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Abstract

Reconstructing an object’s geometry and appearance from multiple images, also known as inverse
rendering, is a fundamental problem in computer graphics and vision. Inverse rendering is inherently
ill-posed because the captured image is an intricate function of unknown lighting conditions, material
properties and scene geometry. Recent progress in representing scene properties as coordinate-based neural
networks have facilitated neural inverse rendering resulting in impressive geometry reconstruction and
novel-view synthesis. Our key insight is that polarization is a useful cue for neural inverse rendering as
polarization strongly depends on surface normals and is distinct for diffuse and specular reflectance. With the
advent of commodity, on-chip, polarization sensors, capturing polarization has become practical. Thus, we
propose PANDORA, a polarimetric inverse rendering approach based on implicit neural representations. From
multi-view polarization images of an object, PANDORA jointly extracts the object’s 3D geometry, separates
the outgoing radiance into diffuse and specular and estimates the illumination incident on the object. We
show that PANDORA outperforms state-of-the-art radiance decomposition techniques. PANDORA outputs
clean surface reconstructions free from texture artefacts, models strong specularities accurately and estimates
illumination under practical unstructured scenarios.
Keywords— Polarization, inverse rendering, multi-view reconstruction, implicit neural representations

1 Introduction

Inverse rendering involves reconstructing an object’s appearance and geometry from multiple images of the
object captured under different viewpoints and/or lighting conditions. It is important for many computer
graphics and vision applications such as re-lighting, synthesising novel views and blending real objects with
virtual scenes. Inverse rendering is inherently challenging because the object’s 3D shape, surface reflectance
and incident illumination are intermixed in the captured images. A diverse array of techniques have been
proposed to alleviate this challenge by incorporating prior knowledge about the scene, by optimizing the scene
parameters iteratively using differentiable rendering and by using imaging modalities that exploit unique
properties of light such as spectrum, polarization and time.

Neural Inverse Rendering. Recent works demonstrate that modelling the outgoing radiance and object
shape as coordinate-based neural networks results in impressive novel-view synthesis (NeRF) [28] and
surface reconstruction (VolSDF) [52] from multi-view captures. The outgoing radiance from the object is
a combination of different components of surface reflectance and illumination incident on the object. As a
result, separation and modification of components of the captured object’s reflectance is not possible with
works such as NeRF and VolSDF. Moreover, the diffuse and specular components of object reflectance have
different view dependence. Using the same network to model a combination of difuse and specular radiance
results in inaccurate novel view synthesis.
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Assumptions. In this work, we assume that the incident illumination is completely unpolarized. The object
is assumed to be opaque and to be made up of dielectric materials such as plastics, ceramics etc as our
polarimetric reflectance model doesn’t handle metals. We focus on direct illumination light paths. Indirect
illumination and self-occlusions are currently neglected.

2 Related Work

Inverse Rendering . The goal of inverse rendering is to recover scene parameters from a set of associated
images. Inverse rendering approaches traditionally rely on multi-view geometry [40, 39], photometry
[5] and structured lighting [31, 34] for 3D reconstruction [47], reflectance separation [31, 23], material
characterization [16] and illumination estimation [38, 12]. Due to the ill-posed nature of inverse rendering,
these approaches often require simplifying assumptions on the scene such as textured surfaces, Lambertian
reflectance, direct illumination and simple geometry. Methods that aim to work in generalized scene settings
involve incorporating scene priors [18, 54, 9], iterative scene optimization using differentiable rendering
[22, 55] and exploiting different properties of light such as polarization [57], time-of-flight [53] and spectrum
[21].

Neural Inverse Rendering . Recent emergence of neural implicit representations [49] has led to an
explosion of interest in neural inverse rendering [44]. Neural implicit representations use a coordinate-based
neural network to represent a visual signals such as images, videos, and 3D objects [41, 35, 27]. These
representations are powerful because the resolution of the underlying signal is limited only by the network
capacity, rather than the discretization of the signal. Interest from the vision community originated largely due
to neural radiance field (NeRF) [28], which showed that modelling radiance using implicit representations
leads to high-quality novel view synthesis.

Since the advent of NeRF, several works have exploited neural implicit representations for inverse rendering
applications. IDR [51], UNISURF [33], NeuS [48] and VolSDF [52] demonstrate state-of-the-art 3D surface
reconstruction from multi-view images by extending NeRF’s volume rendering framework to handle implicit
surface representations. Accurate surface normals are crucial for modelling polarization and reflectance. Thus,
we use ideas from one such work, VolSDF [52], as a build block in PANDORA.

NeRF models the net outgoing radiance from a scene point in which both the material properties and the
lighting are mixed. Several approaches such as NeRV [43], NeRD [7], NeuralPIL [8], PhySG [56], RefNeRF
[46] have looked at decomposing this radiance into reflectance components and illumination. PhySG and
NeuralPIL employ spherical Gaussian and data-driven embeddings to model the scene’s illumination and
reflectance. RefNeRF introduces integrated directional embeddings (IDEs) to model radiance from specular
reflections and illumination and demonstrates improved novel view synthesis. Inspired from RefNeRF, we
incorporate IDEs in our framework. Equipped with IDEs, implicit surface representation and polarimetric
acquisition, PANDORA demonstrate better radiance decomposition than the state-of-the-art techniques,
NeuralPIL and PhySG (Fig. 4,5, Table 1)

Polarimetric Inverse Rendering . Polarization strongly depends on the surface geometry leading to several
single view depth and surface normal imaging approaches [29, 42, 3, 4, 20]. Inclusion of polarization cues has
also led to enhancements in multi-view stereo [11, 57, 15, 14], SLAM [50] and time-of-flight imaging [17].
The diffuse and specular components of reflectance have distinct polarization properties and this distinction
has been utilized for reflectance seperation [26, 11, 19], reflection removal [25] and spatially varying BRDF
estimation [13]. PANDORA exploits these polarimetric cues for 3D reconstruction, diffuse-specular separation
and illumination estimation.

Traditionally acquiring polarization information required capturing multiple measurements by rotating
a polarizer infront of the camera, unfortunately prohibiting fast acquisition. The advent of single-shot
polarization sensors, such as the Sony IMX250MZR (monochrome) and IMX250MYR (color) [1] in commercial-
grade off-the-shelf machine vision cameras has made polarimetric acquisition faster and more practical. These
sensors have a grid of polarizers oriented at different angles attached on the CMOS sensor enabling the
capture of polarimetric cues at the expense of spatial resolution. Various techniques have been proposed for

3





Exitant Stokes vector From the pBRDF model, the output Stokes vector at every point can be decomposed
into the matrix multiplication of diffuse and specular Mueller matrices,Hd and Hs, with the illumination
Stokes vector Si,

So(x, ωi) =

∫

Ω

Hd · Si(x, ωi)dω +

∫

Ω

Hs · Si(x, ωi)dω (2)

From Si and the pBRDF model, we derive that the outgoing Stokes vector at every point depends on the
diffuse radiance Ld, specular reflectance fs and the incident illumination Li as,

So(x, ωi) = Ld





1
βd(θn) cos(2φn)
−βd(θn) sin(2φn)



+ Ls





1
βs(θn) cos(2φn)
−βs(θn) sin(2φn)



 , (3)

where we terms βd/βs depend on Fresnel transmission/reflection coefficients for the polarization components
parallel and perpendicular to the plane of incidence, T ‖/R‖ and T⊥/R⊥

βd =
T⊥ − T ‖

T⊥ + T ‖
, βs =

R⊥ −R‖

R⊥ +R‖
, (4)

The Fresnel coefficients, T/R solely depend on the elevation angle of the viewing ray with respect to the
surface normal, θn = cos−1(n · ωo). φo denotes the azimuth angle of the viewing ray with respect to the
surface normals, φn = cos−1(no,yo), where no is the normal vector perpendicular to the viewing ray and yo is
the y axis of camera coordinate system. Please refer to Appendix A for the detailed derivation and functional
forms for Fresnel coefficients.

Next we show how these polarimetric cues depend on the diffuse and specular reflectance and aid in
radiance decomposition.

3.2 Polarimetric properties of diffuse and specular radiance

From Eq. 3, the polarimetric cues of the captured Stokes vector are

Lo = Ld + Ls , βo = Ldβd + Lsβs , φo = tan−1(− tan(2φn))/2

Fig. 2 shows polarimetric cues for a sphere scene for different reflectance properties. For only diffuse case
(left), the degree of polarization increases with elevation angle and the angle of polarization is equal to the
azimuth angle. For only specular case (middle), the degree of polarization increases with elevation angle until
the Brewster’s angle after which it reduces. The angle of polarization is shifted from azimuth angle by 90◦.
When both diffuse and specular reflectance are present (right), the polarimetric cues indicate if a region is
dominated by diffuse or specular radiance. The specular areas have higher degree of polarization than diffuse
areas. The two components have orthogonal angle of polarization.

4 Our Approach

We aim to recover the object shape, diffuse and specular radiance along with the incident illumination from
multi-view images captured from a consumer-grade snapshot polarization camera. Fig. 3 summarizes our
pipeline.

4.1 Input

PANDORA relies on the following inputs to perform radiance decomposition: 1) Polarization Images. We
capture multiple views around the object with a 4 MP snapshot polarization camera [1] (Fig. 3(a)). These
cameras comprise of polarization and Bayer filter arrays on the sensor to simultaneously capture color images
for four different polarizer orientations at the expense of spatial resolution. We employ the demosaicking and
post-processing techniques utilized in [57] to convert the raw sensor measurements into 4 MP RGB Stokes
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4.3 Neural Rendering Architecture

Diffuse Radiance Estimation. Diffuse radiance is invariant of the viewing direction and only depends
on the spatial location. The geometry features from SDFNet and the position are passed through another
coordinate-based MLP, denoted as DiffuseNet, to output the diffuse radiance at that position LD(x).

Specular Radiance Estimation. Unlike the diffuse radiance, the specular radiance depends on the viewing
angle d and the object roughness αx. First we estimate the object roughness using an coordinate-based
MLP, RoughNet, similar in architecture to the DiffuseNet. For a certain object roughness, the obtained
specular radiance involves integrating the specular BRDF along an incident direction factored by the incident
illumination [6], which is a computationally expensive procedure that generally requires Monte Carlo. Inspired
by [46], we instead use an IDE-based neural network to output the specular radiance, LD from the estimated
roughness, α and surface normals, n. Moreover,on setting roughness close to zero, IllumNet also provides us
the incident illumination, Li.

Volumetric Masking We exploit object masks to ensure only the regions in the scene corresponding to the
target object are used for radiance decomposition. Even when the background is zero, VolSDF estimates
surface normals which have to be masked out to avoid incorrect quering of the IllumNet. Rather than using
the 2D masks on the rendered images, we found that learning a 3D mask of the target object helps in training,
especially in the initial interations. This 3D mask m(x) is 1 only for the positions x that the object occupies
and represent’s the object’s visual hull. We use this 3D mask to obtain the diffuse and specular radiance that
is clipped to zero at background values,

Lm
D(x) = m(x) · LD(x) Lm

S (x,d) = m(x) · LS(x,d) (6)

The 3D mask is estimated using a coordinate-based MLP that we term MaskNet. This network is trained with
the supervision of the input 2D object masks under different views. Similar to Eq. 5, the 3D mask values are
accumulated along the ray and compared to the provided mask M using the binary cross entropy loss:

Lmask = Eo,lBCE
(

M(o,d), M̂(o,d)
)

, (7)

where M̂(o,d) =
∫∞

0
T (t)σ(r(t))m(r(t))dt .

Neural Polarimetric Rendering Using the masked diffuse Lm
D , masked specular Lm

S and the estimated
surface normals n, we can render the outgoing Stokes vector, So(x,d) from Eq. 3. On integrating outgoing
Stokes vectors for points along the ray according to Eq. 5, we obtain the rendered Stokes vector Ŝ(x,d).

4.4 Loss Function

We compare the rendered Stokes vector Ŝ = [ŝ0, ŝ1, ŝ2]
T with the captured Stokes vector S = [s0, s1, s2]

T

(§4.1) using an L1 loss.The losss is masked to remove the effect of background values. The s1 and s2 could
have low values in regions having low degree of polarization (Fig. 2). We apply a weightage factor ws on the
loss for s1 and s2 outputs to further encourage the network to consider polarimetric cues in the training. The
Stokes loss is modelled as:

Lstokes = Eo,l [M · ‖ŝ0 − s0‖+ ws ·M · (‖ŝ1 − s1‖+ ‖ŝ2 − s2‖)] (8)

Additionally, similar to VolSDF [52], we have the Eikonal loss, LSDF to encourage the SDFNet to approximate
a signed distance field.

LSDF = Eo,l (‖n‖ − 1)
2

(9)

The net loss used to train all the networks described in the pipeline:

Lnet = Lstokes + 0.1LSDF + Lmask (10)
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Scene Approach
Diffuse Specular Mixed Normals Mesh

PSNR SSIM PSNR SSIM PSNR SSIM MAE HD
↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (°) ↓

B
u

st
NeuralPIL 23.90 0.87 18.04 0.87 26.71 0.87 15.36 N/A
PhySG 22.64 0.94 23.00 0.94 19.94 0.72 9.81 0.012
Ours 25.82 0.81 22.96 0.75 22.79 0.79 3.91 0.003

S
p
h

e
re NeuralPIL 13.09 0.55 12.92 0.55 20.04 0.66 38.73 N/A

PhySG 21.76 0.76 18.90 0.76 17.93 0.70 8.42 0.011
Ours 24.33 0.77 22.70 0.89 21.76 0.81 1.41 0.003

Table 1: Quantiative evaluation on rendered scenes We evaluate PANDORA and state-of-the-art methods
on held-out testsets of 45 images for two rendered scenes. We report the peak average signal-to-noise
ratio (PSNR) and structured similarity (SSIM) of diffuse, specular and net radiance, mean angular error
(MAE) of surface normals and the Hausdorff distance (HD) of the reconstructed mesh.PANDORA consistently
outperforms state-of-the-art in radiance separation and geometry estimation.

5.2 Comparisons with Baselines

We demonstrate that PANDORA excels in 3D reconstruction, diffuse-specular separation and illumination
estimation compared to two existing state-of-the-art radiance decomposition baselines, NeuralPIL[8] and
PhySG [56]. These baselines cannot exploit polarization cues and are run on radiance-only images using the
public code implementations provided by the authors. We then show additional applications of PANDORA
and an ablation study to analyse the crucial aspects of our algorithm.

3D Reconstruction The polarization cues directly depend on the surface normals (§3.2). Thus, inclusion of
polarization cues, enhances multi-view 3D reconstruction. PANDORA reconstructs cleaner and more accurate
surfaces such as jaw of the bust in Fig. 4 and the glass ball in Fig. 5. In table 1, we show that the mesh
reconstructed by PANDORA has much lower Hausdorff distance with the ground truth mesh as compared to
state-of-the-art. PANDORA also estimates more accurate surface normals as evaluated on a held-out test set.

Diffuse-Specular Separation The inherent ambiguity in separating diffuse and specular radiance compo-
nents from intensity-only measurements leads to artefacts in existing techniques. For example, the black
sphere in diffuse radiance reconstructed by NeuralPIL and PhySG contain faint specular highlights. Difference
in polarization of diffuse and specular components enables PANDORA to obtain more accurate separation
along with better combined radiance Fig. 4,5. In table 1, we show that PANDORA consistent outperforms
state-of-the-art in peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) of
diffuse, specular and the net radiance images. We also provide the video of multi-view renderings from these
diffuse, specular and mixed radiance fields that highlight the high quality of PANDORA’s separation.

Apart from the radiance, PANDORA can also separate the polarization properties of the object’s diffuse
and specular components (Fig. 6). Here, we see predicted cues match with our physical intuition: the AoP is
orthogonal for the diffuse and specular components, while the DoP is higher for the specular component.

Illumination estimation In addition to reflectance separation, our method can also estimate the illumina-
tion incident on the object. The rendered bust in Fig. 4 has blurry specular highlights that make illumination
estimation challenging. We observe that NeuralPIL fails to estimate the correct lighting. PhySG employs
spherical Gaussians that result in blurrier and more sparse reconstruction. PANDORA provides the best
reconstruction with sharper walls and edges of the window.

Similarly, we also perform illumination estimation on real-world data (Fig. 7). We show results on data
captured in two different environments. Fig. 7(left) is captured on a lab table with a long bright linear LED
with dim ambient light. Fig. 7(right) is captured in a office hallway with many small tube-lights and bright
walls. PhySG reconstruction is blurrier especially for the walls and comprises of color artifacts. PANDORA
can recover high quality illumination that accurately matches the ground truth illumination as captured by
replacing the object with a chrome ball.
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A Forward Model Derivation

In this section, we elaborate on the derivation of exitant Stokes vector as a function of diffuse and specular
radiance as described in Eq. 3 of the main manuscript.

Diffuse Component In Eq. 2, we decompose the outgoing Stokes vector into diffuse and specular compo-
nents. First we focus on the diffuse component. From the definition of Hd for pBRDF model [4] and the
illumination Stokes vector defined in eq. 1, we obtain

Hd · Si = ρ(n · i)LiT
+
i T−

i









T+
o

T−
o αo

−T−
o δo
0









, (11)

where ρ is the diffuse albedo, n is the surface normal and i is the incident illumination direction. With φn

denoting the exitant azimuth angle w.r.t. the surface normal, we define αo and δo as

αo = cos (2φn)

δo = sin (2φn)
(12)

We denote the term ρ(n · i)LiT
+
i T+ as the diffuse intensity LD. The term Hd ·Si is independent of the viewing

direction. Thus we obtain the first component of Eq.3

∫

Ω

Hd · Si(x, ωi)dω = Ld





1
T−
o /T+

o cos(2φn)
−T−

o /T+
o sin(2φn)



 (13)

Specular Component The specular exitant Stokes vector is obtained by substitution of Hs as defined in the
pBRDF model [4] and Si from eq. 1.

Hs · Si = Li

ksDG

4(n ·o)





R+

R−χo

R−γo



 . (14)

where ks is the specular coefficient, o is the exitant direction, D is the microfacet distribution and G is the
microfacet shadowing term. With ϕh and ϕh denoting the incident and exitant azimuth angle w.r.t. the half
angle h respectively, we define χo and γo as

χh = sin (2ϕh)

γh = cos (2ϕh)
(15)
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