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Abstract—Single-photon avalanche diode (SPAD) based LiDAR is becoming the de-facto choice for 3D imaging in many emerging
applications. However, they suffer from three significant limitations: (a) the additional time-of-arrival dimension results in a data
throughput bottleneck, (b) limited spatial resolution due to either low fill-factor (flash LiDAR) or scanning time (scanning-based LiDAR),
and (c) coarse depth resolution due to quantization of photon timing by existing SPAD timing circuitries. In this paper, we present a
novel, in-pixel computing architecture that we term first arrival differential (FAD) LiDAR, where instead of recording quantized
time-of-arrival information at individual pixels, we record a temporal differential measurement between pairs of pixels. FAD captures
relative order of photon arrivals at the two pixels (within a cycle or laser period) and creates a one-to-one mapping between this
differential measurement and depth differences between the two pixels. We perform detailed system analysis and characterization
using Monte Carlo simulation, and experimental emulation using a scanning-based single-photon avalanche diode. FAD pixels can
result in a 10-100x reduction in per-pixel data throughput compared to TDC-based pixels. Under the same bandwidth constraints,
FAD-LIDAR achieves better depth resolution and/or range than several state-of-the-art TDC-based LiDAR baselines.

Index Terms—In-pixel computing, single photon avalanche diode (SPAD), exotic sensors, computational photography, LiDAR, 3D

imaging

1 INTRODUCTION

IMAGING is crucial for a wide range of applications
3 D such as autonomous vehicles, augmented/virtual
reality, robotics, entertainment and mobile imaging [1], [2],
[3]. In particular, LIDAR has become a popular choice for
many of these applications due to its speed and sensitivity.
LiDAR is a class of active 3D imaging methods that relies on
actively sending out laser waveforms and inferring the time
of flight based on the phase shift or delay in the received
waveform. While a variety of techniques exist for LIDAR
(e.g. CW-TOF [4] and pulsed TOF based on APDs [5]),
SPAD-based LiDAR has become the default for applications
requiring single-photon sensitivity, high timing resolution,
and CMOS compatibility [6], [7]. Promising results on low-
light, long distance ranging have been shown in recent
works [8], [9], [10], [11].
Types of LiDAR. LiDAR is typically categorized as either
scanning LiDAR or flash (array-based) LiDAR. In scanning
LiDAR, a single line is illuminated at a time and a line
sensor records the 3D data. Sequential scanning of the line
by rotating the illumination beam allows for the complete
capture of a 2D range image. In these applications scan
time becomes the primary limitation, limiting acquisition
to about 3 million samples per second [12] [13]. Even as-
suming a nominal 30 Hz operation, this yields images with
a resolution of less than 0.1 megapixels. The mechanical
scanning parts also makes the system less durable.
Flash LiDAR utilizes a two-dimensional array detector
coupled with flash illumination, requiring no mechanical
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Fig. 1. FAD LiDAR design emulated from experimental capture of
real-world scenes. Conventional (per-pixel TDC based) flash LiDAR
sensors suffer from low spatial resolution due to poor pixel fill factor (the
leftmost column corresponds to a typical liDAR baseline, with details
in Table 1). Our approach exploits lightweight differential operations to
perform high resolution 3D imaging.

scanning [7]. It is considered one of the most promising
alternatives to achieve higher resolution operation. How-
ever, the current-generation flash LiDAR has low spatial
resolution due to the large chip area occupied by the in-pixel
circuitry required to generate and store photon timestamps,
thereby reducing the overall fill factor. Furthermore, the
addition of a temporal dimension increases the required
data throughput rate per pixel by two orders of magnitude,
making high spatial resolution intractable [14].

Key idea. We propose a novel flash LiDAR approach that
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Fig. 2. Key Idea: Flash LiDAR setup typically involves flood illuminating the scene with a pulsed source and acquiring photon arrival information with
a single photon detector array. (a) Conventional flash LiIDAR sensors comprise of a single-photon detector (SPAD detector) pixel and timing circuit
to measure the photon arrival profile. (b) The timing circuit has a high spatial and memory footprint resulting in high pixel pitch and low latency (i).
In this work, we leverage the novel in-pixel construct of FAD units (ii) that can measure the relative depth difference (c) between two pixels while
requiring low spatial and memory footprint. (d,e) Our FAD LiDAR performs high resolution 3D imaging at two orders of magnitude lower throughput

than conventional flash LiDAR.

exploits the sparsity in depth gradients commonly observed
in natural scenes by efficiently computing the relative ar-
rival time differences, instead of the data-intensive absolute
arrival time stamps or timing histograms. We introduce
a lightweight in-pixel computing element called the first
arrival differential (FAD) unit. A FAD unit compares and
accumulates the stochastic photon arrival orders between
adjacent pixel pairs over a number of cycles or laser periods.
The output of a FAD is a 2D-intensity like measurement,
each forming a monotonic response to depth gradient, as
shown in Fig. 2.

These FAD counts allow us to extract depth gradients,
detect depth edges, and estimate surface normals at high
resolutions (Fig. 14). We can also generate high resolution
depth maps by coupling the high resolution relative depth
differences from these FAD units with the sparse absolute
depth references from two orders of magnitude fewer tim-
ing circuits (Fig. 15). The highlights and benefits of our
sensor, which we term as FAD LiDAR, include:

e Data throughput and scalability. Each FAD unit
requires only a single count to be stored between a
pair of pixels. This results in a 100x reduction in data
throughput rate requirement per pixel (compared to
computing absolute time stamps and histograms).
Apart from lower power and readout circuit com-
plexity, this data throughput reduction is also critical
for scalability, making higher spatio-temporal sam-
pling rates feasible.

e Depth resolution. FAD units have a unique, well-
behaved, one-to-one mapping between the measured
counter value and the depth difference between the
two pixels. As the depth difference is encoded in
an intensity-like unit (count of photons), this allows
us to achieve depth resolution comparable (or some-
times better) than conventional LiDAR that need to
quantize time-of-arrival into a discrete number of
time bins.

e Simple in-pixel computing architecture. A FAD con-
sists of a single Set/Reset Latch (SR latch) to identify
the pixel with first photon arrival and a single up-
down counter. Our preliminary design layouts sug-
gest a 10x reduction in area compared to traditional
histogram generation circuitry.

Limitations. A physical prototype implementing the tech-
nique we present here is yet to be fabricated. Instead, to
emulate the operation of FAD LiDAR on real scenes, we

acquire photon time stamps with a single-pixel SPAD-based
scanning hardware and then compute the emulated FAD re-
sponse post-capture. The current FAD design performs best
under moderate to high illumination levels, and our current
model is designed to handle single reflections only. We will
analyze these limitations—as well as potential mitigation—in
detail in latter sections.

2 RELATED WORK

Conventional flash LiDAR consists of SPAD pixels and tim-
ing circuitry. A measurement involves generating quantized
time stamps representing photon arrival times using time-
to-digital converters (TDCs). A histogram is computed from
these time stamps either on-chip or off-chip to generate a
photon arrival profile (also known as a transient). Depth
can then be computed by locating peaks in the transient
as illustrated in Fig. 2. An ideal SPAD-based LiDAR array
would contain many closely packed SPADs and provide
precise time stamps at every pixel. But such an array is
not physically realizable due to the sheer amount of data
produced and chip area required by the support circuitry as
shown in Fig. 3. Here we explain the throughput and spatial
footprint challenges associated with conventional SPAD-
based LiDAR techniques. We also describe some recent
efforts to alleviate these challenges by trading off other
design metrics.
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Fig. 3. Comparison of flash LiDAR with proposed FAD device. (A)
Timestamps are reported by a TDC and offloaded from the chip. (B)
Timestamps are histogrammed on-chip before being read. (C) Proposed
FAD architecture. Under typical LiDAR operating conditions (Middle),
FAD requires two orders of magnitude lower data throughput, while
simultaneously achieving a significantly lower chip footprint compared to
conventional LIDAR architectures (Right). Area estimate for 8-bit TDC
(green) is based on transistor count from [15] and a 180 nm process.
Memory size is estimated from reported area in [16].

On-chip TDC and off-chip histogramming. If the TDC
timestamps are quantized with a bin width of Brpc and
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are defined for a range Rrpc, then the TDC requires

Rrpc
]Og2 (BTDC

mulated and the chip is operated for integration time of i,
the data throughput in bits per pixel per second is given as:
events ]

Rrpc
T 2 <BTDC> @
The data throughput of TDCs under practical LiDAR
regimes (Fig. 3) can easily go up to 1 Mbps per pixel —
thousands of Gbps for a mega-pixel array [14]. Moreover,
TDCs typically are large and must be situated close to the
pixel for accuracy. This results in large pixel pitch, as well
as poor fill factor — usually less than 20%, unless techniques
such as microlenses or 3D stacking are incorporated [17].
Fig. 3 shows typical sizes for support circuitry.
On-chip TDC with Histogramming. Reading out the TDC
time-stamps at every cycle and then histogramming is
highly data-intensive. One way to reduce throughput is to
directly accumulate histograms of photon arrivals on the
chip. If the number of bins in the histogram is Nypi,s, the
throughput of on-chip TDC with histogramming can be
defined as

) bits. If Nevents photon arrival events are accu-

TPtpc =

TPhist = %k)gé (Nevents) (2)
int
When few bins suffice, on-chip histogramming provides
a throughput advantage over on-chip TDC-only techniques.
Adaptive peak finding from coarse to fine bin resolutions
can further limit the on-chip memory and data readout [14].
However, as shown in Fig. 3, the spatial footprint of on-
chip histogramming circuit is 10x higher than the TDC. See
supplementary material for details.
Performance Trade-Offs. The throughput calculation (Eq. 1,
2) shows that for a fixed bandwidth, improvement in any
of the performance factors: range, bin width, or spatial
resolution, results in degradation of the others. This per-
formance trade-off is visualized in Fig. 4 for conventional
flash LiDAR chip implementations, Photonforce PF32 [18],
Perenzoni 2017 [19], and Sony 2021 [20]. Efforts for further
improving throughput or spatial footprint typically require
more sophisticated on-chip processing, as described next.
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Fig. 4. Trade-offs in conventional LiDAR implementations. Given
high bandwidth and chip footprint of timing circuits, for a fixed through-
put, improving on spatial resolution, temporal resolution or the TOF
range results in degradation of the other factors. This trend is also
evident in existing LiDAR implementations.

To mitigate the problem, one solution is TDC sharing —
connecting multiple SPAD diodes to a shared TDC. Another
common architecture is to use coarser time bins and large
pulse width. However, even with these improvements, the
best SPAD LiDAR array resolution is still limited to ~ 100k
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ordering.

pixels, since densely placed TDCs are still needed. Next we
introduce on-chip processing efforts to solve this challenge.
On-chip processing for smarter SPAD arrays. As CMOS
processes have matured, there has been an emergence of
“exotic” 2D CMOS sensors, which record transforms or
features computed within the sensing hardware rather than
standard intensity measurements [21], [22]. These sensors
usually have significant advantages in speed, imaging qual-
ity, and data throughput. Such trends have also extended
to SPAD designs. For example, motion-triggered SPADs
[23] are an event-based implementation for SPADs, such
that TOF frames are recorded only if inter-frame intensity
changes are present. Walker et al. directly output depth
values, albeit requiring more on-chip logic [24]. To improve
spatial resolution, Martin et al. present a hybrid array in
which fine intensity values are used to upsample depth by
16x in 2D via a neural network [25].

Another approach is to find compact statistics or fea-
tures that can be extracted in-pixel. For example, sketching
techniques can be used to compress photon events on-chip
[26]. Bhandari et al. [27] proposes a one-bit time-resolved
imaging scheme. In addition to TOF, in-pixel computing
schemes are also proposed for passive HDR imaging [28].

We present a novel on-chip processing construct for
LiDAR based on the observation that the spatial gradients
of depth and thus arrival times are sparse, analogous to how
2D differential sensors exploit sparsity in intensity gradients
[29]. Our approach results in a significant performance
boost for a given bandwidth as visualized in Fig. 4. To our
knowledge, this technique is the first of its kind.

3 DESIGN PRINCIPLE AND FORWARD MODELING
FOR FAD

3.1

We introduce a novel FAD unit, which computes a stochastic
measurement that encodes relative depth gradient between
adjacent SPADs. Fig. 5 (top left) illustrates how a FAD unit
works with two scene points separated by Ad.

Within a time window, photons reaching pixel 1 (corre-
sponding to a nearer point) are more likely to arrive earlier
than photons from pixel 2. Over a large number of cycles,
the relative frequency of first arrival photons between the
pixels can capture information about depth difference Ad.

FAD unit encodes relative depth difference
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With a FAD unit, there are three types of events that can
occur in a cycle: (1) dual arrivals: both SPADs fire, (2) single
arrivals: only one SPAD fires, and (3) null: neither SPAD fires.
In the case of dual arrivals, comparing the arrival order
of the two SPADs gives us information about their relative
depth. We can achieve this via a simple Set/Reset latch (SR
latch), which holds the value of the first input to go high
(e.g., record a photon event).

The FAD unit, illustrated in Fig. 5, distinguishes dual ar-
rival from single arrival events via an AND gate connected
between the SPADs and counter. This mechanism discounts
any single-arrival events by not allowing the counter to
increment. In a FAD, the SR latch replaces the TDC and
an up-down counter takes the place of histogramming and
on-chip memory. The entire circuitry for the FAD (excluding
the counter) is projected to only occupy 0.00042 mm? [30].
Please refer to the supplementary material for a preliminary
device layout design. In Fig. 3 we perform a back-of-the-
envelope comparison of circuit foot- prints with standard
methods.

3.2 Mathematical modeling for the FAD structure

Upon integrating for a sufficient number of laser cycles, the
mean of the FAD counts is a smooth monotonic function of
the photon arrival time difference (Fig. 5). We term the mean
of FAD counts as the FAD response. Here we show how the
FAD response enables us to measure depth differences.
Notation. We start by modeling the temporal response of
the laser and SPAD jitter combined as a Gaussian pulse s[n]
with standard deviation o, where n denotes a discrete time
bin [10]. Let a1, a2 and 71, T2 denote the scene intensity and
the time bin of the peak mapped onto these two pixels,
respectively. We also absorb common scaling factors such
as the photon detection efficiency into o, ap. Let the time-
of-flight difference be defined as A7 = 1 — 7o.
Assumptions on SPAD operation In our emulation, we
assume all pixels are reset synchronously at each cycle,
which can be practically implemented on-chip. Thus, all
pixels become active at the beginning of each laser cycle,
and the deadtime at one particular cycle doesn’t affect later
cycles. This assumption holds in our modeling, simulation
and emulation experiments (operated under low photon
rates to avoid pileup).

Photon arrival statistics The photon arrival process at each
pixel can be modeled as an inhomogenous Poisson process,
which is well studied [10]. At each time bin n, the number
of photon arrivals approximately follows a Poisson distribu-
tion parameterized by rate function . Let the Poisson rate
functions for the photon arrival at SPAD 1, 2 be A1 [n], Az[n].
Here \;[n] = a;s[n — ;] + B, where s[n] represents the laser
waveform, a; represents the reflectivity (includes quantum
efficiency term), and B the background term (dark count
and ambient light). «, B values are all in photons/cycle.
Let the active duration per cycle be 7' bins. The probability
of detecting a photon at time bin n depends on the rate
function for the time bin n as well as the prior time bins,
and can be written as

Pi,detection [’I’L} = €exp <_ Z )\z[l]> (1 — €Xp (_)‘l[n])) 3)

Although this derivation is for Gaussian signals, the re-

sults still apply to non-Gaussian waveforms, e.g., including
exponential tails (see Section 5).
Multinomial modeling of up/down events In each cycle,
one of three possible events occur: up, down or null (no de-
tection). Thus the comparison and count update process can
be represented as a multinomial distribution sampled over
Neycles- With the set of counts as C = [Clyp, Cdown; Cruit],
where the entries represent up, down counts and empty
cycles over Neycles Tespectively, we have

C~ muu(Pupa Pdowna 1- Pup - Pdowna Ncyclcs) (4)

Py, Piown can be modeled based on photon arrival
statistics at each pixel. Specifically, let P; getection[!] represent
the probability of receiving a detection at pixel 7, bin [ at any
cycle. We derive P, and Pyown as

Pup = Z Z qu,detection[l]P27detection [k]]l(l S k)
0<I<T 0<k<T
®)

Pdown = Z Z Pl,detection[Z]PQ,detection [k]]l(l 2 k)
0<I<T 0<k<T
(6)

Directly computing the summations in Eq. 5, 6 is in-
tractable due to high data dimensions. To simplify the
analytical model, we separate photon arrivals from the
background and the laser pulse. Specifically, we categorize
the arrival events as four types:

e Type 1. Photons at both SPADs arrive from pulses.
This event gives us differential TOF information.

e Type II. Photons at both SPADs arrive from back-
ground. Since background photons follow uniform
distributions, on average, they will not contribute to
up and down count probability.

e Type III. The photon at SPAD 1 is from a pulse, and
the photon at SPAD 2 is from background.

e Type IV. The photon at SPAD 1 is from background,
and the photon at SPAD 2 is from a pulse.

Let us consider the case with no pile-up, i.e., total flux
in photons per cycle is < 0.05. The detection probability at
each bin can be simplified to be P; getection|[n] = Ai[l] [31].

Type I is most useful in providing differential informa-
tion, as we directly compare the TOF order between pulse
photons at two pixels. Note that:

P, = Pr{dual arrival} - Pr{l — k < O|dual arrival} (7)

Let d = | — k, the photon arrival time difference. Given
that both pixels have photon arrivals within the period,
Pr{l — k < 0]dualarrival} models TOF difference as

Pd|dua1 arrival, Type I ™~ N(ATa 202) (8)

Pdual arrival, Type I ~ Q12 (9)

We can use the erf notation for integrating the up proba-
bﬂity Pd|dua1arrival~
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o AT

Pup ryper = 2 [1 —erf (g)} (10)
o AT

Paown, Typel = e |:1 + erf (%)} 11)

The contribution to the expected FAD value this case is
hence:

E[FADa Type I] = Ncycles . (Pup,TypeI - Pdown,Type I) (12)

= _Ncyclesa1a2 erf (%) (13)

o

The expected value is therefore a monotonic function of
depth difference when background is absent. This property
holds even if the pulse shape is not perfectly Gaussian.

Type II events will not contribute to the up and down
counts. Since the background is uniformly distributed over
the active windows, the up and down counts should have
the same occurence probability and E[FAD, Typelll] = 0.
Please refer to supplementary document for more details.

Type III, IV events could potentially contribute to up
and down counts. We have:

1 !
Pup,Type I = a1 (1 - T) B; Pdown,Type I = &1 TB
(14)
T2 T2
Pup,Type v = 042?3; Pdown,Type v = Q2 (1 - ?) B
(15)
Therefore,
E[FAD, Type 111, IV]
= Neycles * (Pup, Type 111,1v — Pown, Type 111,1V) (16)
2T 279
= cyclesB |:041 (1 - ?1) — Q3 (1 - ?)] 17)

T A
= cyclesB |:(041 - 042) (1 - 2%) - (al + 042)2—17—::| (18)

where T = % One observation is that when the two
points are on a continuous surface, the TOF difference is
small compared to the full range, ie., AT << T. Eq. 18
becomes:

E[FAD, Type IIL, IV] = Ngycles B [(al —az) (1 — 2%)}
(19)
For initial analysis, we assume B is the same across all
pixels as in [10]. For detailed derivations on up and down
probabilities, please refer to the supplementary document.
From the Eq. 19, we can observe that the bias caused by
Type III and IV events are ignorable when (1) reflectivity
or albedo variation is small OR (2) background is low OR
(3) pulse TOF values are close to the center of the laser pe-
riod. With both high reflectivity variation and background
present, there could be a large bias in FAD, as shown in
Section 5. We will discuss ways to compensate for the bias
in Section 4.

3.3 2D array constructs using FAD units

The depth difference computation abilities of FAD units
can be leveraged to perform 3D imaging by constructing
2D sensor arrays composed of FAD units. First, every pair
of neighboring pixels, both horizontally and vertically, are

connected by FAD units to acquire independent orthogonal
depth gradient information. Second, we also need addi-
tional intensity information for capturing per-pixel reflec-
tivity and background information. This can be achieved
with either an additional counter per pixel or by integrating
linear mode pixels (which tend to be 100x smaller in area)
next to every SPAD pixel. Third, to provide robustness of
operation and the ability to handle large depth discontinu-
ities, we also add sparsely distributed pixels with individual
TDCs. Typically, we only need one such pixel for every
10x10 array of FAD pixels. In an actual implementation, the
dense FAD connections can be achieved by using the box
clique structure [29] or tiling. We also discuss a more spa-
tially efficient multi-scale chip design in the supplementary
document.

3.4 Throughput analysis

Now that we have the forward model, we perform a back-
of-the-envelope estimate for data throughput. FAD units
only require one up-down counter each for accumulating
horizontal and vertical differential measurements. The total
number of arrival events is Neyents = @102 Neyeles- Each up-
down counter requires 1oga (Nevents) bits. Thus the through-
put for FAD array is

2
TPrap =

10g2 (Nevents) (20)

int

The intensity pixels are projected to have very small
impact on our FAD bandwidth estimation. Even including
the intensity bandwidth, the total bandwidth would still
be within the same order of magnitude — accumulating a
2D intensity count over an integration time is still substan-
tially smaller than time-stamping every photon with a per-
pixel TDC. With background, neither would the throughput
change much as we only have an additional bias term. In
addition to compressing spatio-temporal information to 2D
intensity-like information, the sparsity of natural albedo and
depth gradients can also further reduce the bits needed by
the differential counts. For realistic operating regimes such
as (Fig. 3 (middle)), FAD units offer two orders of magnitude
lower throughput than conventional flash LiDAR.

4 RAW DEPTH GRADIENT ESTIMATION AND EDGE
DETECTION

In this section, we study how FAD counts could give us raw
per-pixel estimates of edges, depth gradients and normals.

The chip arrangement in section 3.3 allow us to obtain
background (B) and reflectivity estimates (cl;, cl2). When
background correction is needed, background estimates
can be obtained by capturing intensity measurements with
the lasers off. The pulse intensities can be estimated by
turning the laser on and subtracting the background from
each count - let them be «aj,ds. For 2D measurements,
a denoising step could be further applied to refine the
intensity estimations. We start by considering edge detection
and gradient estimation with low background, then discuss
how to modify these steps when significant background is
present.
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Edge detection We can generate raw edge detection by
thresholding the FAD values. When background is low, we
only need to look at Type I events. From Eq. 13,

(1)

AT
E[FAD] = —1Veycles¥1 Q2 erf (%)

To decouple FAD counts with intensity and exposure, we
introduce a normalized FAD count, nFAD:

FAD

nFAD = —————
NcyclesaloQ

(22)
We can get a set of potential edge points by thresholding
nFAD. Fig. 5 (left) shows that the nFAD counts saturate
to 1 or —1 whenever the depth differences are too high.
In common scenes, high depth differences occur at depth
edges. Thus, nFAD saturation can be used as an indicator for
pixels at depth edges. We can simply threshold the absolute
value nFAD counts (Fig. 10(b)). Depth edges close to hard
intensity shadows can sometimes lead to spurious depth
edges being detected. These can be alleviated when we have
2D nFAD measurements and apply common edge detection
schemes, e.g. Canny edge detector.
Depth gradient estimation. For two adjacent points on
a continuous surface, using Eq. 21, we perform moment-
matching to get a coarse estimation of the depth gradients:
AT = —20inverf(nF AD), where inverf is the inverse error
response function.

Given depth gradients in both the x and y directions, we
can get an initial estimate of per-pixel surface normal maps,
as shown in Fig. 10(d) [32]. The normal vector n at each
pixel can be computed as follows:

nu

n, = [&Ez,gyz, —1),n (23)

]l

B;Z,B;Z corresponds to depth partials along x and y
directions and can be estimated by normalizing AT by
dividing (pixel pitch x lens magnification factor). AT cor-
responds to the path difference and not exactly depth gra-
dient, especially as the FOV becomes larger. In that case, a
simple perspective projection step can be applied to A7 [32].
For the notation used in this paper, we assume A7 already
contains this correction and corresponds to depth gradient
values. So far, we only have normal estimates centered at
one pixel. When we have normal values across a 2D grid,
we can integrate and further refine the object structures. This
will be discussed in latter sections.

Correcting for background bias. When background is
high and the scene contains large albedo variation, we need
to correct for the bias caused by background (as depicted
in Fig. 9) before computing nFAD. Note that now the bias
depends not only on A7, but also on the absolute T values.
The absolute values in practice can be obtained with the
help of sparse TDC measurements, which we will discuss
more in detail in Section 6 and 7. Assume we have some
estimate 7, the edge detection criteria becomes
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FAD > B(d1 — di») (1 - %) + w1 B(d + dis) + wadydia
(24)

Where w;, wo are weights for the two terms involving Ar.

The corrected nFAD value on a smooth surface becomes

FAD/N¢ycles — bias
nF ADcorrected = / Ay/\ (25)
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where bias = B(d; — d2)(1 — 2). In the pairwise char-

acterization (Section 5), we assume the rough position of
the peaks are known. In the inference and normal imaging
sections (6 and 7), we use depth interpolated from sparsely
attached TDCs as 7.

Note that the moment matching approach would result
in noisy depth gradient estimates, since we are using the
mean at a single pixel, without any spatial priors. However,
the normal integration techniques we introduce in Section 7
can help alleviate noisy gradients or outliers.

5 CHARACTERIZING THE FAD RESPONSE

In this section, we characterize the raw FAD and model per-
formance under different conditions (signal power, albedo
variation, background, and depth gradient). In this section,
we use only the simple inversion schemes in the previous
section for a single pair of pixels, without introducing any
2D priors.

5.1 Simulation framework

We perform a simulation for a pair of SPAD pixels. For each
pixel, the basic transient shape is based on a realistic tran-
sient from our MPD SPAD, which contains a single Gaussian
peak exponential tail (see supp.). This template is scaled,
shifted and added with a temporally uniform background
offset to match with the reflectivity, depth difference and
background values desired. In a single trial, we simulate
measurements for an integration time of 30 ms, with a
repetition rate of 40MHz (fixed cycle duration of 25 ns, with
active period being 15 ns and a fixed reset time of 10 ns
during which no photons are detected). We repeat this trial
100 times and plot the nFAD mean and noise, as well as the
mean absolute error of our proposed estimation method.

For a given set of reflectivity and background, we simu-
late the arrival and differential logic for pairs of pixels. We
use a Monte-Carlo simulation to generate photon arrivals
(pulse and background) for a number of cycles at each pixel
[33]. In each cycle, we use the differential logic (see supp.) to
process photon arrivals into FAD counts. The photon counts
corresponding to total pulse intensity and background are
also collected for intensity estimation.

In all the inversion steps below, the o value used is 104 ps
(same calibrated value as emulation, see supp. for details).
The background offset correction is also applied, with the
absolute depth estimate 7 set to the location of SPAD 1.
71 = 5000 ps in this analysis — we choose a location close to
the center of the laser period, but the particular choice does
not change our conclusions in the analysis.

We also introduce two quantities here:

e effective signal to background ratio (SBR): com-
monly in SPAD literature, SBR is defined as the ratio
between received pulse photons and signal photons
for a single pixel [10] [34]. Here, because a pair of
pixels is involved, we define the overall SBR as the
geometric mean of the individual SBRs at each pixel.
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o reflectivity or albedo ratio: corresponds to as/a;.
It represents the amount of reflectivity variation be-
tween a pair of pixel.

5.2 Effect of pulse power

We assume the dark count rate to be 1000cps [35] and no
additional ambient light is present. We assume both pixels
have the same power (photon rate), and vary them from
3e-3 up to le-2 photon/cycle (SBR > 100). We also vary
the peak difference to range from -200ps to +200ps with a
step size of 20ps. The results are shown in Fig. 6. The mean
values of the nFAD responses match for all three cases (left).
From the error analysis (right), we can see that the depth
estimation errors increase as power decreases. The errors
also increase as AT approaches the saturation points, since
the nFAD response starts to flatten and the depth estimation
uncertainty increases.
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Fig. 6. Effect of pulse power. Left: nFAD counts (normalized with
intensities) over different depth gradient values (x-axis using round trip
time as unit), with solid lines indicating the mean and shaded regions
indicating standard deviation. As signal power lowers, the noise in nFAD
increases significantly, since there are fewer dual arrivals. Right: we
visualize the depth estimation error, by directly applying the per-pixel
gradient inversion formula. The overall error increases from 20ps, to up
to ~80ps, as we decrease intensity from 1e-2 to 3e-3 photons/cycle .
At the point of 3e-3, it becomes difficult to resolve gradient accurately
between a single pair.

5.3 Effect of albedo variation

In this section we study the effect of albedo variation. We fix
pulse intensity of the SPAD 1 to be 0.01. We vary the albedo
ratio, using 0.3, 0.5, 0.8. Here only dark counts are present.
The results are shown in Fig. 7.
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Fig. 7. Effect of albedo variation under low ambient light (1000cps
dark counts only). Here «; is fixed and vary the albedo ratio as /.
We can observe that as albedo ratio increases, the variance in nAD
and depth inversion error both increases, due to fewer dual arrivals. The
albedo variation causes no bias due to low background.

When high background is present, larger albedo varia-
tion introduces biases, but are correctable. Please see supp.
for this experiment.

5.4 Effect of background

Here we consider the background effect under two sce-
narios: (1) no albedo variation (both SPADs are 0.01 pho-
ton/cycle), and (2) an albedo ratio of 0.5 (0.01 and 0.05
photon/cycle). For each scenario, we consider background
cases from dark counts only to a low SBR of 0.1. The
results are shown in Fig. 8 and Fig. 9. From Fig. 8, we can
observe that under no albedo variation, background arrivals
introduce variance without shifting the mean nFAD curves.
The estimation errors increase as we decrease SBR. From
Fig. 9, we can clearly see a bias or shift introduced to the
nFAD response when the correction term is not applied.
However, applying corrections will still yield reasonable
gradient estimations (See Fig. 9, right).
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Fig. 8. Effect of background under no albedo variation. In this case,
there is little distortion of the expected nFAD curve, except that as
SBR increases (background lowers), there is less variance. Per-pixel
estimation works up to an SBR of around 1, and if SBR decreases
further the errors become significant.
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Fig. 9. Effect of background under high albedo variation. In this case
as background increases, the uncorrected nFAD is clearly biased as
background increases (left). On the right side, we show the depth errors
after applying the correction. We can still observe an increase in gradient
estimation errors as SBR becomes low. With albedo ratio of 0.5, per-
pixel estimation works up to an SBR of around 1.

6 3D SCENE INFERENCE

In Section 4, we see how nFAD units provide a conve-
nient way to measure high-resolution depth variation at
each pixel (Eq. 21). Here we show how an array of nFAD
counts can be exploited for 3D inference tasks such as depth
edge detection, object segmentation, and measuring surface
normals. Fig. 10 illustrates our reconstruction pipeline and
3D applications on a real-world scene.

Depth Gradients and Surface Normals. The normalization
of FAD counts to produce the nFAD can introduce sig-
nificant noise at low-intensity regions. Thus we start our
processing pipeline by denoising nFAD and intensity counts
with an edge-preserving filter such as non-local means,
before preforming the division. Using Equation 4, we can
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Fig. 10. Our reconstruction pipeline. Depth gradients (a) are obtained by normalizing the raw FAD counts (b) and then inverting the nFAD
response. By thresholding the depth differences and processing, we detect depth edges in the scene, segment objects, and estimate surface
normals (c). With high-res depth gradients, object segmentation, and low-res absolute depth measurements, we obtain high-res depth reconstruction

(d).

then obtain a per-pixel raw estimate of the depth gradients.
An example of the resulting depth gradients are shown in
Fig. 10.

Depth edge detection. After the denoising step, we can sim-
ply threshold the absolute value of nFAD counts (Fig. 10(b)),
similar to the per-pixel case. Depth edges close to hard
intensity shadows can sometimes lead to spurious depth
edges being detected, due to the sparseness of dual arrivals.
Segmentation. The depth edges correspond to object con-
tours. We fill the gaps in the object contours by performing
standard morphological operations on the binary contour
map. We then find the connected components in this bi-
nary map using MATLAB’s bwconncomp function. Each
connected component should approximately correspond to
a different object in the scene (Fig. 3(d)).

7 DEPTH AND SURFACE NORMAL IMAGING

While the local nFAD measurements enable us to infer local
surface normals and depth edges at a high resolution, these
counts are agnostic to the absolute depth of the objects.
For estimating the absolute depth, we need to also rely
on sparse pixels with TDCs that capture absolute depth
at sparse locations. Using this, we can recover a high-
resolution depth map of the scene (Fig. 10(d)). An overview
of our reconstruction algorithm follows. Please refer to the
supplementary material for implementation details.
Segmentation-aided normal integration We can obtain sur-
face normal maps solely from the nFAD measurements (Sec-
tion 6). If the scene does not contain depth discontinuities,
the surface can be reconstructed, up to an unknown depth
offset, by integrating the normal map [32]. But for realistic
scenes involving depth discontinuities such as in Fig. 10,
directly integrating the normal map would fail at the sharp
edge discontinuities. The FAD units also provide an object
segmentation map (Fig. 14) by detecting these disconti-
nuities. We use this segmentation map to create masked
normal maps for each object and integrate each of these
normal maps. Here we choose use the FFT-based Poisson
normal integration by Frankot and Chellappa [36], as it
achieves a decent balance between speed and robustness,
and requires no parameter tuning.

Absolute depth offsets from sparse TDCs The above step
results in depth maps of the objects up to a constant offset.
We then use least squares to fit this depth offset per object
to match the depth values obtained from the sparse TDCs.

The depth map of the scene is computed as the composition
of depth maps of each segmented object (Fig. 10(d)).

8 RESULTS FROM SIMULATED DATA

To quantify errors for objects with a larger scale, we sim-
ulate FAD measurements for a scene containing a bunny
object spanning around Imxlm area (300x300 resolution).
We reconstruct the depth and compute the angular errors of
the resulting surface normals.

We use the MitsubaTOF renderer [37] to obtain transients
for a particular scene, with collocated source and detector.
We sample ~25k time bins with 1 ps resolution. To speed up
the Monte-Carlo simulation, we take the dominant peak per
transient and convolve with a Gaussian IRF to include jitter
effects. In this experiment, instead of a full jitter with long
trailing tails, we adopt a Gaussian IRF function with 150 ps
FWHM to reduce time bins. We simulated measurements
for 30 ms with a 40 MHz repetition rate. In addition, we
assume a spatially uniform background corrupting the FAD
measurements.

Fig. 11 shows surface reconstruction errors for a base
case as well as additional cases where (1) lower power is
used, and (2) higher background is present. When comput-
ing the average errors, we exclude the saturated depth edges
and background. We obtain quite accurate surface normal
estimates along continuous surfaces.

Low power Base case High background
SBR>>1, 0.005 ph/cycle SBR>>1,0.02 ph/cycle SBR ~ 1,0.02 ph/cycle

L 4

=

28.72 degs 17.24 degs

9.89 degs

Fig. 11. Surface reconstruction results for rabbit object. From left to
right are: low power case, base case and high background case. When
average photon rate falls below 5e-3 the reconstruction starts failing.
Right: reconstruction with non-trivial background. Here the background
is set to be uniform, and equals to the max photon rate from the pulse
returns. Our bias correction is successful even under such non-trivial
background value. We also compare the mean angle error in surface
normals compared to the ground truth.
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9 RESULTS FROM REAL DATA
9.1 Hardware Emulation of flash LiDAR

To experimentally emulate the chip, we built a scanning
hardware prototype shown in Fig. 12. We collect photon
arrival time tags per cycle, using a Hydroharp and MPD
FastGatedSPAD. The ToF range is 12500 ps and the bin
resolution is 1 ps. The detector is scanned using a galvo
mirror at a resolution of 384 x 512 with a pitch of 0.8 mm.
The scene is lit using a fiber coupled laser passed through
a diffuser (inset of Fig. 12). The laser source is a Chameleon
Discovery operated at 480 nm wavelength and 80 MHz rep.
rate (12.5 ns period). The average photon rate per pulse is
0.01 photons per cycle. We then compute the FAD counts
from time tags based on the model introduced in Section
3.2. See supplementary for details .

Single-Pixel

Fig. 12. Experimental setup used for chip emulation. A transient
detector is focused onto the scene with a lens, and scanned using a
galvo mirror. A diffuse light source is created by passing the output of a
fiber optic through a ground glass diffuser.

9.2 Characterization with simple structures

First, we quantify the resolution of depth edge detection
and surface normal reconstruction. As shown in the top
row of Fig. 13, we scan a single line across (1) a staircase
object with increasing depth gaps, (2) a plane tilted 45°
away from the optical axis, and (3) a sphere (center line with
maximum diameter). A long integration time of ~300 ms is
used per pixel location. nFAD counts are computed along
the lines. The third and fourth rows in Fig. 13 show the
depth gradients and depth value estimations. The gradients
here are directly estimated using the per-pixel inversion
equation, and depth is directly integrated from gradient
values (without Poisson integration). In this example, we
can reconstruct depth differences around a few mm.

9.3 3D Scene Inference

In Fig. 14 we show 3D scene inference results. Columns (b)-
(c) show depth gradients reconstructed from nFAD mea-
surements. The objects shown in the scene are around 10—
20 cm in scale and span a depth of 0.7-1.2 m. The recon-
structed gradients capture fine structures such as the ribs
on the pumpkin, nose of the pig and hands of the figurine.
With gradients, we can directly take the cross product and
produce high quality surface normals as shown in column
(d). Notice that the FAD approach can even capture fine
wrinkles on the background cloth. (e) shows the depth edge
masks, which allows us to produce clean segmentation re-
sults for both scenes in (f). We have only used relative depth
information extracted from nFAD, assuming no TDCs.

Comparison Baselines. Table 1 lists the specifications of
the full single-pixel scanning and conventional LiDAR base-
lines, where the net throughput is kept fixed. The specifica-
tions are chosen based on state-of-the-art LIDAR works [18],
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Fig. 13. Quantative evaluation on simple structures. The top row
shows the targets and bottom row shows the ground truth and estimated
depth values for a 1D scan.

[19], [20]. We emulate coarser spatial resolution by spatially
downsampling the high resolution depth map from our
scanning-based setup. The TDC ranges and bin width is
achieved by cropping the range and quantizing the ground
truth depths respectively. We also perform spatio-temporal
smoothing and filtering to improve the quality and visibility
of baseline data. Fig. 15 lists emulated results.

Table 1. Specifications of emulated designs. Ground truth (GT)
denotes the high spatio-temporal resolution obtained by scanning
LiDAR. The conventional LiDAR baselines (B1, B2, B3) and our FAD
LiDAR are designed with the same net throughput (net TP). B1, B2, B3
sacrifice depth resolution, depth range, and spatial resolution
respectively to match this throughput. Our design has 256x higher
resolution for the same net TP without sacrificing on any other factor.

TDC Bin TDC Net TP
Resolution Width (ps) Range (ns) (Gb/s)

GT 384 x 512 1 12 10657
B1 96 x 128 1200 12 163.3
B2 96 x 128 50 0.5 163.3
B3 48 x 64 1 12 163.3
Ours 384 x 512 1 12 163.3

Imaging results Fig.15 demonstrates that the depth imaging
quality of our system clearly improves upon conventional
baselines. FAD LiDAR preserves fine structures and pro-
vides a large depth range. This improved depth resolu-
tion and range is achieved along with a much smaller
data throughput rate (50-100x reduction). Baseline B1 (first
column) sacrifices timing resolution for range and spatial
resolution. However, time is sampled so coarsely that finer
structures cannot be inferred. Baseline B2 maintains the
same spatial resolution but chooses smaller bins over range,
and the depth range stops at the middle of the object. Here
locations out of the TDC measurement range are set to have
0 depth. The background cloth is completely missed. In B3,
finer bins and long-range are chosen over spatial resolution.
Small features such as the arms of the ghost are completely
lost. In contrast, our FAD-LiDAR is able to achieve high
spatial resolution, temporal resolution, and range, thanks to
the differential nature and compactness of the FAD circuit.

10 LIMITATIONS AND DISCUSSIONS

Sparse dual arrivals due to low reflectivity. Since a dual
arrival detection requires both pixels to respond in a cycle,
low reflectivity regions can result in fewer dual arrivals.
One way to mitigate this is by performing differentials
across groups of pixels. Another option is to use lasers with
higher peak powers. Unlike typical TCSPC, FAD LiDAR
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(a) Intensity

Fig. 14. 3D Scene Inference from FAD-SPAD array on real-world scenes. From the FAD unit measurements, we estimate the depth differences (b)
and (c). These differences enable inferring the surface normal orientation of the objects (d). The saturation of FAD response corresponds to the
depth edges (e) which can be used to segment objects in the scene (f).

Baseline B1 Baseline B2 Baseline B3 Ground Truth
'l

Depth Map

v
¢

Surface Normals Depth Map Surface Normals Depth Map Surface Normals

Fig. 15. High resolution 3D imaging and surface normals by differential LIDAR emulated using our hardware setup. Reconstruction from a
scanning-based LiDAR design is denoted as Ground Truth. Conventional flash LiDAR designs B1, B2, and B3 suffer from performace tradeoffs
resulting in either poor depth resolution (B1), low depth range (B2) or poor spatial resolution (B3). Our differential flash design offers significantly
better reconstruction quality for the same data throughput as conventional baselines.
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has a dependence on laser pulse energy in addition to
average laser power. For the same average laser power,
increasing pulse energy by M and simultaneously reducing
the pulse repetition rate by M, results in M times more dual
arrivals, and consequently better performance. This is an
additional degree of freedom that needs to be considered
and optimized while setting up a FAD-LIDAR system.
Algorithm Improvements. Currently we adopt a sequen-
tial reconstruction pipeline that involves mostly traditional
processing methods. We expect the performance to improve
with the integration of end-to-end or learning-based meth-
ods.

Non-linear distortions and multiple reflections. The cur-
rent model and reconstruction do not account for multiple
reflections. In our simulated scenes and experimental cap-
tures, however, the first order returns seem to dominate and
the presence of higher orders does not degrade visual qual-
ity. In cases where there is significant multi-bounce effects,
mitigation techniques such as gating [38] or an improved
model that incorporates multiple returns will be needed,
which we leave to future work.

11 CONCLUSIONS

We have demonstrated that the local difference of first-
arrival photon counts carries enough information to recon-
struct a scene without requiring full transient information,
and that this can be computed in-pixel with minimal sup-
porting circuitry and extremely small silicon footprint. Our
theoretical models, simulations, and emulations indicate
that the FAD unit approach could provide significantly
improved spatial resolution and reduced data throughput
in SPAD-based LiDAR arrays, while maintaining temporal
resolution and range. Moreover, this work opens up a
new space of design around the differential connections
between pixels. Here we have detailed one such possibility—
connecting each SPAD to its nearest neighbors-but many
other schemes can be built with the same principle, and may
offer different advantages depending on the application.
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