersonalized version of the problem with two doses
(where we consider homogeneous patients), we pro-
vide some insights on the sampling behavior in the
short term and show that the one-step look-ahead pol-
icy is optimal. We show that the asymptotic sampling
behavior under the variance minimization in equivalent

to that of knowledge gradient (KG) and optimal com-
puting budget allocation (OCBA).

Finally, we propose four benchmarks each of which
is an adaptation of available sampling policies in the lit-
erature of adaptive dose-finding clinical trials to our set-
ting. In particular, we consider uniform randomization,
greedy approach, allocation based on posterior sam-
pling, and posterior predictive sampling. We imple-
ment our proposed policy and the benchmarks with
synthetic (Section 7) and real (Section 8) data sets. In
particular, we show the performance of the proposed
policies under a variety of problem settings and per-
formance measures. Our results show that the one-step
look-ahead policy performs robustly. Our numerical
result for the real case study of warfarin also sheds light
on the connection between the structure of the dose-
response curve for different patient types and the per-
formance of tested policies. We also measure the value
of considering the proposed personalized model with
this data set. Section 9 discusses practical limitations.
Furthermore, all the proofs, detailed algorithms, and
additional numerical results are respectively provided
in Online Appendices A, B, and C.

2. Related Literature

In terms of theory, there are two streams of literature
related to our work: (i) contextual multiarmed bandits
(CMBs) and (ii) response-adaptive design of clinical trials.

In CMB problems, a DM observes a context at each
epoch and chooses an action that produces a reward
that is a function of the action and the context observed
plus, possibly, a random noise: See Agarwal et al.
(2014) for details. There is a fundamental difference
between the structure of our problem and that of stand-
ard CMB: Our objective is to minimize the expected
(over covariates) variance of a target dose, which is a
nonlinear function of unknown parameters, whereas the
objective of standard CMB is to minimize the cumulative
(or instant) regret. Goldenshluger and Zeevi (2013)
proposed a greedy algorithm with occasional forced
exploration for the contextual linear bandit problem.
Bastani et al. (2021) built on this work and proposed
a greedy-first algorithm. In a Bayesian setting and
using the notion of Bayes regret, Russo and Van Roy
(2014) investigated the regret of posterior sampling
and its connection to UCB (upper confidence bound)
algorithms.

Another class of related literature in stochastic learn-
ing is R&S in which the DM has a limited budget to
explore the expected value of several alternatives and
recommends the best at the end. In the Bayesian R&S
(ranking and selection), a one-step look-ahead policy,
called knowledge gradient, has shown success in sev-
eral settings (Frazier et al. 2008, Ryzhov et al. 2012,
Wang and Powell 2018). Ding et al. (2022) incorporated
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covariates in a standard R&S and showed the consis-
tency of KG. Negoescu et al. (2011) studied the problem
of choosing the right chemical formula for a drug where
they considered a number of attributes to represent the
different chemical derivatives (alternatives) of a drug.
They used the Free-Wilson model for the response of each
alternative formula assuming that the existence of each
attribute in the chemical formula of the drug has an addi-
tive contribution. Their special linear model considered
binary attributes. Although our proposed model is similar
to that model, there is a subtle difference between these
models. Adapting the notation, for an alternative z, the
mean response in their model is 01x] + 05 + ... + Oxx%,
whereas that for our model is 07x1 + 05x2 + ... + Oxxk
for a given covariate x = (x1,x2, ..., xx), that s, the covari-
ates in their model determine the alternatives and the
unknown parameters do not correspond to the alterna-
tives, and that is because their covariates represent chains
of atoms in a molecule specifying different alternative for-
mulas. In our model though, given a covariate, the al-
ternatives may have different mean responses as the
unknown parameters depend on the alternatives. Fur-
thermore, we develop a one-step look-ahead policy tail-
ored to our setting and analyze its properties and show
its optimality in a specific setting. In fact, our setup is
structurally different, that is, we seek to minimize the
expected variance of the target dose, whereas the objec-
tive in standard R&S is to maximize the posterior mean
at the end of the trial.

Bayesian sequential design of clinical trials has received
attention in operation management. For example, Ahuja
and Birge (2016) studied the problem of multiple patient
assignment in a two-armed trial. Williamson et al. (2017)
used dynamic programming to propose a randomized
allocation to maximize the number of patient successes
and penalize it if the number of assignments to a dose is
less than a threshold. Kotas and Ghate (2018) developed a
response-guided dosing model to individualize treatment
for cohorts of patients with evolving conditions over their
treatment course. Incorporating patient covariates and the
choice of objective function makes our setting different
from these previous studies. Finally, Rojas-Cordova et al.
(2020) reviewed the impact of applying sequential adap-
tive designs in clinical trials, highlighting the advantages
and challenges of adaptive decision-making procedures.

In regard to sampling policies, adaptive design of
dose-finding trials has received significant attention
from statistics and biostatistics community. We review
some relevant work where patient information is incor-
porated into the design of clinical trials. O'Quigley et al.
(1999) designed a sampling process for phase I clinical
trials where the goal is to find the maximum tolerable
dose, where patients are divided into two groups. As
for the adaptive allocation, their idea was to apply a ver-
sion of the Continual Reassessment Method, which at
each epoch selects the dose that its estimated probability

of toxicity is the closest to a target probability. In fact,
their allocation approach is greedy. Guo and Yuan
(2017) designed a Bayesian personalized two-stage
phase I/1I clinical trial where at each epoch they first
selected a set of important biomarkers and then used a
utility function to represent dose desirability with
respect to toxicity and efficacy. They applied adaptive
randomization (AR) where the probability of selecting
each dose was proportional to its posterior expected
utility. Liu et al. (2018) expanded on the previous work
by adding immune response to the utility function for a
case of personalized cancer treatment. At each sampling
epoch, they first found the admissible dose range and
then used an AR allocation policy to randomize cohorts
(one or more) of patients to each dose with respect to its
posterior probability of being optimal, that is, having the
highest posterior mean utility. Lin et al. (2019) also
worked on adaptive phase I/1I clinical trials; but in their
case, they considered multiple subgroups of patients and
delayed responses. Their allocation is hence different from
the aforementioned literature as they assign patients from
each subgroup to dose-schedule regimes. To make the
allocation decision, they used a sequential procedure to
first find an admissible dose regime for each subgroup
and then allocated each patient to dose-schedule regimes
based on an AR policy, where they assign each patient to
each regime proportional to their posterior predictive
probability of that regime being the best (having the maxi-
mum mean utility) within each subgroup.

3. Problem Formulation
We consider a fully sequential setup where at each
epoch a patient arrives to the trial with a covariate vec-
tor generated from a known multivariate distribution;
the DM assigns a treatment dosage after observing
patient covariates; and the patient response is observed
before the next epoch when a new patient arrives. Let
Z:={1,2,...,7} refer to the finite set of allowable
doses (Z being the cardinality of Z) for all patients.
Note that each element of set Z may be the index refer-
ring to a specific dosage of an active drug. For example,
dose 1 may refer to 5 mg of the drug, dose 2 may refer
to 10 mg of the drug, and so on. In dose-finding trials,
Z is usually between 2 and 10 (Berry et al. 2002).
Specifically, patients are heterogeneous in our
setup, for example, they may have different genders,
races, ages, genetic features, biomarkers, health condi-
tions, and living environments. We assume that the
DM is interested in identifying the target dose for
each set of patient covariates. For example, in cancer
clinical trials, the investigators are interested in identi-
fying the right dose for patients with specific given
biomarkers. We call those attributes that affect patient
responses covariates. We consider a covariate vector
of size K to represent each patient. In particular, let x;
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for k=1,2,...,K be the k' covariate and C; be the
finite set of all values that covariate x; can take. For
example, if x,, the second covariate, represents gen-
der, then C, ={0,1} where x, =0 means that the sec-
ond covariate represents the “male” and x, = 1 means
that the second covariate represents the “female.”
Therefore, each patient is completely characterized
by a 1xK vector x=(x1,xp,...,x¢). Let X:={x=
(x1,x2,...,xK) : xx € Cr,k=1,2,...,K} be the finite set of
all possible patient covariate vectors (patient types). We
set x; =1 aligned with the literature on linear models to
create an intercept. We assume that in any epoch, the
covariate vector x is realized with probability P, (where
S rexPx =1) independent of everything else. Without
loss of generality, we assume that for any x € X, we
have P, > 0. Suppose that at epoch n € {0,1,...,N -1},
a patient with the covariate vector x" = (x},x5,...,x%)
arrives where x" is completely observable before mak-
ing the sampling decision. We assume that & is low
dimensional in the following sense: If we assume that
xis are binary, in order to have stable estimates for
linear models, in a frequentist setting, we need to have
the number of covariates be less than or equal to the
sample size and (X")' X" being invertible, where X" :=
[x1,x%,...,x"]T and T denotes matrix transpose. One
condition is that the distinct number of patient types is
bounded by log(N—1)+1 and the other (X")'X"
being invertible. For example, in dose-finding trials
with sampling budget n = 100, our setup can handle up
to seven distinct patient types. Generally though, in the
Bayesian setting, our algorithms always work as long
as the initial prior covariance is positive definite.

Next, we describe the state space of the problem. To
that end, we use a first-order normal dynamic linear
model to characterize the dose-response curve. That
is, for each dose z, we assume that the response of a
patient with covariate vector x is normally distributed
with unknown mean (x,©.) (because vector O, is
unknown) and a possibly dose-dependent known var-
iance af, where (-, -) denotes inner product. Specifi-
cally, in this setup, we assume that the mean response
for dose z is a linear function of covariates with an
unknown K-dimensional parameter column vector
®z = (0271, 6212, ey QZ/K)T. Therefore, 0= (@1,@2, .. .,@Z)T
is the ZK x 1 stacked parameter vector.

We follow a Bayesian setup in that we assume a
multivariate normal prior distribution for ®, which
measures the DM’s initial belief about the unknown
parameter ©. Denote u° as the ZK x 1 initial mean
vector and X as the ZK x ZK initial covariance matrix
of ® in the beginning of the experiment, that is,
© ~ N(° x°%). Elements in © may be correlated, that
is, " may be nondiagonal. This structure captures
correlation across the unknown parameters 0y, Vz,k
corresponding to different covariates and alternative
doses. This modeling feature is important because one

may expect that the doses that are close to each other
have close responses for a given patient type. Note
that we consider continuous patient responses, and
the normality assumption is quite standard in dose-
finding studies with continuous response. In fact, the
primary endpoint is assumed to be normal for a
majority of clinical trials in the literature (Julious
2004); for example, see Liu et al. (2017).

Because the prior for © is multivariate normal and
the patient response is also normally distributed, we
have a conjugate model so that the posterior on @ is also
multivariate normal and the posterior parameters will
be the state of the system. We next formalize the poste-
rior and present a procedure for calculating the posterior
given the patient covariate, dose assigned, and observed
response. To that end, let 67 = (0,0,...,x,...,0) be a 1 X
ZK sparse vector, where the 1 X K dimensional row vec-
tor x is placed in the zth component, and each zero is a
1 X K row vector of zeros. Therefore, the mean response
of a patient with covariate x assigned to dose z, which is
(x,0,), can be represented by (0}, ®).

Upon the arrival of the patient in the n'" epoch with
covariate vector x" = x, the DM assigns a dose z" =z
to the patient. Let y"*! € R be the observed response.
Recall that the response of the patient follows a nor-
mal distribution given by

(y;H-lIZ/G)/X)NN((é;I@)IO-ﬁ)I ZEZ’nZO”N_ll

)
where 2 is the sampling variance of dose z.

We define s° := (yO,ZO) as our initial belief about ©.
Define F" as the sigma-algebra generated by the set
{yO,ZO,xo,zo,yio, S,xL iyt 3 Denote Py() =
P(-| F"), E,(-) :=E(-|F"), and Cov,(-):=Cov(-|F")
respectively as the probability, expectation, and cova-
riance with respect to F". Assuming a multivariate nor-
mal prior distribution about the parameter vector ©
and normally distributed responses, the posterior at
epoch n will have a multivariate normal distribution
O|F" ~N(u",L"). Thus, we let s" = (u", L") be the
state of the trial at epoch n, in which p" is the ZK x 1
mean vector and X" is the ZK X ZK covariance matrix
of © at epoch . Denote set S as the state space, that is,

s"eS:={(u, L) u R, £ e MH*HKY )

where MZX?K denotes the set of ZK x ZK positive
semidefinite matrices.

Next, we describe how the parameters of the poste-
rior distributions can be calculated. Let z" =z be the
dose assigned to the patient at the n'' epoch with
covariate vector x". Then we have the following for-
mula to find the posterior distribution of ©,

Zn+1 — [(Zn)—l + O_Z—Zéic"Té;”]—ll
Hn+1 — Zn+1 [(Zn)—llun + O;Zéaz(”TyZ+1], (3)
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for which we denote 7(-) to be a state transition func-
tion, that is, s"™! = n(s”,z,x”,cu;“), where wZ“ repre-
sents the randomness in the sample response y*!.

In this study, we consider a DM who is interested in
identifying the target dose for each patient type as pre-
cisely as possible given a limited number of patients.
Let 0 <L <1 and denote ED;] as the smallest dose with
at least (L X 100)% effectiveness of the maximal res-
ponse for a patient with covariate vector x. Given ©

EDj :=min{z € Z:(5,0) > Lx (5 ,0)}, VxedX,

)
where z}, . is the dose at which the maximal response
is observed for the patient with covariate vector x. If
(6% ,0) <0 for an x € X, we let ED} be the smallest
dose. This definition is motivated by considering tox-
icity and side effects, as higher concentrations of an
active drug usually produce more severe side effects
(Berry et al. 2002). Following a standard approach in
optimal design of experiments for clinical trials, in
order to increase the precision of the target dose for
each patient type, we minimize the expected variance
of EDj over all covariates x € X, that is, patient alloca-
tion is derived by minimizing the expected (over
covariates) variance of ED; at the end of the trial.

Denote F"* as the sigma-algebra generated by the
set F"'| J{x"} as all the data available at epoch n. Let
A(s") := Z denote the action space in any epoch n.
Then we define a decision rule d":S— Z that is
measurable with respect to the sigma-algebra F"*,
which represents the history of states, actions (allo-
cated doses), and covariate vectors observed until
time n including the covariate vector of the patient
who just arrived at time n. Also, let IT:={n=
(d°,...,dN"1)} be the set of measurable nonanticipative
policies, where 7 is an element of Il. Now, let g:
(®,x) >z be the function that specifies ED] for a
patient with covariate vector x. Therefore, the
expected variance of ED; at the end of the trial given
the initial state s’ under any given policy 7 is
IN(s%) = B {E,[Var(g(®,x) | )] | s}, where E,(-) and
E,(:) indicate the expectation taken with respect to the
probability measure induced by policy © and covari-
ate vector x, respectively. Thus, having an initial prior
s, the DM solves for B(s®) = infrer/N(s?). Let V(s")
denote the value function at epoch #, which is a solu-
tion to the following Bellman equations

NG ) — jan s n+1l/n+ly | n n n _ _
Vi(s",x )—rzgelg{IE{V (s"|s",2" 2"}, n=0,1,...,N-1,
V(") =E{V"(s",x)}, n=0,1,...,.N—1, ()
VN(sY) =E{Var(g(®,%)| sh},

where V"(s",x") denotes the minimum value of being
at state s” at epoch n after a patient with covariate vec-
tor x” is observed, and V?(s°) = B(s").

Formulation (5) provides a framework for optimal
allocation, but the DM has to recommend an ED; for
each covariate vector x at the end of trial. Our recom-
mendation is to estimate ED] by Ebz based on the
posterior mean, that is,

AX
— 3 . X n > e n
ED; : mln{ze Z:(0,, 1"y =L x rg&x(éz,y )}, ©)
Vxe X,

which is aligned with recommendation decisions in
R&S and is practical in dose-finding studies (Berry

et al. 2002). If max,ez (6, 1) <0, we set Ef)z to the
minimum dose.

Remark 1. We consider EDy in general for formulation
and analyses. However, in Sections 7 and 8, the pro-
posed policies are implemented for EDj 45 in all numeri-
cal experiments. One can set 0 < L <1 to consider other
effectiveness levels, for example, EDj 5 and ED;.

4. Discussion on the Choice of the

Objective and Prior

The literature on optimal allocation procedures in clini-
cal trials is vast, and different communities have
studied it from a variety of perspectives. Our study
belongs to the literature on the optimal design of experi-
ments applied for clinical trials. A main objective in
optimal design of experiments is to allocate experimen-
tal resources to reduce the uncertainty about certain
parameters of the statistical model, often achieved by
optimizing different utility functions of the variance-
covariance matrix of the estimated parameters (Wu and
Hamada 2011). In particular, Wald (1943) introduced
the minimization of the variance of parameters as a
measure of efficiency of statistical investigations. Also,
Fisher (1949) related the minimization of variance to
maximizing Fisher information, declaring the calcula-
tion of variance as a basic way of measuring the amount
of information that a random variable carries.

There is a significant literature that uses the optimal
design of experiments to find optimal patient alloca-
tion in static or adaptive clinical trials in general and
dose-finding trials in particular. Specifically, for dose-
finding phase 1II trials, we refer the reader to Dette
et al. (2008) from a frequentist and Berry et al. (2010)
from a Bayesian viewpoint, where the objective is set
to minimize the variance of the target dose. In addi-
tion, variance minimization designs are supported by
regulatory agencies. For example, the U.S. Food and
Drug Administration (FDA) (2019) suggested that the
variance can be used to adjust sample sizes according
to prespecified algorithms and to ensure the desired
power level. Recall that given a sample size, reducing
variance improves the power of the statistical tests.
The FDA also suggested that interim estimates of
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variance can be applied to adaptive sampling utilizing
treatment assignment information. Also, the European
Medicines Agency Committee for Medicinal Products
for Human Use (2014) suggested the minimization of
variance as an efficient statistical method for model-
based design and analysis of phase II dose-finding
studies under model uncertainty.

Furthermore, optimal design of experiment type objec-
tive functions is used in operations community. For
example, Bhat et al. (2019) studied static and adaptive
A-B optimal testing to maximize the precision (inverse
of variance) of the treatment effect. Russo and Van Roy
(2018) proposed a sampling approach for multiarmed
bandit problems to minimize the uncertainty, measured
by the entropy, regarding the arm with the highest
mean. They called this method “information-directed”
sampling; see also Delshad and Khademi (2020). One
may interpret our approach as variance-directed sam-
pling. Finally, Bertsimas et al. (2019) studied the prob-
lem of allocating patients to group treatments and
showed how incorporating patient covariates into clini-
cal trials can improve statistical power. They proposed
a computationally efficient covariate-adaptive optimiza-
tion method that decreased the duration and operating
costs of clinical trials while protecting the results against
experimental bias.

Next, we discuss the choice of prior for our setting,
which is a delicate issue in general for any Bayesian
framework. Ildstad et al. (2001) discussed the subjec-
tivity of the prior in the Bayesian clinical trials and the
concern of small sampling budgets in phase I and II
clinical trials. Their suggested solution was to use
data from other similar diseases and treatments that
have been previously studied to create reasonable pri-
ors for the new drug/treatment. For example, they
mentioned how for the problem of loss of bone min-
eral density during spaceflight, data from earlier
spaceflights, and studies of osteoporosis in immobi-
lized individuals could provide a strong basis for
development of prior distributions. Berry et al. (2010)
have also generally discussed the choice of prior for
clinical trials. They described the prior distribution in
the Bayesian setting as the reflection of information
that includes the investigator’'s understanding of
the biology of the disease and historical/preclinical
results of related treatments and, therefore, the prior
distributions are specific to the investigator and might
not be accepted by anyone else. Guo and Yuan (2017,
p- 512) stated that “for the purpose of early phase trial
designs, a desirable prior should be sufficiently regu-
larized (or informative) so that the design and model
estimates are reasonably stable throughout the trial,
while also being vague enough so that the accumulat-
ing data can rapidly dominate the prior as the trial
proceeds.” They generated random prior variances
following a gamma distribution with a large variance

to create weakly informative priors. Similarly, Liu
et al. (2018) used a gamma distribution, with a mean
that was suggested by specialized clinicians and a
large variance to generate vague priors. They stated
that they did not require any accurate prior estimates,
as the accumulating data dominate the vague prior and
guide dose transition within a few samples. Later in
Section 7, we will explain how we create priors based
on Guo and Yuan (2017) and conduct sensitivity analy-
ses based on prescriptions proposed by Berry et al.
(2010). For constructing priors of KG-type policies,
Chick et al. (2021) created two types of priors: robust
and tilted. They are based on the idea that having large
values for prior mean encourages exploration as well as
increasing the prior variance. Similarly, we ensure that
the prior is vague enough.

5. Proposed Policy and Benchmarks
Finding an optimal solution of Equation (5) is intract-
able because the state space is continuous and multidi-
mensional and, therefore, standard solution techniques
do not apply. However, Equation (5) helps us with
developing a one-step look-ahead policy where the DM
assumes that the next epoch is the last one. Our pro-
posed policy, as we call it the Dose-finding One-step
Look-ahead (DOL) policy, is different from the stand-
ard KG in two major ways: (i) The objective here is to
minimize the expected variance of EDj over all x,
where the standard KG’s objective is to maximize the
expected final response. (ii) Our setup involves covari-
ates, and the response model is a linear function of
patients’ covariates. Given the fact that DOL is station-
ary, its decision at each epoch only depends on the
state of the trial. At any epoch n with the state s” =s
and patient covariate vector x” = x’, DOL minimizes
E{V"(n(s,z,x’,w,)) — V"(s)} over all doses z € Z. There-
fore, DOL allocates dose z},, : (S, X) — Z based on

Zhop(s,x") € arg minE[E,{Var(g(©,x))} |s" =s,z"
zeZ

=z,x"=x],

)
where ties are broken randomly. To that end, we use
Monte Carlo simulation in which at each epoch, given
the state and the patient visited, we create a pool of
sample responses by allocating to every dose z € Z.
Next, given each of these sample responses, we find
the next state. Then, we use another Monte Carlo
inside each replication of the first one to estimate the
variance of ED] for each x € X given sampling each
dose. Finally, using the given probabilities P,, we find
the overall expectation of the variance of ED] over all
x € X. Algorithm 1 in Online Appendix B.1 presents
the details of implementing DOL.
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Next, we describe four benchmark policies used in
our study. The first benchmark is the Uniform Allocation
(UA) policy in which for each patient the dose for assign-
ment is chosen randomly, where each dose has an equal
chance of being chosen. The UA policy is a traditional
approach for patient allocation in clinical trials. The sec-
ond benchmark is the Greedy Allocation (GA), which
has been used for patient allocation in dose-finding trials
(O’Quigley et al. 1999), and we adapt it to our setting. In
particular, at epoch n when a patient arrives with covari-
ate vector x", the posterior mean response for each dose
is calculated, that is, (x", u’), Vz € Z, by which ED; is
identified and assigned to the patient.

The third benchmark is perhaps the most common
sampling technique used in Bayesian dose-finding
clinical trials. Given a utility function, Posterior Adap-
tive Sampling (PAS) randomly selects a dose accord-
ing to the probability it is optimal. It is also referred to
as Thomson sampling or probability matching. For
instance, Guo and Yuan (2017) applied adaptive ran-
domization where the probability of selecting each
dose was proportional to its posterior expected utility.
Assuming that our utility function is the variance of
the target dose at the end of the trial, we modify PAS
to allocate at each epoch a patient with covariate vector
x to each dose with respect to the probability that it is
EDy . This adaptive sampling approach can be seen as an
adaptation of posterior sampling applied for the best
arm identification problem. Hence, it involves two main
steps: (i) sampling the model and (ii) selecting the action.
Because our setup is similar to best arm identification
where the best arm (with the maximal response) is
replaced by the target dose, we sample from the model
but the action selection is to choose the target dose. For-
mally, at any epoch 1 with the state s, our PAS allocates
the patient with covariate vector x to each dose z € Z with
probability w? :=P,{z=ED;}. Algorithm 3 in Online
Appendix B2 elaborates the sampling procedure follow-
ing PAS. However, note that PAS may fail in general: See
Russo et al. (2018, section 8.2) for a discussion.

The fourth benchmark adds more exploration to
PAS by allowing sampling from posterior predictive.
We call it Posterior Predictive Adaptive Sampling
(PPAS), and it only differs from PAS in terms of sam-
pling probabilities w?, where for PPAS we allocate
based on the posterior predictive probability of each
dose being the target dose. This sampling policy is also
used in dose-finding literature (Lin et al. 2019), and we
adapt it to our setting. To implement PPAS in our set-
ting, at epoch #, given the patient with covariate vector
x", we sample 7! from the posterior predictive distri-
bution of (6;“”,@) for each dose z € Z, that is, we sam-
ple §" from N((6Y,u"), 68 TE"6Y +02), Vz€ Z and
then allocate to EDj found in the sampled vector
¥" =[¥. :z € Z]. Algorithm 5 in Online Appendix B.3
elaborates the sampling procedure following PPAS.

6. Model and Proposed Policy Analysis

In this section, we show a few natural properties of
the learning problem for the case with independent
beliefs about the alternative doses. In Section 3, we for-
mulate the personalized dose-finding problem in a gen-
eral correlated setting, where all the parameters of ©
corresponding to different doses and covariates may be
correlated. In this section though, although we still let
the parameters corresponding to different covariates be
correlated for each dose, we assume that the belief
about the doses are independent from each other. To
that end, we denote a set of Z many K X K posterior
covariance matrices X, Vz € Z, which represent the
correlation among covariates for each alternative dose.
In other words, X" introduced in Section 3 becomes a
block diagonal matrix with X! s on the diagonal.

In this setting, we still have a standard linear model for
the observations, that is, y**! = (x",0,) + €', Vz € Z,
ne€{0,1,...,N —1}. However, after taking a sample at
epoch n from a specific dose z, we only update our
belief about its posterior mean u! and covariance
matrix X , whereas the belief about any other doses
will not change. Specifically, for the dose z"=z
sampled at epoch 7 for the patient with covariate vec-
tor x”", we have

-1
Z;Hl — [(22)71 + O.;anTxn] ,
8)

o O T e A

whereas for any other dose z’ # z, we have p’*! = i,

and X =10

Now define Q"(s,z,x’) := E{V"™*(n(s",2", ", w;™)) |
s"=s5,z" =z,x" =x'} as the “cost” of assigning dose z
to a patient with covariate vector x” when the trial is
in state s. The next result states that the optimal policy
always prefers to measure an alternative dose rather
than to measure nothing at all.

Proposition 1. We have Q"(s,z,x’) < V"!(s) for all s €
S, ¥ eX, zeZne{0,1, .. N-1}.

As a result of Proposition 1, we have the following
corollaries. The first one states that sampling from a
dose with a known true response will not change the
expected variance of ED], and the second one implies
that the extra measurement always reduces the value
function. The function V"*(s) can be interpreted as
the value of no measurement in state s” =s.

Corollary 1. Let z,z" € Z be two different doses; if dose z is
known almost surely, that is, Z = 0 for some n < N, then
Q'(s",z,x") = V" (") = Q"(s", 2/, x").

Corollary 2. We have V" (s) < V"*1(s) for all states s € S.

Next, we focus on a setting with two alternatives to
derive novel insights about optimality and the asy-
mptotic sampling behavior of DOL in the variance
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minimization setting. First, in Proposition 2, we show
that DOL has a closed-form allocation rule. This result
facilitates the computation of DOL and bypasses the
need to carry out Monte Carlo simulations.

To that end, given F"* (which includes x") if we sam-
ple from dose z" = z, the posterior predictive distribution
is yi*l ~ N((x", u), 0% + x"22(x") "), that is, defining a
standard normal random variable 3””, we can write

Y = (o, uhy + 4 Jo? + 2 (x) T 3" One can show

that p*! = ' + 07220 (x) T\ Jo2 + 27 22 (x1) " 3" s a

stochastic process with Gaussian increments. Hence, we
~n
have p* | (F™,2" = z) ~ N'(u", L), where

£l = [0 + o sl (e TR () T, Vze Z,
)

is the change in the covariance of dose z assuming
that we sample from it for a patient with covariate
vector x" (see Online Appendix A.4 for derivations).

Proposition 2. Seeking the personalized ED; in a set of
two doses, Z = {z1,22} with z1 < zp, the DOL’s allocation
rule is given by

G PO -0 )

< 3 PuB(AT 1 - B(AL)],
o S PAO(AD 1 - A )]
> 3 PUB(AL 1 - B(AL)],

xeX
xeX

Zhop (8", x") =

n n
Lot —xp)

A /xZ;’:le +L2xZ] X7

N ey
Loyt —xl)
/XX XTI T
1 22
and O(-) is the standard normal cumulative distribution

function. In the case of equality, DOL randomizes between
the two doses.

where A7 = and A7 =

As can be seen from Proposition 2, the DOL policy
is structurally unique. To make this more clear, the
next result provides an intuition about how DOL sam-
ples from two doses if we focus on the impersonalized
dose-finding clinical trials where the patients are
homogeneous. For the impersonalized setting, sup-
pose that we have normally distributed measure-
ments for any dose z € Z with the unknown mean
parameter 0,, and O, given filtration " is normally
distributed with posterior mean y! and posterior var-
iance ¥, that is, (y**!|z,6,) ~ N (0,,02) and 6, | F" ~
N (uZ, Z”) for all z and e Note that in this setting,
Z =X - [(Z”) + 0‘2] is the change in the variance
of dose z assuming that we sample from it at epoch n
(see proposition 3.1 of Frazier et al. (2008) and Online
Appendix A.5).

Proposition 3. For the impersonalized dose-finding prob-
lem seeking ED; in a set of two doses, Z ={z1,22} with
21 < z, the DOL’s allocation rule is given by

zif £ >I2E],

2 0p(s") =
ot {22 if £ <128

and, in case of equality, DOL randomlzes between the
two doses.

Proposition 3 provides a novel insight about the
sampling behavior of the one-step look-ahead policy
in the variance minimization setting. In particular,
Proposition 3 reveals that DOL seeks to balance the
weighted posterior variance of the next epoch between
two alternatives. A special case is L = 1 when the DM
seeks to find the dose with the maximal response
(EDy). In this case, it can be seen from the allocation
rule in Proposition 3 that DOL allocates sampling to
the dose that reduces the posterior variance the most.
The next result characterizes the optimal policy in the
impersonalized setting with two doses. In fact, it
reveals that DOL is optimal in this setting with respect
to our value function.

Proposition 4. For the impersonalized dose-finding prob-
lem seeking ED; among two doses, DOL is optimal.

As can be seen, the structure of the optimal policy
that seeks to balance the weighted posterior variances
among alternatives is unique to our setting. The next
result goes beyond identifying the optimal allocation
rule and sheds light on the long-run sampling rate of
the optimal policy in this specific setting.

Corollary 3. For the impersonalized dose-finding problem
seeking EDy in a set of two doses, Z = {z1,z,} with z1 < z,
the optimal asymptotic sampling rate is in proportion to

sampling standard deviations, that is, i — le (g ) as the

total number of samples grows to mﬁnzty.

Based on Corollary 3, if we look for the dose with
the maximal response (ED,), the asymptotic sampling

rate will be nzl —> L for the impersonalized DOL
22 2

with two doses. This is insightful because Ryzhov
(2016) showed that, for two alternatives, the asymp-
totic sampling rate of OCBA and KG coincide with

Zi — zi Corollary 3 shows that for two alternatives,
£ £}

while the proposed DOL policy is different from
OCBA and KG in regard to the allocation rule, its
asymptotic sampling behavior is similar.

7. Numerical Analysis

In this section, we present the results of fully Bayesian
numerical experiments carried out through Monte
Carlo simulations of five different policies including
DOL and four benchmark policies, for example, PAS,
PPAS, GA, and UA. We first explain the general setup,
for example, the prior and the Monte Carlo parame-
ters, as well as the performance measures used to
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compare different allocation policies in our experi-
ments. We then set up the base experiment of this sec-
tion for which we conduct several sensitivity analyses.

7.1. Prior Setup and Performance Measures

For all the experiments, we assume a ZK x ZK initial
prior covariance matrix X found by an additive
approach similar to Guo and Yuan (2017) that repre-
sents a logical relation among doses and covariates
and at the same time guarantees a weakly informative
prior, which lets the posterior converge by a few sam-
ples. Specifically, we assume that each element of the
initial covariance matrix ng,z’k” defined as the initial
covariance between unknown parameters 0,; and
0.y, is found by summing three components: (i) Base
factor y, = b is fixed over all the matrix elements and
should be large enough to create a weakly informative
covariance matrix. The base factor b has to be chosen
based on the scale of sampling responses; (ii) Dose cor-
relation effect Y% =bx e=>=)" provides larger values
for doses that are closer to each other. In fact, the factor
a relates the magnitude of correlation to the distance
between the pair of doses z and z’, that is, the larger
the value of 4, the less correlated the response of doses
z and z’ will be. In our experiments, because we have
10 doses, we set a = 0.1, which results in negligible cor-
relation between doses 1 and 10. (iii) Covariate correla-
tion effect Y = (1{S* > 0} — 1{S* < 0}) x bx &5 1 is
where —1< S <1 denotes a measure of similarity
between the elements k and k" of the covariate vector x
and 1{-} is the indicator function. For instance, in the
case that covariates k and k’ are binary and we have
some retrospective data, this measure of similarity
could be the Pearson correlation coefficient between
the responses observed for two groups of patients, one
with covariate x, = 1 and the other with covariate
xp =1. If such data are not available, one may use
measures of distance between covariate vectors for
S . Hence, assuming X2, ;. =, + ¥+, our prior
covariances are in proportion to the base factor b and
all the main diagonal elements of £’ will be equal to
3b. For simplicity, we set S = 0.5 and S =1 and also
choose b = 2 for all the experiments in this section.

In regard to the prior means, Berry et al. (2010)
introduced the community of several priors where the
investigator considers mainly three different priors: (i)
Enthusiastic: known as the best case prior or the prior
that the investigator finds the most likely, for exam-
ple, assuming a prior which makes an increasing
dose-response relation in phase II clinical trials; (ii)
Skeptical: known as the worst case prior or the prior
that the investigator finds the least likely, for example,
assuming a prior which makes a decreasing dose-
response relation in phase II clinical trials; (iii) Refer-
ence (flat/noninformative): known as the prior that
attempts to express no particular opinion about the

treatment’s merit, for example, assuming the same
level of efficacy for the alternative doses in phase II
clinical trials.

To compare the performance of different policies,
three different performance measures are considered.
The first measure is the probability of correct selection
(PCS) at each epoch defined as the posterior probabil-
ity of selection recommendation (found by Equation
(6) at that epoch) being equal to true EDj g5 for each
x€X over all replications. Second, the expected
opportunity cost (EOC) represents the absolute differ-
ence, on average, between the response of the true
EDj 45 and the response of the EDj 45 recommended
by the posterior at each epoch for x € X over all repli-
cations. The last performance measure is the expected
variance (EVar) of the target dose EDj,; averaged
over all patient types given the posterior belief at each
epoch, which corresponds to the value function of our
formulation. In this section, we only present the EVar
plots and leave the results obtained for PCS, EOC,
and the average allocation (to each alternative dose)
to Online Appendix C.

For all the experiments in this section, we create a
pool of 10,000 random problem instances (true dose-
response curves). In order to create the problem
instances in each replication of our simulation, each
time we sample the true parameter vector for replica-
tion r of the simulation from the prior, that is, o ~
N(yo,):o) forr=1,2,...,10,000. We use the randomly
generated problem instances to control the simulation
and to find the value of performance measures in each
epoch on average. Note that a simulation with 10,000
replications results in the precision of +0.01, £0.02,
and +0.04 (with 95% confidence) for PCS, EOC, and
EVar plots, respectively. We analyze the performance of
each policy for a budget of n = 100 allocations (number of
patients). Also, in all the experiments, the sampling proce-
dure begins following each policy without any initializa-
tion at the beginning of the trial, that is, we implement
each policy over the entire sampling budget making sure
we use similar random seeds and patient types when sim-
ulating different policies.

As for the implementation of DOL policy, setting
parameters M =100 and C=100 in Algorithm 1 of
Online Appendix B.1, and using an Intel Core i9 pro-
cessor with 12 cores, 24 threads, and 16.5 MB cache,
MATLAB takes almost 70 seconds to allocate 100
doses to the patients following DOL.

7.2. Base Experiment

In the base numerical experiment, we consider the set
of alternative doses Z ={1,2,...,Z}, where Z = 10 is the
number of alternative doses. Also, we consider two
patient types represented by a set of covariate vectors
X ={(1,0),(1,1)}, where there is an equal probability
of visiting any patient type at each epoch, that is,
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Pa,0) = P, = 0.5. We set equal sampling/measurement
standard deviations of o, = 3 over all doses z € Z.

As for the prior in the base experiment, we assume
an increasing (namely, enthusiastic) prior mean vector
°. Specifically, we assume a ZK x 1 initial prior mean
vector u® = [, 19, ..., ud]" with u? =[0.2z - 0.01%,0]",
VzeZ.

Figure 2(a) presents the EVar results for each alloca-
tion policy. The additional PCS, EOC, and average
allocation plots for the base experiment are presented
in Figure 6 of Online Appendix C.1. As can be seen
from these results, the PCS and EOC plots are consis-
tent with the EVar results, that is, DOL outperforms
other benchmarks in terms of PCS and EOC as well as
EVar. Next, we change the parameters and the under-
lying setup of the base experiment to see how the
results obtained for the base experiment are sensitive
to different setup values to gain further numerical
insight about DOL.

7.3. Sensitivity Analyses for the Base Experiment
We implement a variety of sensitivity analyses for the
base experiment. The first test measures the sensitivity
of results with respect to the prior from a classical
Bayesian perspective. Specifically, we follow Berry
et al. (2010) and repeat the base experiment with flat
(reference /noninformative) and also skeptical priors.
For the flat prior, we set the ZK X 1 initial prior mean
vector u® = [, p9,...,u5]" with u® =[0.5,05]", Vz € Z.
For the skeptical prior, we assume a decreasing initial
dose-response belief by setting w7 =[0.2(Z-z+1)
—0.01(Z-2z+1)%0]", Vze Z. The plots for EVar for
the flat and skeptical priors are presented in Figure 2, (b)
and (c), respectively. Additional results for these experi-
ments are presented in Figures 7 and 8 of Online Appen-
dix C.2. We can see from these results that in both cases,
DOL still performs competitively in terms of different
performance measures, but the performance of PAS is
closer to DOL compared with the results we have for
the experiment with the enthusiastic prior.

We run another sensitivity analysis with respect to
the prior, but this time we explore the impact of a mis-
specified prior. Specifically, we consider a DM who is
assuming a flat (reference/noninformative) prior
mean response generated by u®=[u),..., u%]" with
10 =[0.505]", Vz€ Z, in an environment where the
instances are generated based on the enthusiastic
prior means (increasing initial dose-response beliefs).
In other words, we use the same problem instances
(true dose-response curves) that we generate for the
base experiment to control this experiment but we run
the trial each time starting from a flat prior. In Figure
2(d) and Figure 9 of Online Appendix C.3, we see a
drop in performance, especially at the beginning of
the trial because of this misspecified prior.

The next sensitivity analysis is concerned with sam-
pling/measurement variances. First, we reduce the
sampling standard deviations to 0, =1 over all doses
z € Z. Second, we increase the sampling standard devi-
ations to 0, =5 over all doses z € Z. Figure 2, (e) and (f)
plus Figures 10 and 11 of Online Appendix C.4 show
their results. Note that the one-step reduction in the
variance of the target dose, calculated for DOL alloca-
tion decision, depends on the value of sampling varian-
ces across alternatives. We can see that in both cases,
DOL is still competitive in terms of all performance
measures and reaches PCS of close to one and EOC of
close to zero overall when we reduce the sampling
error. We can also see that decreasing/increasing the
sampling variances will consistently result in higher/
lower overall performance for all policies. However,
in these cases, where we have notably high or low
sampling errors, DOL is not significantly better than
posterior adaptive sampling methods that are compu-
tationally easier to implement.

In another sensitivity analysis, we explore the con-
sequences of considering an independent belief in our
policies among doses (our analytical setup) where the
environment is correlated (our modeling setup). To
that end, we repeat the first experiment in this section
for DOL, PAS, and PPAS by implementing a version
of these policies that considers independent beliefs
about the alternative doses and follows the updates
mentioned in Section 6. Although we implement
Algorithms 1, 3, and 5 of Online Appendix B for the
base experiment, here we implement Algorithms 2, 4,
and 6 of Online Appendix B to see how much disre-
garding the dependency between alternative doses
affects the overall performance. Figure 2(g) and Figure
12 in Appendix C.5 show the results. In terms of per-
formance, we see a drop in the performance of all
three policies. Looking closer at the PCS and EVar
plots, we observe that the performance of these poli-
cies do not improve throughout the trial as much as
they did in the base experiment. This is to some extent
due to different allocations compared with the base
experiment and the fact that the belief about the alter-
native doses stays independent throughout the trial.
We note that although for large sampling budgets the
cross correlations wash off, in trials with a limited
number of samples, ignoring the correlations clearly
impacts the performance of sampling policies.

Additionally, we run a sensitivity analysis to see
the impact of having more patient types. Specifically,
we add two binary covariates with K = 4, correspond-
ing to eight different patient types with uniform dis-
tribution. Results in Figure 2(h) show that DOL still
outperforms the best benchmark for slightly higher-
dimensional covariates.

Moreover, we run two experiments, one with a total
of Z = 5 and the other with Z = 15 alternative doses,
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Figure 2. Expected Variance of the Personalized Target Dose Averaged Over Both Patient Types in Each Sensitivity Analysis
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to see the impact of the number of doses on overall
performance of DOL and other benchmarks. We see
from Figure 2, (i) and (j) that decreasing/increasing
the number of doses decreases/increases the overall
expected variance of the target doses. The order of
allocation policies in terms of performance has not
changed, that is, DOL still performs slightly better
than other benchmarks in both experiments.

Furthermore, we run a sensitivity analysis where
we change the probability of observing each patient
type. Specifically, we assume that P =0.1 and
P,y = 0.9, that is, we expect nine times more patients
with covariate vector (1,1) than (1,0) in our simulation.
In another words, patient type (1, 0) is rare. Figure 2(k)
shows that the performance of all policies except for GA
become similar for both patient types. The performance of
DOL is similar to the base experiment, but the perform-
ance of adaptive posterior sampling methods improve
compared with the base experiment.

Lastly, we conduct a sensitivity analysis with
respect to the delay in observing the patient responses
after allocating doses to patients. To that end, we
assume that the delay 7 is a discrete number meas-
ured in the unit of sampling epochs, that is, the
patient response of any allocation will be available ©
many epochs later. Then, the allocation decision at
epoch n > 7 is made given all the information avail-
able at epoch n —1, that is, the decision rule d" is a
function of data F"7". In this case, the sampling deci-
sions for the first T samples are made by just consider-
ing the initial prior. In practice, for the first T samples,
we may use other algorithms for batch assignment of
patients to treatment, which can potentially improve
the performance of DOL at the end of the trial. We
repeat the base experiment above for delays of 7 =
0,5,10,...,40 and plot the performance measures at
the end of the trial (N =100) for each 7. Results in
Online Appendix C.6 show that the performance gen-
erally drops by increasing 7 and DOL still outper-
forms other benchmarks considering different delays.
Delay significantly impacted the GA policy, mainly
because GA is inherently very exploitative and there-
fore is more sensitive to the initial belief.

8. Application to a Case Study with
Real Data

In this section, we analyze a real dose-finding case
study for an anticoagulant drug called warfarin. The
goal is to investigate the use of personalized models
for this problem. In the following, we first introduce
the data set, then explain the setup of the main experi-
ment, and, finally, present the results of three sensitiv-
ity analyses to gain more insight about effective
allocations.

8.1. Warfarin Data Set

The warfarin data set used in this experiment is made
available by Pharmacogenomics Knowledgebase
(2021b). It includes multiple patient covariates and
prescribed therapeutic doses of warfarin and their
prothrombin time in international normalized ratio
(PT-INR) scale for 5,700 patients from nine countries.
PT-INR is measured as a quick response to warfarin.
There are several genetic, clinical, demographic, and
environmental covariates that may affect the response
of a patient to this drug.

In fact, White (2010) carried out a statistical analysis
of the PT-INR response in a diverse sample of patients
and examined specific clinical factors that can affect
the pharmacokinetics and pharmacodynamics of war-
farin. Although she found several demographic (e.g.,
age and race) and genetic features that have a mean-
ingful impact, she introduced the Vitamin K epOxide
Reductase Complex Subunit 1 (VKORC1) genotype as
the key factor with the highest influence on warfarin
PT-INR response. Pharmacogenomics Knowledgebase
(2021a) also has provided research results regarding
clinical annotation of the VKROC1 genotype for war-
farin PT-INR response. There are three different
VKORC1 alleles denoted by AA, AG, and GG. Phar-
macogenomics Knowledgebase (2021a) emphasized
that patients with the GG allele may require a lower
dose of warfarin as compared with patients with AG
and AA alleles. For simplicity of presentation, we con-
sider the VKORC1 genotype as the single factor deter-
mining the patient types. Excluding the data records
with missing VKORC1-1639 attribute, we use the data
from 2,997 patients to test the quality of sequential
learning under the proposed policies. We denote the tar-
get dose of patients with AA, AG, and GG alleles with
ED/4., EDAS., and EDSS, respectively. Retrospective data
analysis suggests that the true ED§; is clearly lower than
the true ED/%; and ED,S;, whereas there is not a signifi-
cant difference between the true EDj4: and ED{¢..
Because the range of therapeutic dosages in the data set
belongs to [5, 105] mg/week, we discretize the dose range
to belong to D = {10,20,...,100}, representing the dose
intervals between bin edges of 5,15,25,...,95,105 mg/
week.

8.2. Main Experiment Setup

For simplicity of presentation, we assign indexes to
the dose values in D and represent the set of allowable
doses with Z={1,2,...,10}. Figure 3(e) represents the
average response of each patient type to each dose
(given the entire data set). We can see from this plot
that the true ED{S; falls in the third dose range
(between 25 and 35 mg/week), whereas the true
ED#4s and ED{S: both fall into the fifth dose range
(between 45 and 55 mg/week).
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Figure 3. Average Performance Measures and Dose-Response Relations in the Real Case Study of Warfarin
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Table 1. Sampling Variances Calculated from the Data Set for Each Alternative Dose

Dose index 1 2 3 4

5 6 7 8 9 10

Sampling variance 0.240 0.179 0.145 0.165

0.156 0.093 0.306 0.091 0.065 0.012

For this numerical experiment, we run a simulation
with 10,000 replications each starting from a fixed ini-
tial prior and randomly generated problem instances.
We consider the sampling budget of n = 100 allocations
in each replication for which we use a random permu-
tation of patients in the data set. We note that the num-
ber of patients from three alleles are almost equal in
the data set (995 patients with AA allele, 1,029 patients
with AG allele, and 973 patients with GG allele).
Hence, the probability of visiting each patient type at
each epoch is almost equal (around one-third). In order
to represent these three patients types, we use two
binary variables (K = 3) with the set of covariate vectors
X ={(1,1,0),(1,1,1),(1,0,1)} (respectively to represent
patients with AA, AG, and GG alleles). We assume a
ZK x 1 initial flat (noninformative) prior mean vector
of all zeros and a ZK x ZK initial prior covariance
matrix with L . =y, +)y% +)% . Specifically, the
PT-INR response is often a number between one and
four; therefore, we set b = 4 to ensure a vague prior.

Here, we assume that the underlying setting is con-
trolled by a fixed true mean response found by aver-
aging over responses of each patient type assigned to
each dose in our data set. In fact, this is an appealing
feature of our experiment because it allows for model
misspecification. In addition to the true mean response
of each patient type to each dose, we can use the data
set to calculate the sampling variance of each dose,
that is, af, Vz € Z. Table 1 shows these values for the
set of alternative doses Z. We generate random
responses in each replication from this fixed truth
given these sampling variances. This makes our simu-
lation consistent with the data set.

Similar to Section 7, we begin the sampling accord-
ing to each policy without any initialization and com-
pare the results of different policies at each epoch
using the same performance measures. In terms of the
average PCS, EOC, and the EVar of the target dose
over all patient types, represented in Figure 3,(a)—(c),
DOL slightly outperforms other policies. Figure 3(d)
presents the average sampling allocations for this
experiment. We can see from this plot that although
GA allocates the largest number of patients to true tar-
get doses, it performs poorly with regard to all per-
formance measures, especially EVar of the target
dose. This is because the target doses (and their var-
iance) are functions of the entire dose-response curve
and GA is too exploitative, which causes it to perform
even worse than UA in terms of PCS and EVar. On
the other hand, we can see that DOL is robust in its
trade-off between exploitation and exploration.

8.3. Additional Analyses of the Real Case Study
In order to gain more insight into the learning process,
we present some additional plots to see how DOL and
the benchmarks perform in identifying the target dose
for each patient type separately. Figures 14 and 15 in
Online Appendix C.7 show the results of implement-
ing these policies for each patient type, in which the
PCS, EOC, and EVar results are consistent, and that
DOL is quite competitive in learning the personalized
target dose for each patient type in terms of all per-
formance measures. However, learning the target
dose does not occur with the same pace for patients
carrying different alleles. In particular, PCS is lower
and the variance of the target dose is higher for the
AA allele compared with AG and GG alleles. The
main reason is that the true mean responses over all
doses in patients with the AA allele are closer together
compared with patients with AG and GG alleles, that
is, the true dose-response curve for patients with the
AA allele is almost flat, as presented in Figure 3(e).
Therefore, it becomes more difficult to distinguish the
corresponding target dose with the same level of sam-
pling budget. Recall that the number of patients
observed from each patient type is almost equal, and
this difference in performance is due to the shape of
the dose-response curve for each patient type.
Moreover, we design a setup to measure the value of
considering personalization in dose-finding trials. To
that end, we consider a DM who uses an impersonal-
ized model for adaptive sampling in an environment
in which dose-response curves depend on patient
types. In fact, we use the true dose-response curves
presented in the Figure 3(e) to control the simulation,
and the patients randomly enter the trial similar to
the previous experiment. However, we use all the
responses, produced from all patient types, to update
a single belief about the dose-response curve. That is,
we consider a Z X 1 vector ® to model a single dose-
response curve. We also assume a similar flat prior
mean of all zeros and covariance structure similar to
the experiment described above where Y =0. Our
results in Figure 16 of Online Appendix C.8 show a
significant drop in performance, on average, over all
three patient types. In particular, for n = 100, the DM
who is running DOL with an impersonalized model
will have a 20% and 45% drop in PCS and EVar per-
formance, respectively. This is simply because in real-
ity, we have different personalized target doses (dose 5
for patients with AA and AG alleles and dose 3 for
patients with GG allele); however, the DM who
assumes homogeneous patients estimates only a single
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target dose for the entire population, which results in a
poor performance.

Finally, we carry out another test to see the impor-
tance of considering correlations among covariates. Specifi-
cally, in this setup each group of patients with a
particular allele is independent from others in that
we learn each personalized target dose without con-
sidering the responses found for other patient types.
We have three separate dose-response curves in paral-
lel and simulate 10,000 different permutations of
patients, where the belief about the alternative doses
are correlated for each covariate. We use a learning
model that does not allow information sharing among
different patient types. In fact, we run three separate
trials with Z x1 unknown parameters G)(AA), G)(AG),
and ©'°9), simulating the results assuming a Z x 1 ini-
tial flat prior mean vector of all zeros and a Z X Z ini-
tial prior covariance matrix of Zg’z, =y,+y% for each
trial. The results, presented in Figure 17 of Online
Appendix C.9, show a significant drop in performance
with regard to PCS and EVar, that is, information
sharing across covariates is significant specially when
we have a small sampling budget.

9. Practical Challenges and Limitations
There are a variety of practical issues in personalized
dose-finding clinical trials that our model does not
address. First of all, we assume that the response of a
patient becomes available before the next epoch.
Although this assumption is common in the literature
(see, e.g., Guo and Yuan 2017), there are other studies
that include delayed responses. For example, Lin et al.
(2019) studied a different type of dose-finding trials
where they considered delayed toxicity and efficacy
outcomes. Although our model does not include the
delay in observation, we present its effect on the per-
formance of the proposed DOL in a sensitivity analy-
sis presented in Online Appendix C.5.

Also, although assuming a continuous response is a
common assumption in dose-finding trials, in some
trials, the patient response may be binary (dose being
effective or ineffective). In that case, the personalized
target dose could be defined as the smallest dose with
at least L times the maximum probability of observing
an effective response over all doses for the patient
with covariate vector x; a natural modification to our
model is to consider a probit regression model instead
of Equation (1), where y! follows a Bernoulli distribu-
tion with the success probability of pi=®((5],0))
(Albert and Chib 1993). However, the probit regres-
sion model does not have any conjugate prior and the
posterior samples should be generated by the Gibbs
sampling approach introduced by Albert and Chib
(1993). This makes the computation of DOL for adap-
tive sampling more time demanding. Regardless, our

proposed procedure is still applicable with more com-
putational efforts to create posterior samples.

Additionally, our proposed model is designed for
low-dimensional covariate spaces. However, the set of
covariate space could be large, whereas the number of
patients in dose-finding trials is limited. One may use
linear models, designed for high-dimensional data,
instead of Equation (1). For example, Bastani and Bayati
(2020) studied a contextual linear bandit setup with
high-dimensional covariates for which they proposed
an efficient algorithm based on the LASSO estimator. In
addition, some of covariates could be continuous, such
as blood pressure or viral load. One standard approach
to make such covariates discrete/categorical is to use
cut-off thresholds (European Network for Health Tech-
nology Assessment 2013).

Furthermore, we assume that significant covariates,
which have the highest impact on the outcome, are
prespecified, that is, they are known to the experi-
menter before starting the trial. This is often the out-
put of clinical feature selection studies, where they
specify which, say, biomarkers are important for tox-
icity /efficacy outcomes. In fact, several current per-
sonalized clinical trials are conducted to explore the
impacts of a specific given biomarker: See Janiaud et al.
(2019) for a list of oncology trials conducted for spe-
cific biomarker(s). However, as Berry et al. (2012)
emphasized, gradually identifying the set of bio-
markers in a precision clinical trial is crucial if the
impactful biomarkers are not known upfront.

Another point to consider is that in practice, we may
have two different types of covariates: (i) predictive
covariates that interact with the treatment/dosage, for
example, the presence of certain proteins in tumor
biopsy in the case of cancer, (ii) prognostic covariates
that do not interact with the treatment/dosage but may
be informative of the outcome. We are assuming that all
the covariates are predictive. However, in order to sepa-
rate the effect of these two types of covariates, one needs
to modify the response model to account for an addi-
tional number of unknown parameters that do not cor-
respond to any doses/treatments. Using such a model,
Alban et al. (2021) showed that misidentifying a predic-
tive covariate and assuming it to be prognostic can be
detrimental in terms of expected regret, yet the perform-
ance of an all-predictive model (our approach) turned
out to be very close to the performance of a more com-
prehensive predictive-prognostic model. That is, the
effect of misspecifying a prognostic covariate and taking
it to be predictive in the model did not much influence
the performance, mostly because the model will eventu-
ally learn to take proper values for the parameters that
in fact do not relate to any dose/treatment.

Finally, we assume that the covariates of patients
are observable upon arrival. However, in some cases,
collecting the covariate data is expensive, might take
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time (the laboratory results to come back), or may raise
patient safety issues. Also, in other cases, the full covariate
vector may not become known, either because of missing
data or the delay in the process of collecting patient infor-
mation. In such circumstances, one approach is to apply
longitudinal models for biomarkers; see Berry (2012) and
the references therein. Furthermore, we assume that the
sampling continues until the last patient is allocated to a
treatment. However, a trial may be stopped because there
is significant evidence that the drug is efficacious or termi-
nated if there is significant evidence that the drug is not
efficacious or toxic. Nasrollahzadeh and Khademi (2020)
studied the optimal stopping of a dose-finding clinical trial.

10. Conclusion

This study modeled a personalized response-adaptive
dose-finding problem, where the DM seeks to find a
target dose among a set of allowable doses given the
personal characteristics of each patient. Setting differ-
ent target doses for different patient types can lead to
more successful phase III clinical trials, as patients
assigned to their personal target dose are expected to
show more promising responses. We considered a set-
ting where the belief about alternative doses and similar
covariates are correlated. We formulated this problem
as a stochastic dynamic program and proposed DOL,
which is a one-step look-ahead policy applied to our
objective function of minimizing the expected variance
of the personalized target dose over all covariate vec-
tors. We also modified three other allocation policies,
for example, PAS, PPAS, and GA, and used them as the
benchmark. Using the model, we showed some proper-
ties of the learning problem and analyzed a few proper-
ties of the proposed DOL policy. For example, we
derived a closed-form formula for DOL with two doses
and showed that, in the impersonalized version of this
problem, DOL is optimal. We also analyzed the asymp-
totic sampling behavior of DOL in this setting.

Finally, we implemented our proposed policies in
various settings with synthetic data and conducted a
variety of sensitivity analyses (with the results in the
Online Appendix C). The results provided some
insight into the behavior of each policy and revealed
the connections between the proposed policies and the
choice of the objective function. We also illustrated the
results of applying our policies for a real case study of
warfarin. We showed the merits of applying personali-
zation and using the proposed DOL in terms of stand-
ard performance measures. Overall, considering the
limited number of patients in dose-finding clinical
trials and patients’ variation, the proposed model and
policy show promise for adaptive allocation of patients
in dose-finding trials.

In terms of performance, the proposed DOL seems
quite robust in a variety of settings. However, in some

cases with notably large or small sampling variance,
and in settings where the target doses are close to
each other, the performance of some of the bench-
marks are close to DOL; therefore, spending the extra
computational effort for implementing DOL could be
difficult to justify. In summary, DOL appears to be the
best option in personalized dose-finding trials with
moderate sampling variances and sparse target doses.
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