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Higher-order interactions can better optimize network synchronization
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Collective behavior plays a key role in the function of a wide range of physical, biological, and neurological
systems where empirical evidence has recently uncovered the prevalence of higher-order interactions, i.e.,
structures that represent interactions between more than just two individual units, in complex network structures.
Here, we study the optimization of collective behavior in networks with higher-order interactions encoded in
clique complexes. Our approach involves adapting the synchrony alignment function framework to a composite
Laplacianmatrix that encodes multiorder interactions including, e.g., both dyadic and triadic couplings. We show
that as higher-order coupling interactions are equitably strengthened, so that overall coupling is conserved, the
optimal collective behavior improves. We find that this phenomenon stems from the broadening of a composite
Laplacian’s eigenvalue spectrum, which improves the optimal collective behavior and widens the range of
possible behaviors. Moreover, we find in constrained optimization scenarios that a nontrivial, ideal balance
between the relative strengths of pairwise and higher-order interactions leads to the strongest collective behavior
supported by a network. This work provides insight into how systems balance interactions of different types to
optimize or broaden their dynamical range of behavior, especially for self-regulating systems like the brain.
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I. INTRODUCTION

Complex networks provide the structural architecture for
dynamical processes from a wide array of disciplines, and
therefore their study constitutes an important fundamental
area of research in physics, mathematics, biology, and en-
gineering [1–3]. Collective behaviors, i.e., consensus and
synchronization, play particularly critical roles in the func-
tionality of systems in many applications, with recent interest
paid to applications including brain oscillations [4–6], cell
signaling [7,8], and power grids [9,10]. Moreover, various
combinations of local dynamics with different microscopic
and macroscopic topological network properties have been
shown to give rise to a wide range of novel collective behav-
iors, including explosive synchronization transitions [11,12],
chimera states [13,14], and macroscopic chaos [15,16], thus
having important effects on system functions.

In addition to typical pairwise or dyadic interactions in
network-coupled systems, recent work points to the pres-
ence of higher-order, e.g., triadic, interactions in both brain
networks [17–21] and generic limit-cycle oscillator systems
[22,23]. The presence of such interactions is often encoded
in simplicial complexes or hypergraphs [24–27] and has
prompted the network science community to develop tools to
better understand the impact of such higher-order interactions
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on collective dynamics. To date, a handful of studies have
explored the role of higher-order interactions in collective
dynamics in heterogeneous systems [28–35], but unlike real
naturally occurring or engineered systems that are often opti-
mized for a particular task, these initial studies tend to utilize
random configurations or mean-field assumptions. At present,
the role of higher-order interactions for optimized systems is
largely unknown for collective dynamics and other dynamical
processes.

In this paper, we study collective dynamics in net-
works with higher-order interactions, focusing on collective
behavior in optimized systems. To quantify the optimal col-
lective behavior supported by a given network structure with
higher-order interactions, we introduce a composite Laplacian
matrix, which encodes the collective dynamics and network
structure at multiple orders in a weighted simplicial com-
plex and generalizes the synchrony alignment function (SAF)
framework [36] to this case. For the case of simple dyadic
interactions, the SAF has been used to uncover the critical
properties needed to optimize collective behavior in networks
with heterogeneous dynamics and has proven to be flexibly
adaptable to a wide range of realistic constraints and scenarios
[37–41], as it encodes the interplay between heterogeneous
dynamical units and heterogeneous network structure. We
emphasize that in this context optimal refers to a system being
as strongly synchronized as possible.

Generalizing the SAF framework, applying it in this
context, and analyzing the spectral properties of the com-
posite Laplacian reveals important properties of networks
with higher-order interactions. Specifically, as higher-order
interactions are strengthened in a system at the expense of
weakening dyadic interactions to conserve the total cou-
pling in the network, the eigenvalue spectrum of a composite
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Laplacian broadens. This, in turn, increases the dominant
eigenvalue, which is key to improving the optimal state sup-
ported by the network. Complementing this improvement of
the optimal collective state, the broadening of the eigen-
value spectrum also increases the overall range of possible
states. This phenomenon contrasts sharply with synchroniza-
tion of identical oscillators, where optimization of a network
for identical synchronization reduces to a contraction of the
eigenvalue spectrum [42,43]. We close by exploring a realistic
constrained optimization problem where local dynamics are
not freely tunable, but must be allocated from a predefined
set, and it is revealed that a network’s ideal configuration is
realized by a nontrivial, critical balance between the strength
of dyadic and triadic interactions.

II. DYNAMICS AND MODELING

We begin with a higher-order generalization of the Ku-
ramoto model [32,44] that consists of N phase oscillators
whose states θi, for i = 1, . . . ,N , evolve according to

θ̇i = ωi + K1

〈k(1)〉
N∑
j=1

Ai j sin (θ j − θi )

+ K2

2〈k(2)〉
N∑
j=1

N∑
l=1

Bi jl sin(2θ j − θl − θi ). (1)

Here, ωi is the natural frequency of oscillator i, K1 and K2 are
coupling strengths that are associated with 1- and 2-simplex
interactions, respectively, A is a 1-simplex adjacency matrix,
and B is a 2-simplex adjacency tensor. We assume the network
to be unweighted and undirected so that Ai j = Aji = 1 if and
only if a link exists between oscillators i and j, and Bi jl =
Bil j = Bjil = Bjli = Bli j = Bl ji = 1 if and only if a triadic
interaction exists between oscillators i, j, and l .

While the 1- and 2-simplex coupling topologies may in
general be uncorrelated for the case of a general hypergraph,
here we assume the system corresponds to a simplicial com-
plex so that the existence of a triadic interaction (i, j, l )
requires the existence of dyadic interactions (i, j), ( j, l ),
and (l, i). (Formally, the boundary of any 2-simplex in the
simplicial complex must also be contained in the simplicial
complex.) Moreover, we restrict our attention here to “clique
complexes” [45] in which all triangles give rise to 2-simplices,
which allows the 3-tensor B to be completely determined by
matrix A, i.e., Bi jl = Ai jA jlAli.

The respective coupling strengths in Eq. (1) are scaled by
the 1- and 2-simplex mean degrees 〈k(1)〉 and 〈k(2)〉, which are
population averages of the 1- and 2-simplex degrees k(1)

i =∑N
j=1 Ai j and k(2)

i = 1
2

∑N
j=1

∑N
l=1 Bi jl . This scaling ensures

that the overall connectivity is maintained between the 1- and
2-simplex structure. In other words, by conserving the sum
K = K1 + K2, we fix the overall amount of coupling in the
network, regardless of the specific topologies encoded in A
and B. To this end, we introduce a bias parameter α ∈ [0, 1],
defined via K1 = (1 − α)K and K2 = αK , so that α ≈ 0 corre-
sponds to a system where 1-simplex interactions are stronger
than 2-simplex interactions and vice versa if α ≈ 1.

FIG. 1. Weighted simplicial complexes encode the balancing of
multiorder interactions. An illustration of a small network with (a) 1-
vs (b) 2-simplex dominated coupling. Shading indicates the relative
strength of dyadic and triadic interactions which after rescaling by
the respective mean degree conserve the total coupling strength such
that the bias parameter α equitably tunes 1- vs 2-simplex interactions

Examples of a small toy network with 1- and 2-simplex
dominated coupling are illustrated in Figs. 1(a) and 1(b), re-
spectively, where dyadic and triadic interactions are shaded to
denote relative interaction strengths. Lastly, we note that other
higher-order interaction terms may exist in other formulations
of a higher-order Kuramoto model [22,23]. We find that these
yield qualitatively similar results to what is presented below,
and so we focus our attention on the combination of 1- and 2-
simplex interactions in Eq. (1), and address additional triadic
coupling terms in Appendix A.

III. OPTIMIZED SYSTEMS

Since our focus here is on optimization, which again we
emphasize refers to a system being as strongly synchronized
as possible, we consider the strongly synchronized regime
where |θ j − θi| � 1, allowing us to linearize Eq. (1) to

θ̇i ≈ ωi − K

⎧⎨
⎩(1 − α)

(
k(1)
i θi −

N∑
j=1

Ai jθ j

)/
〈k(1)〉

+ α

[
k(2)
i θi −

N∑
j=1

Ai j

(
N∑
l=1

AjlAli

)
θ j

+ 1

2

N∑
j=1

Aji

(
N∑
l=1

AilAl j

)
θ j

]/
〈k(2)〉

⎫⎬
⎭, (2)

or in vector form,

θ̇ = ω − KLθ, (3)

where L = (1 − α)L(1) + αL(2) is a composite Laplacian
that is a weighted average of the first- and second-order
Laplacians, which we define, respectively, as L(1) = (D(1) −
A(1) )/〈k(1)〉 and L(2) = [D(2) − (A(2) − A(2)T /2)]/〈k(2)〉. The
matrix L(1) is simply a scaled version of the typical combina-
torial Laplacian with D(1) = diag(k(1)

1 , . . . , k(1)
N ) and A(1) = A,

while L(2) encodes the 2-simplex interactions with D(2) =
diag(k(2)

1 , . . . , k(2)
N ) and A(2) = A ∗ (A2)T , where ∗ represents

the Hadamard (i.e., element-wise) product. In addition to serv-
ing as the linear approximation of the nonlinear dynamics
given in Eq. (1), Eqs. (2) and (3) also describe a forced consen-
sus dynamics on the same network structure with higher-order
interactions. Optimizing the synchronization dynamics using
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the linear approximation is equivalent to optimizing the con-
sensus dynamics.

To optimize Eqs. (1)–(3) we enter the rotating reference
frame θ �→ θ + 〈ω〉t (which allows us to effectively set the
mean frequency to zero in both the nonlinear and linear
dynamics), and we search for fixed points. Applying the
Moore-Penrose pseudoinverse of the composite Laplacian
[46], L† = ∑N

j=2 λ−1
j v jv jT , where 0 = λ1 < λ2 � · · · � λN

are the eigenvalues of L and its eigenvectors {v j}Nj=1 form an
orthonormal basis for RN , yields the fixed point

θ∗ = L†ω

K
. (4)

From the viewpoint of consensus dynamics, the degree of
consensus may be evaluated directly by the variance of
the fixed point, ‖θ∗‖2/N . On the other hand, the degree
of synchronization in the higher-order Kuramoto model is
given by the magnitude r of the order parameter z = reiψ =
N−1 ∑N

j=1 e
iθ j , which represents the centroid of all oscillators

when placed on the complex unit circle. To leading order,
the degree of synchronization of the fixed point is r ≈ 1 −
‖θ∗‖2/2N . Thus, consensus and synchronization dynamics
are both optimized by minimizing the variance of the fixed
point, ‖θ∗‖2/N . Using the form of L† given above and that
‖θ∗‖2 = 〈θ∗, θ∗〉, we have that

‖θ∗‖2

N
= J (ω,L)

K2
, where J (ω,L) = 1

N

N∑
j=2

〈v j,ω〉2

λ2
j

. (5)

The function J (ω,L) is known as the synchrony alignment
function (SAF), which was first introduced in Ref. [36] in the
context of an objective function for optimizing the synchro-
nization properties of a network of heterogeneous oscillators.
Minimizing J (ω) serves to optimize ‖θ∗‖2/N and r and can
be explored under a wide variety of constraints [37–41]. In-
specting the contributions to the SAF, we note that each term
corresponds to a squared projection of the frequency vector
ω onto the eigenvector v j that is scaled by inverse square of
the associated eigenvalue λ j . Thus, under the constraint of
fixing the variance the frequency vector to σ 2, the collective
behavior is strengthened by aligning the frequency vector ω

as closely as possible with the most dominant eigenvectors
(those associated with larger eigenvalues) and orthogonalizing
ω as good as possible to the least dominant eigenvectors
(those associated with smaller eigenvalues). Thus, the optimal
solution is obtained by setting ω = σ

√
NvN .

IV. HIGHER-ORDER INTERACTIONS IMPROVE
COLLECTIVE BEHAVIOR FOR OPTIMIZED SYSTEMS

In our first experiment, we highlight that random and opti-
mized systems generally behave very differently, especially
in the context of higher-order interactions. Specifically, we
will show for optimized systems that collective behavior is
improved by a stronger reliance on higher-order interactions,
whereas it is diminished for random systems. Since simplicial
complexes are geometrically embedded [47] we consider a
class of noisy geometric networks [48] that contain both geo-
metrically constrained and geometrically unconstrained edges
between nodes uniformly placed on the unit disk in R2. With

FIG. 2. Optimal synchronization in networks with higher-order
interactions. (a) The synchronization error 1 − r vs K for random
(open symbols) and optimal (closed symbols) frequencies for two
choices of the bias parameter: α = 0 (red triangles) and 0.8 (blue cir-
cles), representing cases where interactions are exclusively defined
by 1-simplexes and dominated by 2-simplexes, respectively, for a
noisy geometric network (see text). (b) The synchrony alignment
function (SAF) J (ω, L) as a function of α for randomly allocated
(open squares) and optimal (closed squares) frequency averages over
103 networks.

connected triangles, i.e., 2-simplexes, arising from geomet-
rically constrained edges, we tune the prevalence of triadic
interactions using a probability p ∈ [0, 1]: (i) with probability
p each of the total M = N〈k(1)〉/2 edges is placed between
the two closest nodes that are not yet connected and (ii) with
probability (1 − p) each edge is placed randomly, where 〈k(1)〉
is the target mean 1-simplex degree. Thus, p tunes the preva-
lence of low-dimensional geometry in the network: in the limit
p → 1 the network is purely geometric, while in the limit
p → 0 the network is Erdős-Rényi [49]. In Appendix B we
provide a more complete algorithm implementing the network
model described above.

Taking one such network of size N = 500 with mean
degree 〈k(1)〉 = 10 and p = 0.25, we illustrate the effect of
higher-order interactions on optimizing collective dynamics
in Fig. 2(a). We plot the synchronization error 1 − r from
direct simulations of Eq. (1) as a function of K for four cases,
all under the constraint that the natural frequency vector has
unit variance. First we consider the fully 1-simplex dominated
case, i.e., α = 0, so that coupling is purely dyadic, and plot the
results for random and optimal choices of natural frequencies
in open and closed red triangles, respectively. Note that the
optimal choice of natural frequencies outperforms the random
case, given by a set of natural frequencies drawn from the
standard normal distribution, by about an order of magnitude.
Next, we set α = 0.8, thereby strengthening higher-order in-
teractions at the expense of pairwise interactions, and plot the
results for random and optimal choices of natural frequencies
in open and closed blue circles, respectively. We note here
that all simulations are done using Heun’s method with a time
step of �t = 0.02, integrating over a transient of 5 × 103 time
steps and then averaged over a steady state of 2 × 103 time
steps. We also plot the predicted synchronization error, given
by J (ω,L)/2K2, for each case in dashed curves, which accu-
rately capture the dynamics for sufficiently large coupling.

This example highlights a critical feature of higher-order
interactions in networks and their effect on collective dy-
namics. In particular, focusing on the optimal cases, the
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presence of higher-order interactions improves the optimal
collective behavior supported by the system. Moreover, this
phenomenon is generic: the more 2-simplex dominated a net-
work is (i.e., the larger α is), the better the optimal states
become. This is illustrated in Fig. 2(b), where over an en-
semble of 103 networks built using the same parameters as
the network using in Fig. 2(a) we plot the value of the SAF
as a function of the bias parameter α for randomly cho-
sen frequencies and the optimal choice in open and closed
squares, respectively. (The average over this ensemble is plot-
ted with dashed curves indicating one standard deviation up
and down.) Specifically, we see that as α increases, thus mak-
ing the the network more 2-simplex dominated, the optimal
state improves very smoothly and monotonically while the
random states worsen. Thus, strengthening higher-order inter-
actions in collective network dynamics not only improves the
optimal states, but also widens the range of possible states that
are supported.

V. BROADENING OF COMPOSITE LAPLACIAN
EIGENSPECTRUM UNDERLIES DICHOTOMY FOR

OPTIMIZED AND NONOPTIMIZED SYSTEMS

To explain and further illustrate the improvement that oc-
curs in collective network dynamics as a result of increased
higher-order interactions, we investigate the spectral prop-
erties of the composite Laplacian L = (1 − α)L(1) + αL(2).
Importantly, from Eq. (5) we can see that while the structure
of the eigenvectors of L dictate the geometry of the optimal
choice for the frequency vector ω, it is the eigenvalues that
give insight into the quality of these optimal states. As an
example, in Fig. 3(a) we plot the eigenvalue spectrum of
L averaged across 103 networks of size N = 500 and built
using the model described above with mean degree 〈k(1)〉 =
10 and p = 0.25 for α = 0 (solid blue), 0.4 (dashed red),
and 0.8 (dot-dashed green). Note that as α increases and the
higher-order interactions strengthen at the expense of pairwise
interactions, the eigenvalue spectrum becomes broader.

In fact, it is the broadening of the eigenvalue spec-
trum, and specifically the increase in the dominant eigen-
value λN , that corresponds to improving the optimal states,
since, given the optimal choice ω = σ

√
NvN , we have

‖θ∗‖2/N = J (ω,L)/K2 = σ 2/(KλN )2. Here, we provide rig-
orous analytical insight on this mechanism by computing
exactly the mean and variance of the eigenvalue spec-
trum in terms of moments of the various degrees using
the trace of different powers of L. First, due to the
conservation of the overall weighting of L(1) and L(2),
the mean is always conserved to one: 〈λ〉 = N−1Tr(L) =
N−1[(1 − α)

∑
i k

(1)
i /〈k(1)〉 + α

∑
i k

(2)
i /〈k(2)〉] = 1. Next, the

variance Var(λ) = 〈λ2〉 − 〈λ〉2 = N−1Tr(L2) − N−2Tr2(L) of
the eigenvalue spectrum about this mean is given by

Var(λ) = (1 − α)2

( 〈k(1)2〉
〈k(1)〉2

+ 1

〈k(1)〉
)

+ 2α(1 − α)

( 〈k(1)k(2)〉
〈k(1)〉〈k(2)〉 + 1

2〈k(1)〉
)

+ α2

( 〈k(2)2〉
〈k(2)〉2

+ 〈q〉
4〈k(2)〉2

)
− 1, (6)

FIG. 3. Spectral properties of a composite Laplacian. (a) The
eigenvalue spectrum P(λ) of the composite Laplacian L for α = 0
(solid blue), 0.4 (dashed red), and 0.8 (dot-dashed green) obtained
from 103 networks of size N = 500 with mean degree 〈k〉 = 10
and p = 0.25. (b) The variance of the eigenvalue spectrum along
with the extremal eigenvalues (c) λ2 and (d) λN from the same
ensemble. (e) 2-simplex degrees k(2) vs 1-simplex degrees k(1) for
a single network realization and (f) the quantities 〈k(1)2〉/〈k(1)〉2

and 〈k(2)2〉/〈k(2)〉2 (blue circles and red crosses, respectively) ob-
tained from an ensemble of 103 networks as a function of the
parameter p.

where qi = ∑N
j=1 A

(2)2
i j . [See Appendix C for the derivation

of Eq. (6).] In particular, varying α interpolates the variance
between 〈k(1)2〉/〈k(1)〉2 + 1/〈k(1)〉 − 1 and 〈k(2)2〉/〈k(2)〉2 +
〈q〉/(4〈k(2)〉2) − 1 in the extremes where connections are
completely dominated by 1-simplex and 2-simplex coupling,
respectively. Thus, when the latter form of the variance is
larger, which we may expect when the 2-simplex degree dis-
tribution is more heterogeneous than the traditional 1-simplex
degree distribution, strengthening higher-order interactions in
turn broadens the eigenvalue spectrum of L. In general, as α

is varied the eigenvalues interpolate between their respective
values for L(1) and L(2); however, their intermediate behavior
is more complicated and left for future research.

In Fig. 3(b), we plot the mean variance of the spectral
density as a function of α which we calculated from the same
ensemble as in panel (a) (indicating standard deviation with
dashed curves). We observe a monotonic increase in the vari-
ance of the eigenvalue spectrum as higher-order interactions
are strengthened, which is consistent with the broadening
shown in panel (a). The extremal eigenvalues λ2 and λN

follow this trend, decreasing and increasing, respectively, as
illustrated in Figs. 3(c) and 3(d). Moreover, we show over a
full range of networks, from completely random to strongly
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geometric, that the 2-simplex degree distribution does in fact
tend to be more heterogeneous than the 1-simplex degree
distribution, thereby yielding improved collective dynamics
as higher-order interactions are strengthened. In panel (e),
we plot the 2- vs 1-simplex degrees for a single realization
of the networks described above for parameters p = 0.01,
0.5, and 1, representing random, partially geometric, and
completely geometric cases. The concave-up trend for each
case suggests that the 2-simplex degree distribution is in fact
more heterogeneous than the 1-simplex degree distribution.
For a more concrete picture, we plot in panel (f) the quanti-
ties 〈k(1)2〉/〈k(1)〉2 and 〈k(2)2〉/〈k(2)〉2 (in blue circles and red
crosses, respectively) for the network model discussed above
across a full range of the parameter p, representing completely
random networks (p ≈ 0) to completely geometric networks
(p ≈ 1). Each data point represent the mean over an ensemble
of 103 networks, with dashed curves representing one standard
deviation. Here we see explicitly that over the full range we
have that generically 〈k(2)2〉/〈k(2)〉2 > 〈k(1)2〉/〈k(1)〉2, indicat-
ing that the phenomenon by which higher-order interactions
improve optimal collective network dynamics in fact holds
over a broad family of both random and geometric networks.

Furthermore, we may use this spectral analysis to shed
light on more than just the optimal states, but also the worst
possible state and random cases more broadly. First, anal-
ogously to the manner in which making the system more
2-simplex dominated increases λN , and in turn promotes op-
timal collective dynamics, the complementary decrease in
λ2 results in poorer worst-case collective dynamics, which
would result in setting the frequency vector proportional to
the first nontrivial eigenvector, ω ∝ v2. Moreover, random
frequency arrangements may be understood as follows. Con-
straining ω to unit variance σ 2, it may be expanded using the
eigenvector basis of L, ω = ∑N

j=2 c jv
j , with

∑N
j=2 c

2
j = Nσ 2.

Since heterogeneities are random and independent of network
structure, the expected value of each coefficient is E [c j] =
±√

N/(N − 1) thus and the expected value of J (ω,L) is given
by

E [J (ω,L)] = 1

N

N∑
j=2

N

(N − 1)λ2
i

= 〈λ−2〉, (7)

where the average is taken over all eigenvalues except for the
trivial eigenvalue λ1 = 0. When higher-order interactions are
then strengthened, broadening the eigenvalue spectrum, the
decrease of the smaller eigenvalues λ2, λ3, . . . , which tend
toward zero [see Fig. 3(a)], has a stronger effect on 〈λ−2〉
than the increase of the larger eigenvalues . . . , λN−1, λN . The
overall effect of broadening the eigenvalue distribution by
strengthening higher-order interactions is then increasing the
expected value of the SAF and poorer expected collective
behavior, even though, as we have seen above, the optimal
states are improved.

VI. GEOMETRIC CONSISTENCY OF OPTIMAL
SOLUTIONS

Next we explore the robustness of optimal solutions as
the bias parameter is varied. In particular, we find a geo-
metric consistency in the optimal and near-optimal choices

FIG. 4. Geometric consistency in spectral properties of the com-
posite Laplacian. (a) For networks optimized at α∗ = 0, 0.2, . . . , 1
(blue to yellow), the SAF J (ω∗, L) of this solution as a function of
α given the optimal frequency vector ω∗. Points along the curves
at α = α∗ and the local minimum are denoted in open and closed
circles, respectively. (b) The logarithm (base 10) of the squared pro-
jections 〈v j (0.2), vi(0.8)〉2. Results are obtained from an ensemble
of 103 networks of size N = 100 with mean degree 〈k(1)〉 = 10 and
p = 0.25.

of ω across a range of α. To illustrate this phenomenon, we
consider the optimal choices of ω∗ for a handful of given
bias parameter values α∗ = 0, 0.2, . . . , 1 and plot in Fig. 4(a)
these values of the SAF J (ω∗,L) as a function of α, with
choices α∗ = 0 and 1 plotted in blue and yellow, respectively
(and intermediate values interpolating these colors), for an
ensemble of 103 networks of size N = 100 with mean degree
〈k(1)〉 = 10 and p = 0.25.

First, we note that, although one may expect the minimum
of these curves to occur at α = α∗ (denoted by the open
circles), the improvement of optimal collective behavior as
α increases causes this minimum to occur at another value
α > α∗ (denoted by the closed circles). Thus, after optimizing
a system at a particular bias α = α∗, increasing α results in
improved collective behavior even without redesigning the
frequency vector. Second, notice that for the case α∗ = 1
(given by the yellow curve) the value of the SAF J (ω∗,L)
remains quite close to the true optimal J (ω,L) for all other
α. We see that this also generalizes: the SAF J (ω∗,L) for a
given value of α∗ remains close to the optimal SAF J (ω,L) for
all α < α∗. Thus, an optimal solution found for a 2-simplex
dominated networks remains consistently near-optimal as the
network becomes more 1-simplex dominated.

This phenomenon is due to a particular geometric property
whereby the near-optimal subspaces of RN for two different
values of α, namely, the subspaces spanned by the eigenvec-
tors v j of L with large eigenvalues λ j for the two values of
α, are largely overlapped. This is illustrated in Fig. 4(b) for
α = 0.2 and α = 0.8, where we plot the logarithm (base 10)
of the squared projection 〈v j (0.2), vi(0.8)〉2 for each (i, j)
pair, using the same ensemble of networks as above and de-
noting v j (α) as the jth eigenvector of L for a bias parameter
α. Note the strong diagonal feature indicating a strong align-
ment of v j (0.2) with vi(0.8) for the corresponding eigenvector
i = j and other nearly adjacent eigenvectors i ≈ j. This geo-
metric consistency likely has to do with structure of clique
complexes, namely, that the 2-simplex structure is defined
precisely by the 1-simplex structure and all nonzero entries
of the matrix A(2) come from nonzero entries of A(1), and
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FIG. 5. Constrained optimization. The SAF J (ω, L) as a function
of α obtained after optimal perturbations of sizes ‖δω‖/‖ω‖ = 0
(blue circles), 0.4 (red triangles), 0.8 (green crosses), and 1.2 (black
squares) are applied to a randomly drawn vector of frequencies
(a) without and (b) with preprocessing the frequency vector using
a (near) optimal permutation. Results are obtained from an ensemble
of 102 networks of size N = 100 with mean degree 〈k(1)〉 = 10 and
p = 0.25.

likely do not exist for more general cases of hypergraphs and
simplicial complexes that are not clique complexes where 1-
and 2-simplex structures may be uncorrelated.

VII. CONSTRAINED OPTIMIZATION

Lastly, we consider optimization of collective behavior in
a more constrained scenario. Rather than just constraining
the variance of a frequency vector ω and allowing frequen-
cies to be freely chosen otherwise (thereby allowing them
to be aligned perfectly with a particular eigenvector), we
assume a randomly chosen initial frequency vector is given
and may only be modified by a perturbation of constrained
size. Denoting this perturbation by δω = ωnew − ω, we then
constrain the relative size ‖δω‖/‖ω‖ while maintaining the
variance of the frequency vector itself. This perturbation
may be optimally designed in terms of the eigenvector ex-
pansion ω = ∑N

j=2 c jv
j by orthogonalizing away from the

eigenvectors with smallest associated eigenvalues in order to
eliminate the largest contributions to the SAF. To do this,
we let δω = ∑N

j=2 β jv
j and, for as large k as possible, let

β j = −c j for j = 2, . . . , k, β j = c j for j = k + 1, . . . ,N −
1, and βN = cN (

√
1 + ∑k

j=2 c
2
j/c

2
N − 1), resulting in ωnew =∑N

j=2 γ jv
j with γ j = 0 for j = 2, . . . , k, γ j = c j for j =

k + 1, . . . ,N − 2, and γN = cN
√

1 + ∑k
j=2 c

2
j/c

2
N . Note that

this both orthogonalizes ωnew against the eigenvectors with
smallest eigenvalues while increasing the alignment with vN

in order to conserve the variance of ω. In Fig. 5(a), we plot
the resulting SAF J (ω,L) averaged over 102 networks from
an ensemble using the same parameters as in Figs. 2 and 3
after imposing such a perturbation of sizes ‖δω‖/‖ω‖ = 0,
0.4, 0.8, and 1.2 (plotted in blue circles, red triangles, green
crosses, and black squares) to a random frequency vector with
normally distributed entries. Note that the maximum possible
perturbation that conserves the standard deviation of the fre-
quencies is ‖δω‖/‖ω‖ = 2, obtained by ωnew = −ω.

Another realistic possibility is that, before a perturbation is
applied, the frequencies are (nearly) optimally rearranged to

obtain a permutation of the initially given frequency vector.
Here we obtain such a permutation using a simple accept-
reject algorithm that interchanges randomly chosen pairs of
frequencies if the exchange decreases the SAF. This pre-
processing technique allows for more efficient perturbations,
as we see in Fig. 5(b), which improve upon the results in
Fig. 5(a). In particular, in such a constrained optimization
scenario, we observe that there is often an ideal balance of
dyadic to triadic interactions, i.e., a critical value of α that lies
between zero and one, for a given perturbation size.

This phenomenon can be viewed as a combination be-
tween the cases of random frequencies, where higher-order
interactions impede collective, and the case of optimal (freely
tunable) frequencies, where higher-order interactions improve
collective behavior. Specifically, the presence of a constraint
allows higher-order interactions to improve the constrained
optimal states, but only to a certain point since the purely
optimal choice of frequencies is unattainable, as the frequency
vector cannot be precisely aligned with the eigenvector
vector vN .

VIII. DISCUSSION

Given the role of collective behavior in the function of
physical, biological, and neurological systems where higher-
order interactions may play a critical role in shaping system
dynamics, understanding how higher-order interactions bal-
ance with dyadic interactions and affect collective behavior
is an important question for a wide range of disciplines and
applications. In this paper, we have addressed the topic of
optimization for collective behavior in networks with higher-
order interactions, focusing on clique complexes, and found
that as higher-order interactions are equitably strengthened
relative to dyadic interactions, optimal collective behavior
improves. This phenomenon stems from the broadening of
the eigenvalue spectrum of a composite Laplacian matrix that
encodes the collective dynamics and network structure at mul-
tiple orders and generalizes the synchrony alignment function
framework to this important case. In particular, as the spec-
trum broadens the dominant eigenvalue(s) increase, which
leads to this improvement. Moreover, we find that optimal
solutions are robust over different balances between the rel-
ative strengths of dyadic and triadic interactions and that the
broadening of the eigenvalue spectrum also widens the range
of possible collective states supported by the network. We
also find in more tightly constrained optimization scenarios
that an ideal balanced between dyadic and triadic interactions
occurs at a nontrivial, critical value of the bias parameter for
networks to support the strongest possible collective behavior.
Interestingly, the improvement of optimal collective behavior
stemming from the broadening of the eigenvalue spectrum for
the case of heterogeneous dynamical units lies in contrast to
the case of identical units, where optimal networks stem from
the concentration of the nontrivial eigenvalue spectrum [42].

These results shed light on the question of why higher-
order interactions may be important in various applications
that exhibit collective behavior. In particular, by modifying
one’s balance between dyadic and higher-order interactions,
a system may self-regulate not only to modify (improve
or worsen) its current collective state, but also broaden or
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contract the set of possible collective states that the sys-
tem may support under further modification of the individual
unit’s local dynamics (here given by the oscillators’ natural
frequencies). This observation may be particularly useful for
generating hypotheses for systems that exhibit a strong ten-
dency for reorganization and self-regulation such as the brain
where empirical evidence suggests that higher-order interac-
tions play a role in collective behavior [17–21] and an optimal
range of dynamic behavior is crucial for function [50,51].

This work introduced a composite Laplacian matrix that
encodes network structure at multiple orders to generalize the
SAF framework for optimizing collective behavior [36]. The
SAF framework has already been generalized for a number
of scenarios involving optimization, including optimization
with directed interactions [37], finding optimal network per-
turbations [38], optimizing networks with chaotic oscillators
[39], addressing uncertainty in local dynamics [40], and un-
covering geometric unfolding of networks [41]. Future work
may address many of these generalizations in the context of
networks with higher-order interactions. Moreover, since we
have restricted our attention to the case of clique complexes,
it remains an open question how our findings would change
if one were to consider other network structures such as more
general simplicial complexes, hypergraphs, and nongeometric
networks.
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APPENDIX A: ADDITIONAL HIGHER-ORDER COUPLING
TERMS

In addition to the higher-order coupling term in Eq. (1),
phase-reduction analyses of limit-cycle oscillators [22,23],
both with linear and nonlinear coupling, point to the additional
possible coupling term, given by

1

4〈k(2)〉
N∑
j=1

N∑
l=1

Bi jl sin(θ j + θl − 2θi ). (A1)

Linearizing Eq. (A1) yields

−
[
k(2)
i θi − 1

4

N∑
j=1

Ai j

(
N∑
l=1

AjlAli

)
θ j

−1

4

N∑
j=1

Aji

(
N∑
l=1

AilAl j

)
θ j

]/
〈k(2)〉, (A2)

which can be expressed in vector form as L(2)′ = [D(2) −
(A(2)/4 + A(2)T /4)]/〈k(2)〉. Note, however, that in the case

of undirected, unweighted networks where A(2) = A(2)T this
reduces to L(2)′ = (D(2) − A(2)/2)/〈k(2)〉 = L(2), which was
defined just below Eq. (2). Thus, after linearization the higher-
order interactions given in Eq. (A1) are interchangeable with
those studied in the main text and given in Eq. (1).

APPENDIX B: ALGORITHM FOR THE CLUSTERED
NETWORKMODEL

Here we present a detailed algorithm for generating net-
works from the model described in the main text in Sec. IV.
We begin with three main input parameters: (i) the network’s
size, i.e., number of nodes, N , (ii) the mean 1-simplex degree
〈k(1)〉, and (iii) the clustering, i.e., triadic interaction, parame-
ter p. Given N nodes, we seek to place a total of M = 〈k〉N/2
total links between nodes to ensure the mean 1-simplex degree
is attained.

As a first step, we place N nodes uniformly within the
unit disk. We then proceed to place links of the first kind,
specifically pM links that connect nearby nodes. We evaluate
the distance between each pair nodes that are not connected
and place a link between the pair with the shortest distance.
We then iteratively repeat this process until each of the pM
such links are placed. We then move on to links of the second
kind, specifically (1 − p)M random links. We then consider
all pairs of unconnected nodes and connect one such pair at
random. Again, we iteratively repeat this process until each of
the (1 − p)M such links is placed.

Having the 1-simplex structure, i.e., the adjacency ma-
trix A, completed, we then move on to the 2-simplex
structure. Specifically, this depends on the 1-simplex struc-
ture, so to populate the adjacency tensor B we simply
do an exhaustive scan through the entire network, iden-
tifying each distinct triplet (i, j, k) that forms a triangle,
i.e., has Ai j,Ajl ,Ali = 1, and fill in the appropriate entries
Bi jl ,Bjil ,Bil j,Bjli,Bli j,Bl ji = 1, completing the 2-simplex
structure of the network.

APPENDIX C: DERIVATION OF EQUATION (6)

We begin by writing the variance simply as

Var(λ) = 〈λ2〉 − 〈λ〉2 = N−1Tr(L2) − N−2Tr(L)2. (C1)

Note that since Tr(L) = N , we have that the last term reduces
to one. Thus, our focus turns to the quantity Tr(L2). First,
using the fact that the network is undirected, and therefore
A(2) = A(2)T , we write

L2

=
[

(1 − α)
D(1) − A(1)

〈k(1)〉 + α
D(2) − A(2)/2

〈k(2)〉
]2

= (1 − α)2 D
(1)2 − D(1)A(1) − A(1)D(1) + A(1)2

〈k(1)〉2

+ α(1 − α)
D(1)D(2) − D(1)A(2)/2 − A(1)D(2) + A(1)A(2)/2

〈k(1)〉〈k(2)〉

+ α(1 − α)
D(2)D(1) − D(2)A(1) − A(2)D(1)/2 + A(2)A(1)/2

〈k(1)〉〈k(2)〉
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+ α2 D
(2)2 − D(2)A(2)/2 − A(2)D(2)/2 + A(2)2/4

〈k(2)〉2
. (C2)

Next, applying the trace to Eq. (C2) and rearranging yields

Tr(L2) = (1 − α)2

〈k(1)〉2
[Tr(D(1)2) − 2Tr(D(1)A(1) ) + Tr(A(1)2)]

+ 2α(1 − α)

〈k(1)〉〈k(2)〉 [Tr(D(1)D(2) ) − Tr(D(1)A(2) )/2

− Tr(A(1)D(2) ) + Tr(A(1)A(2) )/2]

+ α2

〈k(2)〉2
[Tr(D(2)2) − 2Tr(D(2)A(2) )/2

+ Tr(A(2)2)/4]. (C3)

Since no self-links exist and triangles only exist between three
distinct nodes, we have that A(1)

ii = A(2)
ii = 0 for i = 1, . . . ,N ,

so that Tr(D(1,2)A(1,2)) = ∑N
i=1 D

(1,2)
i A(1,2)

ii = 0, implying that
each mixed term in Eq. (C3) vanishes, simplifying to

Tr(L2) = (1 − α)2

〈k(1)〉2
[Tr(D(1)2) + Tr(A(1)2)]

+ 2α(1 − α)

〈k(1)〉〈k(2)〉 [Tr(D(1)D(2) ) + Tr(A(1)A(2) )/2]

+ α2

〈k(2)〉2
[Tr(D(2)2) + Tr(A(2)2)/4]. (C4)

The traces of each of the matrices D(1)2, D(1)D(2), and D(2)2

are given simply by

Tr(D(1)2) =
N∑
i=1

k(1)2
i , (C5)

Tr(D(1)D(2) ) =
N∑
i=1

k(1)
i k(2)

i , (C6)

Tr(D(2)2) =
N∑
i=1

k(2)2
i , (C7)

while the traces of each of the matrices A(1)2, A(1)A(2), and
A(2)2 are given by

Tr(A(1)2) =
N∑
i=1

(
N∑
j=1

A(1)
i j A

(1)
ji

)
=

N∑
i=1

k(1)
i , (C8)

Tr(A(1)A(2) ) =
N∑
i=1

(
N∑
j=1

A(1)
i j A

(2)
ji

)
=

N∑
i=1

k(2)
i , (C9)

Tr(A(2)2) =
N∑
i=1

(
N∑
j=1

A(2)
i j A

(2)
ji

)
=

N∑
i=1

qi, (C10)

where we have used that A(1) and A(2) are undirected, A(1) is
unweighted, and qi = ∑N

j=1 A
(2)2
i j . Finally, inserting Eqs. (C5)

and (C10) into Eq. (C4) and dividing by N yields

N−1Tr(L2) = (1 − α)2

( 〈k(1)2〉
〈k(1)〉2

+ 1

〈k(1)〉
)

+ 2α(1 − α)

( 〈k(1)k(2)〉
〈k(1)〉〈k(2)〉 + 1

2〈k(1)〉
)

+ α2

( 〈k(2)2〉
〈k(2)〉2

+ 〈q〉
4〈k(2)〉2

)
. (C11)

Inserting Eq. (C11) into Eq. (C1) recovers Eq. (6), as desired.
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