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Deep learning has been applied to magnetic resonance imaging (MRI) for a variety of

purposes, ranging from the acceleration of image acquisition and image denoising to

tissue segmentation and disease diagnosis. Convolutional neural networks have been

particularly useful for analyzing MRI data due to the regularly sampled spatial and

temporal nature of the data. However, advances in the field of brain imaging have led

to network- and surface-based analyses that are often better represented in the graph

domain. In this analysis, we propose a general purpose cortical segmentation method

that, given resting-state connectivity features readily computed during conventional

MRI pre-processing and a set of corresponding training labels, can generate cortical

parcellations for new MRI data. We applied recent advances in the field of graph

neural networks to the problem of cortical surface segmentation, using resting-state

connectivity to learn discrete maps of the human neocortex. We found that graph

neural networks accurately learn low-dimensional representations of functional brain

connectivity that can be naturally extended to map the cortices of new datasets.

After optimizing over algorithm type, network architecture, and training features, our

approach yielded mean classification accuracies of 79.91% relative to a previously

published parcellation. We describe how some hyperparameter choices including

training and testing data duration, network architecture, and algorithm choice affect

model performance.

Keywords: graph neural network, parcellation, functional connectivity, representation learning, segmentation,

brain, human

1. INTRODUCTION

Neural network approaches such as multi-layer feed-forward networks have been applied to a wide
variety of tasks in medical imaging, ranging from disease classification to tissue segmentation.
However, these networks do not always take into account the true spatial relationships between
data points. Convolutional neural network approaches, such as those applied to static images or
dynamic video streams, learn translationally-invariant, multidimensional kernel filters over the
data domain. Both these methods assume that the data is sampled regularly in space, allowing
convolution and pooling of information from fixed neighborhood topologies. However, real-world
data, such as graph-structured data, is often sampled on irregular domains. Data sampled from
graph domains often contains non-uniform topology—individual data points can vary in their
neighborhood structure, and notions of direction (e.g., up, down, left, right) do not generalize
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well to graphs. This makes learning filters to process graph-
structured data very difficult with conventional neural network
approaches.

Graph neural networks are a class of neural network models
that operate on data distributed over a graph domain. Data are
sampled from a graph with an explicit structure defined by a
set of nodes and edges. These models have been shown to be
useful for graph and node classification tasks, along with learning
generative models of data distributed over graphs (Kipf and
Welling, 2016b; Hamilton et al., 2017; Zhao et al., 2019; Zeng
et al., 2020). Graph convolution networks (GCN), proposed in
Defferrard et al. (2016), generalized the idea of convolutional
networks on grid-like data to data distributed over irregular
domains by applying Chebyshev polynomial approximations of
spectral filters to graph data. Graph attention networks (GAT)
are based on the idea of an attention function, a learned global
function that selectively aggregates information across node
neighborhoods. The attention function maps a query and set of
key-value pairs to an output (Vaswani et al., 2017). The output
is defined as a weighted sum of the values, where weights are
computed using some similarity or kernel function of the key-
value pairs.

It is believed that biological signals distributed over the
cortical manifold are locally stationary. Given a small cortical
patch, voxels sampled from the patch will display similar
functional and structural connectivity patterns, cortical thickness
and myelin density measures, and gene expression profiles,
among various other signals (Glasser and van Essen, 2011;
Amunts et al., 2020; Wagstyl et al., 2020). Prior studies have
attempted to delineate and map the cortex by identifying
contiguous cortical subregions that are characterized by relative
uniformity of these signals (Blumensath et al., 2013; Arslan et al.,
2015; Baldassano et al., 2015; Gordon et al., 2016). This work is
based on the fundamental idea that contiguous regions of the
cortex with similar connectivity and histological properties will
tend to function as coherent units. Biological signals distributed
over the cortex exhibit local but not global stationarity, so
any attempt to parcellate the cortex must take both properties
into account.

Most brain imaging studies utilize cortical atlases—template
maps of the cortex that can be deformed and mapped to
individual subjects’ brains—to discretize the cortical manifold
and simplify downstream analyses (Fischl et al., 2004; Bullmore
and Sporns, 2012). However, it remains an open question how
to “apply” existing cortical maps to unmapped data. A recent
study identified considerable variability in the size, topological
organization, and existence of cortical areas defined by functional
connectivity across individuals, raising the question of how best
to utilize the biological properties of any given unmapped dataset
to drive the application of a cortical atlas to this new data
(Glasser et al., 2016).

Here, we developed an approach to perform cortical
segmentation—a node classification problem—using graph
neural networks. The cerebral cortex is often represented as
a folded sheet, and a usable parcellation approach must be
applicable to this sort of data. Neural networks can be extended
to account for non-stationarity in MRI volumes by incorporating

3D-volumetric convolution kernels. However, these approaches
are not easily applied to data distributed over 2-D manifolds like
the cortical surface. Additionally, more recent large-scale studies
interpolate neurological signals, like cortical activation patterns
or various histological scalarmeasures, onto the cortical manifold
to mitigate the potential for mixing signals from anatomically
close yet geodesically distant cortical regions, e.g., across sulci
(Yeo et al., 2011; Glasser et al., 2013). These studies could also
benefit from methods that operate directly on graphs.

With the growth of large-scale open-source brain imaging
databases [ADNI (Petersen et al., 2010), ABCD (Hagler et al.,
2019), HCP (Glasser et al., 2013)], neuroscientists now have
access to high-quality data that can be used for training models
that can then be applied to new datasets. We leveraged the
statistical properties of these high-quality datasets to inform
the segmentation of new data using multiple variants of graph
neural networks. We considered graph convolution networks
and two variants of graph attention networks: standard attention
networks (Velickovic et al., 2018), and attention networks with
adaptive network depth weighting (a.k.a. jumping-knowledge
networks, Xu et al., 2018). We examined how algorithm
choice and network parameterization affect cortical segmentation
performance. We trained our classification models on high-
quality open-source imaging data, and tested them on two
datasets with unique spatial and temporal resolutions and
different pre-processing pipelines. Other methods have been
proposed for delineating the cortex using various registration
(Fischl et al., 2004; Robinson et al., 2018), neural network
(Hacker et al., 2013; Glasser et al., 2016), label fusion (Asman
and Landman, 2012, 2014; Liu et al., 2016), and even graph
neural network approaches (Cucurull et al., 2018; Gopinath et al.,
2019). To the best of our knowledge, this is the first attempt to
examine the performance of common variants of graph neural
networks in a whole-brain cortical classification setting and
explore their ability to generalize to new datasets using functional
magnetic resonance imaging (fMRI). While other studies have
proposed the use of graph neural networks to delineate cortical
areas, these studies did not perform in-depth analyses on how
network architecture, algorithm parameter choices, feature type,
and training and testing data parameters impact the predicted
cortical maps (Cucurull et al., 2018; Gopinath et al., 2019). To
this end, we studied how each of these different variables impacts
model performance and prediction reliability.

2. BACKGROUND

2.1. Graph Convolution Networks
Convolution filters over graphs using spectral graph theory were
introduced by Defferrard et al. (2016). For a graph G = (V ,E)
with N nodes and symmetric normalized graph Laplacian, L,
define the eigendecomposition of L = U3UT , where the
columns of U are the spectral eigenfunctions of G. Given a graph
signal x ∈ R

N distributed over G, the graph Fourier transform of
x is defined as x̃ = UTx, and its inverse graph Fourier transform
as x = Ux̃. Graph filtering of x is then defined as gθ (L)x =
Ugθ (3)UTx, where gθ is an arbitrary function of the eigenvalues.
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FIGURE 1 | Each layer, l, implicitly aggregates more distant neighborhood

signals into a node update. The first layer aggregates information over

immediately adjacent neighbors, while the second, third, etc. layers

incorporate signals from increasingly larger neighborhoods.

Because these filters are not localized in space, Defferrard et al.
(2016) proposed to use a Chebyshev polynomial approximation
to learn spatially localized filters directly from the Laplacian,
reducing the filtering operation of a x to

gθ (L)x =

K−1
∑

k=0

θkTk(L)x (1)

where Tk(L) and is the k-th polynomial and θk the k-th learnable
Chebyshev coefficient. The polynomial order, K, determines the
local spatial extent of the filter. If two nodes i and j are more than
K hops apart, the filter value gθ (L)i,j = 0.

In Kipf and Welling (2016a), the polynomial order is set
to K = 1 so that the spatial extent of the filter is limited
to directly adjacent nodes and only one coefficient weight is
learned per feature component in each layer of the network.
GivenHl ∈ R

N×kl , the input feature matrix for layer l, the model
learns kl Chebyshev coefficients, in addition to any additional
mixing weights. The model incorporates signals from the l-ring
neighborhood into the update of a node—each layer implicitly
aggregates over a larger neighborhood than the previous layer
(Figure 1).

2.2. Graph Attention Networks
Whereas graph convolution networks uniformly aggregate
local neighborhood signals, attention networks learn optimized
weights for each node neighbor using an attention mechanism.
Assume we have data distributed over a graph with N nodes.
Inputs to the network are characterized by matrix X ∈ R

N×F ,
where F is the number of features. Assume that at any given layer,
the inputs to layer l are represented as Hl ∈ R

N×kl , where H0 =
X. We define the immediate neighborhood of node i as Ni. For
two vectors En, Ep ∈ Rk, we define their feature-wise concatenation
as n||p ∈ R2k. In Velickovic et al. (2018), the attention paid by
node i to node j ∈ Ni at layer l is computed using a single-layer
perceptron as

αi,j = σ (EaT(Wl Ehli||W
l Ehlj)) (2)

where σ is a fixed non-linearity, Wl ∈ R
kl+1×kl is a learned

layer-specific global linear projection matrix and Ea, the attention
function, is also learned. The attention weights for j ∈ Ni are

then normalized by a softmax operation. To update the features
of node i at the (l + 1)-st layer, we compute the weighted
sum over the neighborhood Ni with weights defined by the
normalized attentions.

Velickovic et al. (2018) propose an ensemble (“multi-head”)
attention mechanism, such that, for each layer, M different
attention functions are learned, eachwith their ownweight vector
Ealm. The outputs of each attention head are concatenated feature-
wise. In the last layer, the number of hidden channels is the
number of output classes, C—rather than concatenating across
attention heads, the outputs of all attention heads are averaged to
generate the final network output.

2.3. Jumping-Knowledge Networks
While graph neural networks have been instrumental in applying
principles of deep learning to graph-structured domains, they
are not without pitfalls (Kipf and Welling, 2016a; Velickovic
et al., 2018; Xu et al., 2018; Wang et al., 2019). Graph neural
networks are prone to over-fitting of model parameters and over-
smoothing of learned embeddings as network depth increases
(Wang et al., 2019). One approach to alleviate this over-
smoothing is to adaptively learn optimized network depths for
each node in the graph, a method (Xu et al., 2018) describe as
“jumping-knowledge networks.”

Suppose we have a network with L layers, such that the l-
th layer embedding hli for node i is learned by incorporating
signals from up to l hops away from node i. The layer aggregation
function described by Xu et al. (2018) learns a unique output
embedding by optimally combining the embeddings of each
hidden layer as

yi = σ (g(h1i , h
2
i , . . . , h

L
i )) (3)

Xu et al. (2018) propose three permutation-invariant aggregation
functions for g(x): concatenation, max-pooling, and long-short
term memory (LSTM) (Hochreiter and Schmidhuber, 1997).
The output, y, is then passed through a linear feed-forward
layer to generate the network probabilities. Concatenation is
a global aggregator (i.e., the same function is applied to all
graph nodes) whereas max-pooling and LSTM both learn node-
specific aggregations. Further, by utilizing a bi-directional LSTM
layer, jumping-knowledge networks learn layer-specific attention
weights for each node which can then be interrogated post-
hoc (Figure 2). In this analysis, we incorporated the jumping-
knowledge mechanism into an attention network framework
and examine cortical segmentation performance using both the
LSTM and the concatenation functions.

Given a sequence of samples x1, x2, . . . xt , an LSTM layer
maintains a memory of previously observed samples in the
sequence in order to learn dependencies between elements.
Here, the “sequence” consists of the embeddings learned
at each consecutive hidden layer, h1, h2 . . . hL, representing
increasingly-abstract representations of functional connectivity.
We hypothesized that, because the jumping knowledge networks
learn optimized node-specific network depths, these networks
would be able to more-accurately segment the cortex of new data.
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FIGURE 2 | Graph attention network employing a jumping-knowledge mechanism. The network takes as input the graph adjacency structure and the nodewise

feature matrix, and outputs a node-by-label logit matrix. Each GATConv block is composed of multiple attention heads. Arrows indicate the direction of processing.

Aggregation function, g(x), which takes as input the embeddings from each GATConv block, learns a convex combination of the layer-wise embeddings.

3. DATA

The data used in this study come from the Human Connectome
Project (HCP) (Glasser et al., 2013, 2016) and from the Midnight
Scan Club (MSC) (Gordon et al., 2017). We were specifically
interested in examining how models trained on one dataset
would perform on another dataset. Specifically, we trained
models on data from the HCP (Glasser et al., 2013), one of
the highest quality MRI datasets to date in terms of spatial and
temporal sampling of brain signals. We then tested our models
on images from both the HCP and MSC datasets.

3.1. HCP Dataset
The HCP consortium collected data on a set of 1,200 young
adult subjects 21–35 years of age. We utilized a subset of 268
of these datasets (22–35 years; 153 female) from the S500 data
release. The HCP acquired high-resolution 0.7 mm isotropic T1w
(TI = 1,000 ms, TR = 2,400 ms, TE = 2.14 ms, FA = 8◦, FOV
= 224 mm, matrix = 320, 256 saggital slices) and T2w images
(TR = 3,200 ms, TE = 565 ms, FOV = 224 mm, matrix = 320).
T1w and T2w data were pre-processed using a custom pipeline
developed by the HCP (Glasser et al., 2013) using FreeSurfer
(Fischl et al., 2004) to generate highly refined cortical surface
meshes at the white/gray and pial/CSF interfaces. The surface
meshes were spatially normalized to Montreal Neurological
Institute (MNI) space and resampled to have 32k vertices. The
pipeline also generated four surface-based scalar maps: cortical
thickness, Gaussian curvature along the cortical manifold, sulcal
depth of the cortical gyri and sulci, and a myelin density map
characterizing the spatially-varying myelin content of the gray
matter (Glasser and van Essen, 2011).

For each subject, the HCP acquired four resting-state
functional MRI (rs-fMRI) images: TR = 0.720 s, TE = 33 ms,
multi-band factor = 8, FA = 52◦, FOV = 208 × 180 mm, Matrix
= 104 × 90 × 72, voxel size: 2 × 2 × 2 mm. The authors refer to
these four acquisitions as: REST1_LR, REST1_RL, REST2_LR,
REST2_RL. The images were acquired over two separate
days, such that REST1_LR / REST1_RL were acquired on 1
day, and REST2_LR / REST2_RL were acquired on another.
Each session acquired 1,200 time-points, such that each BOLD

session was roughly 15-min in length. These images were pre-
processed using a custom pipeline developed by theHCP (Glasser
et al., 2013). BOLD images were denoised using subject-ICA
(Beckmann et al., 2005) and FIX (Salimi-Khorshidi et al., 2014)
to automatically identify and remove spurious noise components,
and motion parameters were regressed out. No additional global
signal regression, tissue regression, temporal filtering, or motion
scrubbing were performed. Denoised voxel time series were
interpolated onto the fsaverage_LR32k surface mesh using a
barycentric averaging algorithm, and then smoothed at FWHM=
2 mm to avoid the mixing of signals across gyri. Surface-mapped
BOLD signals were brought into register across subjects using a
multi-modal surface matching algorithm (Robinson et al., 2014)
to the fsaverage_LR32 space and vectorized to CIFTI format,
mapping each surface vertex to an index in a vector (toward the
end of this work, we learned that different HCP data releases were
processed using different versions of this surface registration
algorithm; we discuss this in more depth in section 5.5). CIFTI
vector indices, referred to as “grayordinates” by the HCP, are in
spatial correspondence across subjects (i.e., index i in subjects
s and t correspond to roughly the same anatomical location),
such that each subject shares the same mesh topology and
adjacency structure. Time-series for each session were demeaned
and temporally concatenated.

The HCP consortium developed a pipeline to generate high-
resolution multi-modal cortical parcellations (MMP) with 180
cortical areas using a spatial derivative based algorithm (Glasser
et al., 2016) computed from resting and task-based fMRI
signals, cortical thickness, myelin content, and cortical curvature.
Manual editing was performed on the group-average gradient-
based parcellation to ensure that boundaries conformed across
feature types. Using a set of 210 independent subjects as training
data, the authors trained a 3-layer neural network model to
learn these boundary-based regions. The authors trained 180
classifiers, one for each cortical area, to distinguish a single
cortical area from its immediately adjacent neighborhood (using
a 30 mm radius neighborhood size) in a binary classification
setting. At test time, the authors compared the probabilities of
the predicted areal class across all classifiers in a single find-the-
biggest operation. Label predictions were regularized tominimize
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spurious predictions and “holes” in the final parcellation.
Apart from the 30 mm radius around each group-level area,
the classifiers did not incorporate any spatial information at
training or test time. Predictions generated from subjects in the
training set were used to compute a group-average multi-modal
parcellation which can be freely downloaded here: https://balsa.
wustl.edu/DLabel/show/nn6K. The individual parcellations and
the classifier itself have not yet been publically released.

We utilized the subject-level cortical parcellations generated
by the HCP as the training set for our models. Subject-level
parcellations for a subset of 449 subjects were made available by
an HCP investigator (see Acknowledgements).

3.2. Midnight Scan Club Dataset
The Midnight Scan Club dataset consists of MRI data acquired
on ten individual subjects (5 female) ranging in age from 24
to 34 years of age: https://openneuro.org/datasets/ds000224/
versions/1.0.3 (Gordon et al., 2017). The MCP study acquired
5 h of resting-state data on each participant in ten 30-min
acquisitions, with the goal being to develop high-precision,
individual-specific functional connectomes to yield deeper
insight into the reproducibility and inter-subject differences in
functional connectivity.

The MSC dataset preprocessing followed a roughly similar
pipeline to that of the HCP dataset. Four 0.8 mm isotropic T1w
images (TI = 1,000 ms, TR = 2,400 ms, TE = 3.74 ms, FA = 8◦,
matrix = 224, saggital) and four 0.8 mm isotropic T2w images
(TR = 3,200 ms, TE = 479 ms, matrix = 224 slices, saggital)
were acquired. T1w images were processed using FreeSurfer to
generate refined cortical mesh representations of the white/gray
and pial/CSF tissue interfaces, which were subsequently warped
to the fsaverage_LR brain surface using the FreeSurfer shape-
based spherical registration method, and resampled to 164K and
32k vertex resolutions. The authors performed myelin mapping
by computing the volumetric T1/T2 ratio and interpolating the
voxel-wise myelin densities onto the 32k surface mesh.

MSC resting-state data were acquired using gradient-echo
EPI sequences with the following parameters: TR = 2.2 s, TE
= 27 ms, FA = 90◦, voxel size = 4 × 4 × 4 mm. The MSC
applied slice timing correction, and distortion correction using
subject-specific mean field maps. Images were demeaned and
detrended, and global, ventricular, and white matter signals
were regressed out. Images were interpolated using least squares
spectral estimation and band-pass filtered (0.009 Hz < f <

0.08 Hz), and then scrubbed of high-motion volumes. Denoised
volumetric resting-state data were then interpolated onto the
midthickness 32k vertex mesh. The MSC study did not perform
subject-ICA and FIX to remove spurious noise components from
the temporal signals.

4. METHODS

Here, we describe processing steps applied to the HCP and MSC
fMRI datasets for this analysis. We begin with the minimally
pre-processed BOLD and scalar data interpolated onto the 32k
surface mesh.

4.1. Regional Functional Connectivity
As mentioned above in sections 3.1 and 3.2, the MSC and
HCP studies aligned cortical surfaces to the fsaverage_LR surface
space. The result is such that, given two meshes S and T, the
anatomical location of grayordinate i in mesh S corresponds
to generally the same anatomical location as grayordinate i in
mesh T, allowing for direct comparisons between the same
grayordinates across individual surfaces.

In cases where spatial normalization of surfaces has not been
performed, it would be incorrect to assume that two grayordinate
indices correspond to the same anatomical locations across
subjects. In order to alleviate the requirement of explicit vertex-
wise correspondence across training, validation, and testing
datasets, we assume that most imaging studies will first run
FreeSurfer to generate subject-specific folding-based cortical
parcellations (Desikan et al., 2006; Destrieux et al., 2010). We can
then aggregate the high-dimensional vertex-wise connectivity
features over one of these cortical atlases, as in Eschenburg
et al. (2018), and simultaneously reduce the feature vector
dimension. This guarantees that column indices of feature
vectors represent anatomically comparable variables across
individuals corresponding to connectivity to whole cortical
areas rather than explicit vertex-vertex connections. These low-
dimensional vectors are agnostic to the original mesh resolution
and degree of spatial normalization. As long as resting-state
data are collected for a given study, and that good spatial
correspondence between the T1w and BOLD image can be
achieved, we can apply our processing steps to this data.

Given a BOLD time series matrix T ∈ R
32k×t and cortical atlas

with k regions, we consider the set of vertices assigned to region
k and compute the mean time-series of region k as:

T̂k,t =
1

|k|

∑

i∈k

Ti,t (4)

where T̂ ∈ R
K×t is the matrix of mean regional time-series. We

compute R ∈ R
32k×K , the Pearson cross-correlation between T

and T̂, where Ri,k represents the temporal correlation between a
vertex i and cortical region k. These cross-correlation vectors are
used as features to train our models.

In this analysis, we generated connectivity features using
the Destrieux atlas (Destrieux et al., 2010) with 75 regions per
hemisphere, as it is computed by FreeSurfer and represents a
reasonably high-resolution partition of the cortical surface that
we hypothesize captures vertex-to-vertex functional variability
well. In section 5.5, we show how classification performance
depends on which cortical atlas we regionalize over, and on which
representation of functional connectivity models are trained on.

We also examined segmentation performance when models
were trained on continuous representations of functional
connectivity, computed by group-ICA and dual regression. As
part of their preprocessing, the HCP applied group-ICA to
a set of 1,003 subjects using MELODIC’s Incremental Group
PCA (MIGP) algorithm to compute group-ICA components
of dimensions 15, 25, 50, and 100 (Smith et al., 2014). We
dual-regressed these group-level components onto each subject’s
resting-state data to generate subject-level ICA components.
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These subject-level regression coefficients were fed into our
models as alternative representations of functional connectivity.

4.2. Markers of Global Spatial Position
We also included measures of position in grayordinate space
(global spatial position) as model features (Cucurull et al., 2018;
Gopinath et al., 2019). Surface mesh Laplacian eigenvectors
represent a spatial variance decomposition of the cortical
mesh into orthogonal bases along the cortical manifold. We
retained the first three eigenvectors corresponding to eigenvalues
λ1, λ2, λ3. The eigenfunctions represent an intrinsic coordinate
system of the surface that is invariant to rotations and
translations of the surface mesh.

The eigendecomposition computes eigenvectors up to a sign
flip (that is, the positive/negative direction of an eigenvector
is arbitrary), and eigenvector ordering is not guaranteed to be
equivalent across individuals. We chose a template subject and
flipped (multiplied by −1) and reordered the eigenvectors of all
remaining subjects with respect to this template subject via the
Hungarian algorithm, to identify the lowest cost vector matching
for every template-test pair (here, we minimized the Pearson
correlation distance).

4.3. Incorporating a Spatial Prior
The models trained in this analysis represent multi-class
classifiers. By default, each vertex considers every label (out of a
total of 180 possible labels) as a viable candidate. This approach,
however, does not take advantage of the fact that training and
testing data are in spatial correspondence with one another. For
example, if we know a vertex is likely to be assigned a label in
the occipital lobe, we can restrict the set of candidate labels for
this vertex to a subset of the possible 180 areas e.g., only those
areas in the primary and higher-order visual areas. We restricted
the label search space of a test vertex to only those labels with
non-zero probabilities in the training set. If a given vertex i is
never assigned label k in the training data, we set the estimated
network probability of label k for vertex i to 0, such that it is never
assigned label k in the test set.We implemented the application of
the spatial prior by multiplying the network logits with a binary
masking matrix at test time (e.g., the prior is not included in the
model training phase).

Applying the spatial prior is only feasible if the test image
surfacemesh has been spatially normalized to the fsaverage_LR32
space. Given that many studies will be interested in performing
multi-subject inference over surface-based maps, we believe this
is a reasonable assumption to make. We examine classification
performance when excluding and including a spatial prior.

4.4. Regional Homogeneity
We examined whether our models learned parcellations in
which the features of each parcel were homogenous. We defined
homogeneity for a given parcellation as in Gordon et al. (2016).
Assume we are given a resting-state fMRI BOLD time series
matrix T ∈ R

32k×t and precomputed cortical parcellation with
L cortical areas. For each parcel l ∈ L with nl vertices, we
computed the Pearson correlation matrix, Rl ∈ R

nl×32k, between
the parcel BOLD signals with the BOLD signals of the entire

cortex. We then applied the singular value decomposition as
R = USVT , where S is the diagonal matrix of singular values
σ1, σ2 . . . σN . Gordon et al. (2016) defined homogeneity as ρl =

100 ∗ (σ 2
1

/

∑k
i=1 σ 2

i ), the percent of variance explained by

the first principal component. The variance captured by the
first component describes how well a single vector explains
the functional connectivity profiles of a given cortical parcel—
the larger the variance explained, the more homogeneous the
parcel connectivity. We computed an estimate of functional
homogeneity for each parcel and averaged the estimates across
all parcels.

For scalar features (e.g., myelin density), we estimated
homogeneity as the ratio of within-parcel variance to between-
parcel variance. For each parcel l ∈ L and feature F ∈
R
32k, we computed the mean, µl, and variance, σ 2

l
of the

parcel-wise features. Homogeneity is estimated as
∑L

i=1(σ
2
l
−

σ̄ 2)
/

∑L
i=1(µl − µ̄)2, where σ̄ 2 and µ̄ are the average variance

and average mean estimates across all parcels. A smaller
value represents more homogeneous parcels. This measure of
homogeneity is a dimensionless quantity that allows for the
comparison of estimates across datasets and features.

4.5. Model Training and Parameter
Selection
We implemented each graph neural network model using
the Python package Deep Graph Library (DGL) and PyTorch
(Wang et al., 2020). Code developed for this analysis for
training these models can be found here: https://github.com/
kristianeschenburg/parcellearning/.

We split the 268 HCP subjects into 100 training samples,
20 validation samples, and 148 test samples. For parameter
optimization, we trained models on three types of datasets:
(1) 100 15-min images (REST1_LR session for each subject),
(2) 100 60-min images (temporal concatenation of all four
rfMRI sessions), and (3), 400 15-min images (four independent
rfMRI sessions per subject). We used a validation dataset of 20
subjects of the same scanning duration as the training data to
determine when to stop training. We examined the performance
of each model on test hold-out test set of different scanning
durations: 15-min (four independent rfMRI sessions), 30-min
(concatenation of two 15-min rfMRI sessions acquired on the
same day), and 60-min (temporal concatenation of all four 15-
min rfMRI sessions). The outcome variable to be predicted
was the subject-level parcellation provided to us by MG. We
performed similar temporal concatenation of the MSC data,
concatenating the original ten 30-min sessions into five 60-min
sessions, two 150-min sessions, and one 300-min session.

The features used for parameter optimization were the
regionalized functional correlations between each cortical vertex
and all regions in the Destrieux atlas, the first three Laplacian
eigenvector embeddings capturing global location information,
and four scalar maps corresponding to sulcal depth, Gaussian
curvature, myelin density, and cortical thickness for a total of 81
features at each vertex. We concatenated these features column-
wise into a matrix for each subject.
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We refer to the graph convolution network, graph attention
network, and jumping knowledge network as “GCN,” “GAT,” and
“JKGAT,” respectively. We compared the performance of these
algorithm variants to a simple linear feed-forward neural network
(“baseline”) where only the features at each vertex were used to
classify cortical nodes (no adjacency information is incorporated
into the learning process). We optimized model performance
over network depth, number of hidden channels per layer, feature
dropout rate, number of attention heads (GAT and JKGAT
only), and aggregation function (JKGAT only). The “default”
parameters are 3 layers, a dropout rate of 0.1, 32 hidden channels,
4 attention heads per layer, and an LSTM aggregation function.
We varied one parameter at a time: for example, when comparing
networks with 3 layers vs. 6 layers, all other parameters are fixed
to the default values.

For training, we used the cross entropy loss implemented
in Pytorch, a LeakyReLU activation function with a negative
slope of 0.2, and Adam optimization with a weight decay rate of
0.0005 and L2 weight regularization of 0.005.We trained inmini-
batches of size s = 10 graphs and accumulated the gradients for
each batch before computing the gradient update. We trained for
1,000 epochs using an early stopping criteria evaluated on the
validation loss. At each iteration, we retained the model if the
current validation loss was lower than the previous validation
loss. If validation loss did not decrease for 150 epochs, training
was terminated and the best performing model was saved. In
practice, we found that few of the models trained for more than
1,000 epochs.

5. RESULTS

We first examine the best performing model of those we
considered in our analysis, and discuss the classification accuracy
and reproducibility of parcellations predicted by this model in
relation to parcellations computed by Glasser et al. (2016), which
we call “ground truth” in what follows. We define classification
accuracy as the percentage of correctly predicted vertex labels
relative to the ground truth maps. We then show broadly how
algorithm choice, network architecture, and training and testing
image scan duration affect overall model performance. Finally,
we illustrate how classification performance is related to the
features used during model training and testing.

5.1. Prediction Accuracy in the Best
Performing Model
Network optimization was performed using labels provided by
Matthew Glasser (see section Acknowledgments) using subject
data from the S500 HCP release. As mentioned in section 3.1, the
S1200 data release uses a different surface registration algorithm,
producing subject-level resting-state data that is better aligned
with the labels provided by Glasser. Final model evaluation was
performed using this S1200 data. The best performing model
was the 6-layer graph attention network (GAT), with 4 attention
heads per layer, 32 hidden channels per layer, and a dropout
rate of 0.1, and incorporated a spatial prior at test time. When
trained on features computed using ICA, this model achieved

FIGURE 3 | Subject-level (A) and group-level (B) predictions generated by the

optimal model in the MSC (left) and HCP (middle) datasets.

a mean classification accuracy of 79.91% on the S1200 subjects.
We henceforth refer to this model as the “optimal” model, and
discuss results associated with this model below.

In Figure 3A, we show predicted parcellations computed
using this model for exemplar HCP and MSC test subjects.
Predicted subject-level parcellations closely resemble the
“ground truth” maps generated by Glasser et al. (2016) (see
Supplementary Material for additional examples of predictions
generated by each model). No specific contiguity constraint was
imposed on the parcellations; it is inherent in the graph neural
network models. Subjects from the MSC dataset do not have
corresponding ground truth maps against which to compare
their predictions. In Figure 3B, we show consensus predictions
for each dataset, compared against the publicly released HCP-
MMP atlas. Consensus predictions were computed by assigning
a vertex to the label most frequently assigned to that vertex
across the individual test subject predictions. We see that
both consensus predictions closely resemble the HCP-MMP
atlas—however, the consensus map derived from the MSC
subjects shows noisy parcel boundaries and disconnected areal
components (lateral and medial prefrontal areas).

Figure 4 shows the spatial distribution of classification
accuracy rates averaged across all subjects in the HCP test
set. Average accuracy is shown as a map distributed over the
cortex, with values ranging between 0 (blue; vertex incorrectly

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 797500



Eschenburg et al. Learning Cortical Parcellations Using GNNs

FIGURE 4 | Average accuracy maps for the HCP test set using the optimal

model, computed by averaging the classification error maps across all HCP

dataset test subjects. (A) Blue (0.0) = vertex incorrectly classified in all test

subjects; Red (1.0) = vertex correctly classified in all test subjects. Areas in the

lateral prefrontal and ventral/dorsal occipital areas showed the highest error

rates. (B) Errors occur most frequently at the boundaries of cortical regions.

Black lines represent areal boundaries of the consensus prediction parcellation.

classified in all subjects) and 1 (red; vertex classified correctly
in all subjects). Vertices near the centers of cortical regions
were classified correctly more frequently, while prediction errors
tended to be distributed near the boundaries of cortical regions.
To some degree, this effect can be attributed to the idea that
boundaries between putative cortical areas represent segments of
the cortex with changing biological properties. In developing a
statistical model to assign a vertex to one cortical area or another,
vertices at region boundaries will have more ambiguous label
assignments simply due to the fact that their feature vectors
are sampled from a space with greater distributional overlap
across various cortical areas. However, another explanation is
that MRI resolution is low with respect to cortical functional
features like cell columns. Consequently, this means that voxel-
wise measurements reflect mixtures of connectivity patterns
due to partial volume effects, thereby reducing the ability of
a statistical model to distinguish between two cortical areas at
parcel boundaries.

While errors globally tended to be concentrated at region
boundaries, some cortical areas showed higher error rates than
others. Of note are higher error rates for cortical areas in the

superior temporal areas in the fundus and medial superior
temporal regions (FST, MST, MT, and V4t), and lateral higher-
order visual areas (LO1, LO2, LO3). In the lateral prefrontal
area, we found that the premotor eye field (PEF) shows higher
error rates relative to adjacent regions (55b and frontal eye field,
FEF). Glasser et al. (2016) identified three unique topologies
(typical, shifted, and split) for area 55b that varied across subjects,
which might to some degree explain the higher error rates in
area PEF.

We quantified the relationship between the spatial
distribution of errors and their distance to cortical areal
boundaries. We computed the fraction of misclassified
vertices that occurred at a geodesic distance of k edges
(geodesic hops) from any cortical areal boundary. Using
the default model parameters and regionalized features, we
examined this distribution of errors as function of distance
(Supplementary Material). Over 50% of misclassified vertices
occurred at the region boundaries i.e., those vertices in the
ground-truth parcellations that are directly adjacent to different
regions, and roughly 30 and 12% of misclassified vertices were 1
and 2 edges away from areal boundaries, respectively. The simple
feed-forward network misclassified vertices further away from
region boundaries, while the three graph neural networks tended
to misclassify only vertices close to the boundary.

Although the MSC subjects do not have corresponding
ground truth maps, the data is in spatial correspondence with
the fsaverage_LR32 map. We computed the correspondence of
maps predicted on the MSC subjects with the HCP-MMP atlas
in order to gain insight into the accuracy of these predictions.
Mean correspondence of predictions computed on the MSC and
HCP datasets with the HCP-MMP atlas was 70.04 and 84.35%,
respectively (Supplementary Material).

Mean model probabilities computed by the optimal model for
a set of cortical areas are illustrated in Figure 5, showing that
areal probabilities are local in nature and restricted to precise
anatomical locations. Individual areal probabilities computed by
Glasser et al. (2016) and Coalson et al. (2018) using their binary
classifier are shown in the bottom row. Probability estimates in
the HCP dataset mirror those estimated by the original HCP
classifier (Glasser et al., 2016), indicating that ourmodel faithfully
learns the proper spatial extent of each cortical areal. Estimates in
theMSC dataset were slightly more diffuse and less confident (see
areas V1 and 46), such that probability mass was assigned tomore
disparate areas of the cortex, relative to probabilities estimated in
the HCP dataset.

5.2. Model Predictions Are Reproducible
Across Scanning Sessions
The HCP acquired four 15-min resting-state acquisitions per
subject, while the MSC acquired ten 30-min resting-state
acquisitions per subject. We examined how reliable predictions
generated from each resting-state session were within subjects,
and how this reliability related to the scanning duration. For a
given subject, we estimated session-specific reproducibility using
datasets of the same scan duration. We defined reproducibility
using the Dice coefficient, which measures the similarity of two
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FIGURE 5 | Mean model probabilities for a subset of cortical areas for the HCP (top) and MSC (middle) datasets computed using the optimal model, and the MMP

binary class probabilities from Glasser et al. (2016) and Coalson et al. (2018) (bottom). Probabilistic maps are illustrated for areas V1, 46, TE1a, LIPv, MT, RSC, and

10r. These maps are thresholded at a minimum probability value of 0.005, the probability of randomly assigning a vertex to one of the 180 cortical areas.

images. The Dice coefficient between sets J and K is defined as

Dice(J,K) =
2 ∗ |J ∩ K|

|J| + |K|
(5)

Figure 6 shows the mean areal Dice coefficients for each dataset
from predictions computed using the optimal model. Predictions
made on the HCP dataset were more reproducible across
the entire cortex than predictions on the MSC dataset. In
both datasets, sensory/motor and areas near the angular and
supramarginal gyri were most reproducible. The visual cortex
showed high reproducibility in area V1, while areas V2-V4 were
less reproducible.

Figure 7A, shows mean reproducibility estimates computed
on the HCP and MSC datasets. Predictions for both datasets
were highly reproducible across repeated scanning sessions, and
reproducibility increased with increasing scan duration. Mean
Dice coefficient estimates in the HCP dataset were 0.81 and
0.86 for the 15- and 30-min durations. In the MSC dataset, the
mean Dice coefficients were 0.69, 0.76, and 0.82 for the 30-, 60-,
and 150-min durations. When fixing scan duration (e.g., 30-min
durations), HCP data were more reproducible than the MSC
data. One feature that we could not evaluate directly was the
reproducibility of the ground truth maps. Glasser et al. (2016)
reported maximum andmedian Dice coefficient estimates of 0.75
and 0.72 for repeated scans on HCP participants, indicating that
our classifier learned parcellations that were more reproducible
than those generated by the binary classifier.

Figure 7B illustrates subject-level reproducibility estimates
in the MSC dataset. Predictions for subject MSC08 were
significantly less reliable, relative to the other subjects. Gordon
et al. (2017) also identified MSC08 as having low reproducibility
with respect to various graph theoretical metrics computed
from the functional connectivity matrices. They noted that

subjectMSC08 reported restlessness, displayed considerable head
motion, and repeatedly fell asleep during the scanning sessions.

Area-level topologies were also reproducible across scanning
sessions (Supplementary Material). Glasser et al. (2016)
identified three unique topologies of area 55b, corresponding to
a “typical,” “shifted,” or “split” organization pattern, relative to
the group-average cortical map. We were able to identify these
same unique topologies in individual subjects, indicating that
graph neural networks are identifying the unique connectivity
fingerprints of each cortical area, and not simply learning where
the parcel is. When we examined the predictions generated by
the optimal model on the four independent 15-min scanning
sessions, we found that, within a given subject, the topological
organization of area 55b was reproducible. Allowing for
some variability in prediction boundaries and location due to
resampling of the connectivity data and partial volume effects,
this indicates that the graph neural networks are learning
subject-specific topological layouts that incorporate their unique
connectivity and histology patterns.

5.3. Parcellations Learned by GNNs Are
Homogeneous in Their Scalar and
Connectivity Measures
If a model is in fact learning unique, discrete areas, the
distribution of biological features in these areas should
be relatively homogeneous. Unsupervised learning clustering
algorithms designed to parcellate the cortex often incorporate
objective functions that attempt to maximize within-parcel
similarity and minimize between-parcel similarity. On the other
hand, gradient-based approaches, like those proposed in Gordon
et al. (2016), Wig et al. (2014), and Schaefer et al. (2018), do not
directlymaximize an objective function in thismanner, but rather
identify putative areal boundaries by identifying where biological
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FIGURE 6 | Mean areal Dice coefficient estimates, computed using the optimal model on 15-min HCP data (4 repeated sessions) and 30-min MSC data (10 repeated

sessions), normalized with the same color map. Estimates are computed for each area, and averaged across all subjects.

FIGURE 7 | Reproducibility of predicted maps generated by the optimal model, as measured using the Dice coefficient. We show mean reproducibility estimates for

each dataset (A), and subject-level estimates in the Midnight Scan Club (B). Estimates for 60 min (HCP) and 300 min (MSC) durations are not shown in (A) because

there is only one image per subject for these durations. Similarly, estimates for 150 min durations are not shown in (B) because there is only a single scalar estimate

per subject.

properties change dramatically in a small local neighborhood. It
is assumed that this biological gradient captures differences in
homogeneity between adjacent cortical areas. In order to group
cortical voxels together, these voxels must inherently share some
physical or biological traits.

We computed homogeneity estimates as described in
section 4.4. In order to compare the homogeneity and variance
estimates between predicted parcellations, we fixed the features
used to compute these estimates. For a given subject, we
computed functional homogeneity using that subject’s 60-min
BOLD signal (HCP), or the 300-min BOLD signal (MSC). In
this way, the only variable that changed with respect to the
homogeneity estimate is the cortical map itself. We could then
make meaningful quantitative comparisons between estimates
for different maps, with respect to a given dataset.

Cortical maps predicted in the HCP dataset explained,
on average, 67.03% of the functional variation while MSC
predictions explained 72.90% (t: −3.137, p: 0.007) (Figure 8).
We hypothesized that parcellations predicted in the HCP dataset
would be more homogeneous, relative to those learned in the
MSC dataset, due to the fact that the MSC imaging data were
acquired with lower spatial resolution than that acquired by
the HCP and therefore subject to greater partial volume effects.
Homogeneity of myelin (t: −0.910, p: 0.377) and sulcal depth
(t: 1.043, p: 0.320) was not statistically different between the two
datasets, while curvature was less variable in the HCP dataset (t:
−2.423, p: 0.029). Contrary to our hypothesis, cortical thickness
was less variable in the MSC dataset (t: 11.562, p: 0.000). This
is likely a consequence of using a dimensionless representation
of homogeneity, which is internally normalized for each dataset
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FIGURE 8 | Homogeneity of predicted parcellations in the HCP and MSC datasets using the optimal model. (A) Predicted parcels in the HCP test set explained as

much variability in the functional connectivity as the ground truth parcels. (B–E) Predictions in the MSC had more variable myelin content and less variable cortical

thickness estimates, relative to the HCP predictions.

as a ratio of the within-to-between parcel variances. This metric
allows for the direct comparison of homogeneity estimates across
datasets, instead of representing the raw variance estimates.

We compared homogeneity estimates in the predicated HCP
parcellations to estimates computed for the ground truth maps
using paired t-tests. Predicted and ground truth maps both
explained roughly 67% of the functional variation (t: −0.305, p:
0.761). Myelin (t: 0.176, p: 0.860) and curvature: (t: −1.746, p:
0.083) variation were not statistically different between the two
groups. However, predictions were more homogeneous than the
ground truth maps with respect to sulcal depth (t: −4.442, p:
0.000) and cortical thickness: (t:−2.553, p: 0.012).

5.4. Network Architecture Impacts Model
Performance
As noted in section 5, we first optimized over network algorithms
and architectures using the S500 dataset, and then utilized
the S1200 dataset for model evaluation. We fixed the features
used for network optimization to the regionalized connectivity
features. We examined how varying each network parameter
impacted model classification accuracy (Table 1). As mentioned
in section 5.1, the best performing model was the GAT network
with 6 layers with a classification accuracy of 67.60% on the S500
dataset (significantly inferior to the performance of the same
network on S1200 data, with an accuracy of 79.91%). We found
that optimal performance for the GAT and GCN networks was
achieved with 6 layers, 9 layers for the JKGAT, and 3 layers for the
baseline model. In general, classification accuracy increased with
the number of attention heads, and number of hidden channels,
while classification accuracy decreased with increasing feature
dropout rates. Using an LSTM aggregation function rather

than a simple concatenation marginally decreased classification
accuracy for the jumping-knowledge networks. In contrast to
our predictions, we found that the GAT networks slightly
outperformed the more flexible JKGAT networks for most
parameterizations.

We used a fixed validation dataset of 20 subjects to determine
when to stop model training and evaluated the performance of
our models using a fixed test dataset of 148 subjects. In order to
determine the reliability of our accuracy estimates, we computed
the standard error of classification accuracy for each model
using a bootstrapped approach (Supplementary Material). We
randomly sampled 100 test subjects, with replacement, out of
the 148, and computed the mean accuracy for each sample, for
each model. We repeated this process 1,000 times, and computed
the variability of these bootstrapped estimates. Standard error
estimates were less than 0.5%, indicating that test set accuracy
estimates are robust with respect to resampling of the test dataset.

We examined how classification accuracy in the HCP
dataset was related to the scanning duration of training and
testing datasets using the default model parameters (as defined
in section 5). When fixing test scan duration, classification
accuracy improved as the training dataset size increased for
all model types, with maximum accuracy achieved by graph
attention network models trained on 400 15-min duration
datasets (Supplementary Material). When training dataset size
and training scan duration were fixed, longer test image
duration yielded more accurate predictions across the board.
Predictions on 60-min test data were more accurate than
those computed on 30-min images, which in turn were
more accurate than those generated from 15-min images
(Supplementary Material). However, models trained on 15-min
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TABLE 1 | Model classification accuracy as a function of network architecture and parameterization.

Model

Parameter Value Baseline (%) GCN (%) GAT (%) JKGAT (%)

Network depth

3 62.64 64.93 67.02 66.71

6 61.13 65.14 67.60 67.33

9 57.72 64.76 67.36 67.42

Hidden channels

16 60.54 62.60 66.37 66.12

32 62.64 64.93 67.02 66.71

64 63.84 66.24 67.15 67.15

Dropout rate

0.1 62.64 64.93 67.02 66.71

0.3 60.74 63.94 66.72 66.58

0.5 58.34 63.10 65.45 65.39

0.7 55.63 61.18 62.70 62.60

Attention heads

4 67.02 66.71

8 67.39 67.30

12 67.56 67.29

Aggregation function
concat 66.85

lstm 66.71

Models were trained on 400 15-min datasets, and tested on 60-min test data using the S500 dataset. Boxed values indicate the default parameter values. The best performing model

was the GAT network with 6 layers, achieving a mean classification accuracy of 67.60%. Values in bold are the mean classification accuracy of the best model, trained on resting-state

connectivity features computed by regionalizing time-series over the Destrieux cortical atlas (see Section 4.1).

data performed best when tested on 15-min data, and models
trained on 60-min data performed best when tested on
60-min data (Supplementary Material) indicating an interaction
between training and testing scan duration. Similarly, when
fixing training and testing scan duration, we found that including
the spatial prior significantly improved classification accuracy in
all architectures.

5.5. Incorporating Functional Connectivity
Improves Model Performance Beyond
Spatial Location and Scalar Metrics
After identifying the optimal network architecture, we examined
how model performance varied as a function of which
features the model was trained on. Briefly, we delineated
three broad feature types: (1) scalar features corresponding to
myelin, cortical thickness, sulcal depth, and cortical curvature
(2) global location features corresponding to the spectral
coordinates computed from the graph Laplacian and (3)
connectivity features computed from the resting-state signal.
In our primary analysis, we utilized connectivity features
computed by regionalizing over the Destrieux atlas (75 folding-
based cortical areas). We compared these features against
those computed using the Desikan-Killiany atlas (35 folding-
based cortical areas) and the Yeo-17 resting-state network
atlas (Yeo et al., 2011). The Yeo-17 atlas is a functional
atlas of discretized resting-state networks, computed via

independent component analysis. We identified the connected
components of each of the 17 resting-state networks and
excluded component regions with sizes smaller than 10
vertices, resulting in a map of 55 discrete functionally-derived
subregions of the cortex. We also examined the performance of
models trained on continuous, overlapping connectivity features
representing resting-state networks computed using group-ICA
and dual regression.

Computing connectivity features over the Destrieux atlas
yielded increased classification accuracy over the Desikan-
Killiany atlas (72.01 vs. 70.08%; paired t: 25.197, p: 0.000;
see models “Full-DX” and “Full-DK”). We hypothesized that
computing connectivity features over a functionally-aware
parcellation (Yeo-17) would yield a significant improvement
in classification accuracy, relative to the Destrieux atlas,
but this was not the case (see “Full-DX” vs. “Full-YEO”
in Figure 9). Models trained on the Yeo-17 features had a
mean classification accuracy of 71.58% (paired t: 1.916, p:
0.057). Training on spatial location or histological features
alone yielded mean classification accuracies of 44.10 and
54.45%, respectively (Figure 9A). However, training on
features defined by resting-state ICA components had clear
performance benefits. Models trained on ICA dimensions
of 15, 25, 50, and 100 generated mean classification
accuracies of 75.34, 77.79, 79.68, and 79.91%, respectively
(Figure 9C). Similarly, incorporating the prior mask also
improved model performance. However, the mask added
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FIGURE 9 | Classification accuracy as a function of model features, using the optimal model architecture for (A) single feature types, (B) regionalization over different

cortical atlases, and (C) independent component analysis features. Refer to Table 2 for a description of each feature set.

TABLE 2 | Feature combinations tested by our optimal model.

Feature sets

Full feature sets Connectivity Scalar Location

DK (F) DX (F) YEO (F) ICA (F) DX Hist. Spect.

Thickness + + + + +

Curvature + + + + +

Myelin + + + + +

Sulcal depth + + + + +

Laplacian + + + + +

Desikan (DK) +

Destrieux (DX) + +

Yeo-17 (YEO) +

ICA-RSN +

Features included in a model are marked by a “+.” “Full” models include histological features, global position information, and functional connectivity signals.

diminishing returns, with the better-performing models
benefiting less from its inclusion. Models trained on higher-
dimensional ICA resting-state networks (50 and 100 networks),
performed almost as well without the spatial prior as they
did with it.

Late into our analysis, we learned of differences in
the preprocessing steps used to generate the minimally-
preprocessed HCP resting-state data, and to generate the
subject- and group-level HCP-MMP parcellations. Specifically,

the S500 and S1200 data releases were preprocessed using
different surface registration algorithms: MSMSulc and
MSMAll (Robinson et al., 2014, 2018). A consequence
of these preprocessing differences is that data from the
S1200 release is better aligned with the subject-level
labels provided by Glasser. After performing network
optimization using the S500 data, we evaluated final model
performance on the S1200 dataset. Figure 10 illustrates model
performance after training on each independent dataset. We
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FIGURE 10 | Classification accuracy as a function of HCP data release and corresponding multi-modal surface matching algorithm. S500: MSMSulc (Robinson et al.,

2014), S1200: MSMAll (Robinson et al., 2018).

found that utilizing the S1200 dataset showed significant
improvements in mean classification accuracy by upwards 5%,
relative to the S500 dataset. This indicates that the surface
registration algorithm choice plays a critical role in cortical
segmentation quality.

6. DISCUSSION

In this analysis, we presented a general cortical segmentation
approach that, given functional connectivity information and
a set of corresponding training labels, can generate cortical
parcellations for individual participants. This approach to
segmenting the cortex requires accessible MRI acquisition
sequences and standard morphological parcellations as inputs.
We compared three different graph neural network variants
to a baseline fully-connected network. We found that, in
all cases, graph neural networks consistently and significantly
outperformed a baseline neural network that excluded adjacency
information. We identified the best performing model and
explored its performance with respect to various metrics
like segmentation accuracy, prediction reliability, and areal
homogeneity in two independent datasets.

Predictions generated for both the HCP and MSC datasets
were highly reproducible. However, we found that nearly twice
as much resting-state data was required in MSC subjects to
achieve the same reproducibility estimates as in the HCP
data. Predictions generated on the HCP dataset were more
reproducible than the ground truth maps themselves (Glasser
et al., 2016), while predictions in the MSC data were roughly as
reproducible as the ground-truth parcellations. This may in part
be due to the way we trained our models. Models were trained

on repeated samples of BOLD images, such that for a given
training subject, models were shown four BOLD datasets. This
likely enabled the models to better learn the mapping between
a given subject’s unique BOLD signature, and its cortical map.
Another possible explanation is that the ground truth maps
were generated using a linear perceptron model, which does not
take into account any spatial relationships between data points,
while graph neural networks do take this spatial structure into
account. It is likely the case that the perceptron model could not
adapt to utilize spatial dependencies in the BOLD signal in local
neighborhoods and thereby failed to fully learn unique subject-
specific connectivity fingerprints, and consequently learnedmore
variable parcellations.

The optimal model predicted parcellations that were as
homogeneous as the ground truth maps when considering
multidimensional connectivity features and univariate scalar
features. Though the models considered in this analysis
are capable of learning parcels that capture inter-areal
variation of functional brain connectivity and other cortical
features, it is worth noting that homogeneity as a measure
of parcellation quality is an imperfect metric and should be
used judiciously. For example, the primary sensory areas
can be further divided into five somatotopic subregions
corresponding to the upper and lower limbs, trunk, ocular,
and face areas (Glasser et al., 2013). These subdivisions
correspond well with task-based fMRI activity and gradients in
myelin content, indicating that the parcels learned by GNNs
in our analysis still incorporate significant variability due
to the aggregation of signals from different somatosensory
areas. While learning homogeneous regions is important
in order to effectively capture spatial biological variation,
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maximizing homogeneity was not the training criterion for
this analysis.

As noted in section 3, the MSC study applied different
preprocessing steps than the HCP. Specifically, the MSC did
not perform FIX-ICA to remove noise components from the
BOLD images and utilized the FreeSurfer spherical surface
registration to bring surfaces into spatial correspondence with
one another instead of the multi-modal surface matching
algorithm (Robinson et al., 2014, 2018). Given that the MSC
dataset did not have “ground truth” labels against which we
could compare predictions made on the MSC data, we compared
predictions against the HCP-MMP atlas (Glasser et al., 2016). As
expected, predictions generated on the HCP dataset more closely
resembled the HCP-MMP atlas than predictions made from the
MSC dataset (the HCP-MMP atlas was derived as a group-
average of individual ground truth parcellations). Nevertheless,
we found that correspondence of MSC predictions with the
atlas followed similar trends with respect to testing image
duration. We believe some discrepancy in results between the
HCP and MSC datasets can be attributed to the differences in
dataset-specific preprocessing choices noted above, although the
relationship between methodological choices and parcellation
outcome requires future analyses. Performance differences across
the two datasets are also possibly a result of the models
learning characteristics inherent to the training (HCP) dataset,
and thereby performing better on hold out subjects from that
same dataset.

Our optimal model was the 6-layer graph attention network,
trained and tested on resting-state network components
computed using a 50-dimensional ICA. This model performed
as well with the spatial prior as it did without. However, models
trained on regionalized connectivity features benefited from
including the spatial prior. We believe it would be prudent for
future studies to include a spatial prior of some form into their
classification frameworks. Interestingly, predictions on HCP test
subjects resembled the HCP-MMP atlas more closely than they
resembled their ground truth counterparts, which might in part
be driven by the specific form of the prior. We made the
assumption that cortical map topology is relatively conserved
across individuals. This assumption may be too conservative and
may reduce model sensitivity to atypical cortical connectivity
patterns. Nevertheless, there is evidence our GNN models learn
subject-specific topologies of cortical areas, rather than simply
learning where a cortical parcel usually is. Importantly, we
found that the optimal GAT model could identify three unique
topologies for area 55b (typical, shifted, and split) and that
predictions generated by our model replicated, with high fidelity,
the same spatial organization patterns as identified in Glasser
et al. (2016). This indicates that the model is capable of learning
unique connectivity fingerprints of each cortical area on a
subject-by-subject basis, rather than simply learning the group
average fingerprint. As such, we do not believe that including the
spatial prior in its current form inhibits the ability of the graph
neural network models used in this analysis to identify atypical
cortical topologies.

We compared three different graph neural networks: graph
convolution networks, standard attention networks, and
jumping-knowledge networks. We hypothesized that JKGAT

networks would significantly outperform GAT networks due
to the increased flexibility to learn optimized node-specific
network depths. In their original formulation of the jumping-
knowledge network architecture, Xu et al. (2018) found that
including the jumping-knowledge mechanism improved
model performance relative to the GAT in almost all of their
comparisons. However, we found this not to be the case. This
may be a consequence of the increased number of estimated
parameters in the JKGAT networks, relative to the GAT—the
jumping-knowledge aggregation layer learns the parameters for
the aggregation function cells in addition to the attention head
and projection matrix weights learned in the GAT networks. The
lower classification accuracy at test time is possibly the result
of model over-fitting, necessitating a larger training dataset. It
is possible that the jumping-knowledge mechanism is generally
more useful in the case where graph topologies vary considerably
across a network, as opposed to more regular graphs such as
cortical surface data.

As expected, network performance was dependent on both
the size and duration of the training set, and duration of the
testing data. Classification accuracy increased when models were
trained on larger datasets consisting of shorter-duration images.
Conversely, accuracy increased when models were deployed
on longer-duration test data. It is important to note that we
examined performance of our models on images of long scanning
durations by concatenating multiple sessions together (30/60-
min in theHCP, and 60/150/300-min in theMSC). It is unrealistic
to expect study participants to be able to lay in anMRI scanner for
single sessions of these lengths. However, it is useful to examine
how model performance is impacted by tunable parameters
like scan duration in order to best guide image acquisition
in future studies. We found that utilizing repeated scans on
individual subjects as independent training examples, rather
than concatenating repeated scans together into single datasets,
significantly improved our classification frameworks. This likely
speaks to the ability of neural network models to generalize
better to noise in the datasets. Training models on multiple
samples of shorter-duration images more accurately captures
the individual variability in the resting-state signal than fewer
longer-duration images, thereby allowing the networks to more
accurately learn a mapping between functional connectivity and
cortical areal assignments.

Our methodology could be improved in a variety of ways.
We chose not to perform intensive hyperparameter optimization,
and instead focused our efforts on overall performance of
the various network architectures as a function of network
parameters and data parameters, and the applicability of
trained models to new datasets. However, in the case where a
classification model is meant to be distributed to the research
community for open-source use, it would be prudent to perform
a more extensive search over the best possible parameter choices.

The utility of functional connectivity has been shown in a
variety of studies for delineating cortices (Blumensath et al.,
2013; Arslan et al., 2015; Baldassano et al., 2015; Gordon et al.,
2016). However, in recent years, using diffusion tractography
for learning whole-brain cortical maps has been underutilized,
relative to functional connectivity (Gorbach et al., 2011; Parisot
et al., 2015; Bajada et al., 2017). Given cortical maps defined
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independently by tractography and functional connectivity, it
is difficult to “match” cortical areas across maps to compare
biological properties, so heuristics are often applied. Few
studies have simultaneously combined functional connectivity
and tractography to better inform the prediction of cortical
maps. Recent work has extended the idea of variational auto-
encoders to the case of multi-modal data by training coupled
auto-encoders to jointly learn embeddings of multiple data
types. In Gala et al. (2021), the authors apply this approach
to jointly learn embeddings defined by transcriptomics and
electrophysiology that allow them to identify cell clusters with
both similar transcriptomic and electrophysiology properties.
Future work could apply similar ideas to aggregate functional and
diffusion-based connectivity signals.

The majority of recent studies have approached the cortical
mapping problem from the perspective of generating new
parcellations from underlying neurobiological data using
unsupervised clustering or spatial gradient methods. These
approaches attempt to delineate areal boundaries by grouping
cortical voxels together on the basis of similarity between their
features. Spatial gradient-based methods explicitly define areal
boundaries, while clustering methods define these boundaries
implicitly. However, both approaches are distinct from methods
that utilize pre-existing or pre-computed parcellations as
templates for mapping new data. In the current analysis, we were
concerned with the latter problem.

Clustering and spatial gradient approaches are often interested
in relating newly-generated cortical maps to underlying in vitro
measures, such as transcriptomics or cytoarchitectural results.
Clearly, it is impossible to acquire this data in human subjects
simultaneously with in vivo data. Various projects have attempted
to build cytoarchitectural datasets from post-mortem subjects to
use as a basis of comparisons for maps generated in vivo (Amunts
et al., 2020). While some cortical areas have been recapitulated
using both in vitro and in vivo features, this is not a general
rule across the cortex. As such, cross-modal verification is often
difficult, and leaves room for methods and datasets than can
improve upon the validation of cortical mapping studies.

One limitation of our analysis concerns the use of different

versions of the multi-modal surface matching for cortical surface

alignment for the S500 HCP data release (Glasser et al., 2013;
Robinson et al., 2014), the S1200 release (Robinson et al.,
2018), and for the subject-level HCP-MMP parcellations (Glasser

et al., 2016), which used a different regularization term. These
differences between the three registration methods result in a
slight spatial misalignment between the training labels and the
cortical features. While the S500 data release utilized MSMSulc, a
spherical surface registration driven by cortical folding patterns,
the S1200 release utilized MSMAll, and incorporated functional
connectivity into the spatial resampling step. Glasser et al.
(2016) used a prototypical version of MSMAll in addition to
MSMSulc, and thereby incorporated additional features derived
from resting-state networks to drive the surface matching
process. Importantly, this discrepancy between the training labels
and training features is not a flaw in our methodology itself,
and correcting for this difference in the registration approach
would only improve the results of our analysis. As we showed

in Figure 10, incorporating MSMAll-processed data from the
S1200 dataset, instead of MSMSulc-processed data from the S500
dataset, improved model classification accuracy by nearly 5%.
We hypothesize that this improvement would only increase if we
had access to the data processed with the prototypical version of
MSMAll. Based on the comparisons of subject-level predictions
with the subject-level ground truth MMP maps, our models
performed well in spite of these registration discrepancies. Our
results lend evidence to the robustness of graph neural networks
for learning cortical maps from functional connectivity.

Finally, participants in both the HCP and MSC studies were
healthy young adults, and the datasets had been extensively
quality controlled. Little to no work has been done on extending
connectivity-based classifiers to atypical populations, such as to
individuals with neurodegeneration. It is unknown how a model
trained on connectivity properties from healthy individuals
would perform in populations where connectivity is known
to degrade. While our model (and that developed by Glasser
et al., 2016) predict maps based on healthy individuals, it is
possible that some studies would need to train population-
specific models.
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