
Ji�er-based Adaptive True Random Number Generation Circuits for FPGAs in
the Cloud

XIANG LI, University of Massachusetts Amherst, MA, USA

PETER STANWICKS, University of Massachusetts Amherst, MA, USA

GEORGE PROVELENGIOS, University of Massachusetts Amherst, MA, USA

RUSSELL TESSIER, University of Massachusetts Amherst, MA, USA

DANIEL HOLCOMB, University of Massachusetts Amherst, MA, USA

In this paper, we present and evaluate a true randomnumber generator (TRNG) design that is compatible with the restrictions imposed
by cloud-based Field Programmable Gate Array (FPGA) providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA
providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock
jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that
is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and
validate a stochastic model that conservatively quanti�es its worst-case entropy. We deploy and model the design in the cloud on 60
EC2 F1 FPGA instances to ensure su�cient randomness is captured. TRNG entropy is further validated using NIST test suites, and
experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in
the vicinity of the TRNG. After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses
four instances of a linkable sampling module to increase the entropy per sample, and improve throughput. The new variant improves
throughput by 250% at a modest 17% increase in CLB count.

ACM Reference Format:
Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb. 2022. Jitter-based Adaptive True Random
Number Generation Circuits for FPGAs in the Cloud. ACM Trans. Recon�g. Technol. Syst. 1, 1, Article 1 (January 2022), 20 pages.
https://doi.org/10.1145/3487554

1 INTRODUCTION

Random numbers are fundamental to cryptographic systems and widely used for generating keys, nonces, and ini-
tialization vectors. The quality of randomness required in these applications necessitates the use of TRNGs. TRNGs
exploit the inherent physical properties of the system in which they are embedded to generate statistically random
and unpredictable numbers. This characteristic makes the outputs of a TRNG unpredictable even to an adversary that
knows the current state of the circuit. Physical sources of entropy commonly used in FPGAs by on-chip TRNGs include
thermal noise and clock or oscillator jitter. The randomness of the numbers created by TRNGs is typically evaluated
using stochastic models and statistical tests [1].

Authors’ addresses: Xiang Li, University ofMassachusetts Amherst, MA, USA, xiang@umass.edu; Peter Stanwicks, University ofMassachusetts Amherst,
MA, USA, pstanwicks@umass.edu; George Provelengios, University of Massachusetts Amherst, MA, USA, gprovelengio@umass.edu; Russell Tessier,
University of Massachusetts Amherst, MA, USA, tessier@umass.edu; Daniel Holcomb, University of Massachusetts Amherst, MA, USA, dholcomb@
umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3487554


2 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

TRNGs are widely used in real-world applications with di�ering throughput requirements, ranging from one-time
pads [2] and keys for web authentication which have low throughput requirements to initialization vector (IV) gener-
ation for block ciphers in storage drives or internet protocol packets which can have higher throughput requirements.
For example, data passed from a host to a self-encrypting storage drive needs encryption/decryption before being
read/written [3]. In this case, the throughput and quality of the TRNG a�ects system performance, because the latency
will increase if the IV generation speed can not keep up with the read/write speed of the drive. To support applications
such as these which require random numbers, several works have studied TRNG on FPGAs [4][5][6][7][8] in recent
years.

FPGAs are increasingly being used in cloud-based systems for prototyping and acceleration, and to support secure
soft processors [9] which require a source of randomnumbers. Yet to protect their infrastructure frommalicious voltage
attacks [10], cloud providers such as AWS impose restrictions on the types of circuits that are allowed on their FPGAs.
Circuits that deviate from standard digital design �ows, including logic-driven clocks and combinational loops as found
in ring oscillators (ROs), are detected during bitstream compilation and disallowed from being loaded onto the FPGA
[11]. This restriction causes di�culty in creating and characterizing jitter-based TRNG circuits for cloud applications.
Despite this unique restriction on cloud-FPGAs, TRNGs on FPGAs must nonetheless be designed to work correctly
when deployed across multiple instances, must be supported by a stochastic model to validate the entropy claims, and
should be robust against external perturbations.

In this work, we extend our previous conference manuscript from FPT 2020 [12] to present a TRNG design and
validation procedure that is tailored around the restrictions of cloud-based FPGAs. Our design is able to harvest jitter
without creating oscillators, applicable to multiple cloud-FPGA instances, and adaptable to di�erences in clocks. The
design adjusts to changing environmental conditions and can be characterized without requiring ground truth delay
measurements that are commonly obtained by counting oscillations. We make several speci�c contributions in this
work:

• ATRNG for Virtex UltraScale+ FPGAs used in the cloud is detailed, implemented, and analyzed across numerous
AWS EC2 F1 instances. The design, which is based on tunable delay chains and a TDC that harvests entropy
from clock jitter, avoids primitives such as combinational loops that are common in TRNGs but disallowed by
AWS and other cloud providers.

• A novel procedure is proposed for computing the min-entropy per sample using a stochastic model. The model
empirically relates component delays to clock jitter by least-squares �tting. The delays that are independently
computed by the model during entropy evaluation strongly correlate to the delays from the FPGA’s own timing
report, which supports the validity of the delay values that are inferred by our approach.

• The robustness of our TRNG is evaluated by implementing a voltage attack against it on F1 and showing how
the TRNG adjusts in response to the attack without compromising its ability to create random numbers. Demon-
strating resilience to environmental changes is important for a TRNG that will be used in cloud settings, and is
a novel feature of the work.

• Beyond our basic TRNG design, we introduce a new approach based on linkable sampling modules, that can
be instantiated and connected together to increase the entropy per sample without requiring additional tuning.
The new variant of the TRNG improves throughput and min-entropy according to the stochastic model by 250%
and 270% respectively at a modest 17% increase in slice count by sharing the control unit and tunable delay
elements across the linkable sample modules.

Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 3

Fig. 1. Structure of TRNG design and interface.

The remainder of this paper is structured as follows. Section 2 provides background on previous FPGA TRNG ap-
proaches. Section 3 describes the structure of our TRNG and modeling is discussed in Section 4. Sections 5 and 6
evaluate and discuss the TRNG entropy, resilience, and costs. Section 7 introduces and evaluates the TRNG with link-
able sampling module. Section 8 concludes the paper.

2 BACKGROUND AND RELATEDWORK

Several works on cloud security have shown the demand for TRNGs on cloud-FPGAs. Zeitouni et al. [13] propose a
scheme to protect clients’ IPs while checking rogue circuits for cloud-FPGA vendors. Their scheme requires that the
trusted shell on an FPGA has a TRNG to generate a nonce that is sent to the client to compute a proof of authenticity.
Wolfe et al. [14] perform secret sharing Multi-Party Computation (MPC) on FPGAs in the datacenter. In the implemen-
tation of their MPC protocol on AWS FPGAs, a random key for each party needs to be generated and shared with one
other party. The implementation of TRNGs in FPGAs has been widely studied, although none of the prior approaches
comprehensively address the unique challenge of cloud FPGAs as well as the general TRNG requirements listed in
Section 1. A large majority of these previous implementations rely on ROs to generate high-frequency signals that
exhibit signi�cant jitter. For example, Kohlbrenner and Gaj [15] use two ROs and a sampling circuit to measure jitter
and Maiti et al. [16] deploy up to 128 ROs to amplify uncertainty. Some TRNGs augment ROs with delay paths to
increase timing sensitivity. Like our approach, Rozic et al. [17] and Yang et al. [4] use carry logic-based delay chains to
assist with entropy extraction. These approaches do not include tunable delays to combat environmental factors and
an RO is used to excite the delays.

Several non-RO based TRNGs have been built for FPGAs, but they also have limitations that make them inappropri-
ate for cloud deployment. Majzoobi et al. [6] use programmable delay lines built from lookup tables (LUTs) that can be
di�cult to characterize on a per-FPGA basis. Deák et al. [18] use the jitter from an on-FPGA phase locked loop (PLL)
to create a TRNG using clock settings that are a challenge to replicate in a cloud setting. Perhaps the most similar
TRNG approach to ours [19] uses a standard clock input, tunable delay bu�ers, and a delay path. However, unlike our
approach, the delay path is made from a chain of LUTs which have variable logic and routing delays across stages.

Manuscript submitted to ACM



4 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

(a) TDC chain.

…
bufbuf

coarse_cfg

thermometer encoder

…1 1

0 0

fine_cfg

      LUT50

i4

i3

i2

i1

i0

 .init= 
0x3080008

      LUT50

i4

i3

i2

i1

i0

 .init= 
0x3080008

thermometer encoder

(b) coarse tuning stages.

…
bufbuf

coarse_cfg

thermometer encoder

…1 1

0 0

fine_cfg

      LUT50

i4

i3

i2

i1

i0

 .init= 
0x3080008

      LUT50

i4

i3

i2

i1

i0

 .init= 
0x3080008

thermometer encoder

(c) fine tuning stages.

Fig. 2. Components of TRNG core and control unit.

3 STRUCTURE OF PROPOSED TRNG

Fig. 1 shows the top-level view of our TRNG design. It is a hardware module that serially generates 8-bit random
numbers. We instantiate the TRNG module within a hardware testbench for analysis. The design is created for AWS
EC2 F1 instances, which contain Xilinx Virtex UltraScale+ VU9P FPGAs. The bitstream is generated using Amazon’s
Hardware Development Kit (HDK), and then converted to an Amazon FPGA Image (AFI) that is reused for deployment
across F1 instances. Amazon provides a runtime tool to interact with the deployed design by reading and writing 32-bit
data to or from user-de�ned registers using AXI4 over PCIe. We make the signals at the top of Fig. 1 accessible to the
runtime tool only when the TRNG hardware is set to debug mode. The debug mode allows us to control the TRNG and
observe sample values from the TRNG core, which is useful for data collection and analysis in the cloud, but would be
insecure if enabled in production.

Internally, the TRNG module gets entropy from the TRNG core, and hashes it into a local entropy pool by XOR
operation. The control unit keeps a conservative estimate of the current entropy in the pool by counting the number
of valid samples provided to it. Once enough entropy is collected, a signal from the control unit is asserted and the
8-bit random value in the registers can be read out, upon which the entropy count is reset to 0. We now describe in
more detail the components of the TRNG core (Fig. 2).

3.1 Carry Chain Description

The TDC in our circuit (Fig. 2a) consists of 32 8-bit carry stages, and each output bit from the carry chain is the data
input to a D �ip-�op in the same slice. The controller repeatedly generates a single rising edge that propagates into
the carry chain with appropriate delay such that it will be propagating through the carry chain when the next rising
Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 5

clock edge occurs. The number of 1-values captured in the 256 �ip-�ops, i.e. the Hamming weight of the sample, is an
indication of how far up the chain the rising edge has propagated by the time of the rising clock edge. The Hamming
weight of samples will �uctuate slightly in each trial due to clock jitter, which is our source of randomness.

3.2 Tunable Delay Elements and Feedback Control

Our circuit uses tunable delay elements and feedback to ensure that the rising edge from the delay line is within
the TDC chain when the clock arrives. The control unit measures Hamming weight by summing the sampled values
captured in the �ip-�ops. Increasing the propagation delay will cause the rising edge to reach fewer TDC stages and
thereby will reduce the Hamming weight of samples. Similarly, decreasing the delay will increase the Hamming weight.
In this way the tunable delay circuits are the knob used for adjusting the Hamming weight. The control unit uses the
delay knob to position the rising edge in the TDC chain during clock arrival, as is required to generate randomness.

Ideally, the Hammingweight of the samples should be centered at around 128 in a 256-stage delay chain, which gives
a maximummargin against delay changes in either direction that could detune the circuit. The control unit adjusts the
coarse-tuning and �ne-tuning settings for the next sample based on the Hamming weight of the current sample using
the simple feedback scheme of Eq. 1, where (2, 5 ) and (2 0, 5 0) are the current and next values of the coarse and �ne
tuning settings, and �, is the Hamming weight of the current sample; note in Eq. 1 that 5<83 represents the middle
setting for �ne tuning, which in our case is 15. Furthermore, with each sample, the control unit credits entropy to the
entropy pool only when the Hamming weight is between 30 and 225 so that samples are not counted as random if
the circuit becomes detuned and the rising edge is approaching either end of the carry chain where jitter may not be
captured. Once enough samples are collected, the control unit asserts a signal to indicate the generation of an 8-bit
random number is complete, which will be further explained in Section 3.3. During testing, the control unit is able
to con�gure the TRNG tuning manually using values provided through AWS interface, and to return the resulting
samples via the same interface.

(2 0, 5 0) =

8>>>>>>>><
>>>>>>>>:

(2 + 1, 5<83 ) if 208  �,

(2, 5 + 1) if 158  �, < 208

(2, 5 � 1) if 48 < �,  98

(2 � 1, 5<83 ) if �,  48

(1)

The coarse and �ne tuning stages are implemented as follows. Each coarse tuning stage adds or bypasses a LUT1
primitive that implements a logical bu�er, as shown in Fig. 2b. Each �ne-tuning stage selects between a shorter and
longer pin-to-pin delay of a LUT5, where the enabled path through the LUT is set by the control input, as shown in
Fig. 2c. The stages are controlled using thermometer encoding, so that incrementing or decrementing their con�gura-
tion settings will change only one stage along the delay line, which helps ensure predictable control but has higher
area cost than a binary-encoded tunable delay in which each stage has twice the delay of the next. Fig. 3 shows the
Hamming weight of samples for all combinations of tuning; note that debug mode is used to generate this plot, as it
overrides the feedback of the controller, and allows the samples from the TRNG core to be logged.

3.3 Post-processing Circuit

The 256-bit samples from the TRNG core are hashed into the 8-bit state of the entropy pool using a simple scheme as
shown in Fig. 4. Each update includes a 1-bit circular shift of the 8-bit entropy pool, which ensures that randomness

Manuscript submitted to ACM



6 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

0 5 10 15 20 25 30
Fine Tuning

0

5

10

15

20

C
oa

rs
e 

Tu
ni

ng

0

30

225

255

Fig. 3. Heatmap showing the Hamming weight of samples on a single F1 instance for all possible tuning se�ings. Increasing the
coarse or fine tuning reduces the Hamming weight. Sampled values indicative of a poorly-tuned TDC, colored gray, would not cause
the entropy count to be incremented.

…

sample[7]
sample[15]

sample[255]

sample[23] random[7]

random[6]

XOR[7]

to XOR[0]

Fig. 4. 256-bit samples are hashed into the 8-bit random signal which is the entropy pool. The hashing uses eight XOR gates, all
configured in the same manner as the one that is shown.

will get distributed through the 8 bits even if always coming from the same position in the 256-bit sample. We have
used this particular scheme for simplicity, but it could be replaced with any number of other hash functions for the
same e�ect. A counter tracks the number of valid samples produced by the TRNG core, and requires that 80 valid
samples are hashed into the entropy pool before it is considered to be random, which assumes 0.1 bits of entropy per
sample. The actual value of entropy per sample should exceed the assumed entropy per sample, but the speci�c value
of 0.1 bits is chosen somewhat arbitrarily as a conservative assumption. If the entropy per sample is assumed to be
higher, then the circuit will need fewer valid samples before deciding that the TRNG has accumulated enough entropy
to produce an 8-bit random output. This assumption therefore has an impact on the throughout of the TRNG. Section 4
of the paper will show that the actual entropy per sample exceeds this conservative estimate by a factor of more than
2 using both a stochastic model and NIST tests.

4 MODELING OF TRNG

The randomness of the TRNG comes from the samples of the delay line in the TDC. Even if the propagation delay of
the delay line does not change across trials, the TDC can produce di�erent samples if it has �ne enough time resolution
and its sampling clock has su�cient jitter. The time resolution on the TDC is a consequence of the low propagation
Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 7

Fig. 5. TDC position in normal distribution CDF for modeling.

delay of the stages in the hard carry chains of Xilinx Ultrascale+ devices. A larger clock jitter or �ner time resolution
will both have the same e�ect of making the TDC samples more random because both changes will make the jitter
relatively larger in comparison to the TDC time resolution. Accordingly, the relevant consideration for modeling a
TRNG such as ours is to quantify how the amount of jitter compares to the time resolution of the TDC.

In our stochastic model of the TRNG, we relate jitter to TDC time resolution without relying on conservative timing
reports or jitter estimates. We rely in modeling only on the simplifying assumption that jitter is normally distributed,
which is in particular consistent with the jitter component caused by thermal noise [20] [21]. We also assume its
standard deviation is invariant with respect to the tuning settings of the delay line. From this we calculate the time
resolution of each TDC stage in terms of the standard deviation of jitter, which we use as the unit delay in our model.
After calculating the time resolution of each stage, we use the same model to calculate a lower bound on min-entropy
per sample. The next subsection describes our modeling approach.

The bits produced by any TRNG design should be as random as the bits produced by any other, unless one of the
designs is fundamentally �awed. The stochastic model assures the randomness by validating the claimed entropy of
the source. If a source has lower entropy, its TRNG will still produce fully random outputs, but it will require more
samples from the source to accumulate the required amount of entropy for each random output value.

4.1 Empirical Model Relating TDC Delay to Ji�er

In a given trial, the �ip-�op associated with each TDC stage will sample a 0 value if its clock arrives before its rising
data input from the delay line, and will sample a 1 otherwise. If the delay tuning settings are held constant across
samples, the 0-probability (1-probability) of the stage indicates the proportion of trials in which its clock arrives before
(after) its rising data input from the delay line.

If the �ip-�op of stage 8 samples 0 with probability 0.159, then 15.9 percent of clock edges arrive there before the
rising data input, and 84.1 percent of clock edges arrive after. Under the assumption that jitter is normally distributed,
the observation that 15.9 percent of clock edges arrive before the rising data input reveals that rising data input coin-
cides with the clock being �1.0 ⇤ f 98C away from its mean value, because ��1 (0.159) = �1.0, where ��1 is the inverse
CDF of a normal distribution. This scenario is depicted graphically in Fig. 5.

In these same trials, if the �ip-�op of stage 9 samples 0 with probability 0.933, then we similarly conclude that its
rising data input coincides with its clock being +1.5 ⇤ f 98C away from its mean because ��1 (0.933) = 1.5. If there
is no clock skew between the �ip-�ops of 8 and 9 , then these two �ndings together indicate that the time di�erence
between the rising data inputs on 8 and 9 is equal to 2.5 ⇤ f 98C . If clock skew is allowed, then we generalize the claim

Manuscript submitted to ACM



8 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

slightly to more formally conclude only the di�erence in criticality (i.e. timing slack) between the two �ops is equal
to 2.5 ⇤ f 98C , although for our purposes it is actually the criticality that matters so we need not worry about skew. The
delay or criticality di�erence between any two stages can therefore be estimated from their 0-probabilities in a set of
trials. Because the estimate is noisy when the associated 0-probabilities are close to 0 or close to 1, we apply it only
when the 0-probabilities indicate that both stages are within ±2f 98C of their means. Note that the delay di�erence is
being calculated in units of f 98C even though the value of f 98C is not known in absolute terms. Using this approach,
two �ip-�ops 8 and 9 have arrival times (denoted)8 and)9 ) that are related as shown in Eq. 2, where b%8 and b% 9 are their
respective 0-probabilities for a particular tuning setting.

)8 �)9 =
⇣
��1 (b%8 ) � ��1 (b% 9 )⌘ f 98C (2)

4.2 Calculating Stage Arrival Times

Given that 0-probabilities from each tuning setting will relate the arrival times of some of the TDC stages, and that
the same stages can be related to each other by multiple di�erent tunings, we can solve a set of equations to obtain
the arrival time )8 for each stage 8 . The set of equations is as described in Eq. 3 where ) is the n-element column
vector of unknown arrival times, � is the m-by-n matrix of coe�cients in which all entries are 0 except for a single
+1 and single -1 in each row for the two stages that are related, and ⌫ is an m-by-1 column vector of the arrival time
di�erences, calculated as shown on the right hand side of Eq. 2. We then �nd the least-squares solution to �) = ⌫

(Eq. 3) which gives stage arrival times in terms of f 98C . Because the formulation deals with di�erences in arrival times,
we adopt the convention that )0, the arrival time of the �rst stage, is 0; other )8 values therefore represent the arrival
time of stage 8 relative to �rst stage.

�) = ⌫f 98C (3)

Fig. 6a shows, for one instance of the TRNG, the stage arrival times ()0, . . . ,)255) obtained by solving Eq. 3. The arrival
times across the 256 stages cover a span of approximately 84 times f 98C . While the arrival time generally increases while
moving up the TDC chain, note that the trend is not smooth. Although the rising edge does propagate through the
carry chains in sequential order, the anomalies in this trend imply that it does not reach the d input of the �ip-�ops
in sequential order. This can occur because the delays between carry chain and �ip-�op of each stage are not uniform,
and because clock skew at the �ip-�op aliases to delay on its data input; both of these artifacts are captured in the
timing report so it is instructive to compare the modeled arrival times to the slack from the timing report. Fig 6b shows
the same modeled arrival times from Fig. 6a, but now plotted against the reported timing slack for the corresponding
�ip-�op which accounts for all delays and clock skew. Because a span of 84 times f 98C corresponds to slightly above
800ps of reported slack, we can estimate f 98C to be around 10ps in absolute terms per the timing report, although the
timing report itself uses a conservative delay with built-in safety margin, so the average-case delay may be somewhat
less. There is a high correlation (A = �0.997) between the arrival times from the model and the reported slack. Given
that the model was �tted to data measured on the board, the high correlation between the two quantities supports the
validity of the model for correctly resolving on-chip delays, and hence also for capturing the di�erence in criticality
between stages. Now that the empirical timing model is validated, we use it as the basis for estimating the worst-case
entropy of our TRNG.

Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 9

(a) Modeled arrival time vs stage index. (b) Modeled arrival time vs slack from timing report.

(c) Precision of each stage in TDC chain from one FPGA instance, obtained from characterization procedure.

Fig. 6. TDC characterization. The largest timing gap between any two neighboring stage arrival times is highlighted and annotated
in Fig. 6a and Fig. 6c

4.3 Stochastic Model for Entropy Estimation

Based on the precision of each stage in Fig. 6c, we obtain the largest timing gap (2.268⇤f 98C ) between any two neighbor-
ing arrival times as highlighted in Fig. 6, which can be used to estimate a lower bound on min-entropy of the samples.
The worst-case min-entropy corresponds to the sampled value that can be produced with highest probability. This
would occur when the mean arrival time of the clock coincides with the center of the largest timing gap of any stage,
which we denote here as �<0G . This is illustrated in Fig. 7, which depicts clock jitter assumed as normal distribution. In
the worst-case min-entropy, the mean of jitter is in the middle of the two stages with �<0G = 2.268 ⇤ f 98C . The shaded
region represents all the clock arrival times that would result in the same sample being produced. The probability of
producing this sample would then be the probability associated with the shaded region, which we denote as %<0G ,
and calculate from the normal CDF as in Eq. 4. The min-entropy of an outcome with probability %<0G is given by
Eq. 5. For the speci�c instance used to generate these results, the largest interval is 2.268 ⇤f 98C shown in Fig. 6c, which
corresponds to a shaded area in Fig. 7 with %<0G of 0.743, and hence min-entropy of 0.429 bits.

%<0G = �

✓
�<0G

2

◆
� �

✓��<0G

2

◆
(4)

Manuscript submitted to ACM



10 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

Fig. 7. Largest share of clock arrival times that will cause TDC to sample the same value.

4=CA>?~<8= = log2

✓
1

%<0G

◆
(5)

4.4 Impact of Routing and Clock Skew on Entropy

The previous subsection explains that worst-case min-entropy is limited by the largest timing gap among all the stages.
It is therefore desirable to make all of the timing gaps uniform so that none are unusually large.We now present further
results and discussion to explain why routing makes this objective di�cult to accomplish in practice.

Fig. 8b shows the di�erence in arrival time between the FF of each stage and that of the next stage by index. Here,
instead of using indices from 0 to 255 to represent the stages across all 32 CLBs as was done in Fig. 6a, we use indices 0-7
for each CLB as annotated in Fig. 8a, and have occurrences of each index from all 32 CLBs. Fig. 8b shows, for each stage
index, the 32 di�erences in arrival time between that stage and the next. The di�erences in arrival time are predictable
for stages 0,1,2 and for stages 4,5,6. In stages 3 and 7, the arrival time di�erence is inconsistent from CLB to CLB. This
inconsistency occurs because Ultrascale+ uses di�erent clock inputs for the upper and lower halves of the CLB, which
causes stages 3 and 7 to span two di�erent clock leaf nodes (clk1 and clk2 in Fig. 8a); the skew between the clock leaf
nodes aliases to arrival time as discussed in Sec. 4.2. For the TRNG design, one must therefore be careful to avoid large
positive clock skew at these points as it can reduce worst-case entropy by causing highly probable outcomes for certain
unlucky conditions. Negative skew causes no such problem, as can be observed in Fig. 6a, so the one-sided restriction
on skew is easy to satisfy in practice. In fact, note that the negative skew at stage 208 in Fig. 6a can improve the quality
of the TRNG, because it causes the rising edge to be captured twice in the same sample, at di�erent positions in the
chain. In Sec. 7 we build on this principle to design a TRNG that samples the rising edge multiple times.

5 TRNG QUALITY EVALUATION

In this section, we use three di�erent techniques to test the quality of the random numbers produced by our design.
As described in the following three subsections, the results support (1) that our design exceeds the 0.1 bits of min-
entropy per trial that was assumed as a security parameter; (2) that our stochastic model gives a reasonable estimate
of min-entropy; and (3) the random numbers generated pass tests for statistical randomness.

Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 11

ca
rr
y8

0

1

2

3

4

5

7

6

clk1

clk2

ca
rr
y8

0

1

2

3

4

5

clk1

clk2

ca
rr
y8

0

1

2

3

4

5

7

6

clk1

clk2

(a) CLB stage indices. (b) Di�erences in arrival times by index.

Fig. 8. Across the 32 CLBs in the TDC, the di�erence in arrival time between one index and the next is predictable for indices 0,1,2
and 4,5,6. Indices 3 and 7 are each followed by a stage that is on a di�erent clock leaf, and there the di�erence in arrival time is
inconsistent due to clock skew. Error bars extend one standard deviation from the mean.

(a) Entropy per stochastic model for 60 FPGA instances. (b) Entropy per NIST SP800-90B for 234 tunings on one instance.

Fig. 9. Min-entropy by both stochastic model and NIST SP800-90B suite exceeds 0.1 bits per sample.

5.1 Stochastic Model Applied Across EC2 F1 Instances

The stochastic model from Section 4.3 is our primary strategy for estimating the worst-case min-entropy for each
single instance of the TRNG. To test across FPGAs, we load the same bitstream onto 60 di�erent EC2 F1 instances,
and on each machine apply our characterization procedure to evaluate the worst-case min-entropy. The distribution
of calculated min-entropy values (Fig. 9a) ranges from 0.250 to 0.972. These values indicate that across all 60 instances
our design exceeds, by at least a margin of 2.5⇥, the 0.1 bits of min-entropy per sample that was assumed.

Manuscript submitted to ACM



12 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

Statistical tests C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value %
Frequency 10 12 6 12 11 4 11 14 4 16 0.091 98

BlockFrequency 15 17 8 7 7 7 12 9 6 12 0.163 99
CumulativeSums 13 6 10 7 10 15 13 9 9 8 0.596 99
CumulativeSums 11 8 13 8 12 7 15 8 11 7 0.637 98

Runs 9 8 8 8 16 6 15 15 7 8 0.172 98
LongestRun 9 12 8 11 16 6 9 10 11 8 0.657 98

Rank 9 12 13 10 12 5 11 9 13 6 0.637 100
FFT 9 12 12 15 8 5 11 10 12 6 0.494 100

NonOverlap. Template 8 4 7 11 13 9 15 13 10 10 0.401 100
Overlapping Template 8 9 11 8 8 15 12 9 8 12 0.817 98

Universal 8 8 8 12 14 12 14 6 8 10 0.616 99
Approximate Entropy 18 10 12 6 8 14 6 12 6 8 0.109 99

Serial 5 10 8 9 11 12 10 9 16 10 0.616 99
Serial 6 8 10 11 6 13 11 10 12 13 0.740 100

LinearComplexity 13 8 4 14 13 7 15 9 8 9 0.249 100

Table 1. Results from applying NIST statistical test suite to 100M generated bits shows that the TRNG outputs are evaluated as
consistent with being random.

5.2 Stochastic Model vs. NIST Entropy Assessment

Next, to check our stochastic model, we apply the NIST SP800-90B entropy assessment suite [22] to obtain an inde-
pendently calculated estimate of min-entropy. To generate data for the NIST assessment, we apply on one instance all
tuning settings and collect 1,000,000 samples from the TDC with each setting applied [23]. We keep the data from any
settings in which the average Hamming weight of samples is in our allowed range of 30 to 225, which corresponds
to a total of 234 tuning settings. The NIST assessment is applied separately to each of these 234 datasets, and the
distribution of results is shown as a histogram in Fig. 9b. The NIST estimate of min-entropy for most of the tuning
settings fall above the estimate of 0.429 bits per sample from the stochastic model on this instance. Because the NIST
entropy values tend to exceed our estimated worst-case, we gain some con�dence that our stochastic model is not
overestimating entropy.

5.3 End-to-End NIST Statistical Tests

Although the evaluation of the entropy source in the prior subsections is the primary validation for a TRNG, we
also apply statistical tests to the post-processed 8-bit values produced by the TRNG as a further validation. The NIST
Statistical Test Suite [24], which is widely used with random number generators, applies a collection of statistical tests
and for each test reports whether the sequences of bits are consistent with being random. The report shows how often
the P-values from each test fall within uniformly sized bins C1 through C10, and should tend toward being uniformly
distributed when enough random data is tested. The test suite is applied to a dataset comprising 100 sequences of
1,000,000 bits from the TRNG and the results are displayed in Tab. 1. The �nal column of the table shows the proportion
of sequences that pass the test, indicating that the sequences have statistical properties consistent with being random.

5.4 Empirical Min-entropy with Respect to Lag

Our stochastic model provides an upper bound on the ability to predict the response of the TRNG circuit, but the model
assumes that all variation in the data is explained by temporally uncorrelated jitter. If variation in the characterized data
actually has temporal correlation due to a physical cause like temperature or voltage, then the model may overestimate
jitter. As an additional validation of entropy, we evaluate empirically whether an attacker that knows the value of a
Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 13

Fig. 10. Distribution of min-entropy values, with annotations for mean and minimum, when guessing a lagging sample based on the
value of a leading sample. There is only a minor temporal relationship, and min-entropy remains above 0.33 even in the worst case.

leading sample can predict the value of a lagging sample a few cycles later. We perform this evaluation for all valid
tuning settings, and collect a dataset of 100,000 samples for each. From each dataset, for all Hamming weight values 0
and 1, we �nd the conditional probability of observing 1 as the value of the lagging sample, given that 0 was observed
as the value of the leading sample. The maximum conditional probability corresponds to the best lagging sample guess
by the attacker, when leading sample has the value that most bene�ts the attacker. Min-entropy is calculated from this
probability, and this is the empirical lower bound on min-entropy for the tuning setting that generated the 100,000
sample dataset. We obtain one such min-entropy for each tuning, and vary the lag from 1 to 10 samples, and show
the results in Fig. 10. Across all the tuning settings, the minimum min-entropy never drops below 0.33 bits which still
surpasses our security assumption of 0.1 bits per sample.

6 TRNG PERFORMANCE AND COST EVALUATIONS

Aside from requirement of avoiding circuits such as oscillators that are disallowed in certain clouds, the large capacity
of cloud FPGAs implies that the TRNG must also be resilient to any noise, voltage, or temperature �uctuations that
are caused by high-powered circuitry around the TRNG.

6.1 Resilience to Environmental Fluctuations

We subject the TRNG design to intentional environmental disruptions to check that its feedback is able to adapt appro-
priately. Speci�cally, we build a con�gurable power consumption circuit that is next to the TRNG on the F1 instance.
The power waster consists of 32 di�erent levels of power consumption that can be enabled. Each level turns on one
instance of a circuit comprising four combinational rounds of the Advanced Encryption Standard (AES) block cipher,
with additional feed-forward paths added to increase glitching [25]. The power consumption of the circuit is measured
as the average power reported by the fpga-describe-local-image command provided in the AWS management tools.
Because the reported power updates only once per minute, we perform separate experiments to characterize the con-
sumption of the power wasters instead of measuring their power in real-time when using them to disturb the TRNG.
The baseline power consumption of the instance is 8W, and each enabled level of power waster consumes an additional
3W. Turning on the power wasters can disrupt the TRNG by causing heating and voltage droop.

Manuscript submitted to ACM



14 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

2000 4000 6000 8000 10000 12000
Sample Number

0

30
48

98

158

208
225

255

H
am

m
in

g 
W

ei
gh

t

24W 38W 53W 68W 83W 98W

Feedback control enabled
No Feedback control

Fig. 11. Control loop adapts to changes in localized power consumption on the FPGA in order to keep the TRNG tuned.

Fig. 11 shows the power wasting circuit is toggled on and o� every 1,000 samples, and each time it is switched on
an additional �ve of the 32 power waster instances are enabled, which corresponds to around 15W of additional power
consumption. The blue line shows the Hamming weight of the samples when feedback is enabled, and the orange
line shows the Hamming weight when feedback is disabled. Both voltage droop and increasing temperature increase
propagation delay between the controller and the TDC, which can explain the drop in Hamming weight. The feedback
allows the TRNG to compensate for this. When the feedback is disabled, we can see by the Hamming weight that
the magnitude of power consumption has a direct relation on the delay of the circuit. Therefore, the controller uses
feedback to adapt, and is able to keep the TRNG tuned and operating correctly.

For an end-to-end validation of the TRNG under disturbance from power wasters, we repeat the analysis of Sec-
tion 5.3. As before, the NIST test suite is applied to 100 sequences of 1,000,000 bits, and now 32 power waster instances
are running during the data collection. The power wasting circuitry toggles between on and o� with every 1,000,000
TRNG bits collected. Similar to Table 1, the TRNG again passes the tests, which indicates that these environmental
�uctuations are not observed to compromise the TRNG quality.

6.2 Comparison to Prior Work

The distinguishing feature of our work is its suitability for, and deployment on, cloud FPGAs. Aswe have described, this
imposes limitations on the types of circuitry that can be used, and increases the importance of the TRNG being robust
to environmental changes. Despite these challenges, the costs of our TRNG are found to be reasonable for a large cloud
FPGA. Table 2 compares the throughput, logic utilization, e�ciency (throughput/slice), testing methods, resistance to
attack and entropy of our TRNG to other recently published TRNGs that are implemented on Xilinx FPGAs. Our TRNG
design (Fig. 1) consumes 791 LUTs (0.067% of available), 33 CARRY8s, and 559 �ip-�ops (0.024%) across a total of 184
slices. Among these resources, the controller logic that con�gures the coarse- and �ne-tuning consumes 92 LUTs and
34 �ip-�ops, while the remainder of the resources are consumed by the TRNG core itself. Our design generates random
Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 15

Work FPGA
type

Throughput
(Mbps)

Utilization
(slice)

E�ciency
(Mbps/slice) Approach Testing method

Analysis of
attacks
resisted

Entropy validation
Entropy value
Entropy type

[26] Spartan 6 100 46 2.17 self-timed
ring NIST SP800-22 - -

[18] Spartan 6 14.3 67 0.213 ring
oscillator

TestU01
DIEHARD

NIST SP800-22
ENT

-
ENT

7.99998/byte (postproc)
unknown

[4] Spartan 6 1.15 3 0.383 ring
oscillator

NIST SP800-90B
AIS-31

-
NIST SP800-90B
0.76/sample (raw)

min-entropy

[27] Virtex-4 12.5 580 0.022
RS latches
metastabil-

ity
DIEHARD

NIST SP800-22
- -

[5] Virtex-6 50 224 0.223 timing non-
uniformity

DIEHARD
NIST SP800-22

- -

[6] Virtex-5 2 32 0.063 metastability NIST SP800-22
Unspeci�ed
external per-
turbations

-

[7] Spartan 6 3.3 27 0.122 ring
oscillator AIS-31 -

stochastic model
>0.91/bit (raw)
min-entropy

[8] Spartan 6 1.1 128 0.122 ring
oscillator AIS 20/31 -

AIS-20/31
7.998265/byte (raw)
Shannon entropy

[28] Spartan 6 0.76 1 0.76 latched ring
oscillator

NIST SP800-22
AIS-31

Voltage
AIS-31

7.99834/byte (raw)
Shannon entropy

[29] Spartan 3 6 270 0.022 ring
oscillator

NIST SP800-22
AIS-31

-
AIS-31

7.9946/byte (raw)
Shannon entropy

[30] Virtex-6 - 9 - self-timed
ring

NIST SP800-22
NIST SP800-90B

AIS-31

Power and
Thermal
Attacks

NIST SP800-90B
7.8869/samp (postproc)

min-entropy
our basic
TRNG [12]

Virtex Ul-
traScale+ 2.43 184 0.013 clock jitter NIST SP800-22

NIST SP800-90B
PVT

NIST SP800-90B
0.37/sample (raw)

min-entropy
TRNG w/
linkable
modules

Virtex Ul-
traScale+ 6.08 216 0.028 clock jitter NIST SP800-22

NIST SP800-90B
PVT

NIST SP800-90B
1.45/sample (raw)

min-entropy

Table 2. Comparison with related TRNGs implemented on Xilinx FPGAs.

numbers at a rate of 2.43Mbps, which is su�cient for most applications, but could be increased through parallelization
if needed.

Here we listed the entropy comparisons between our work and other works in Table 2. It is worth noting that NIST
SP800-20B does not list a minimum value of what constitutes a usable amount of min-entropy per sample.

Manuscript submitted to ACM



16 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

64
 s

ta
ge

s 
(8

x8
)

… …

ca
rr

y8
 i

ns
t0

ca
rr

y8
 i

ns
t7

…

ca
rr

y8
 i

ns
t8

ca
rr

y8
 i

ns
t7

d[i+54]

clk[i+54]

d[i]

clk[i]

Δt

d
clk

d
clk

Δt
d clk

d clk

(a) Linkable sampling module for TRNG.

Arrival time [ns]
Stage data clock skew
i+54 0.368 0.300 -0.068
i+48 0.327 0.332 0.005
i+40 0.286 0.318 0.032
i+32 0.245 0.296 0.051
i+24 0.204 0.262 0.058
i+16 0.163 0.255 0.092
i+8 0.122 0.221 0.099
i 0.081 0.227 0.146

(b) Arrival time relative to module inputs

Fig. 12. Schematic and timing of 64-stage linkable sampling module used in the TRNG

7 TRNG BASED ON LINKABLE SAMPLING MODULE

In this section, we extend our basic TRNG to increase entropy per sample while still retaining the stochastic model of
randomness. The key idea of the approach is to make a modular version of the sampling chain that can be arbitrarily
extended by abutment to increase entropy. We choose to make each sampling module 64 stages in length. The new
module is shown within the dashed box of Figure 12a; we instantiate and link four such modules to create the sampling
chain for the TRNG. Each module has inputs for a rising data edge and a sampling clock (shown at bottom), and then
propagates those signals through parallel carry chains to the outputs at the top of the module. In the �rst instance, the
data input is the rising edge from the tunable delay line as in Fig. 2a, and the clock input is attached to the 125 MHz
system clock.

7.1 Timing Analysis

The simple timing diagrams shown at right in Fig. 12a illustrate the operating principle of the design. Thematched paths
taken by data and clock through the module ensure that whatever timing di�erence exists between them at module
input, is preserved at module output, which is the input to the next module. Therefore, neglecting small imbalances,
each module performs the same sampling experiment with the same relative timing. E�ectively, the same rising edge
is being sampled within each module. We �rst consider the behavior of a single module and then how the four modules
interact.

7.1.1 Single module. The 64 stages of a sampling module span 8 rows. The sampling clock for the 8 FFs in each CLB
comes from one tap on the clock path. Relative to the d and clk module inputs, the relative arrival time at the data
Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 17

and clock inputs of sampling FFs are shown in the table of Fig. 12b. The position of the clock tap, and its routing to
the sampling FFs, is �xed but not optimized. The sampling clock has a di�erent arrival time at each CLB, unlike the
original design where the clock tree ensures low skew. Recall from Sec. 4.2 that skew aliases to delay; therefore, even
though the propagation delay of data through the 64 stages is reported to be 368 ps per the timing report, the di�erence
in skew is only 214 ps because the clock arrives later at upper stages. That skew is likely the reason that the empirical
delay di�erence through 64 stages is equivalent to around 20 ⇥ f 98C , which is less than was observed in the original
design where the clock was synchronous to all stages. Plotting arrival time of each stage against reported timing slack
(Fig. 13b), we can see that the inferred arrival times of each module are correlated to reported slack with correlations
of (0.97, 0.96, 0.97, 0.96), which are slightly lower than the correlation of 0.997 reported in Sec. 4.2.

7.1.2 Multiple modules. We now consider the timing behavior of all 256-stages, comprising four identical 64-stage
modules. When the rising edge is sampled four times, it lands between two stages in each of the four modules. The
samples of each module overlap each other, which therefore increases sensitivity and tends to reduce the bin widths
as shown in Fig. 13c. The worst-case min-entropy calculated by applying the stochastic model to Fig. 13c is 1.152
bits, which is 2.7⇥ larger than the min-entropy calculated for our basic TRNG design. Accordingly, we increase our
assumption of entropy from 0.1 bits per sample in the basic TRNG to 0.25 bits per sample in the TRNG that uses four
linkable sampling modules, noting that our assumption remains highly conservative relative to worst-case entropy
indicated by themodel.When considering empirical arrival time from ourmodel against slack, the expected correlation
within each module can be observed in Fig. 13b, but there is an o�set across modules. The reason is as follows. The
relative timing of data and clock is the same at the input of each module due to the matched paths, yet timing analysis
is conservative and considers adding the same delay to data and clock as making the path more critical. To preserve
the same amount of negative slack, the timing analysis would require the added delay on the data path to be larger
than the added delay on the clock path.

When the feedback control is implemented based on the total Hamming weight, there can be unpredictable changes
if one instance entirely misses a rising edge due to poor tuning, so we instead control the delay based on the Hamming
weight of a single 64-bit module instance, which also simpli�es the control logic. Although we use four sampling
modules to keep the total number of stages to 256, in principle an arbitrary number of sampling modules can be
instantiated and connected by abutment. If there is systematic variation between data and clock paths, then it could
perhaps eventually become di�cult to use a common tuning for many instances. There are no indications of any such
problems with four modules.

7.2 Entropy and Performance

Similar to Section 5.1 for the basic TRNG, we load the modi�ed TRNG onto 60 EC2 instances and apply the stochastic
model to calculate the min-entropy on each instance. As shown in Fig. 14a, the worst case min-entropy of any instance
is 0.93 bits. As before, the entropy assumption is conservative; the actual entropy from the model (0.93 bits/sample)
is 3.72⇥ higher than what is assumed (0.25 bits/sample). As in Section 5.2, we also collect 1,000,000 samples from
each delay tuning on one instance, and apply the NIST SP800-90B entropy assessment to the data. The distribution
in Fig. 14b shows the min-entropy for all tunings on this instance, all of which exceed the 1.152 bits calculated by
stochastic model for the same instance.

Our justi�ed assumption of 0.25 bits of entropy per sample enables a 250% increase in throughput relative to the
basic TRNG from FPT’20 [12]. An 8-bit random number is now generated using only 32 samples instead of 80. Due

Manuscript submitted to ACM



18 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

(a) Arrival time at each stage. (b) Arrival time vs slack (correlation=0.96, 0.97, 0.97, 0.96).

(c) Bin sizes, which determine entropy.

Fig. 13. The use of four linkable sampling modules causes the samples to overlap in time (in a and b), so that the same edge is
sampled once in each of the four modules. This reduces the bin size (in c) compared with the original TRNG. The largest timing gap
between two neighboring stages in terms of arrival time is highlighted and annotated in Fig. 13a and Fig. 13c

to the 32 extra CLBs used to route the clock through the four instances of the linkable sampling module, the 250%
increase in throughput comes at only 17% resource cost. The linkable sampling modules create an attractive cost vs
performance tradeo�. Table 2 compares the performance of our TRNGs against eleven other works. The throughput of
a linkable sampling TRNG is able to support low-throughput applications aforementioned in Section 1. The throughput
of any FPGA TRNG can be increased to accommodate high throughput applications by adding more instances, so an
important metric to consider is the e�ciency, in terms of throughput of random numbers per slice of area.We therefore
list the metric of Mbps/slice as well in the table. Finally, we list some of the attacks that each design is claimed to resist,
and describe the entropy metrics that are provided for each. Notably, given that most FPGA TRNGs are based on
oscillators which are forbidden, the only designs in the table that can be implemented on EC2 F1 are ours and [6][5].

8 CONCLUSION

Cloud FPGAs are commonly used for accelerating computationally expensive cryptographic operations that rely on
the generation of random numbers. In this paper, we introduced and evaluated a TRNG design that is compatible
with the design restrictions imposed by cloud-based FPGA providers. The TRNG oscillator-free design that we impose
uses a controllable delay and harvests clock jitter as an entropy source using a circuit that is similar to a TDC. The
Manuscript submitted to ACM



Jitter-based Adaptive True Random Number Generation Circuits for FPGAs in the Cloud 19

(a) Min-entropy of 60 instances, from stochastic model. (b) Entropy assessment of 70 tunings, on one instance.

Fig. 14. Entropy according to stochastic model, and from NIST assessment, both show that the modified TRNG with linkable sam-
pling modules produces around 1 bit of entropy per sample.

e�ectiveness of the design is supported by NIST test results and a stochastic model of the entropy source. Furthermore,
the design is shown to be able to compensate for voltage droop that may occur during a power attack, and its entropy
is not compromised in this scenario. Future work can consider further increases in entropy-per-sample and the impact
of advanced clocking features.

ACKNOWLEDGEMENT

This research was funded in part by NSF grants CNS-1749845 and CNS-1902532. The authors also gratefully acknowl-
edge Gradient Technologies and Amazon for their support and contributions to this work.

REFERENCES
[1] J. Soto, “Statistical testing of random number generators,” in the 22nd National Information Systems Security Conference, vol. 10, no. 99. NIST

Gaithersburg, MD, 1999, p. 12.
[2] G. Zheng, G. Fang, R. Shankaran, and M. A. Orgun, “Encryption for implantable medical devices using modi�ed one-time pads,” IEEE Access, vol. 3,

pp. 825–836, 2015.
[3] C. Meijer and B. Van Gastel, “Self-encrypting deception: weaknesses in the encryption of solid state drives,” in 2019 IEEE Symposium on Security

and Privacy (SP). IEEE, 2019, pp. 72–87.
[4] B. Yang, V. Rožic, M. Grujic, N. Mentens, and I. Verbauwhede, “ES-TRNG: a high-throughput, low-area true random number generator based on

edge sampling,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 267–292, 2018.
[5] X. Yang and R. C. Cheung, “A complementary architecture for high-speed true random number generator,” in 2014 International Conference on

Field-Programmable Technology (ICFPT). IEEE, 2014, pp. 248–251.
[6] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-based true random number generation using circuit metastability with adaptive feedback

control,” in International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2011, pp. 17–32.
[7] A. Peetermans, V. Rozic, and I. Verbauwhede, “A highly-portable true random number generator based on coherent sampling,” in 2019 29th Inter-

national Conference on Field Programmable Logic and Applications (FPL). IEEE, 2019, pp. 218–224.
[8] J. Balasch, F. Bernard, V. Fischer, M. Grujić, M. Laban, O. Petura, V. Rožić, G. Van Battum, I. Verbauwhede, M. Wakker, and Y. Bohan, “Design and

testing methodologies for true random number generators towards industry certi�cation,” in 2018 IEEE 23rd European Test Symposium (ETS). IEEE,
2018, pp. 1–10.

[9] L. Gaspar, V. Fischer, L. Bossuet, and R. Fouquet, “Secure extensions of FPGA soft core processors for symmetric key cryptography,” in 6th Interna-
tional Workshop on Recon�gurable Communication-Centric Systems-on-Chip (ReCoSoC). IEEE, 2011, pp. 1–8.

[10] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power distribution attacks in multi-user FPGA environments,” in 2019 29th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), 2019, pp. 194–201.

[11] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire leakage with ring oscillators in cloud FPGAs,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 2019, pp. 45–50.

[12] X. Li, P. Stanwicks, G. Provelengios, R. Tessier, and D. E. Holcomb, “Jitter-based adaptive true random number generation for FPGAs
in the cloud,” in 2020 International Conference on Field-Programmable Technology (ICFPT). IEEE, 2020, pp. 112–119. [Online]. Available:

Manuscript submitted to ACM



20 Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb

https://doi.org/10.1109/ICFPT51103.2020.00024
[13] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and N. Mentens, “Trusted con�guration in cloud FPGAs,” in 2021 IEEE 29th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2021, pp. 233–241.
[14] P.-F. Wolfe, R. Patel, R. Munafo, M. Varia, and M. Herbordt, “Secret sharing MPC on FPGAs in the datacenter,” in 2020 30th International Conference

on Field-Programmable Logic and Applications (FPL). IEEE, 2020, pp. 236–242.
[15] P. Kohlbrenner and K. Gaj, “An embedded true random number generator for FPGAs,” in Proceedings of the 2004 ACM/SIGDA 12th International

Symposium on Field Programmable Gate Arrays. ACM, 2004, pp. 71–78.
[16] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, “Physical unclonable function and true random number generator: a compact and scalable

implementation,” in Proceedings of the 19th ACM Great Lakes Symposium on VLSI, 2009, pp. 425–428.
[17] V. Rozic, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly e�cient entropy extraction for true random number generators on FPGAs,” in 2015

52nd ACM/IEEE Design Automation Conference (DAC). IEEE, 2015, pp. 1–6.
[18] N. Deák, T. Györ�, K. Márton, L. Vacariu, and O. Cret, “Highly e�cient true random number generator in FPGA devices using phase-locked loops,”

in 2015 20th International Conference on Control Systems and Computer Science. IEEE, 2015, pp. 453–458.
[19] J.-L. Danger, S. Guilley, and P. Hoogvorst, “High speed true random number generator based on open loop structures in FPGAs,” Microelectronics

Journal, vol. 40, no. 11, pp. 1650–1656, 2009.
[20] T. J. Yamaguchi, K. Ichiyama, H. X. Hou, and M. Ishida, “A robust method for identifying a deterministic jitter model in a total jitter distribution,”

in 2009 International Test Conference. IEEE, 2009, pp. 1–10.
[21] L. Xu, Y. Duan, and D. Chen, “A low cost jitter separation and characterization method,” in 2015 IEEE 33rd VLSI Test Symposium (VTS). IEEE, 2015,

pp. 1–5.
[22] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle, “Recommendation for the entropy sources used for random bit generation,”

NIST Special Publication, vol. 800, no. 90B, p. 102, 2018.
[23] C. Celi, “NIST SP800-90B entropy assessment,” https://github.com/usnistgov/SP800-90B_EntropyAssessment, 2019.
[24] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical test suite for random and pseudorandom number generators for cryptographic

applications,” National Institute of Standards and Technology, Tech. Rep., 2010.
[25] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits for cloud FPGA attacks,” in International Conference on Field Programmable

Logic and Applications (FPL), 2020, pp. 231–235.
[26] J.-Y. Choe and K.-W. Shin, “A self-timed ring based TRNG with feedback structure for FPGA implementation,” in 2020 International Conference on

Electronics, Information, and Communication (ICEIC). IEEE, 2020, pp. 1–4.
[27] H. Hata and S. Ichikawa, “FPGA implementation of metasability-based true random number generator,” IEICE Transactions on Information and

Systems, vol. 95, no. 2, pp. 426–436, 2012.
[28] R. Della Sala, D. Bellizia, and G. Scotti, “A novel ultra-compact FPGA-compatible TRNG architecture exploiting latched ring oscillators,” IEEE

Transactions on Circuits and Systems II: Express Briefs, 2021.
[29] N. N. Anandakumar, S. K. Sanadhya, and M. S. Hashmi, “FPGA-based true random number generation using programmable delays in oscillator-

rings,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 3, pp. 570–574, 2019.
[30] Y. Luo,W.Wang, S. Best, Y.Wang, and X. Xu, “A high-performance and secure TRNG based on chaotic cellular automata topology,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4970–4983, 2020.

Manuscript submitted to ACM

https://doi.org/10.1109/ICFPT51103.2020.00024
https://github.com/usnistgov/SP800-90B_EntropyAssessment

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Structure of Proposed TRNG
	3.1 Carry Chain Description
	3.2 Tunable Delay Elements and Feedback Control
	3.3 Post-processing Circuit

	4 Modeling of TRNG
	4.1 Empirical Model Relating TDC Delay to Jitter
	4.2 Calculating Stage Arrival Times
	4.3 Stochastic Model for Entropy Estimation
	4.4 Impact of Routing and Clock Skew on Entropy

	5 TRNG Quality Evaluation
	5.1 Stochastic Model Applied Across EC2 F1 Instances
	5.2 Stochastic Model vs. NIST Entropy Assessment
	5.3 End-to-End NIST Statistical Tests
	5.4 Empirical Min-entropy with Respect to Lag

	6 TRNG Performance and Cost Evaluations
	6.1 Resilience to Environmental Fluctuations
	6.2 Comparison to Prior Work

	7 TRNG based on Linkable Sampling Module
	7.1 Timing Analysis
	7.2 Entropy and Performance

	8 Conclusion
	References

