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Simplicial cascades are orchestrated by the
multidimensional geometry of neuronal complexes
Bengier Ülgen Kilic 1✉ & Dane Taylor1✉

Cascades over networks (e.g., neuronal avalanches, social contagions, and system failures)

often involve higher-order dependencies, yet theory development has largely focused on

pairwise-interaction models. Here, we develop a ‘simplicial threshold model’ (STM) for

cascades over simplicial complexes that encode dyadic, triadic and higher-order interactions.

Focusing on small-world models containing both short- and long-range k-simplices, we

explore spatio-temporal patterns that manifest as a frustration between local and nonlocal

propagations. We show that higher-order interactions and nonlinear thresholding coordinate

to robustly guide cascades along a k-dimensional generalization of paths that we call ‘geo-

metrical channels’. We also find this coordination to enhance the diversity and efficiency of

cascades over a simplicial-complex model for a neuronal network, or ‘neuronal complex’. We

support these findings with bifurcation theory and data-driven approaches based on latent

geometry. Our findings provide fruitful directions for uncovering the multiscale, multi-

dimensional mechanisms that orchestrate the spatio-temporal patterns of nonlinear

cascades.
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Cascading activity has been widely observed in diverse types of
real-world systems including networks of spiking neurons1–3,
the dissemination of information and opinions across social

networks4–7, epidemic spreading8–10, failures within critical
infrastructures11–13, and traffic jams14. Models of such phenomena
are often formulated as a spreading process in which a small, loca-
lized dynamical change produces an avalanche of effects across a
network, and as such the mathematical models of these disparate
applications are often closely related15,16. Frequently, the network is
spatially embedded17 and there exist both short- and long-range
edges18–21, causing a cascade’s spatio-temporal patterns to exhibit
two competing phenomena22–26: wavefront propagation (WFP),
where spreading propagates locally across short-range edges; and the
appearance of new clusters (ANC), where it propagates to distant
locations across long-range edges. Whether a cascade predominantly
propagates locally versus globally informs experts on how to take
appropriate steps toward analysis, prediction, control and/or sam-
pling for various applications including advertisement-seeding
strategies27,28, mitigation and containment of epidemics8,29,30, neu-
romodulation and stimulation31,32, contingency analysis for power
grids13,33, and management of supply chains34–36.

However, local WFP and nonlocal ANC also depend on a cas-
cade’s precise propagation mechanism. In social networks, for
example, people are often reluctant to adopt a new belief/opinion
unless several friends and family have already adopted it5,7, and such
a threshold criterion causes social contagions to preferably spread by
local WFP, and ANC occurs less frequently22–25. The integrate-and-
fire mechanism of neurons is also a threshold criterion37; however,
neurons exhibit a variety of other dynamical features (e.g., stochas-
ticity, refractory periods, and inhibitory interactions38), thereby
complicating the relation between neuronal threshold mechanisms
and WFP/ANC. Importantly, it has been shown that the diversity of
spatio-temporal patterns for neuronal cascades reflects a neuro-
systems’ memory capacity39, which helps explain certain cognitive
impairments40 and can be optimized by tuning the dynamics to
criticality via a balancing of excitation/inhibition2,41. While con-
siderable empirical and theoretical progress has beenmade regarding
the origins and benefits of neuronal cascades having various prop-
erties (e.g., wide dynamic range), uncovering the mathematical and
biological mechanisms responsible for orchestrating in real time how
and where cascades propagate remains an open challenge. An
important step in this direction is to identify and understand
structural/dynamical mechanisms that are plausible and can
potentially organize whether cascades can robustly spread locally
along intended pathways despite the presence of structural and
dynamical noise.

A promising direction is that recent research has highlighted that
dyadic (i.e., pairwise) interactions encoded in graphs are insufficient
representations for many dynamical processes (e.g., circuit logic42,
neuron responses43,44, ecological networks45, power-grid failures46,
supply chains47, and group decision making48–51). For example, it is
natural to assume for some systems that states of individual nodes
(e.g., neuron firings or belief states) can influence those of nodal
groups (e.g., collective decisions or cortical column dynamics), and
vice versa. However, it is inherently difficult to represent such
interactions using graphs due to the different dimensionality of
individual nodes and groups of nodes. This observation has inspired
rapid growth in developing models and theory for dynamical pro-
cesses over simplicial complexes and hypergraphs that encode dya-
dic, triadic, and higher-order combinatorial interactions. In
particular, simplicial-complex models have been employed to study
the macroscopic activity of brain regions52–54, and dynamical theory
has been recently extended to many higher-order systems including
synchronization models55–58, social contagions59–61, epidemic
spreading62–66, random walks and diffusion67–70, consensus71,72

general models of ordinary differential equations73,74, and the

optimization of higher-order dynamics75,76. Moreover, our work is
especially motivated by the study of cascading neuronal activity in
brains3,39,41, since it is well-known that such dynamics involve both
thresholding and higher-order interactions43,77. Presently, however,
it has not yet been explored how these two combined dynamical
features (thresholding and higher-order interactions) affect WFP/
ANC and whether they can coordinate to help orchestrate the pro-
pagation paths for cascading activity (neuronal or otherwise).

Herein, we extend a popular threshold model for cascades6

with binary dynamics15 to develop theoretical insights for the
combined effects of thresholding and higher-order interactions
on nonlinear cascades. By assigning active/inactive states to ver-
tices, edges, and higher-dimensional k-simplices, we develop a
simplicial threshold model (STM) for cascades over simplicial
complexes. Our proposed model and theory provide a bridge
between existing modeling frameworks that are restricted to
describing dynamics at either the individual or the group level.
Although we are largely motivated by neuroscience, we inten-
tionally neglect well-known neuron properties such as non-
monotonic behavior and refractory periods so that we can focus
exclusively on the interplay between thresholding and higher-
order interactions. Focusing on a “small-world” family of
simplicial-complex models that contain both short- and long-
range k-simplices, which we call noisy geometric complexes, we
explore spatio-temporal patterns that manifest as a frustration
between local and nonlocal propagations (i.e., WFP versus ANC).
As illustrated in Fig. 1, we find that higher-order interactions and
nonlinear thresholding can coordinate to robustly guide cascades
along geometrical channels (WFP). We find that both thresh-
olding and higher-order interactions can inhibit long-range
spreading events (ANC), but that their combination can does
so more robustly. In other words, the interplay of thresholding
and higher-order interactions is a structural/dynamical mechan-
ism that orchestrates where cascades propagate. As an applica-
tion, we study STM cascades over a simplicial complex model for
a neuronal network in which pairwise edges represent neuronal
synapses, and higher-order k-simplices encode (k+ 1)-dimen-
sional nonlinear dependencies (e.g., co-activations) among sets of
neurons77. We refer to a such a network as a neuronal complex.
Our experiments show that higher-order interactions can pro-
mote the diversity and energy efficiency of STM cascades over an
empirical neuronal complex that we construct using a Cae-
norhabditis elegans synapse network78,79. We support our find-
ings with bifurcation theory that predicts the propagation rates of
local WFP and nonlocal ANC. We also study STM cascades using
a data-driven approach in which we examine simplicial cascade
maps that attribute simplicial complexes with a latent geometry in
which pairwise distances reflect the time required for STM cas-
cades to travel between vertices. These maps generalize contagion
maps for graphs22 and allow the WFP and ANC properties of
STM cascades to be studied using techniques from manifold
learning and high-dimensional data analysis. Our proposed
mathematical tools and computational experiments suggest that
the study of STM cascades is a promising direction for unco-
vering the multiscale, multidimensional mechanisms that facil-
itate higher-order information processing in neuro-systems, and
more broadly, that determine the spatio-temporal patterns of
nonlinear cascades across other social, biological, and technolo-
gical systems.

Results
Simplicial threshold model (STM) for cascades. We first briefly
describe simplicial complexes80. Consider a set C0 ¼ fv1; ¼ ; vNg
of N vertices. Each vertex vi 2 C0 is assigned a coordinate yðiÞ 2
Rp in a p-dimensional ambient metric space. (We note in passing
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that vertices in “abstract” simplicial complexes do not have such
coordinates; however, we will focus on the traditional definition
herein.) We assume a Euclidean metric, although it may also be
advantageous to explore other metric spaces81,82. We can define a
k-dimensional simplex (v0,…, vk), or simply k-simplex, by an
unordered set of vertices vi with cardinality k+ 1. For example, a
0-simplex is equivalent to a vertex vi and a 1-simplex is equivalent
to an undirected, unweighted edge (vi, vj). Lastly, we define a K-
dimensional simplicial complex fCkgKk¼0 as the union of sets Ck,
each of which contain simplices of dimension k. For example, a
1-dimensional (1D) simplicial complex is a graph fCkg1k¼0, whereC0 is a set of vertices having spatial coordinates and C1 is a set of
undirected, unweighted edges. Intuitively, a 2-dimensional sim-
plicial complex is a spatial graph with “filled in” triangles. To
define our cascade model, we further define notions of degree, or

connectivity, among k-simplices. For each vertex vi 2 C0, we
define dki as the number of k-simplices to which it is adjacent: d1i
is the 1-simplex degree of vertex vi (often called node degree for
graphs), d2i is its 2-simplex degree, and so on. We also define for

each vertex vi the sets N kðiÞ ¼ fs 2 Ckji 2 sg that contain its k-
dimensional simplicial neighbors. It follows that dki ¼ jN kðiÞj for
each vertex vi and simplex dimension k.

We now define STM cascades in which all k-simplices of
dimension k≤κ are given binary dynamical states xki ðtÞ 2 f0; 1g,
i.e., inactive vs active, where index i enumerates the simplices of
dimension k and t ≥ 0 is time. For 2-dimensional (2D) STM
cascades (i.e., κ= 2), the states of vertices, 1-simplices, and
2-simplices are given by fx0i ðtÞg, fx1i ðtÞg, and fx2i ðtÞg, respectively.
Parameter κ is called the STM cascade’s dimension, and it may

Fig. 1 Local and nonlocal spreading patterns for a simplicial threshold model cascade. a We initialize a simplicial threshold model (STM) cascade near
the center of a two-dimensional (2D) noisy geometric complex, which contains both short-range geometric k-simplices and long-range non-geometric k-
simplices. In this example, we study the clique complex80 associated with a spatial graph in which vertices are arranged in 30 × 30 triangular lattice
(yielding a “geometrical substrate” comprised of vertices and geometric 1- and 2-simplices) and non-geometric edges are added uniformly at random
(yielding a “topological noise” that manifest by non-geometric k-simplices in the clique complex). STM cascades can propagate by either local wavefront
propagation (WFP) over a geometrical substrate or non-locally over non-geometric simplices to yield appearances of new clusters (ANC). Propagation to
any boundary vertex vi—which is inactive but has active simplicial neighbors (i.e., adjacent 1-simplices, 2-simplices, etc.)—requires that the total activity
across its simplicial neighbors (which can be aggregated in different ways) surpasses a threshold T. b We study 2D STM cascades that utilizes k-simplices
with dimension k≤κ= 2, the relative interaction strength of 2-simplices versus 1-simplices is tuned by a parameter Δ∈ [0, 1] (see Eq. (2)). We depict the
influence of T and Δ on cascades' spatio-temporal patterns by visualizing the activation times τi at which each vertex vi first becomes active. When T and Δ
are both small (top-left subpanel), STM cascades rapidly progress via ANC, yielding a “splotchy” pattern. Increasing either T or Δ suppresses ANC, thereby
robustly guiding cascades along a geometrical substrate despite the presence of non-geometric k-simplices. (Observe in the bottom-right subpanel that
STM cascades will not spread if T and/or Δ are too large.) In summary, multidimensional interactions and thresholding can coordinate to direct how and
where cascades spread, which has implications for neuronal avalanches and other spatio-temporal cascades. See Section “Simplicial cascades robustly
follow geometrical substrates and channels” for further experiment details.
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differ from that of the simplicial complex as long as κ ≤ K. For
k > 0, the states of k-simplices are directly determined by the
states of vertices; a k-simplex (v0,…, vk) is active only when k of
the vertices are active. For example, an edge (vi, vj) is active if at
least one vertex vi or vj is active, a 2-simplex is active if at least
two vertices are active, and so on. See Fig. 2a for a visualization of
states for vertices, 1-simplices, 2-simplices, and 3-simplices. We
present these examples from the perspective of a boundary vertex,
which we define as a vertex that is inactive but has at least one
active simplicial neighbor.

The vertices’ states evolve via a discrete-time process that we
define for general κ in Methods section “STM cascades”. Here, we
present a simplified dynamics for 2D STM cascades, and our later
simulations will also focus on κ= 2. At time step t+ 1, the state
x0i ðtÞ of each vertex vi possibly changes according to a threshold
criterion

x0i ðt þ 1Þ ¼ 1; if either x0i ðtÞ ¼ 1 orRiðtÞ>Ti;

0; if x0i ðtÞ ¼ 0 andRiðtÞ≤Ti;

�
ð1Þ

where Ti is an activation threshold intrinsic to vertex vi and

RiðtÞ ¼ ð1� ΔÞf 1i ðtÞ þ Δ f 2i ðtÞ ð2Þ
is a weighted average of cascade activity across the simplicial
neighbors of vertex vi. Parameter Δ tunes the relative influence of
2-simplices and f 1i ðtÞ ¼ 1

d1i
∑j2N 1

Aði;tÞx
1
j ðtÞ and f 2i ðtÞ ¼ 1

d2i
∑j2N 2

Aði;tÞx
2
j ðtÞ

are the fractions of adjacent 1- and 2-simplices that are active at
time t. One can also interpret Ri(t) as vis “simplicial exposure” to
a cascade at time t. When vertices change their states, we allow k-

simplices with k > 0 to update their states instantaneously, and we
leave open the investigation of more complicated dependencies
such as delayed state changes for higher-dimensional k-simplices.
Also, note that the limit Δ→ 0 yields a 1D STM cascade, which is
equivalent to the Watts threshold model6 for cascades over
graphs.

To narrow the scope of our experiments, herein we initialize all
STM cascades at time t= 0 using cluster seeding (see Methods
section “Cluster seeding”), in which case we select a vertex and
set all of its adjacent vertices to be active, while all other vertices
are inactive. Thresholding can potentially prevent localized initial
conditions from propagating into large-scale cascades, and cluster
seeding helps overcome this dynamical barrier22,83. Our experi-
ments are also simplified by assuming an identical threshold
Ti= T for each vertex vi. This allows us to explore the cooperative
effects of thresholding and higher-order interactions for 2D STM
cascades by varying only two parameters: threshold T and
2-simplex influence Δ.

Notably, we also define and study a stochastic variant of STM
cascades in Supplementary Note 1 in which the vertices’ states
change via a nonlinear stochastic process instead of the
deterministic nonlinear dynamics defined by Eqs. (1) and (2).

Noisy geometric complexes, geometrical substrates and chan-
nels. We study the spatio-temporal patterns of STM cascades
over noisy geometric complexes, which contain both short- and
long-range simplices and are a generalization of noisy geometric
networks22. Short- and long-range interactions have been
observed in a wide variety of applications (e.g., face-to-face and
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Fig. 2 Wavefront propagation for κ-dimensional simplicial threshold model cascades on noisy ring complexes. a Each k-simplex with k≤ κ is given a
binary state xki ðtÞ 2 f0; 1g indicating whether it is inactive or active, respectively, at time t= 0, 1, 2,…. Cascade propagation occurs when an inactive
boundary vertex is adjacent to sufficiently many active k-simplices, in which case it (and possibly some of its adjacent k-simplex neighbors) will become
active upon the next time step. There are different types of inactive k-simplices, depending on how many of their vertices are active. b Noisy ring
complexes (see Methods section “Generative model for noisy ring complexes”) generalize noisy ring lattices22 and contain vertices that lie on a 1D ring
manifold that is embedded in a 2D “ambient” space. Each vertex has d(NG)= 1 non-geometric edge (red lines) to a distant vertex and d(G) geometric edges
(blue lines) to nearby vertices with d(G) ∈ {2, 4, 6} (left, middle, and right columns, respectively). Higher-dimensional simplices arise in the associated
clique complexes and are similarly classified as geometric/non-geometric. To simplify our illustrations, we place vertices alongside the manifold when
d(G) > 2, and we do not visualize 3-simplices. c Geometric k-simplices with k≤K compose a K-dimensional geometrical substrate. For noisy ring complexes,
K= d(G)/2 and the substrate is a K-dimensional channel—which is a non-intersecting sequence of lower-adjacent K-simplices. Channels generalize the
graph-theoretic notion of a “path”. d Simplicial threshold model cascades with different dimension κ≤ K can propagate by wavefront propagation along a K-
dimensional channel. Note that a simplicial threshold model cascade does not utilize all available k-simplices when κ < K.
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online interactions in social networks) and are known to play an
important structural/dynamical role for neuronal activity18,19. It
is also worth noting that noisy geometric networks exhibit the
small-world property20 under certain parameter choices, and
noisy geometric complexes will likely exhibit a simplicial analog
to this property84,85.

To explore WFP and ANC in an analytically tractable setting,
we assume that the vertices C0 lie along a manifold within an
ambient space Rp, and that all k-simplices are one of two types:
geometric simplices that connect vertices that are nearby on the
manifold, and long-range non-geometric simplices that connect
distant vertices. Each k-simplex is considered to be geometric if
and only if all of its associated faces are geometric. After
categorizing k-simplices as geometric or non-geometric, we
further refine the notion of k-simplex degrees. Specifically, we
let dk;Gi and dk;NGi denote geometric and non-geometric k-simplex
degrees, respectively, of a vertex vi so that dki ¼ dk;Gi þ dk;NGi . We
provide visualizations of synthetic examples of noisy geometric
complexes in Figs. 1 and 2b, where the vertices lie on a 2D plane
and a 1D ring manifold, respectively. In these synthetic models,
we construct geometric edges by connecting each vertex to several
of its nearest neighbors, and we create non-geometric edges
uniformly at random between pairs of vertices that do not yet
have an edge. In either case, we construct noisy geometric
complexes by considering the associated clique complexes for
these vertices and edges. See Methods section “Generative model
for noisy ring complexes” for further details about this
construction.

We define the subgraph (or sub-complex) restricted to
geometric edges (or simplices) as a geometrical substrate, and
propagation along a substrate is called WFP, by definition.
Importantly, a substrate’s geometry and dimensionality can in
principle differ from that of the manifold and that of the full
simplicial complex that contains both geometric and non-
geometric edges. For example, in Fig. 2b we depict three noisy
ring complexes in which the vertices have different geometric
degrees: d(G)∈ {2, 4, 6}. In all cases, the vertices lie on a 1D ring
manifold that is embedded in a 2D ambient space; however, as
shown in Fig. 2c, the resulting K-dimensional geometrical
substrates have different dimensions with K= d(G)/2. Because
each substrate extends in 1 dimension along the 1D ring
manifold, each is a K-dimensional geometrical channel, which
we define as a non-intersecting sequence of lower-adjacent K-
simplices (i.e., each subsequent K-simplex intersects with the
preceding K-simplex by a (K− 1)-simplex that is a face to both
K-simplices80). A channel is a higher-dimensional generalization
of a “non-intersecting path” in a graph in which wavefronts travel
the fastest, and it is closely related to the graph-based concepts of
k-clique rolling86 and complex paths87.

Before continuing, we highlight that it is important to
understand the different types of “dimension” that have been
introduced. We assume that a noisy geometric complex lies on a
manifold of some dimension and is within a p-dimensional
metric space. The dimension K of a simplicial complex refers to
the maximum dimension of its k-simplices. Within a given
simplicial complex, there can exist a geometrical substrate of
some possibly smaller dimension k. Finally a STM cascade has its
own dimension, κ, which is the largest k-simplex dimension that
is utilized by the nonlinear dynamics. In principle, all of these
dimensions can differ.

Simplicial cascades robustly follow geometrical substrates and
channels. We study the coordinated effects of thresholding and
higher-order interactions on WFP and ANC, and it is helpful to
first provide precise definitions of these two phenomena that

manifest as a frustration between local and nonlocal connections
in a noisy geometric complex. We characterize a propagation to a
vertex as WFP if at the time of propagation, it is adjacent to at
least one active vertex via a geometric k-simplex. In contrast, a
propagation to a vertex is called ANC if and only if that propa-
gation occurs solely due to its adjacency to non-geometric active
k-simplices, and all of its adjacent geometric k-simplices are
inactive at the time of propagation.

Thresholding and higher-order interactions can both suppress
nonlocal ANC across non-geometric edges, which promotes
simplicial cascades to locally propagate via WFP along a
geometrical substrate. This is visualized in Fig. 1, where we study
2D STM cascades over a 2D noisy geometric complex (The
manifold, simplicial complex, geometrical substrate, and STM
cascades all have the same dimension in this simple example.).
We initialized the STM cascades with cluster seeding at a center
vertex so that they could potentially spread outward via WFP
along the 2D manifold (which is discretized by the geometrical
substrate). In Fig. 1b, we visualize the activation times τi (i.e.,
when each vertex vi first becomes active), showing results for
STM cascades with four choices for the parameters T and Δ. We
study 2D STM cascades over a 2D noisy geometric complex in
which the vertices are positioned in a 30 × 30 triangular lattice,
and each vertex vi has d1;Gi ¼ 6 geometric edges to nearest
neighbors (although vertices on the outside have fewer) as well as
d1;NGi ¼ 1 non-geometric edge, which are added uniformly at
random between pairs of vertices. We then study the resulting
clique complex. Observe for small T and Δ (top-left subpanel)
that STM cascades rapidly spread and predominantly exhibit
ANC, which results in the “splotchy” pattern. In contrast, when
either T or Δ is increased, the simplicial cascade predominantly
exhibits WFP, and not ANC, which slows propagation and
enables the cascade to more reliably follow along the geometrical
substrate (i.e., thereby overcoming the presence of long-range
“topological noise”). Finally, observe that if T and Δ are too large
(bottom-right subpanel), then the initial seed cluster does not
lead to a cascade.

This finding extends existing knowledge about the effects of
short- and long-range connections on cascades. It is well-known
that long-range edges allow traditional pairwise-progressing
cascades to rapidly spread via the mechanism of ANC. This
concept is most apparent in the context of epidemic spreading,
and as a response, banning international airline travel is often a
first response to prevent long-range transmissions for
epidemics8,29,30. However, ANC is also suppressed when the
cascade’s propagation mechanism requires a vertex’s neighboring
activity (i.e., “exposure”) to surpass a threshold T5,22–25. We find
that higher-order interactions can be as, if not more, effective at
suppressing nonlocal ANC. Moreover, these two mechanisms can
coordinate to more robustly guide cascades along a geometrical
substrate despite the presence of topological (i.e., non-geometric)
noise. In the next sections, we explore the potential benefits of
this structural/dynamical coordination as a multiscale/multi-
dimensional mechanism to orchestrate neuronal avalanches.

STM cascades on a C. elegans neuronal complex. We observe
similar cooperative effects of thresholding and higher-order
interactions for STM cascades on a neuronal complex, which we
define as a simplicial complex model that represents the higher-
order nonlinear interdependencies between neurons. We study
simplicial cascades over a neuronal complex representation for
the neural circuitry and dynamics for nematode C. elegans78,79. In
this example, vertices represent neurons’ somas (i.e., cell bodies),
edges represent experimentally observed synapses, and we use
higher-order simplices to encode potential higher-order
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nonlinear dynamical relationships (e.g., co-activations) between
combinatorial sets of neurons77. Notably, we simulate STM cas-
cades on an undirected C. elegans synapse network since our
model and theory does not involve directed k-simplices.

In Fig. 3a, we visualize the C. elegans neuronal complex. The
locations of vertices reflect experimental measurements for the
somas’ centers. The length of each edge gives the distance
between somas, which we use as an estimate for the combined
lengths of the axon and dendrite involved in each synapse.
Geometric and non-geometric edges are indicated by blue and red
lines, respectively. For simplicity, we do not visualize higher-
dimensional simplices. We provide a histogram of edge lengths in
Fig. 3b, and observe that most edges are short-range, but there are
also many long-range connections. We heuristically classify edges
as geometric/non-geometric depending on whether edge lengths
are less than or greater than a “cutoff” distance of 0.169 mm. Note
that this choice of threshold has no effect on the dynamics of
STM cascades. Finally, we construct a neuronal complex by
considering the graph’s associated clique complex80.

Observe that the C. elegans neuronal complex approximately
lies on a 1D manifold that is embedded 2D, which occurs due to
the elongated shape of a nematode worm. Thus, we are interested
in understanding the extent to which simplicial cascades locally
propagate by WFP along the 1D manifold versus nonlocal ANC.
To provide insight, in Fig. 3c we visualize first-activation times τi
for 2D STM cascades with different parameters T and Δ. These
subpanels recapitulate our visualizations in Fig. 1b: thresholding
and higher-order interactions both suppress nonlocal ANC and
can cooperatively promote WFP along a geometrical substrate or
channel. (We will support this quantitatively below).

While our knowledge of neuronal cascades has grown
immensely in recent years1–3,39,41, the mathematical mechanisms
responsible for directing where and how cascades propagate have
remained elusive. The coordination of higher-order nonlinear
thresholding and the multidimensional geometry of simplicial
complexes is a plausible structural/dynamical mechanism that
can help self-organize neuronal cascades. That said, we emphasize
that our findings for STM cascades are obtained for a model that
we define to be intentionally simple so as to isolate and study

nonlinear interplay between thresholding and higher-order
interactions. Therefore, it remains unknown whether similar
phenomena arise for biological networks of neurons and if our
findings/methodologies can extend to more bio-realistic neuron
models (e.g., Hodgkin–Huxley neurons38). The combined effects
of other dynamical features (e.g., refractory periods, inhibition,
and stochasticity38) should also be explored. In particular,
neurons are known to exhibit alternating states of polarization/
depolarization. In contrast, the STM cascades that we study here
involve irreversible state transitions as a way to a baseline of
understanding for the interplay between thresholding and higher-
order interactions in the absence of the confounding effects of
other dynamical features. As an initial step toward generalizing
STM cascades, we provide extended experiments in Supplemen-
tary Note 1. Nevertheless, our work highlights this emerging field
as a promising direction for unveiling the multiscale mechanisms
that orchestrate higher-order information processing within, but
not limited to, neuronal systems.

Higher-order interactions enhance patterns’ diversity and
efficiency. Higher-order interactions promote heterogeneity for
STM cascades’ spatio-temporal patterns, which has important
implications in the context of neuronal cascades. Specifically,
neuronal networks that exhibit more “expressive” activity pat-
terns have broader memory capacity3,39, which has been shown
to occur for neuronal networks that are tuned near “criticality”—
i.e., a dynamical phase transition. At the same time, there is
extensive empirical evidence that neuron interactions are higher-
order43,77, yet mathematical theory development for neuronal
cascades has largely remained limited to dyadic-interaction
models (see, e.g., ref. 41).

Motivated by these insights, here we study the diversity and
efficiency for STM cascades over the C. elegans neuronal complex.
In Fig. 4, we study how parameters T and Δ effect the heterogeneity
of STM cascades. In Fig. 4a, we study WFP (top) and ANC
(bottom) properties by plotting the cascade size q(t) and the
number of clusters C(t), respectively, as STM cascades propagate.
The left, center, and right columns show results for STM cascades
that are 1-simplex dominant (Δ= 0.1), averaged (Δ= 0.5) and

Fig. 3 Simplicial threshold model cascades on a C. elegans neuronal complex. a 2D visualization of experimentally measured locations and synapse
connections between neurons in nematode C. elegans78,79. We model higher-order nonlinear dynamical dependencies among sets of (k+ 1) neurons using
k-simplices in the associated clique complex for which we ignore edge directions. b Histograms depict the distribution of lengths for 1- and 2-simplices,
where we define the length of a 2-simplex as the maximum length over its faces. We distinguish geometric and non-geometric 1-simplices by selecting a
cutoff distance of 0.169mm, and we characterize a 2-simplex as geometric if and only if all of its faces are geometric. c Vertex colors depict their first-
activation times τi for a 2D STM cascade that is initialized with the indicated seed cluster. Observe that T and Δ affect the spatio-temporal pattern of
activations (i.e., wavefront propagation and appearance of new clusters) similarly to what was shown in Fig. 1b).
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2-simplex dominant (Δ= 0.9), respectively. In each subpanel,
different curves represent different initial conditions, whereby we
select different vertices to initiate cluster seeding. Black curves
indicate the means across initial conditions. Observe that some
STM cascades spread to the entire neuronal complex and are said
to saturate the network, whereas others do not. Also, early on, the
numbers of clusters increase due to ANC, but they can later
decrease as cascade clusters grow and merge. Moreover, there is
significant heterogeneity across the different cascades’ initializa-
tions, which arises due to the heterogeneous connectivity of
neurons within the neuronal complex. This heterogeneity becomes
more prominent as Δ (the 2-simplex influence) increases.

In Fig. 4b, we further study cascade heterogeneity for different
initial conditions and different choices for T and Δ. We plot (top)
the fraction ϕ of cascades that saturate the network (i.e., when all
vertices become active) and (bottom) the standard deviation σ for
the times at which saturations occur. The black-colored regions
highlight that no STM cascades saturate the network if T and/or
Δ are too large. Observe that the cascades’ saturation fractions
and times are most heterogeneous when T and Δ are neither too
small nor too large. This suggests thresholding and higher-order
interactions may also play a “critical” role for helping tune
neuronal networks to exhibit maximal cascade pattern diversity
(which is called “wide dynamic range” when considered from a
multiscale perspective).

In Fig. 4c, we focus on q(t) and C(t) when t= 5, which is an early
time in which these values provide empirical quantitative measures
for WFP and ANC, respectively. (At larger times t, it is difficult to
distinguish WFP and ANC propagations since the cascades are so
large.) For different T and Δ, we study the heterogeneity of these
values by computing the Shannon entropy of (top) h({q(t)}) and
(bottom) h({C(t)}) across the different initial conditions. See
Methods section “Entropy calculation” for details. Observe that the
entropy of cascade sizes is largest when T and Δ are neither too
small or too large, which is similar to our finding in Fig. 4b. When
considering h({C(t)}), we do not observe a similar peak for
intermediate values of T and Δ; however the changes in entropy for
C(t) and q(t) occur at approximately the same values of T and Δ,

since the spatio-temporal patterns (i.e., ANC and WFP) undergo
changes at these particular parameter choices.

We further highlight in Fig. 4b, c that as Δ increases, the
dynamical changes can be observed to occur at smaller values of
T. This has important implications for the efficiency of STM
cascades. Specifically, we define the “activation energy” of a vertex
to equal the minimum fraction of active vertices that are required
in order for that vertex to become active. For our model, a
vertex’s activation energy monotonically decreases as T decreases,
since fewer neighboring activations are be required to overcome a
smaller threshold barrier. In other words, a small threshold would
allow a cascade to propagate efficiently, with each vertex’s
activation requiring the activation of only a small number of
other vertex activations.

However, it can also be important that a threshold T allows
cascades with different initial conditions to produce heteroge-
neous cascade patterns. Our experimental results in Fig. 4b, c
have shown that increasing the 2-simplex influence Δ shifts the
phase transitions for dynamical behavior to occur for smaller T
values. In other words, the introduction of higher-order
interactions for these experiments allows cascades with similarly
complex patterns to occur for smaller T values (i.e., when their
activation energies are smaller).

As a concrete example, consider our visualization of h({q(t)}) in
in Fig. 4c, which is given by the Shannon entropy of cascade sizes at
time t= 5 across all initial conditions with cluster seeding. For each
Δ, we can consider the threshold T at which h({q(t)}) are most
heterogeneous. For Δ ≈ 0, h({q(t)}) obtains its maximum near
T= 0.25, but for Δ ≈ 1, h({q(t)}) obtains its maximum near T= 0.1
(i.e., when vertices have a smaller activation energy). In both cases,
the maximum is approximately h({q(5)}) ≈ 2.8. In this way, the
presence of higher-order interactions allows cascade patterns with
similarly complexity to be produced more efficiently.

Finally, by considering STM cascades across the (T, Δ)
parameter space, we can systematically investigate the comple-
mentary effects of thresholding and higher-order interactions. We
will develop bifurcation theory in the next section to guide this
exploration, which is represented by the solid and dashed lines in

ca
sc

ad
e 

si
ze

,
nu

m
be

r o
f c

lu
st

er
s,

time, time, time, 

th
re

sh
ol

ds
, 

th
re

sh
ol

ds
, 

WFP heterogeneity

ANC heterogeneity

time, time, time, 

en
tr

op
y,

en
tr

op
y,

Saturation fractiona) b) c)1-simplex dominant, averaged, 2-simplex dominant,

2-simplex influence,

2-simplex influence,

fr
ac

tio
n,

th
re

sh
ol

ds
, 

2-simplex influence,

th
re

sh
ol

ds
, 

2-simplex influence,

st
an

da
rd

 d
ev

ia
tio

n,

Saturation time heterogeneity

Fig. 4 Higher-order interactions enhance diversity and efficiency for simplicial threshold model cascade patterns on a C. elegans neuronal complex.
a Cascade size q(t) (top) and the number C(t) of spatially disjoint clusters (bottom) versus time t for 2D simplicial threshold model (STM) cascades with
threshold T= 0.1 and Δ∈ {0.1, 0.5, 0.9}. Different curves represent different initial conditions, and black curves give their means. b For STM cascades with
different T and Δ, colors indicate (top) the fraction ϕ of initial conditions in which a cascade saturates the neuronal complex (i.e., spreads everywhere) and
(bottom) the standard deviation σ of the times at which saturations occur. Black regions indicate (T,Δ) values for which no cascades saturate the network.
Cascades are most heterogeneous when T and Δ are neither too small or large. c Colors indicate the heterogeneity of wavefront propagation (WFP) and
appearance of new clusters (ANC) properties by showing (top) h({q(t)}) and (bottom) h({C(t)}), where h(⋅) denotes the discrete Shannon entropy of a
set of cascades with different initial conditions (see Methods section “Entropy calculation”). We focus on time t= 5, since these measures are most
reflective of WFP and ANC at early times. Lines indicate bifurcation theory that we will develop for STM cascades over noisy ring lattices, but as can be
seen, the theory is also qualitatively predictive for this neuronal complex. Observe that increasing Δ causes the spatio-temporal patterns' changes (i.e.,
bifurcations) to occur for smaller T values, which lowers the energy consumption per neuron activation.
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Fig. 4c. Importantly, our theory will be developed for STM
cascades over the family of noisy ring complexes that we
presented in Methods section “Generative model for noisy ring
complexes”, and as such, it is not guaranteed to be predictive for
other simplicial complexes. That said, one can remarkably
observe in Fig. 4c that this theory is qualitatively predictive for
C. elegans neuronal complex.

Bifurcation theory for STM cascades over geometrical chan-
nels. We analyze WFP and ANC for STM cascades over a family
of simplicial complexes in which N vertices lie along a 1D
manifold as shown in Fig. 2b, and for which the vertices’ degrees
lack heterogeneity (although our experiments highlight that the
theory can be qualitatively predictive beyond this assumption).
See Methods section “Generative model for noisy ring complexes”
for their formation, which generalizes the noisy ring lattices that
are studied in ref. 22, wherein the authors developed bifurcation
theory to predict WFP and ANC properties for a threshold-based
cascade model that is restricted to dyadic interactions. In the
Methods section “Combinatorial analysis for bifurcation theory”
we describe bifurcation theory that characterizes STM cascades
over noisy ring complexes. We present general theory for κ-
dimensional STM cascades, and we summarize here bifurcation
theory for 2D STM cascades. Our theory assumes large N and is
based on a combinatorial analysis for the different possible state
changes for boundary vertices that have active simplicial neigh-
bors, but they themselves are not yet active. We focus on the early
stage of cascades in which they are just beginning to spread, and
we summarize our results below.

Our primary findings are two sequences of critical thresholds
that characterize WFP and ANC and which depend on the STM
parameter Δ and degrees d(G), d(NG), d1i , and d2i . The qualitative
properties of WFP are determined by critical thresholds

TWFP
j ¼ ð1� ΔÞ sj

d1i
þ Δ

1

d2i

sj
2

� �
; ð3Þ

where sj= d(G)/2− j is the number of active geometric 1-simplex
neighbors and j∈ {0, 1, . . , d(G)/2}. The first and second terms in
Eq. (3) represent 1-simplex and 2-simplex influences, respec-

tively. Here, we highlight that sj
2

� �
equals the number of

geometric 2-simplex neighbors that are active, since we assume
that for every pair of active geometric 1-simplex neighbors of vi,
there exists an associated geometric 2-simplex neighbor of vi. This
is true for the geometric substrate for which we develop theory,
which is a clique complex associated with geometric edges that
are arranged in a k-regular ring lattice. While the thresholds TWFP

j

may differ for vertices vi that have different k-simplex degrees,
they are the same for simplicial complexes that are “k-simplex
degree-regular” and have identical local connectivity in the
geometric substrate. Moreover, Eq. (3) has assumed that non-
geometric k-simplices are inactive, which occurs with very high
probability for small cascades in which q(t)/N≪ 1. The resulting
critical thresholds identify ranges T 2 ½TWFP

jþ1 ;TWFP
j Þ such that the

speed of WFP is identical for any threshold T within a given
range. Within each range, the WFP speed is j+ 1. For noisy ring
complexes, WFP progresses in the clockwise and counter-
clockwise directions, given the cascade growth q(t) ≈ (2j+ 2)t
for small t. There is no WFP when T >TWFP

0 .
Similarly, the qualitative properties of ANC are determined by

critical thresholds

TANC
j ¼ ð1� ΔÞ d

ðNGÞ � j

d1i
; ð4Þ

where j∈ {0, 1, . . , d(NG)} and d(NG)− j represents the number of

adjacent non-geometric 1-simplices that are active. Note that
there is not a second term in the right-hand side of Eq. (4), since
our theory assumes that the non-geometric 2-simplex neighbors
of a vertex vi are inactive at early cascade times (i.e., small t). Such
an event occurs with vanishing probability when q(t)/N is small.
Also note that Eq. (4) assumes all geometric neighbors are
inactive, which is required by the definition of ANC. It follows
that the probability of ANC occurrences is the same for any
T 2 ½TANC

jþ1 ;TANC
j Þ, and it is different for any two T values in

different regions. Notably, there is no ANC if T >TANC
0 .

In Fig. 5a, we show bifurcation diagrams that characterize WFP
and ANC for different choices of T and the ratio d(NG)/d(G). Solid
and dashed black lines indicate TWFP

0 and TANC
0 , respectively.

Different columns depict bifurcation diagrams for different STM
cascades that are either: (left, Δ= 0.1) 1-simplex dominant;
(center, Δ= 0.5) averaged; or (right, Δ= 0.9) 2-simplex domi-
nant. The vertical gray lines and horizontal colored marks
indicate choices for the ratio d(NG)/d(G) and T that are further
studied in Fig. 5b, c. Observe in Fig. 5a that as Δ increases, the
region of parameter space exhibiting WFP and no ANC expands,
whereas the region exhibiting WFP and ANC shrinks. Notably,
the region exhibiting ANC and no WFP vanishes altogether for
Δ > 0.1. In other word, as STM cascades are more strongly
influenced by higher-order interactions, they exhibit an increase
in WFP and a decrease in ANC; they more robustly propagate via
WFP along a geometrical channel/substrate, and they are less
impacted by the “topological noise” that is imposed by the
presence of long-range, non-geometric k-simplices.

In Fig. 5b, c, we plot the cascade size q(t) and number C(t) of
clusters, respectively, as a function time t. These are averaged
across all possible initial conditions with cluster seeding. As
before, the left, center and right columns depict the choices
Δ∈ {0.1, 0.5, 0.9}. In each panel, we show several curves for
different thresholds T∈ {0.05, 0.1, 0.275, 0.37, 0.5}. All panels
reflect results for noisy ring complexes with d(G)= 8 and
d(NG)= 2 (i.e., d(NG)/d(G)= 0.25). Our selection for these
parameter choices was guided by the bifurcation diagrams in
Fig. 5a. We chose these particular values to highlight the impact
of Δ and T on WFP and ANC properties. In particular, cascades
exhibiting WFP and no ANC will have linear growth for q(t) and
the number of clusters C(t) does not increase. (Note that it would
be quadratic growth for WFP on the 2D manifold shown in
Fig. 1a, cubic growth for 3D manifolds, and so on.) On the other
hand, cascades exhibiting WFP and ANC will have very rapid
growth for q(t) and an initial spike for the number of clusters
C(t). C(t) can later decrease as clusters merge together. Finally,
cascades do not spread if they neither exhibit WFP nor ANC.

One can observe in Fig. 5b, c that the qualitative features of
WFP and ANC occur for different choices of T and Δ exactly as
predicted by our bifurcation theory. First, there is no spreading
when T= 0.5 and Δ∈ {0.1, 0.5} (left and center columns), or
when T∈ {0.35, 0.5} and Δ= 0.9 (right column), since T >TWFP

0
and T >TANC

0 in these cases and there is neither WFP nor ANC.
Second, there is a sharp rise in the number of clusters and rapid,
super-linear growth only when T∈ {0.05, 0.1} and Δ= 0.1 (left
column) and when T= 0.05 with Δ= 0.5 (center column), since
T<TWFP

0 and T<TANC
0 in these cases and both WFP and ANC

occur. Third, for all other values of T and Δ, the curves exhibit
linear growth when t is small, since T<TWFP

0 and T >TANC
0 and

there is WFP but no ANC. (The growth rate of spreading can be
faster at later times t, since our bifurcation theory focuses on the
nature of spreading dynamics at early stages of the cascades).

In Fig. 5d, we study how the speed of WFP along a geometric
channel is affected by the threshold T, 2-simplex influence
parameter Δ, and the channel dimension K= d(G)/2. Black
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symbols and gray curves indicate observed and predicted values
of cascade growth size, dq/dt, for d(NG)= 0 and different choices
of d(G)∈ {6, 12, 24, 48, 96}. First, observe that our prediction
dq/dt= 2(j+ 1) for T 2 ½TWFP

jþ1 ;TWFP
j Þ is very accurate for the

different parameter values. Second, observe that dq/dt generally
increases with the channel dimension K. Lastly, observe in the
right column of Fig. 5d that by introducing higher-order
interactions (i.e., large Δ), cascade growth rates dq/dt have a
nonlinear sensitivity to changes of the threshold T. Such a
nonlinear response could benefit the directing of cascade
propagation via mechanisms that modulate activation thresholds
(e.g., neurochemical modulations).

In Fig. 6, we study how increasing either T or Δ generically
slows the spread of STM cascades, and in particular, it slows the
rates of both WFP and ANC behaviors. This is predicted by the
other critical thresholds given in Eqs. (3) and (4) for different
values of j ≥ 0. In Fig. 6a, we use color to depict the average rate of
change for q(t) at time t= 5, which is an empirical measure for
WFP speed. We predict linear growth for q(t) at a rate of
dq/dt ≈ 2j+ 2 for T 2 ½TWFP

jþ1 ;TWFP
j Þ, which is very close to what

we empirically observe. Observe that as Δ increases, the ranges
associated with larger j broaden, whereas the ranges associated
with smaller j narrow. This can be understood by examining the
right-hand side of Eq. (3) and noting that the first term is linear,
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whereas the second term is combinatorial. Hence, as STM
cascades are more strongly influenced by 2-simplex interactions,
slower WFP becomes a more dominant phenomenon across the
T-parameter space.

In Fig. 6b, we use color to depict the average number C(t) of
clusters at time t= 5, which is an empirical measure for the rate
of ANC. Our bifurcation theory predicts three ranges
T 2 ½TANC

jþ1 ;TANC
j Þ, and as expected, the observed number of

clusters is similar within these ranges and different across them.
Importantly, increasing Δ causes all of the thresholds TANC

j to
approach 0. Thus, for any fixed T, increasing Δ will cause ANC
events to vanish altogether. So while thresholding and higher-
order interactions play a similar mechanistic role in that they
both suppress ANC and allow WFP, higher-order interactions
achieve this much more effectively.

In Fig. 6d, e, we depict similar information as Fig. 6a, b, except
it is computed for the C. elegans neuronal complex, rather than a

noisy ring complex for which the bifurcation theory was
developed. See Methods section “Critical regimes for C. elegans”
for further information. Despite being outside the assumptions of
our bifurcation theory, Eqs. (3) and (4) surprisingly predictive for
the qualitative behavior of WFP and ANC for the C. elegans
neuronal complex (that is, spatio-temporal pattern changes still
occur near the bifurcation lines). Also, observe that the
transitions in Fig. 6d, e are not as abrupt as those shown in
Fig. 6a, b, since the neuronal complex has heterogeneous 1- and
2-simplex degrees, which is known to blur bifurcation22. Never-
theless, the theory accurately predicts the general trend for how
increasing Δ leads to a suppression of ANC, thereby
promoting WFP.

In Supplementary Note 3, we numerically study how hetero-
geneity added to the geometric and/or non-geometric 1-simplex
degrees affects bifurcations that occur for WFP and ANC for 2D
STM cascades over noisy ring complexes. Our main finding is

Fig. 5 Bifurcation theory characterizes wavefront propagation and appearance of new clusters over K-dimensional geometrical channels. We consider
2D simplicial threshold model (STM) cascades over a noisy ring complex (recall Fig. 2b) for various T and either (left) Δ= 0.1, (center) Δ= 0.5, or (right)
Δ= 0.9. a Bifurcation diagrams depict the critical thresholds TWFP

0 and TANC
0 given by Eqs. (3) and (4), respectively, for different T, d(NG) and d(G). We find

four regimes that are characterized by the absence/presence of wavefront propagation (WFP) and appearance of new clusters (ANC). Observe that
increasing Δ suppresses ANC, and the regime that exhibits ANC with no WFP disappears under higher-order interactions with Δ > 0.1. Vertical gray lines
and horizontal colored marks identify the values d(NG)/d(G)= 0.25 and T∈ {0.05, 0.1, 0.275, 0.35, 0.5}, and in panels b and c, we show for these values
that the spatio-temporal patterns of STM cascades are as predicted. b Colored curves indicate the sizes q(t) of STM cascades versus time t, averaged
across all possible initial conditions with cluster seeding. c Colored curves indicate the average number C(t) of cascade clusters, and one can observe a
peak only when ANC occurs. Three scenarios give rise to WFP and ANC: (Δ, T)∈ {(0.1, 0.05), (0.1, 0.1), (0.5, 0.05)}. Four scenarios give rise to no
spreading: (Δ, T)∈ {(0.1, 0.5), (0.5, 0.5), (0.9, 0.35), (0.9, 0.5)}. The other selected values of Δ and T yield WFP and no ANC, in which case q(t) grows
linearly, dq/dt= 2(j+ 1) for T 2 ½TWFP

jþ1 ; T
WFP
j Þ. d Black symbols and gray curves indicate observed and predicted values, respectively, of cascade growth

rates, dq/dt, for STM cascades exhibiting WFP and no ANC for a noisy ring complex with d(NG)= 0 and d(G) ∈ {6, 12, 24, 48, 96} (i.e., channel dimensions
K∈ {3, 6, 12, 24, 48}). Combining high-dimensional channels with higher-order interactions allows cascade growth rates to have a nonlinear sensitivity to
changes for the threshold T.
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Fig. 6 Empirical measurements for wavefront propagation and new cluster appearance rates predicted by critical thresholds. We study 2D simplicial
threshold model (STM) cascades with various T and Δ over (top row) a noisy ring complex with N= 1000 vertices, d(G)= 8, and d(NG)= 2 and (bottom row)
the C. elegans neuronal complex. a An empirical measure for wavefront propagation (WFP) speed, dqdt, which we compute at t= 5 and average across all initial
conditions with cluster seeding. Observe that dq

dt undergoes changes at the critical thresholds TWFP
j given by Eq. (3), which vary with Δ. Within each region

T 2 ½TWFP
jþ1 ; T

WFP
j Þ, observe that the growth rate is close to our predicted rate of 2j+ 2. b An empirical measure for appearance of new clusters (ANC), C(t),

which we compute at t= 5 and average across initial conditions. Observe that C(t) undergoes changes that are accurately predicted by critical thresholds TANC
j

given in Eq. (4). That is, there are three regions T 2 ½TANC
jþ1 ; T

ANC
j Þ, and ANC events occur at approximately the same rate within each region. c A Pearson

correlation coefficient ρ quantifies the extent to which STM cascades predominantly follow along the manifold via WFP. It is computed by comparing pairwise-
distances between vertices vi to vi0 in the original 2D ambient space containing the ring manifold to pairwise-distances ∣∣τ(i)− τ(j)∣∣2 between a nonlinear
embedding of N vertices vi and vj using STM Cascade Maps fig7!fτðiÞg 2 RJ for which distances reflect the time required for STM cascades to travel between
vertices (see Methods section “Simplicial cascade maps”). d–f Similar information as in panels a–c, except for the C. elegans neuronal complex.
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that our analytically derived bifurcations remain qualitatively
accurate even when a small amount of degree heterogeneity is
introduced. We also find that the introduction of heterogeneity
for non-geometric edges decreases the range of T for which WFP
is predominantly exhibited over ANC. Interestingly, increasing
the influence of 2-simplices (i.e., increasing Δ) counterbalances
this effect. That is, higher-order interactions help simplicial
cascades become more robust to the noise imposed by degree
heterogeneity (see Supplementary Fig. 6, lower row). In
Supplementary Note 4, we further extend this study, finding that
the introduction of significant irregularity into a geometric
substrate can significantly reduce WFP; however, the introduction
of many non-geometric 2-simplices has comparatively little effect
on STM cascades for early times in which q(t) is small.

Latent geometry of simplicial cascades quantifies WFP vs ANC.
It was proposed in ref. 22 to quantitatively study competition
between WFP and ANC using techniques from high-dimensional
data analysis, nonlinear dimension reduction, manifold learning,
and topological data analysis. The approach relied on con-
structing “contagion maps” in which a set of vertices C0 in a
graph are nonlinearly embedded in a Euclidean metric space so
that the distances between vertices reflect the time required for
contagions to traverse between them. Contagion maps are similar
to other nonlinear embeddings that are based on diffusion88 and
shortest-path distance89, but in contrast, they provide insights
about the dynamics of thresholded cascades (as opposed to the
dynamics of heat diffusion, for example). We generalize this
approach by attributing the vertices in a simplicial complex with a
latent geometry so that pairwise distances between vertices reflect
the time required for STM cascades to traverse between them. See
Methods section “Simplicial cascade maps” for details on this
construction. Each cascade map uses J different initial conditions
with cluster seeding to yield a point cloud fvig7!fτðiÞg 2 RJ . For
each, we compute the Pearson correlation coefficient ρ between
pairwise distances ∣∣τ(i)− τ(j)∣∣2 in the latent embedding and
pairwise distances between vertices in the original ambient space
(e.g., locations on a ring manifold in 2D or the empirically
observed locations of somas for C. elegans). See Supplementary
Note 2 for visualizations of these point clouds and further
discussion.

In Fig. 6c, f, we use the high-dimensional geometry of
simplicial cascade maps to quantitatively study the competing
phenomena for WFP and ANC for a noisy ring complex and the
C. elegans neuronal complex, respectively. We use color to
visualize ρ for different simplicial cascade maps using STM
cascades with different choices for Δ and T. Larger values of ρ
indicate parameter choices in which cascades exhibit a prevalence
of WFP versus ANC, whereas smaller ρ indicate the opposite.
Observe in both Fig. 6c, f that larger ρ values occur for an
intermediate regime in which T and Δ are neither too larger nor
too small. In this regime, the geometry of simplicial cascade maps
best matches the original 2D geometry, which occurs because
STM cascades predominantly exhibit WFP along the geometrical
substrate and are not disrupted by ANC across long-range
simplices (i.e., the topological “noise”). By comparing the panels
in Fig. 6c to those in Fig. 6a, b, observe that the regions of larger ρ
coincide with regions in which there is slow WFP and unlikely
ANC, as is predicted by our bifurcation theory. Finally, observe
that the ρ values are generally larger for the noisy ring complex
than for the C. elegans complex. This likely occurs because the
noisy ring complexes that we study have no degree heterogeneity,
whereas the C. elegans neuronal complex does have hetero-
geneous k-simplex degrees. Also, we note that the C. elegans
neuronal complex contains many more non-geometric 2-

simplices than that of the noisy ring complexes. That said, our
extended experiments in Supplementary Note 4 suggest that it is
the irregularity of geometric k-simplices—not the non-geometric
k-simplices—that has the greatest impact on WFP and ANC.

Discussion
Nonlinear cascades arise in diverse types of social, biological,
physical and technological systems, many of which are insuffi-
ciently represented by cascade models that are restricted to
pairwise (i.e., dyadic) interactions42–51. Thus motivated, we have
proposed a simplicial threshold model (STM) for cascades over
simplicial complexes that encode dyadic, triadic, and higher-order
interactions. Our work complements recent higher-order models
for epidemic spreading62–66,90,91, social contagions60,61, and
consensus71,72,92,93, and in particular, the effects of higher-order
interactions on spatio-temporal patterns (i.e., WFP vs ANC) and
the implications for neuronal avalanches have not yet been
explored. By assigning the states of active/inactive to individual
vertices as well as groups of vertices, STM cascades provide a
modeling framework that can help bridge individual-based
threshold models (e.g., social contagions and neuron interac-
tions) with group-based threshold models (e.g., group decision
making and interacting neuron groups such as cortical columns
or structural communities). In particular, simplicial cascades
allow for the modeling of “multidimensional cascades” in which
the states of individuals influence the states of groups, and vice
versa, and such interactions cannot be appropriately represented
by graph-based modeling. Herein, the dynamical states of higher-
dimensional simplices are inherited by their associated vertices’
states, and it would be interesting in future work to explore more
complicated dependencies such as allowing time lags between
when a vertex becomes active and when its adjacent higher-
dimensional simplices subsequently become active. Such multi-
dimensional models remain an exciting open avenue for research.

By studying STM cascades over “noisy geometric complexes”—
a family of spatially embedded simplicial complexes that contain
both short- and long-range k-simplices—our work reveals the
interplay between higher-order dynamical nonlinearity and the
multidimensional geometry of simplicial complexes to be a pro-
mising direction for research into how complex systems organize
the spatio-temporal patterns of cascade dynamics. We have
shown that the coordination of higher-order interactions and
thresholding allows STM cascades to robustly suppress the
appearance of new clusters (ANC), yielding local wavefront
propagation (WFP) along a geometrical substrate. STM cascades
can propagate along k-dimensional geometrical channels (i.e., a
sequence of “lower-adjacent” k-simplices) despite the presence of
long-range simplices (which introduce a “topological noise” to the
geometry). While refs. 22,25 present bifurcation theory describing
how thresholding impacts WFP and ANC on noisy geometric
networks containing short- and long-range edges, no prior work
has explored the effects of higher-order interactions on WFP and
ANC. This is problematic, since understanding whether a cascade
predominantly spreads locally or non-locally significantly impacts
the steps that one takes, e.g., to predict and control
cascades8,13,27–36. Our bifurcation theory for STM cascades over
geometrical channels (see Eqs. (3) and (4)) was shown to accu-
rately predict how WFP and ANC change depending on para-
meters of the cascade (i.e., threshold T and a parameter Δ that
tunes the relative strength of 2-simplex interactions) and para-
meters of the noisy geometric complex (i.e., the k-simplex
degrees, which measure the number of number of geometric
edges, d(G), non-geometric edges, d(NG), and 2-simplices, d2, that
are adjacent to a vertex). This theory characterizes the absence/
presence of WFP and ANC and their respective rates, and it
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provides a solid theoretical foundation to support the exploration
of WFP and ANC for higher-order cascades in a variety applied
settings (e.g., neuronal avalanches, cascading failures, and so on).

Our work provides important insights for higher-order infor-
mation processing in neuronal networks and other complex
systems. Higher-order dependencies are widely observed for
neuronal activity43,77, yet theory development for neuronal cas-
cades is largely restricted to pairwise-interaction models41. Thus
motivated, we studied STM cascades over a “neuronal complex”
that represents the structural and higher-order nonlinear dyna-
mical dependencies among neurons in nematode C. elegans. We
have shown that thresholding and higher-order interactions can
collectively orchestrate the spatio-temporal patterns of STM
cascades that spread across the multidimensional geometry of a
neuronal complex, which we predict to be an important mathe-
matical mechanism that can potentially help brains direct neu-
ronal cascades and optimize the diversity and efficiency of
cascades’ spatio-temporal patterns (see Fig. 4). Given the
importance of efficiency in brains, simplicial-complex modeling is
expected to also lead to new perspectives for other types of effi-
ciency, such as wiring efficiency94. Moreover, we have shown (see
Fig. 5d) that the combination of higher-order interactions with
high-dimensional channels allows the growth rates of STM cas-
cades to be nonlinearly sensitive to changes in T, which may
benefit the directing of multiscale cascades via the (e.g., neuro-
chemical) modulation of activation thresholds Ti. Moreover, the
sizes and durations of neuronal avalanches are known to exhibit
wide dynamical range3,39,41, and we have shown that higher-
order interactions can provide a mechanism for growth rates to
have similar heavy-tailed heterogeneity (which we pose as a
measurable hypothesis for the neuroscience community).

It is also worth noting that we have proposed an intentionally
simple model for higher-order cascades with the goal of gaining
concrete, analytically tractable insights. Future work should
investigate the combined effects of other dynamical properties of
neurons (e.g., alternating states of activity/inactivity, refractory
periods, inhibition, directed edges, and stochasticity38) and other
dynamical behaviors such as local/nonlocal patterns for synchro-
nized neuron firings (which may benefit from recent advances in
synchronization theory for higher-order systems55–58,75). In this
same vein, future research should also investigate biological pro-
cesses that could possibly mediate the coordination of higher-order
interactions and thresholding, particularly by incorporating
empirical neuronal data. Thus motivated, we introduce and study a
stochastic variant of STM cascades in Supplementary Note 1. We
show that our results for deterministic STM cascades remain
qualitatively similar as long as the propagation mechanism remains
dominated by thresholding and not stochasticity.

Finally, we have introduced a technique called “simplicial
cascade maps” that embed a simplicial complex in a latent metric
space. This nonlinear embedding extends contagion maps22,
which are recovered under the assumption of 1D STM cascades,
and both mappings embed vertices so that the distance between
vertices reflects how long cascades take to traverse from one
vertex to another. Simplicial cascade maps generalize the well-
developed field of graph embedding to the context of simplicial
complexes, and we have used them to quantitatively study the
extent to which STM cascades follow geometrical channels within
a simplicial complex, i.e., as opposed to exhibiting nonlocal ANC
phenomena. Although it is not our focus herein, simplicial cas-
cade maps are expected to support higher-order generalizations
of methodology development for manifold learning, topological
data analysis, and nonlinear dimension reduction. Notably, STM
cascades can robustly follow geometrical substrate despite the
presence of topological noise, which is a property that can benefit
these data-science pursuits when they are applied to noisy data.

Methods
STM cascades. In the text above, we focused on the case of 2D STM cascades. We
now define a general version for STM cascades of dimension κ ≥ 1. At time step
t+ 1, the state x0i ðtÞ of each vertex vi possibly changes according to the threshold
criterion given by Eq. (2) except that we now define the simplicial exposure to be

Rt
i ¼ ∑

κ

k¼1
αk f

k
i ðtÞ; ð5Þ

where f ki ðtÞ ¼ 1
dki
∑j2N k

AðiÞx
k
j ðtÞ is the fraction of vertex vis neighboring k-simplices

that are active and {αk} are non-negative weights that satisfy 1=∑kαk. The choice
α1= (1− Δ), α2= Δ and κ= 2 recovers the model for 2D STM cascades that we
studied above. In Supplementary Note 1, we formulate and study a stochastic
generalization of this model given by Eq. (5).

Cluster seeding. We initialize an STM cascade at a vertex vi with cluster seeding,
which we define as follows. Let N 1ðiÞ � C0 denote the set of vertices that are
adjacent to vi through 1-simplices. We set x0j ð0Þ ¼ 1 for any j 2 N 1ðiÞ at time t= 0

and x0j0ð0Þ ¼ 0 for any j0 =2N 1ðiÞ. Thus, the size of an STM cascade at time t= 0 is

qð0Þ ¼ d1i , which can possibly vary depending on the vertex degrees. Note that the
seed vertex vi itself is not in the set N 1ðiÞ, since we assume no self loops. Therefore
x0i ð0Þ is inactive at t= 0, but it will very likely become active at time t= 1
(excluding the situation of pathologically large Δ and T).

Generative model for noisy ring complexes. We construct noisy ring complexes
by considering the clique complexes associated with noisy ring lattices22. First, we
place N vertices vi at angles θi= 2π(i/N) for i∈ {1,…,N}. We then create geometric
edges by connecting each vertex to its d(G) nearest neighbors. We assume d(G) to be
an even number so that d(G)/2 edges go in either direction along the 1D manifold.
Next, we create non-geometric edges uniformly at random between the vertices so
that each vertex has exactly d(NG) non-geometric edges. We generate non-
geometric edges using the configuration model, except we introduce a re-sampling
procedure to avoid adding an edge that already exists. The resulting graph is a
noisy ring lattice, and we construct its associated clique complex to yield a noisy
ring complex. (Recall that a clique complex is a simplicial complex that is derived
from a graph, and there is a one-to-one correspondence between each clique
involving (k+ 1) vertices in the graph and each k-simplex in the simplicial com-
plex.) Finally, each k-simplex is then defined to be geometric or non-geometric,
depending on whether it involves one or more non-geometric edge. This generative
model yields noisy ring complexes that are specified by three parameters: N, d(G)

and d(NG).
Noisy ring complexes are particularly amenable to theory development because

they are degree regular with respect to the 1-simplex degrees; each vertex vi is
adjacent to exactly d1i ¼ dðGÞ þ dðNGÞ 1-simplices, where d(G) and d(NG) are the
geometric and non-geometric 1-simplex degrees, respectively. The degrees dki of

higher-order simplices are not degree regular; however, the geometric degrees dk;Gi
for k≥1 are identical across vertices due to the symmetry of the geometrical
substrate (i.e., the “sub” simplicial complex that includes only geometric simplices).

While STM cascades can be studied over any simplicial complex, we focus
herein on clique complexes, which helps facilitate the identification of adjacencies
among k-simplices. If A is a graph’s adjacency matrix so that Aij= 1 if ðvi; vjÞ 2 C1
and Aij= 0 otherwise, then an entry Bij in matrix B=A2*A encodes the number of
2-simplices that are shared by vertices vi and vj. (Here, * denotes the Haddamard,
or “entrywise”, product.) In this work, we make use of matrices A and B when
numerically implementing 2D STM cascades over clique complexes.

Entropy calculation. We use Shannon entropy in Fig. 4c to quantify the diversity
of spatio-temporal patterns of 2D STM cascades on a C. elegans neuronal complex,
and we compute it as follows. In each panel of Fig. 4a, we plot (top) cascade size
q(t) and (bottom) the number of spatially distant cascade clusters C(t), and dif-
ferent curves indicate q(t) and C(t) for different initial conditions with cluster
seeding. Focusing on t= 5, we consider the sets {q(5)} and {C(5)} and approximate
their probability distributions by constructing histograms with 20 bins. Letting pi

denote the fraction of entries that fall into the ith bin, we compute the associated
discrete Shannon entropy

h ¼ � ∑
20

i¼1
pi log pi: ð6Þ

We note that our choice for the number of bins in Eq. (6) does effect the total
entropy; however, we find that it has little effect on the qualitative behavior for how
heterogeneity changes across the (T, Δ) parameter space, which is our main interest
for Fig. 4c.

Combinatorial analysis for bifurcation theory. We now present the derivation of
our bifurcation theory given in Eqs. (3) and (4) for 2D STM cascades over noisy
ring complexes. Recall for this model that N nodes are positioned along a the unit
circle and are spaced apart by an angle δ= 2π/N. Therefore, neighboring vertices
are positioned apart by angles 1δ, 2δ, and so on. Also, recall that each vertex has
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exactly d(G) geometric edges to nearest-neighbor vertices and d(NG) non-geometric
edges to other vertices, which are added uniformly at random. This generative
model for noisy geometric complexes helps us to develop theory for ANC and
WFP, but as we shall show, it also has important implications for such phenomena.

We first describe ANC in the limit of large N when the cascade size q(t) is small.
By definition, an ANC event occurs when a cascade propagates to a vertex vi that is
far from a cascade cluster, implying that all of its geometric k-simplices are inactive.
It follows that the fractions of active adjacent k-simplices can only take on the
following values

f ki 2 0;
1

dki
;
2

dki
; ¼ ;

dk;NGi

dki

( )
; ð7Þ

depending on the number of active non-geometric k-simplices. For STM cascades over
noisy ring complexes that are generated via the model that we describe in Methods
section “Generative model for noisy ring complexes”, we find that ANC events occur
predominantly due to influences by non-geometric 1-simplices. In contrast, we find
non-geometric 2-simplices to have a negligible effect on ANC in the limit of large N,
small q(t), and fixed d(G) and d(NG), which implies f 2i � 0 under these assumptions.
Specifically, non-geometric 2-simplices (and higher-dimensional simplices) are rare,
because non-geometric edges are added uniformly at random. Consider a vertex vi that
is distant from a cascade cluster, and suppose that it has one non-geometric edge to an
active vertex vj. That edge is the face of a 2-simplex only if vi has a second non-
geometric edge to a third vertex that is already adjacent to vj. This occurs with

probability 1� ½ðN � 1� d1i Þ=N�ðd
ðNGÞ�1Þ � OðN�1Þ, which approaches zero with

increasing N. This result uses that there are N � 1� d1i possible vertices that vi can
connect to without creating a non-geometric 2-simplex vj. Since non-geometric edges
are created uniformly at random, each of the remaining non-geometric edges for vi do
not create a 2-simplex with probability ½ðN � 1� d1i Þ=N�. Moreover,

½ðN � 1� d1i Þ=N�ðd
ðNGÞ�1Þ

gives the probability that none of them do. Subtracting this
probability by 1 gives the probability that there is at least one non-geometric 2-simplex
between vi and vj (that is, given that they are already connected by a non-geometric
edge). Therefore, while non-geometric 2-simplices (and higher-dimensional simplices)
do arise in our generative model for noisy ring complexes, they are rare and have little
effect on ANC for large systems.

To obtain the critical thresholds given in Eq. (4) for k= 1 in Eq. (7), we
approximate RiðtÞ � ð1� ΔÞf 1i and observe that

f 1i 2 0;
1

dðGÞ þ dðNGÞ
; ¼ ;

dðNGÞ

dðGÞ þ dðNGÞ

( )
; ð8Þ

which uses that the 1-simplices are degree regular. If one considers a variable
threshold T, then the probability that ANC events occur will significantly change as
T surpasses the different Ri(t) values corresponding to different f 1i (Eq. (8)). For

example, there are no ANC events when T > ð1� ΔÞ dðNGÞ

dðGÞþdðNGÞ
.

Notably, our bifurcation theory for ANC naturally extends to κ-dimensional
STM cascades in which RiðtÞ ¼ ∑κ

k¼1 αkf
k
i ðtÞ. In this case, non-geometric k-

simplices with k > 1 also have little effect on ANC, and the critical thresholds are
identical to those in Eq. (4) with the variable substitution (1− Δ)↦ α1.

We next develop bifurcation theory for WFP dynamics, and in this case, higher-
dimensional simplices have a significant effect. Our analysis stems from
considering boundary vertices that are not yet active but have geometric simplicial
neighbors—i.e., adjacent geometric 1-simplices, geometric 2-simplices, etc.—that
are active. The propagation speed of a wavefront along a geometrical channel is
determined by the number of boundary vertices that become active upon each time
step. For example, in Fig. 7a we visualize a noisy ring complex with d(G)= 6 so that
there are d(G)/2= 3 boundary vertices {v1, v2, v3} for the clockwise-progressing
wavefront. (Recall that each vertex connects to d(G)/2 nearest-neighbor vertices in
either direction along the ring manifold.) Therefore, the speed of a wavefront is
either 1, 2, or 3, depending on how many of them become active at each time step.
Note that the cascade exposure Ri(t) defined in Eq. (2) will be different for each
boundary vertex, and because they are enumerated closest-to-farthest from the
wavefront, one has f k1ðtÞ ≥ f k2ðtÞ ≥ f k3ðtÞ and R1(t) ≥ R2(t) ≥ R3(t). Therefore, as a
threshold Ti increases, the criterion Ri(t) > Ti defined in Eq. (1) will first fail for v3,
then v2, and finally v1. The wavefront shown in Fig. 7 will not propagate for any
threshold that is larger than R1(t).

The Ri(t) values of boundary vertices reveal critical threshold values for WFP,
and we identify them for noisy ring complexes by considering how each vi is
adjacent to geometric k-simplices that are either active or inactive. We may assume
that the non-geometric k-simplices are inactive in the limit of large N and small
cascades size q(t) [technically, a non-geometric k-simplex is active with probability
that is at most OðqðtÞ=NÞ], and so we initially focus on d(NG)= 0. We will later
allow for nonzero d(NG) when we compute the fractions f ki ðtÞ. To this end, we

define for each vi the sets N kðiÞ of adjacent k-simplices, which we partition into

sets N k
Aði; tÞ and N k

I ði; tÞ of adjacent k-simplices that are active and inactive,

respectively, at time t. Note that N kðiÞ ¼ N k
Aði; tÞ∪N k

I ði; tÞ and dki ¼ jN kðiÞj is
the degree of vi with respect to k-simplices. With these definitions, the fractions of

active k-simplices are given by

f ki ðtÞ ¼
jN k

Aði; tÞj
dki

: ð9Þ

In Fig. 7b, we visualize a wavefront propagating along a geometrical channel for the
noisy ring complex shown in Fig. 7a. Vertices are positioned so that we may more
easily identify whether 2-simplices are active or inactive. Focusing on the boundary
vertex v1 that is closest to the wavefront and has the largest exposure Ri(t), we illustrate
its set of adjacent 2-simplices that are active. Because v1 is adjacent to jN 1

Að1; tÞj ¼ 3
active 1-simplices and jN 2

Að1; tÞj ¼ 3 active 2-simplices, it follows that f 11ðtÞ ¼ 3
d1i
and

f 21ðtÞ ¼ 3
d2i

(Eq. (9)). (Note that the denominators include both geometric and non-

geometric k-simplices). We also visualize in Fig. 7b the inactive 2-simplices that are
adjacent to boundary vertex v1. Recall from Fig. 2 that there are two types of inactive 2-
simplices, depending on whether a 2-simplex contains only one active vertex (type 1)
or no active vertices (type 2). We let N 2

I1
ði; tÞ and N 2

I2
ði; tÞ denote the sets of inactive

2-simplices of types 1 and 2, respectively, and depict them for v1. Observe that
jN 1

I ð1; tÞj ¼ jN 2
I1
ð1; tÞj ¼ jN 2

I2
ð1; tÞj ¼ 3.

In Fig. 7c, we highlight that one can easily compute the number of active 1- and
2-simplices that are adjacent to a boundary vertex vi using three steps. First, we
identify the set fvjjði; jÞ 2 N 1

Aði; tÞg of active vertices that are connected to vi by
active 1-simplices (see green shaded regions). Second, we count the number of
vertices in that set, which yields jN 1

Aði; tÞj since there is a one-to-one
correspondence between these vertices and the active 1-simplices that are adjacent
to vi. Third, we count the number of edges among those vertices, which yields
jN 2

Aði; tÞj since there is a one-to-one correspondence between those edges and
active 2-simplices. We can also calculate the number of type 2 inactive 2-simplices
in a similar way. That is, we first identify the set fvjjði; jÞ 2 N 1

I ði; tÞg of inactive
vertices that are connected to vi by inactive 1-simplices (see gray shaded regions in
Fig. 7c). We then count how many vertices are in the set (which yields jN 1

I ði; tÞj)
and the number of edges among those vertices (which yields jN 2

I2
ði; tÞj). The upper

part of Fig. 7c illustrates this approach for v1, and we do not visualize type 1
inactive 2-simplices, because they are more difficult to compute directly but can be
found after the other sets are determined: jN 2

I1
ði; tÞj ¼ d2i � jN 2

Aði; tÞj � jN 2
I2
ði; tÞj.

The lower part of Fig. 7c illustrates this approach for the other two boundary
vertices {v2, v3} as well as two vertices {v−1, v0} that are already active, since they are
to the left of the wavefront.

Importantly, because each vertex has exactly d(G)/2 1-simplices going in either
side along the ring manifold left, there is always a clique of edges among vertices in
a set fvjjði; jÞ 2 N 1

Aði; tÞg for the boundary vertices. (This is not true for active
vertices, such as v−1, as shown in the lower part of Fig. 7c). Therefore, if a boundary

vertex has sj active 1-simplices, then it must also have sj
2

� �
active 2-simplices. It

follows that the different possible f 1i values for a boundary vertex vi are given by

f 1i 2 0;
1

d1i
;
2

d1i
; ¼ ;

dðGÞ=2

d1i

( )
; ð10Þ

and the corresponding f 2i values are

f 2i 2 0;
1

d2i

1
2

� �
;
1

d2i

2
2

� �
; ¼ ;

1

d2i

dðGÞ=2
2

 !( )
: ð11Þ

In Eqs. (10) and (11), we enumerate these possibilities by j and use the definition
RiðtÞ ¼ ð1� ΔÞf 1i þ Δf 2i to obtain the critical threshold values for WFP given by
Eq. (3). For κ-dimensional STM cascades, setting T= Ri(t) yields a more general set
of bifurcation lines given by Eq. (12):

TWFP
j ¼ ∑

κ

k¼1
αk

1

d2i

sðGÞj

k

 !
: ð12Þ

In either case, (j+ 1) boundary vertices will become active upon each time step
when T 2 ½TWFP

jþ1 ;TWFP
j Þ. Since wavefronts progress both clockwise and counter-

clockwise around the ring manifold, the cascade size q(t) will grow linearly at a rate
2j+ 2.

Critical regimes for C. elegans. Our bifurcation theory describes WFP and ANC
on a 1D geometrical substrate is degree regular, so that STM cascade propagations
occur identically for all boundary vertices. However, the empirical neuronal
complex for C. elegans is degree heterogeneous, and so we instead examine the
median bifurcation curves that are associated with median degrees, including
geometric degrees, non-geometric degrees, and 2-simplex. In principle, we could
plot a different bifurcation curve for each vertex vi based on its unique degrees. (See
Supplementary Fig. 9 and related discussion on “Perturbed bifurcation results” in
Supplementary Note 3 of ref. 22) For simplicity, here we instead plot a single
representative bifurcation curve for C. elegans using the median values d(G)= 8,
d(NG)= 2, and d2= 34 to construct the bifurcation curves. Finally, we reiterate that
the C. elegans neuronal complex has a structure that is outside our assumed
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structure of a noisy ring complex, and so our bifurcation theory should not be
expected to be perfectly predictive. Our experiments highlight that these bifurca-
tion curves are qualitatively predictive for the general effects of T and Δ.

Simplicial cascade maps. We introduce a notion of latent geometry for simplicial
complexes called simplicial cascade maps in which the set C0 ¼ f1; ¼ ;Ng of
vertices is nonlinearly mapped as a set of points (i.e., a “point cloud”) in an J-
dimensional Euclidean metric spaceRJ . Simplicial cascade maps directly generalize
contagion maps22, which are recovered under the choice of 1D STM cascades (and
which do not utilize k-simplices for k > 1).

We construct simplicial cascade maps using the activation times for STM cascades.
Given J realizations of a STM cascade on a simplicial complex with different initial
conditions with cluster seeding, the associated STMmap is a map fvig7!fτðiÞg 2 RJ in

which each vertex vi 2 C0 maps to a point τðiÞ ¼ ½τðiÞ1 ; ¼ ; τðiÞJ �T , where τðiÞj is the
activation time for vertex vi for the STM cascade with the jth initial condition. See
Supplementary Note 2 for visualizations of these point clouds and further discussion.

In practice, we often let J=N so that the jth initial condition corresponds to
seed clustering at vertex vj. However, extra attention is required for handling
cascades that do not saturate the network, in which case there would be τðiÞj values
that are undefined. Herein, we choose to neglect such cascades. See ref. 22 for
alternative strategies in the context of cascades over graphs.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper. The C. elegans synapse network with physical vertex positions is publicly
available and was downloaded from refs. 95,96.

Code availability
A codebase that implements STM cascades over noisy geometric complexes and
reproduces our computational experiments can be found in a Python library97.
Documentation on how to use this software is available at ref. 98.
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