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Abstract

Motivated by the recent excitement around the physics of twisted transition metal
dichalcogenide (TMD) multilayer systems, we study strongly correlated phases of TMD
heterobilayers under the influence of light. We consider both waveguide light and circularly
polarized light. The former allows for longitudinally polarized light, which in the high
frequency limit can be used to selectively modify interlayer hoppings in a tight-binding model.
We argue based on quasi-degenerate perturbation theory that changes to the interlayer hoppings
can be captured as a modulation to the strength of the moiré potential in a continuum model. As
a consequence, waveguide light can be used to drive transitions between a myriad of different
magnetic phases, including a transition from a 120’ Neel phase to a stripe ordered magnetic
phase, or from a spin density wave phase to a paramagnetic phase, among others. When the
system is subjected to circularly polarized light we find that the effective mass of the active
TMD layer is modified by an applied electromagnetic field. By simultaneously applying
waveguide light and circularly polarized light to a system, one has a high level of control in
moving through the phase diagram in-situ. Lastly, we comment on the experimental feasibility
of Floquet state preparation and argue that it is within reach of available techniques when the
system is coupled to a judiciously chosen bath.

Keywords: moiré, transition metal dichalcogenide, Floquet, non-equlibrium, magnetism,
phase transitions, non-equilibrium
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1. Introduction

Recent years have seen an explosion of interest in so-called
moiré materials [1-5]. These are materials in which two
dimensional crystals are stacked in such a way that their
lattices interfere to form moiré patterns. In the earliest works
related to such a material—twisted bilayer graphene (TBG)—
the moiré patterns appear due to a relative twist between two
graphene layers and have been found to lead to flat bands near
a ‘magic angle’ [6-8]. It was speculated that this could lead to
various strongly correlated phases, because flat bands imply
tiny kinetic energy making any weak electron-electron inter-
action energy dominant [9-17].

In 2018 interaction driven phases in flat band systems
were experimentally confirmed when superconductivity and
insulating phases in TBG were reported [18]. Since then there
have been theoretical predictions and experimental discoveries
of a plethora of different strongly correlated phases [18-32].
These phases can range from various magnetic states [29-32]
to superconducting states [29, 30]. This discovery naturally
leads to the question of which related materials may harbor
similarly exciting properties.

One such material class that has recently risen to popular-
ity is bilayer or few layer transition metal dichalcogenides
(TMDs) with a relative twist between layers [33—42]. Similar
to TBG, theory has predicted [36-38, 40, 41] and experiment
has confirmed [42, 43] there exists a zoo of strongly correl-
ated phases. Analogously to TBG, these phases can be tuned
via the twist angle. Compared to TBG, the twisted TMD sys-
tems offer the addition degree of freedom of material choice
used to build the moiré heterostructure which can be used to
tune different phases of matter. Recently, it was shown the-
oretically that TMD heterobilayers possess very rich phase
diagrams that include a multitude of different magnetically
ordered phases [36].

While TMD heterostructures might seem more complicated
than graphene based multilayer materials (each TMD layer
corresponds to three atomic layers), effective descriptions for
TMD heterostructures can be significantly simpler than TBG
because the former allow for an effective single band descrip-
tion that mimics a two-dimensional non-relativistic single
particle Schrodinger equation with a periodic potential origin-
ating in the moiré patterns [36-38, 44]. This is in stark con-
trast to the case of graphene based moiré materials such as
TBG, where one needs a four component Hamiltonian similar
to a massless Dirac equation to describe layer and sublattice
pseudo-spin degrees of freedom. It is worth mentioning, how-
ever, that recently, the dimensionality of the TBG Hamiltonian
for a chiral limit has been reduced to a 2 ~ 2 Hamiltonian in
an approach where the Hamiltonian is squared [45, 46]. Never-
theless, for TBG a mapping from position dependent interlayer
hoppings to an effective potential and a single band description
is problematic. In fact, such a mapping has only been made rig-
orously for a closely related effective one-dimensional case,
where moiré patterns are due to a stretch of one of the layers
[47-49]. Even in this case, the argument only applies semi-
classically. It is the simplicity of effective Hamiltonians for the

TMD heterobilayers that motivates us to focus on the engin-
eering of phase transitions for this class of materials, rather
than TBG.

The TMD heterobilayer platform can be made even more
manipulable by combining it with Floquet engineering which
has been touted as a very powerful technique to modify the
properties of quantum systems with light. In this technique,
periodic drives are used to induce different material proper-
ties in a so-called prethermal phase that bears resemblance to
an equilibrium phase. Recent years have witnessed incredible
progress both on the theoretical as well as the experimental
side of Floquet engineering. Specifically, on the theoretical
side, there has been progress on estimating how long (given
certain assumptions to driving strengths and frequencies) one
can remain in the prethermal regime, which is often exponen-
tially long [50, 51].

There has been tremendous progress in the develop-
ment of techniques that facilitate effective time-independent
descriptions using so-called effective Floquet Hamiltonians
[50, 52—77]. Importantly, there has also been progress in our
understanding of how to prepare prethermal Floquet phases
[78-80]. For instance, it is now better understood what prop-
erties a bath has to fulfill for a system to relax into a so-
called Floquet-Gibbs state [ 78, 79, 81], which can tell us much
about how to prepare the ground state of a Floquet Hamilto-
nian. In addition to the work on the theoretical foundations of
Floquet engineering, there have been predictions of a multi-
tude of exciting light induced properties and phases of matter
[82-135] (see [136, 137] for a recent review article). Recently,
Floquet engineering is gaining popularity in moiré materials—
albeit in the non-interacting limit [134—148].

In this work, we make a first step towards Floquet engineer-
ing of different phases of matter in interacting moiré materials.
To maximize the accessibility of our results, we will focus on
a simplified approach using a model description of a twisted
TMD heterobilayer. This will allow us to focus on the uni-
versal features expected in experiment. A schematic depiction
of the experimental scenario we envision can be seen in the
figure 1.

Our paper is organized as follows. First, in section 2 we
give a brief review of the effective Hamiltonian used to model
TMD heterobilayers. Then, in section 3 we briefly describe the
techniques used to derive interaction terms for an effective lat-
tice model and discuss how a specific form of light, waveguide
light possessing a longitudinal polarization, can be used to tar-
get specific parameters of the non-interacting limit. Similarly,
we show that circularly polarized light can be employed to tune
the effective mass of the active TMD layer, which also appears
in the non-interacting limit. A central result of our work is
that by tuning the properties and type of incident light one can
reach a multitude of vastly different magnetic phases of matter
in a twisted TMD without the need to change the specifics of
the sample, such as the twist angle or constituent TMDs. One
achieves dramatic control over the phase diagram. Finally, in
section 4 we finish with a discussion on how specifics of the
environment determine how ‘Floquet ground state’ phases can
be prepared in practice. We conclude in section 5.



J. Phys.: Condens. Matter 35 (2023) 095801

M Vogl et al

Figure 1. Schematic representation of how the magnetic ground
state of a twisted TMD heterobilayer placed at the exit of a
waveguide (illustrated as a dark rectangular prism) can be affected
by light emanating from the waveguide. For example, the light
might cause some of the spins to reorient themselves. Blue and
orange spheres correspond to transition metal atoms, yellow ones to
chalcogenides. The two layers have a relative twist, as shown. Spins
are represented in light blue.

2. Model

We consider a generic non-interacting model [36—-38]

h2k2 '

[ e 2Mxk M)

for ‘electrons’ in a TMD heterobilayer such as WSe,/MoSe; or
WSe,/MoS,. In this model, electrons are constrained to move
in only one of the transition metal layers—the so-called active
layer (AL). This means that additional layers that appear in
such a TMD heterostructure are only taken into account via the
effective potential A )x+and mass m°. Some interaction effects
are taken into account on a density functional theory (DFT)
level because these models are typically fit to DFT band struc-
tures. Furthermore, it is important to stress that the model is
coarse-grained, losing some short distance features. It is most
accurate at long wavelengths, specifically near the point of
a single TMD layer [37].

Electronic excitations in this model have an effective
mass of m°® = 0.5m,, where m, is the bare electron mass
(details depend crucially on the type of heterobilayer, whether

WSe,/MoSe, or WSe,/MoS, or something else). For a twisted
bilayer with small twist angle the effective periodic potential
A )x+has a six-fold rotational symmetry due to moiré patterns
that appear from the interference between the two lattices. It
is given as [36-38]

%)

A)XH V| cos)bix; v+ 2)
=1

where V,, is the strength of this potential and typically V,, ~
10 meV. Here, the b; are the three shortest reciprocal lattice
vectors for the moiré lattice that are related by a 120" rotation
and 1) is a phase shift that is determined by band structure fits.

As described in [36, 149], strong correlation effects for
twisted TMDs can be included in a simple approximation
where Wannier wavefunctions are determined using the non-
interacting model equation (1) only. These Wannier wavefunc-
tions can then be used to compute effective hopping terms
on the moiré lattice, Hubbard-U-like interaction terms, etc.
Therefore, much of the interacting structure is crucially influ-
enced by the properties of the non-interacting underlying
model. In some cases approximations can even be found by
analytical means. For instance, it has been shown that one may
approximate the potential equation (2) by a harmonic potential
[38]. Harmonic oscillator wavefunctions then act as reason-
ably accurate approximations to the actual Wannier functions
[38] and computations of Hubbard-U-like interaction terms
can be done analytically, offering much insight [38].

The most important point we would like to emphasize is
that the interaction parameters will depend on the paramet-
ers of the non-interacting model—particularly the moiré poten-
tial strength V,,. This observation is especially lucid in the
case of the work by Hu and MacDonald [36], where only one
of the axes in their interacting phase diagram (see figure 3)
depends on V,,. This observation serves as motivation for the
next section.

3. Light induced engineering of phase transitions

In this section, motivated by the work of Hu and MacDonald
[36], we focus on how to engineer magnetic phase transitions
by using two types of light. First we consider light emanating
from a waveguide and afterwards the more standard case of
circularly polarized light.

For light eminating from a waveguide the starting point of
our discussion is a generic tight binding model. Here, the influ-
ence of light can be included through the hopping terms z;
according to the Peierls substitution

r

I,‘j <~ ej;fA(t)ﬂltU, (3)

where A is the vector potential. Note that if one shines
normally incident longitudinally polarized light onto a mul-
tilayered material only interlayer couplings are affected by this
substitution (for in-plane hoppings the scalar product A )zl
vanishes). Such an exotic form of light can be found at the exit
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Figure 2. Top: plot of the non-interacting band-structure for

Vi = 6.6meV, m* = 0.35m,, ayy = 12 nm and 1) = —94°. Bottom:
the moire Brillouin zone along with the path that was taken for the
bandstructure plot marked in orange.

of a waveguide [145], where it is allowed due to cavity bound-
ary conditions.

It was shown in [145] that in the high frequency limit
(the light frequency is larger than the bandwidth of the bands
of interest but smaller than be bandgap) the effective time-
independent interlayer couplings #; given by

tij <> JO)QLA#ijy 4)

where J is the zeroth Bessel function of the first kind that
modulates the hopping amplitude. Here, ap, is the interlayer
distance and A the strength of the incident light beam (con-
stants like 7, etc are absorbed into A).

The time-averaged Peierls result, equation (4), can be
exploited to modify couplings in equation (1). First, one real-
izes that the non-interacting bands are relatively flat as noted
in [36-38]. The bands for which the harmonic oscillator wave-
functions hold as an accurate approximation of Wannier wave-
functions are especially flat, which can also be seen quite
clearly in the figure 2 below. The flat band around the Fermi
level energetically separated from other bands means that we
can reasonably employ the high frequency approximation dis-
cussed above.

Instead of taking equation (1) as a starting point for the
description of a twisted TMD one could also take a tight bind-
ing model that includes both TMD layers as a starting point.
This type of model could be downfolded into an effective tight
binding model that only includes the AL-the inactive layers
(ILs) would be integrated out—employing a quasi-degenerate
perturbation theory such as a Schrieffer—Wolff transformation
or Loewdin downfolding. In this case, the dominant (2nd order
in perturbation theory) contribution from interlayer tunnelings

| Paramagnet
[ 120° SDW
[ 120° Néel

[ Stripe

Ferromagnet

Figure 3. Adapted and modified redrawn version of the phase
diagram from [36]. Different magnetic phases in a twisted TMD are
shown in different colors. Black arrows to indicate how waveguide
light can allow one to tune vertically across phase boundaries in the
phase diagram. The parameter o> appearing in equation (6) is
increased as V,, is decreased, according to equation (5).

would be hopping processes like AL <+ IL <+ AL, assuming
that the dominant interlayer hopping strengths are small com-
pared to the dominant intralayer hoppings. Since hopping
terms typically decrease exponentially with distance, the most
dominant process is where the initial point on the AL is the
same as (right ‘above’) the final point on the AL.

Hopping processes with different initial and final points on
the AL would contribute as an effective or indirect intralayer
hopping, which we will neglect because direct intralayer hop-
pings can be expected to be much larger. This means that the
dominant effect of interlayer hopping leads to on-site potential
terms like €;¢; ¢;, where the onsite energies ¢; P ti A slightly
more rigorous treatment of these ideas for the example of a 1D
chain can be found in appendix A. In the language of the con-
tinuum model, on-site energies can be translated as a smoothed
potential. In our case, this means that effective on-site energies
that are due to second order interlayer hopping processes can
be identified as the dominant origin of the moiré potential in
equation (1).

In the high frequency limit when the material is subjected
to the waveguide light

Vm g )JO)aLA‘Hng; (5)

where ap, is a parameter taken to be 0.85art, the order of
the distance between two transition metal layers arr. (see
appendix B.) Equation (5) can now directly be used to move
in the phase diagram shown in figure 3. Specifically, one may
introduce the following parameters [36]

o [ 1 3 1/4 ay m°
- |— ——
S o€ ) 4n? ag m’

2 n
[ meBV,ai,’

(6)

where m is the bare electron mass, m® the effective mass,
ag | % the Bohr radius, ay the moiré lattice constant, 3 |

1672 cos)1)-+a material dependent numerical constant (mater-
ial dependent through v appearing in equation (2)—we assume
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the case 7/3 < <m/3) and ¢ the dielectric constant.
The quantity apry can be interpreted as the typical distance
between electrons [36]. Approximating the wells of the moiré
potential by a local harmonic potential, « can be related to a
harmonic oscillator length scale.

A typical twisted TMD might have parameters ay, >10nm,
m® [ 03m, e[ 10, V,, >30meV, from which we get r2 >
2.97 and o® >>5.98 ~ 10 3, placing one near the boundary of
a stripe and FM region (see figure 3). Therefore, it may be pos-
sible to tune different phases in a twisted TMD hetero bilayer
with relative ease. Indeed, in our case one is able to change
Vo (without additional effects in the high frequency regime)
by applying waveguide light. More precisely, one can directly
tune a2, equation (6), increasing it in size, since V,, is reduced
according to equation (5). The effect of this can be seen below
in figure 3.

While the phase boundaries are the same as in [36], our
original contribution is the addition of arrows that show how
the coupling parameters o> and r° are renormalized under
the drives we consider. For instance, this allows us to show
that tuning V,, indirectly through the influence of light one
can drive phase transitions, such as from a 120’ Neel phase
to a stripe ordered phase or to a ferromagnetic phase, for
example. Note that shifting phases becomes easier as the har-
monic oscillator length scale «v is increased because for a small
change to V,, <> V,, 6V we have o <> )at# >a?; o?2V.
We emphasize the crucial point that the drives we consider do
not change the phase diagram, but allow one to experimentally
tune between phases within it. Such a situation is rare in driven
systems.

Within our model, waveguide light only allows one to tune
parameter the . However, one can gain greater control over
the phase diagram of a twisted TMD by tuning the second
parameter, r;, which can be done with circularly polarized
light modeled by a vector potential A [ A)cos)wtsin)wr-+H-
We note that 7§ can be tuned by such a choice of vector poten-
tial because it depends on the effective mass m° in the active
TMD layer—a parameter that is primarily determined by val-
ues of in-plane hopping elements of a tight binding model. Cir-
cularly polarized light is a good choice if one aims to modify
m° because it primarily influences the in-plane hopping ele-
ments. Typically, the most relevant out-of-plane hopping ele-
ments are almost directly perpendicular to the plane of the
material and therefore they are influenced very little by cir-
cularly polarized light (recall the details of the Peierls substi-
tution and that circularly polarized light only has in-plane vec-
tor potential components that are non-zero)—indeed hopping
elements decay rapidly with distance.

Before we discuss the effect of circularly light on the effect-
ive mass m° in equation (1), we first note that the quadratic dis-
persion that appears in equation (1) can be an approximation
valid near different high-symmetry points in the hexagonal
Brillouin zone. Indeed, depending on the precise choice of
TMD material, low energy electrons might either be close to
the K points [37] or the point [44]. In both cases, near those
points the band structure can be approximated by a quadratic
dispersion.

Table 1. Mass renormalization parameter A near the I" point
computed based on effective third nearest neighbor tight binding
with parameters that were taken from [150]. We also compare results
that were obtained using different approximations to the exchange
correlation potential of DFT: generalized gradient (GGA) and local
density approximation (LDA). These different approximations were
used in [150] to fit a third nearest neighbor tight binding model,
which we used in our computations. Details of the computation to
determine those parameters are found in appendix C.

Active layer A (GGA) A (LDA)
MoS, 0.998 1.338
WS, 1.021 1.183
MoSe, 1.556 1.334
WSe» 0.332 1.530
MoTe; 8.219 1.070
WTe, 1.366 1.203
Since and K points are separated by a large distance in k-

space, electrons at each of these points can be treated as inde-
pendent excitations as noted in the appendix of [39]. In what
follows we will therefore investigate the impact of circularly
polarized light on the effective masses of the lowest energy
band near the and K points. In addition, we will highlight the
differences at the and K points. Here, it suffices to restrict
our investigation to the impact on the active TMD layer.

First, we investigate the effect of circularly polarized light
on excitations near the  point. Our starting point is a third
nearest neighbor three-band tight binding model [150] of a
TMD that we discuss in more detail in appendix C. From this
model we find that circularly polarized light in the high fre-
quency limit (frequencies larger than the bandwidth) modifies
the effective mass m° as

m® < )1; ZEa’A*m°, (7
where we assumed a relatively weak field strength A, and a
is the in-plane lattice constant. A mass renormalization para-
meter = that describes how strongly the effective mass m® is
increased due to the electromagnetic field strength A depends
on the particular choice of active TMD layer. Values of = for a
variety of active TMD layer choices are given below in table 1.

We find that most computed values of the renormaliza-
tion parameter = are close to unity. However, = seems to be
more strongly dependent on a specific choice of tight bind-
ing model rather than the actual underlying material. There-
fore, our results based on the tight binding parameters from
[150] can be taken as an order of magnitude estimate. That
is, we can only make the observation that circularly polar-
ized light increases the effective mass near the  point roughly
asm® <> )a; a*A’4m°. Additional DFT based work might be
necessary to find more reliable results for the mass renormal-
ization parameter =. Such an analysis is beyond the scope of
the present work.

Despite the spread of values for = we find that circularly
polarized light allows one to manipulate r;, and therefore
gain a high level of control over the phase diagram of [36].
Particularly, in figure 4 one can see how one may move in
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Figure 4. Adapted and modified redrawn version of the phase
diagram from [36]. Different magnetic phases in a twisted TMD are
shown in different colors. Black arrows indicate schematically how
circularly polarized light can allow one to tune vertically across
phase boundaries in the phase diagram. Due to the modifications
that circularly polarized light enacts on the effective mass m”*, the
parameter o> — a2(1 — azAz) decreases depending on its position
in the plot and the parameter r; — (1 4 a?A?) increases based on
its position in the plot, which we indicated by arrows pointing along
(rra*A%, —a*ad*A?).

the phase diagram by the application of circularly polarized
light.

From the phase diagram in figure 4 it becomes clear that
circularly polarized light provides an additional knob that
allows one to tune the magnetic phases of a twisted TMD het-
erobilayer independently from the tuning in the case of light
emanating from a waveguide. We stress that while the phase
diagram itself is unmodified from [36], in our theoretical treat-
ment we were able to capture renormalized couplings that
allow one to tune an experimental system along the arrows
we have added to the phases diagram. The arrows, an original
contribution of this work, can be interpreted as the couplings
o? and r® flowing with increasing strength of the circularly
polarized light.

Next, we turn to the effect of circularly polarized light
on excitations near the K point. We investigate how it can
also be used here to modify the effective mass m°. Here, we
worked with a simpler nearest neighbor three band model for
a TMD that was found in [150] so that a more concise ana-
lytical expression could be obtained in appendix D. We were
able to do so because the simpler model is a good fit to the
band structure near the K point—unlike the case of the point.
The model and details of our computation are discussed in the
appendix D. Relevant for the main text is the case of weak
field strengths A and momenta near the K point. Similar to
momenta near the point, we find that mass is renormalized
asin equation (7). The renormalization parameters = for a vari-
ety of materials are given in table 2.

We find that unlike the case of the point, circularly polar-
ized light reduces the effective mass near the K point. The
effect is generally not as pronounced as near the  point, with
a noticeably smaller = < 1. The effect of circularly polarized
light on effective masses seems to have a much stronger mater-
ial dependence than in the case near the K point. Lastly, results

Table 2. Mass renormalization parameter A near the K point
computed based on nearest neighbor tight binding models that were
taken from [150]. Different DFT procedures such as generalized
gradient (GGA) and local density approximation (LDA) were used
to fit a nearest neighbor tight binding model. Details of the
computation to determine parameter A are given in appendix D.

Active layer A (GGA) A (LDA)
MoS, —0.0550 —0.0507
WS, —0.0065 +0.0002
MoSe; —0.1674 —0.1701
WSe; —0.0937 —0.0858
MoTe, —0.4771 —0.5122
WTe, —0.3710 —0.3597

from different DFT approaches are in much better agreement
with one another than in the case near the point. This might
be attributed to less free parameters that appear in the nearest
neighbor tight binding, which could guarantee a more consist-
ent fit.

Interestingly, the mass is renormalized differently near the
K and points. This observation could be used as an indirect
probe to determine if certain material properties are domin-
ated by the electrons near the K or  points. That is, if we are
near a phase transition point circularly polarized light might
cause a phase transition in a case dominated by the point
but not the K point or vice versa. This effect should be observ-
able in magnetic response functions, most obviously the order
parameter.

For completeness we note that the phase diagram in figure 3
(derived in [36]) made use of self-consistent Hartree—Fock
theory for a further simplified lattice model. The full inter-
acting Hamiltonian—including the Coulomb interaction U)r+
was projected onto the highest band in figure 2. Therefore, the
interactions were modeled by a generalized Hubbard term

1
Hin [ 5 UR Rlep cpiicrizicrs  (8)
7,77, R,R’
where U)R R+ corresponds to the Coulomb interaction

evaluated using Wannier functions corresponding to moire lat-
tice sites at positions R and RT[37].

4. Comments on Floquet state preparation

In the previous sections, we focused on how a periodic drive
can modify exchange interactions in a TMD heterobilayer
effective Hamiltonian. Our analysis was limited to studying
the ground state magnetic properties of an effective time-
independent Hamiltonian. However, the question about when
the dynamics of the system can be fully described by this
Floquet Hamiltonian is a very challenging one in itself and
cannot be fully answered by direct studies of the properties
of this Hamiltonian. Furthermore, it is an open problem, in
general, how specific states of a Floquet Hamiltonian can be
prepared experimentally. The answers to both these questions
also depend on many other additional factors which include
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the methods used to turn on a periodic drive and also the
details of a coupling of the system to its environment. This
means that there are various time scales that enter the problem.
We briefly discuss some of these time-scales relevant to our
proposal.

The first case we consider is one where an experimental
setup allows preparation of an eigenstate of the Floquet
Hamiltonian. It is well known that isolated Floquet systems
due to interaction effects tend to heat to infinite temperature
and thus it is challenging to keep an eigenstate of a Floquet
Hamiltonian stable once it is attained. That is, the time evol-
ution is only for a limited time governed by effective Flo-
quet Hamiltonians—the so-called prethermal regime. After
this regime a Floquet state will not be an eigenstate and there-
fore it will not be stable under time evolution. Nonetheless,
generically, even interacting systems can sustain an expo-
nentially long prethermal regime [50] before heating dynam-
ics take over. Sufficiently weak drives in the high frequency
regime permit some rough estimates of prethermal regime
times 7. P exp)w/J4 which can be made on the basis of
interaction strength J and drive frequency w [50]. However,
not only is the length of the pre-thermal regime of experi-
mental relevance, but also the length of time before the onset
of the pre-thermal regime. The time required for the onset
of the pre-thermal regime can be roughly estimated from the
strength J of interactions, and is roughly of order 1/J [151] in
this case.

The second case we consider is the problem of Floquet state
preparation. While there does not seem to be a general route to
prepare a Floquet state, an adiabatic switch-on protocol can be
used to prepare Floquet states [152] if the initial state is adia-
batically connected to the target state. An alternative route to
the preparation of ground states of a Floquet Hamiltonian is via
coupling to a heat bath. Particularly, it has been shown [78]
that a periodically driven system under certain assumptions
about the system-bath couplings will evolve into a so-called
Floquet-Gibbs state. That is, the density matrix for relatively
long times will evolve to be the density matrix for a Gibbs state
e PP where H is the Floquet Hamiltonian [78]. This kind of
state can be achieved under the condition that the heating rate
of the driven system is smaller than the relaxation rate associ-
ated with the system-bath coupling. From this perspective the
problem of Floquet state preparation can be shifted to a ques-
tion about the engineering of appropriate system-bath coup-
lings. However, there are also time scales involved with how
long it takes to reach a Floquet-Gibbs state. To our knowledge
there do not yet exist simple estimates for this time scale.

We will therefore focus on the time scales that we can
estimate with current techniques. The prethermal regime can
be achieved within a few 100fs for J ~ 10 meV [151]. High-
power ultrashort lasers with pulse widths of a few 100 fs are
capable of generating electric field amplitudes in the range
0.1-1 Vnm ' [153]. This results in sufficiently large driving
strengths to induce a magnetic phase transition if the system
is close to a phase boundary. We conclude this section by not-
ing that while it is challenging to apply our approach to tune
magnetic phases in a twisted TMD, it is within current exper-
imental reach.

5. Conclusion

In this work, we discussed how a periodic drive can be
used to control and alter the magnetic properties of TMD
heterobilayers. Many previous works [127-135] have studied
light-induced modification in exchange interactions. Most of
these changes originate from the direct modulation of in-plane
hopping arising from the transverse E field of a laser. However,
in our case, we harness the additional layer degree of freedom
possessed by moiré materials and use waveguide light to get
an E field perpendicular to the TMD layers. In this case, we
take an indirect route to modify exchange interactions. The
longitudinal field of the laser renormalizes interlayer hoppings
which in turn leads to a modification of the moiré potential.
This change affects interaction parameters and in turn the mag-
netic properties. Our scheme differs from previous proposals
in that it is based on modifications to interaction parameters
that arise from interlayer hopping renormalizations.

We have also studied the effect of circularly polarized light
and found that it leads to a renormalization of the effective
mass. This renormalization makes it possible to tune a sep-
arate parameter that determines the magnetic phase diagram.
Circularly polarized light therefore serves as an additional tun-
ing knob that allows one a high level of control over the phase
diagram of a twisted TMD.

We note that an interesting future direction would be to
study the effect of linearly polarized transverse light on the
phase diagram, which due to the breaking of rotational sym-
metry could lead to a wealth of new different magnetic phases.

With the rapidly expanding zoo of moiré materials and their
magnetic properties only scarcely understood at this point, we
believe these methods would find many applications in this
new class of materials. Furthermore, we believe that longitud-
inal light can find novel applications beyond Floquet engineer-
ing. For example, it would be interesting to explore the inter-
play of longitudinal waveguide light and moiré materials in
the context of other light-matter phenomena such as optical
responses, by generalizing the work of [154-156].
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Appendix A. Mechanism for on-site energy from
interlayer hopping

In this appendix we will discuss in more detail the mechanism
for indirect on-site hopping that eventually leads to the moiré
potential in equation (1).

For simplicity of the discussion, let us consider a one
dimensional system of two initially disjoint chains denoted by
A and B:

Ho| Ha; Hp| [ )eaa; ait; taa;, a;i; h.ct
: { )enb; b Vigby, \bi; h.ck (A1)

i

with e — €4 and e €4 — t4,15. That is the system has a
relatively large energy gap, which makes it possible to find a
simpler model by separating the problem into high- and low-
energy sectors. We will be interested in the low-energy sector
of this Hamiltonian, which is spanned by:

o, (A2)

Wil e J

with energy E{ [ ea; 2tscosk. The corresponding high-
energy sector is spanned by

BILOOL[ % 0,

J

g1

(A3)

with energy E? [ ep; 2tpcosk.

Now, we will consider the impact that a coupling between
the two chains will have. Particularly, let us consider a perturb-
ation arising from a site-dependent interchain hopping. Let’s
assume that the spatial dependence of this interchain hopping
has a period n > 1. We can model this term as:

V] thp)a;bi; h.cH

i i

(A4)

with vi*" [ v\, This perturbation is clearly off-diagonal
between { 4 and { p where { 4 and { 5 are projection operat-
ors for chain A and B, respectively. Furthermore, the periodic
nature of this perturbation allows us to write:

27rm

vm[ e n qv (AS)

q

Now, we are interested in finding out how this perturba-
tion affects the effective low-energy Hamiltonian. Here, we
can employ a Schrieffer—Wolff transformations to derive the
effective low-energy Hamiltonian. The second-order correc-
tion is given by:

(A6)

1 .
Heep | EPA]SI L VP,y,

where

[ >WVEL e %J' k%' (A7)

J Jq
2
o 6>k )kT; fq<<vq, (A9)
q
1 Vab Vba
H, [~ Kk __yba,  yab 0 pd kit
eff,Z[ Zk/[k/k)EZ’ Eb kk k'k 2 EZ” \/a|> a\7/

(A10)

1 1 27
aa t g
eff,z[ P [ > a b5>k )k, 61<<
i kg’ B Ei "
~ o Yk Okt gt v (]
) n q7q \/a a\/
1 1 2
=) Sl L
o daq ) B Bl "
~o )k Vit gt Loy { KDET (ALY
T TN

aa l
effz { e A [
k’q,q’ +2" E
2w
L) S
n a
Ethvq/[
’qq ”“q’
2 2
~ [k “q< >>k WqT< (A12)
n a n a
2 2
. T
n a a
(A13)

e meEam
. VAN

For the case, where cg — €4,14,1, We can simply assume
E¢, El> &3

k(I m) i%= (ql+q'm) / |>m

aa
Hefis | VqVq'€ er

v
(Al4)

B k.q,q",l,m
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aa [

T ’
i<~ (gl4+q'm
eff,2 VgVq Oime'™ attatm) | )ma

v
= [ vgvgre' s @t |y
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[oc Hegi |

eff,2 la \/
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Now, using equation (AS5), we can show
eir2 | L { { ey, { eiz:*xﬂ‘f/lvT\ B
eft, q a
e l, )L, , > ;1/ v

q
.

\’ . —
WE
[ [, e LK (A16)

which is an on-site energy shift proportional to the square of
inter-layer at the given site. In second-quantization picture, we
can write:

fipt
Heﬁ"z [ ) ?:B ai a;.
B

(A17)

i

We notice the on-site potential is modified only at sites where
interchain hopping is non-zero. These results can be simply
generalized for a two-dimensional set up where we can just
replace index i with a pair of indices i, j denoting the lattice site
as long as we have a tight-binding Hamiltonian with nearest-
neighbor interaction only.

Appendix B. Neglected effects of indirect hopping
on-site potential

In our discussion we have focused on just two layers of the
twisted TMD. However, it is important to note that a TMD
bilayer does not consist of two atomic layers but actually six.
In the example of WSe,/MoTe; one has a layer structure like
Se W Se Te Mo Te.For concreteness we will keep
referring to the material combination WSe, /MoTe,, although
for a general discussion one may take W/Mo as being any
two different transition metals M and Se/Te as any chalco-
genide X. If we now assume that W is the AL [38] we can
then see that both hoppings W = Te and W = Mo contrib-
ute to the interlayer hopping that can lead to moiré poten-
tial A )x+ It is therefore not completely correct to just replace
V. <+ Jo)aLA-+ because there is not just one interlayer lattice
constant a; . However, for the purposes of a clear discussion
and to find a simplified and easy to interpret model we will
make the approximation ay, [ caw ., which essentially boils
down to an order of magnitude estimate. We can estimate that
c=~0.85.

The reason for this approximation is as follows: First we
see that the spacing between the centers of two TMD layers
is approximately 6 A [157]. Next, we note that the spacing
between two the layers of M and X in a TMD MX; is approx-
imately 1.5 A [158, 159]. Therefore, if the hopping W = Mo

and W= Te for the closer of the Te is dominant then both
interlayer distances are somewhere between 0.7aw j, and
law wmo. Therefore, a compromise is ar [ 0.85aw u,. This
approximation will lead to small errors of <5% if we compare
Jo)arLA-£ to Jo)w meA-2 or Jo)w 1.A-2 if driving strengths in
the range ap A < 0.5 are considered.

Appendix C. Downfolding the three band model of
a TMD subjected to circularly polarized light in the
high frequency limit near the point

In this appendix, we study the impact of circularly polarized
light on a twisted TMD hetero bilayer. We are interested in
the effective mass near the point. Since circularly polarized
light mostly modifies in-plane hopping elements we first con-
sider the case of an isolated TMD layer, which in our case is
assumed to describe the active TMD layer in our twisted TMD
heterobilayer. The starting point of our discussion is the third
nearest neighbor three band tight binding model of a TMD that
was derived in [150]. The Hamiltonian is

Vo Vi W, \

Vi Vi Vi .
Vi Vi V2o
This Hamiltonian is written in the basis of d-orbitals

}dp,d,y,d2 (. The different contributions to the Hamilto-
nian are given as

H™N)Kk4] (Cl)

Vol e1; 2t9)2cosXicosYy; cos2Xi+
; 2rg)2cos3XycosYy; cos2Yi+
; 2up)2c082X;cos2Yy; cosdX;+ (C2)

il 2 3 sinXgsin Yy ; 2)ry; r4sin3X;sin Yy
2 3u,sin2X;sin2Y;
; i}2tlsinXk)2cost; cosYyt 2)r1 o+

~
~sin3X;cos Yy ; 2u;sin2X;)2c0s2X;; cos2Y+
(C3)

2

Vo[ 28)c082X;  cosXgcos Y+ 3)r1; r+

~)cos3XycosY; cos2Yi+ 2up
~)cosdX; cos2X;cos2Yi+

— 2
;0|2 3t cosXgsinYy; —gsinYk)rl 4+

~)cos3Xy; 2cosYi+ 2 §ulcos2stin2Yk(

(C4)
Vll[ 2 )t11§ 3ty+e0s X cos Yy ; 2t cos2X;
i 4rypcos3XicosYy; 2)ry; 3r124€082Y;
5 Junr; 3uznteos2Xicos2Yy; 2upicosdXy, (C5)
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3)tn

;o 3uxn
; i} 4ty sinXy)cos Xy cos Y+ 4uppsin2X;

Vi [ t114sin X sin Yis 4ri1sin3X; sin Yy

uy148in2X; sin2Yy,

~
~)cos2X;  cos2Yi+ (C6)
with the shorthand
1
Xk [ Ekxa: Yk [ Tkya. (C7)

The different couplings ¢;, t;, r; and u; for a variety of different
TMDs can be found in [150].

Starting from this Hamiltonian circularly polarized light is
introduced in the standard way via a vector potential A)z-+H
A)cos)wtsin)wrH-and employing the minimal substitution
procedure k <> k; A. This allows us to define

H)k,t+ H™™k; A)r (C8)

In the high frequency limit to leading order we may include
the effect of circularly polarized light by employing an average
Hamiltonian procedure

which corresponds to the leading order approximation of vari-
ous high frequency expansions [55, 136].

The resulting Hamiltonian H,, )k-Hncludes various Bessel
function factors Jo)aA+ Jo) 3aA+and Jy)2aA+but offers
few insights and is unwieldy. Therefore, we do not explicitly
include this expression here. However, it is important to note
that it is diagonal at the point, k[ . Therefore, one may
apply second order perturbation theory in k to determine the
effective mass m° of the lowest band from a comparison to
the energy expression E [ c; 22* k? (small non-rotationally
symmetric parts were dropped since they do not appreciably
modify the band structure). A plot of such an approximation
is shown in figure 5 below.

The same procedure can of course also be applied in the
case of no circularly polarized light, A|[ 0. Doing so one may
find how light modifies the effective mass m°. In particular one
finds the expression

m°)A+

1: = 2A2
mO)A[O—i—[ ) a 9

(C10)

where we have employed an expansion for small field
strengths A. An explicit expression for = is given below:

l T
Ho)kH = / dtH)K, 14 (C9)
0
J
_[ 1 9))"1 ;I 2141%2 6r0 6)‘11 2 §r12; 2t0 2% 12 8u0 4Ll1] 4u22|
4 6ro; 6ri; 2 3riz 6lg; 3ti1; 31 6ug; 3urr; 3un £ e’
) 27)7‘1 s t; 2L£|—|g 18r9 18r; 4 §I’12; 6ty 3ty 3122; 24uy  12uyy 121422'
, 18rg; 18r; 4 37‘12 18ty; 9t11; 9t  18ug; uyy; Quypy  3ey; 382'2
6)3r;  3ry; tr; BuiBry 2 fr; 2u+
6rop 6r;; 2 §r12; 6ty 3ty 31‘22; 6ug  3upy 31422; g1 &2
18)3 3r; t1; 8 ; oty 2
7)”1 ry; tiy Suidry oy oty 2ui+ 9t o 16u0<
18r9 18r; 4 31‘12; 18ty 9ty 9122; 18uy  uyy 9Lt22; 31 3e; (C11)
) 3))’1 ;1] 2141—’2
6ro; 6ri1; 2 3rip 6lg; 3tiy; 3t 6ug; 3upr; 3un g1 €
9 sty 2
- i s s 2ud ; 3ros fo; 4M0<
18)‘0; 18r11; 4 3}’12; 3) 6l(); 3l1]; 32‘22 6u0; 3M1]; 3u22 €13 &+
) 3)r r; h; 2uF
6rop 6r;; 2 §}"12; 6ty 3ty 3l22; 6ug  3upy 31422; g1 &2
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4. hia [ g)l‘zz tmAsin X sinYy 5 4ty sinXk)Cost cos Y+
35 (D7)
vv with the shorthand
% 2 ' | —
~— 1 :_ Xk [ E ya—= Yk [ 7 ya. (D8)
L [
0_ The different couplings ¢; and #; for a variety of different
[ . \/ R , TMDs can be found in [150].
_1 b \ - s \Y o Circularly polarized light may be included using the same
. : L A minimal coupling procedure as in the previous appendix C. We
I K I M [ also make use of the same average Hamiltonian approach as

Figure 5. Plot of the band structure of WS, under the influence of
circularly polarized light of strength A = 0.1 using GGA parameters
from [150]. Dashed in red we see the quadratic approximation to
lowest band of the Hamiltonian that is valid near the I" point.

Since this result is very unwieldy and not very insightful,
we have decided to provide numeric results for specific choices
of TMDs are given in the main text in table 1.

Appendix D. Downfolding the three band model of
a TMD subjected to circularly polarized light in the
high frequency limit and near the K point

In this appendix, we study the impact of circularly polarized
light on a twisted TMD hetero bilayer. We are interested in
the effective mass near the K point. The starting point of our
discussion, unlike near the  point, is the first nearest neighbor
three band tight binding model of a TMD that was derived in
[150]. We chose this model because the band structure near
the K point is well captured by this simpler model—unlike
the bands near the  point. Furthermore, it allows for more

analytical progress. The model is given as below
ho  h hz\
H™KH  |h hy hiags - (D1)
h3y  hY, hgzz

This Hamiltonian much like the third nearest neighbor model
from the previous section is written in the basis of d-orbitals
}dp,dyy,dy (. The different contributions to the Hamilto-
nian are given as

ho [ 2t9)cos2Xy; 2cosXicosYit € (D2)

hl 2 31, sin Xy sin Yy ; 2if))sin2Xy ; sinXjcos Yy4=
(D3)
hy [ 2t)cos2X;  cosXpcosYit 2i 3¢, cos X; sin Yy
(D4)
hyiy [ 211 cos 22X} ; )l11 3 3tpfeosXicosYy; e (D5)
hy» [ 2ty cos2X} ; )3[11 3 tpHeosXpcosYy; e (D6)

in appendix C and find that circularly light renormalized the
effective mass near the K point according to

D9)

with

Z(A) = 4Jo(aA)
6 (r% 2300+ 3:%) Jo(aA)

3Jo(aA) (—2t0 + 111 + 2302+ t22) +2(e1—€)

VBt —m)?

4ty

X

+l|1+2ﬂt12+l22)7 (D10)

where Jj is the Oth Bessel function of the first kind. An expan-
sion to second order in field strength A yields the result that is
referenced in the main text.
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