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Abstract—We are honored to dedicate this article to Emmanuel Rashba on the occasion of his 95 birthday. In
the ideal disorder-free situation, a two-dimensional bandgap insulator has an activation energy for conduc-
tivity equal to half the bandgap, Δ. But transport experiments usually exhibit a much smaller activation energy
at low temperature, and the relation between this activation energy and Δ is unclear. Here we consider the
temperature-dependent conductivity of a two-dimensional narrow gap semiconductor on a substrate con-
taining Coulomb impurities, mostly focusing on the case when amplitude of the random potential Γ ≫ Δ. We
show that the conductivity generically exhibits three regimes and only the highest temperature regime exhibits
an activation energy that reflects the band gap. At lower temperatures, the conduction proceeds through near-
estneighbor or variable-range hopping between electron and hole puddles created by the disorder. We show
that the activation energy and characteristic temperature associated with these processes steeply collapse near
a critical impurity concentration. Larger concentrations lead to an exponentially small activation energy and
exponentially long localization length, which in mesoscopic samples can appear as a disorder-induced insu-
lator-to-metal transition. We arrive at a similar disorder driven steep insulator–metal transition in thin films
of three-dimensional topological insulators with very large dielectric constant, where due to confinement of
electric field internal Coulomb impurities create larger disorder potential. Away from neutrality point this
unconventional insulator-to-metal transition is augmented by conventional metal–insulator transition at
small impurity concentrations, so that we arrive at disorder-driven re-entrant metal–insulator–metal transi-
tion. We also apply this theory to three-dimensional narrow gap Dirac materials.
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1. INTRODUCTION

In a band gap insulator, charged impurities often
play a decisive role in determining the properties of the
insulating state. Due to the long-ranged nature of the
Coulomb potential that they create, such impurities
produce large band bending that changes qualitatively
the nature of electron conduction relative to the ideal
disorder-free situation. An illustrative case is that of a
three-dimensional completely-compensated semi-
conductor, for which positively-charged donors and
negatively-charged acceptors are equally abundant
and randomly distributed in space. In this case, the
impurity potential has large random fluctuations,
which can be screened only when the amplitude of this
potential reaches Δ, where 2Δ is the band gap. This
screening is produced by sparse electron and hole
droplets, concentrated in spatially alternating electron
and hole clouds (puddles) [1–3] (see Fig. 1). At high
enough temperatures the electrical conductivity is due
to activation of electrons and holes from the Fermi
level to the energy associated with classical percolation
across the sample. At lower temperatures the conduc-

tivity is due to hopping between nearest neighbor pud-
dles (NNH). At even smaller temperatures it is due to
variable range hopping (VRH) between puddles. Cru-
cially, in each of these temperature regimes the naive
relation Ea = Δ is lost, where Ea is the activation energy
for conductivity. Only in the highest temperature
regime is there a direct proportionality between Ea and
Δ (with a nontrivial small numeric prefactor) [3, 4]; at
lower temperatures the observed activation energy is
nonuniversal and disorder-dependent [1, 2].

In this paper we consider a similar problem in two
dimensions. Specifically, we consider a two-dimen-
sional small band gap semiconductor resting on a thick
substrate with a three dimensional concentration of
randomly-positioned impurities and focus on the case
when Γ ≫ Δ (see Fig. 2).We derive the temperature
dependence of the electrical conductivity across all
temperature regimes and show that the observed acti-
vation energy of the conductivity can be very small.

Understanding the relation between the energy gap
and the observed activation energy for transport is of
crucial importance for studying a variety of new 2D
409
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Fig. 1. Schematic energy diagram of a completely compen-
sated semiconductor with relatively weak disorder. The
wavy lines show the conduction band bottom and the
valence band ceiling separated by the gap 2Δ. Droplets of
holes are shaded by red, while electron droplets are shaded
by blue. Here R is the size of a droplet, and Λ is the size of
a droplet cloud (puddle), which contains several droplets.
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Fig. 2. Schematic picture of a cross section of puddles for the
case of strong disorder, Γ ≫ Δ. The wavy lines show the con-
duction band bottom and the valence band ceiling separated
by the gap 2Δ. The red shaded region above the Fermi level
EF = 0 represents a hole puddle, while the blue shaded region
below EF represents an electron puddle. λ is the amplitude of
the disorder potential, Γ is the screening length, and w is the
width of the barrier between neighboring puddles.
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electron systems. For example, recent studies of 2D
topological insulators (TIs) [5–7], films of 3D TIs [8–
24], bilayer graphene (BLG) with an orthogonal elec-
tric field [25, 26] and twisted bilayer graphene (TBG)
[27–31] use the transport activation energy as a way of
characterizing small energy gaps. In all these cases the
observed activation energy is much smaller than the
energy gap that is expected theoretically or measured
through local probes like optical absorption or scan-
ning tunneling microscopy.

Here, we show that there is indeed no simple pro-
portionality between the energy gap and the activation
energy except at the highest temperature regime,
which is likely irrelevant for many experimental con-
texts. Instead, we find a wide regime of temperature
and disorder strength for which the activation energy is
dramatically smaller than the energy gap. At the lowest
temperatures the conductivity follows the Efros-Shk-
lovskii (ES) law rather than an Arrhenius law, and this
dependence can give the appearance of a small activa-
tion energy.

Let us dwell on two likely applications of our the-
ory. First, our results may be especially relevant for
ongoing efforts to understand the energy gaps arising
in TBG at certain commensurate fillings of the moiré
superlattice [27–31]. Such gaps apparently arise from
electron–electron interactions, but the observed acti-
vation energies of the maximally-insulating state are
typically an order of magnitude smaller than the naive
interaction scale (see, e.g., [28, 29]), and they vary sig-
nificantly from one sample to another. Scanning tun-
neling microscopy studies also suggest a gap on the
order of ten times larger than the observed activation
energy [32, 33]. The theory we present here offers a
natural way to interpret this discrepancy.
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Second, our theory can be applied to the huge body
of experimental work on thin films of 3D TI, where
the surface electrons have a small gap 2Δ due to
hybridization of the surface states of two surfaces [8,
9], or due to intentionally introduced magnetic impu-
rities [10–24]. Understanding the origin of the small
apparent activation energy Ea ≪ Δ is crucial for
achieving metrological precision of the quantum
anomalous Hall effect [11, 13, 16, 19–24, 34–36] and
the quantum spin Hall effect [9, 37–39].

The model we consider is a two-dimensional semi-
conductor with band gap 2Δ atop a substrate with a
three-dimensional concentration N of random sign
charged impurities. We assume that the semiconduc-
tor has a gapped Dirac dispersion law

(1)

We are mostly interested in the case when the
amplitude Γ of spatial f luctuations of the random
potential satisfies Γ ≫ Δ, so that electron and hole
puddles occupy almost half of the space each and are
separated by a small insulating gap which occupies
only a small fraction of the space (see Fig. 2). This sys-
tem is an insulator because in 2D neither electron nor
hole puddles percolate, and they are disconnected
from each other. Throughout this paper we mostly
focus on the case of zero chemical potential, for which
electron and hole puddles are equally abundant and
the system achieves its maximally insulating state. We
argue that this situation is likely realized in the experi-
ments of [5–33].

The remainder of this paper is organized as follows.
In the following section we first summarize our main
results for the temperature-dependent conductivity.
Sections 3 and 4 concentrate on the case Γ ≫ Δ illus-
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Fig. 3. Logarithm of the dimensionless conductivity
σ/(e2 ) as a function of the inverse temperature T–1 in the
case 1 ≪ Γ/Δ ≪ (Γ/Δ)c. At high temperature T > T1, the
conductivity has activation energy Δ. At intermediate tem-
perature T2 < T < T1, the conductivity is dominated by
NNH. At low temperatures T < T2, NNH is replaced by
ESVRH. Numbers adjacent to different parts of the line
show corresponding equations. Temperatures T1 and T2
are given by Eqs. (9) and (10).
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trated by Fig. 2. In Section 3 we start from reviewing
the fractal geometry of two-dimensional puddles and
then calculate the action accumulated by electrons
tunneling across the gap between two neighboring
fractal metallic puddles, the corresponding localiza-
tion length, and the critical value of the ratio Γ/Δ, at
which crossover to weak localization takes place. In
Section 4 we calculate the hopping conductivity for
the case Γ ≫ Δ.

In Section 5 we study the illustrated by Fig. 1 case
where the impurity concentration N is lower and pres-
ent the parameters of NNH and VRH as functions
of N. Section 6 studies what happens when the Fermi
level moves away from the neutrality point. We arrive
at the “phase diagram” of the re-entrant metal–insu-
lator–metal transition. Section 7 deals with the gener-
alization of our results to thin TI films. Because of
large interest to such films [8–10, 12–24, 34–49], in
this section we add a fair amount of numerical esti-
mates. In Section 8 we briefly return to the problem of
three-dimensional, completely-compensated semi-
conductors with a gapped Dirac dispersion, and
extend the previous theory [1–3] to the case when dis-
order potential f luctuations exceed Δ. We again arrive
at a re-entrant metal–insulator–metal transition away
from the neutrality point. We close in Section 9 with a
summary and conclusion. Some results of this paper
are published in its shorter version [50].

2. SUMMARY OF RESULTS

Let us start from the strong disorder case Γ ≫ Δ
illustrated in Fig. 2. When the typical tunneling trans-
parency P = exp(–S) of the insulating barrier separat-
ing neighboring puddles is small (the action S in units
of  is large), one can envision a sequence of three
mechanisms of activated transport replacing each
other with decreasing temperature, as in a lightly
doped wide gap semiconductor [2]. This three-mech-
anism sequence is illustrated in Fig. 3. At relatively
large temperature T electrons and holes can be acti-
vated from the Fermi level to the percolation level (i.e.,
the classical mobility edge). Thus, the conductivity at
such large temperatures is given [50] by

(2)

with the prefactor σ1 ~ e2/ . Here and everywhere in
this paper we use energy units for the temperature T
(absorbing kB in its definition).

At lower temperatures this mechanism yields to the
nearest-neighbor hopping (NNH) of electrons
between electron and hole puddles near the Fermi
level. Similarly to the case of granular metals [51, 52],
the activation energy of such hopping is determined by
the typical puddle charging energy EC

(3)

�
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�
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Here the prefactor σ2 ~ (e2/ )exp(–S) ≪ (e2/ ).We
show below that

(4)

Here α = e2/(κ ) is the analog of the fine struc-
ture constant and κ is the dielectric constant of the
substrate. With the standard semiconductor value  ~
106 m s–1; and with κ = 4 for SiO2, 11 for insulating
GaAs, 20 for HfO2 and 1000 for PbTe; α can vary
from1 to 10–3. Below in our theory we use α as a small
parameter, α ≪ 1, but our results are semiquantita-
tively correct at α = 1. In Eq. (4) we also used derived
below equation

(5)

where characteristic concentration

(6)

In Eqs. (4)–(6) and everywhere below we use a
scaling approach and omit all numerical coefficients.

At even lower temperatures NNH crosses over to
VRH obeying the Efros-Shklovskii (ES) law

(7)

with σ3 ~ e2/ . We show below that in this regime

(8)

and the temperatures associated with the crossover
between different regimes are

(9)

� �

= α Δ Δ Γ = α Δ Δ�
2 4/3 2 4/9

0( / ) ( / ) .CE N N

�v

v

Γ Δ = 1/3
0/ ( / ) ,N N

−Δ = α κ Δ2 3 3 6
0( ) .N e

σ = σ − �
1/2

3 ES 2exp[ ( / ) ], ( ),T T T T

�

= αΔ Δ Γ = αΔ Δ�
37/9 37/27

ES 0( / ) ( / ) ,T N N

= αΔ Γ Δ = αΔ34/9 34/27
1 0( / ) ( / ) ,T N N
YSICS  Vol. 135  No. 4  2022



412 YI HUANG et al.

Fig. 4. Schematic log-log plots of characteristic energies of
three kinds of hopping conductivity. The characteristic
temperature of ES law TES (blue line), the activation
energy of NNH, EC (black solid line) and the characteris-
tic temperature of hybrid conductivity TH (red line) are
shown as functions of the dimensionless impurity concen-
tration N/N0 = (Γ/Δ)3. The left part of the plot where
N/N0 < 1 corresponds to Eqs. (41) and (12), while the right
part at N/N0 > 1 corresponds to Eqs. (8) and (4). In the
horizontal axis N/N0 = Nc/N0 = α–27/41 corresponds to
Γ/Δ = (Γ/Δ)c given by Eq. (28). At this point TES =
α87/41Δ. When Γ/Δ > (Γ/Δ)c the localization length ξ
increases exponentially and TES decreases exponentially.
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Above we dealt with large impurity concentration
N > N0, which corresponds to Γ ≫ Δ. In Section 5 of
this paper we study the case N < N0, for which small
and sparse electron and hole droplets are able to
screen the random potential of impurities, as in the
three-dimensional case studied in [1–3] (see Fig. 1).
We briefly review our results here. In this case, con-
ductivity is also due to the three-mechanism
sequence. The high temperature mechanism is due to
free electrons activated by energy Δ and the low tem-
perature mechanism is ES VRH with new TES = αΔ.
However, activated NNH of the intermediate tem-
perature regime is replaced by the new hopping mech-
anism, which we call NNH-VRH hybrid (H) mecha-
nism. It works in the new temperature interval  ≪
T ≪ . We study this hybrid mechanism in Section 5.
Here we only want to give a hint to its physics and ori-
gin of the term “hybrid.” Indeed, if we focus on pud-
dles this is hopping between nearest neighbor puddles.
However, each puddle has many droplets. Therefore,
focusing on droplets we deal with VRH.

Optimization of Miller–Abrahams resistor net-
work [2] of all available pairs of droplets of two adja-

= α Δ Γ Δ = α Δ3 13/9 3 13/27
2 0( / ) ( / ) .T N N

2'T

1'T
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cent puddles leads to the new H-mechanism conduc-
tivity:

(11)

where

(12)

Our results for TES, EC, and TH as a function of the
dimensionless impurity concentration N/N0 = (Γ/Δ)3

are summarized in Fig. 4. So far in this section we did
not touch the specifics of TI films discussed below, but
qualitatively the results for both cases are similar.

However, such three-mechanisms sequences are
not observed in most experiments [5–33]. Instead,
experiments tend to report an activated conductivity
with activation energy much smaller than Δ.

Here we suggest a possible explanation for such low
activation energies. We show below that at Γ/Δ > α–9/41

electrons are not localized in single puddles and the
first two regimes of conductivity are absent. The only
remaining mechanism is the ES VRH with very small
TES. This means that the low temperature “local acti-
vation energy” is much smaller than Δ.

An alternative explanation involves the intermedi-
ate temperature regimes at 1 < N/N0 < α–27/41 or at
α4 < N/N0 < 1. In this case all three mechanisms are
present in principle, but at small enough α the inter-
vals T2 < T < T1 and  < T <  can be large and the
observed activation energy can be very small. How-
ever, the theoretical prefactor of the NNH conductiv-
ity and hybrid hopping conductivity σ2 ≪ e2/ . This
agrees with some experiments [18, 21], but contradicts
to other ones, where prefactor close to e2/  was
observed [16, 20]. For such experiments the ES mech-
anism seems to provide a better explanation.

3. FRACTAL GEOMETRY OF PUDDLES 
AND TUNNELING ACTION

Let us start from the brief review geometrical fractal
properties of 2D puddles at Γ ≫ Δ [53]. The character-
istic size (diameter) of a puddle is given by

(13)

where ν = 4/3 and λ is the electron screening radius.
The perimeter of a puddle reads

(14)

The perimeter L is parametrically longer than the
diameter a because puddles have many “fingers,”
which are interlocked with other fingers of neighbor-
ing puddles (see Fig. 5). The area of a puddle is given
by

(15)

σ = σ − 5/9
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Fig. 5. Schematic picture of interlocked “fingers” of
neighboring puddles. Here the length of “fingers” a is of
order of the puddle diameter. One can imagine that Fig. 2
shows a vertical cross section of Fig. 5.

a

w

λ

where β = 5/36. The separation distance between
nearest-neighbor electron and hole puddles is

(16)
In order to estimate Γ and λ we can use the self-

consistent theory of [54], which dealt with the disor-
der potential at the surface of a bulk TI created by
charged impurities with three-dimensional concentra-
tion N. In our case the substrate plays the role of the TI
bulk and the two-dimensional semiconductor plays
the role of the TI surface. The band gap Δ that exists in
our case is not important when Γ ≫ Δ. To begin, we
relate Γ to λ as the typical Coulomb energy created by
charge f luctuations in a volume λ3:

(17)

This relation leads to a typical 2D density of states
(DOS)

(18)
which in turn leads to the screening radius

(19)

Solving Eqs.(17) and (19) for Γ and λ we get [54]

(20)

(21)
Let us now estimate the dimensionless action S

(the action in units of ) electron accumulate tunnel-
ing between nearest neighbor fractal metallic electron
and hole puddles separated by narrow insulating gaps
(see Fig. 2). The value of S is determined by the tun-
neling length r = Δ/eE in the spatially varying electric
field E created by impurities:

(22)

It is tempting to use Γ/eλ for E and arrive at S =
wΔ/  = α–1(Δ/Γ)2. However, the electric field has
strong f luctuations at short distances, so the typical
electric field depends on the tunneling distance r.

Since a cube of size r has a typical excess charge ,
the typical electric field associated with the length
scale r is E(r) = e(Nr3)1/2/κr2, which grows with
decreasing r. Also, due to the large perimeter length L
of puddles we can find rare places where the random
electric field is created by a larger-than-average num-
ber of excessive charges, M ≫ (Nr3)1/2, leading to even
larger electric field E(r) = eM/κr2. Below we find the
optimal values of M and r which determine S, and we
arrive at a value of S value much smaller than the naive
estimate S = α–1(Δ/Γ)2. Our optimization procedure is
a mesoscopic version of the optimization used in the

= λΔ Γ/ .w

Γ = λ
κλ

2
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= κ α Γ2 2 4/ ,g e
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α κΓ
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2 2 .e
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theory of the interband absorption of light in compen-
sated three-dimensional semiconductors [2, 55]. It is
also similar to the theory of f luctuation-induced
excess currents in reverse biased p–n junctions [56].

Below we use S to calculate the localization length
ξ that determines hopping transport. Thus, we are
interested in f luctuations of electric field which,
although rare, happen roughly once at every interface
between nearest-neighboring puddles. Thus,

(23)

Here we use the Gaussian probability of finding net
charge M in a cube of size r. For tunneling across the
gap 2Δ we need the potential difference across the
cube Me2/κr = Δ. In other words, r = r(M) = Me2/κΔ.
Substituting r(M) into Eq. (23) and solving for M gives

(24)

which at Γ ≫ Δ corresponds to r(M) ≪ w ≪ λ.
Substituting the electric field E = Me/κr2(M) into

the tunneling action Eq. (22) we have

(25)

In the last step we used the power-law approxima-
tion lnx = x1/3 valid for x ∈ (3, 100) with accuracy bet-
ter than 30%.

Now we can calculate the electron localization
length, ξ, which we need below to calculate the hop-
ping conductivity. After each tunneling through the
gap, electron spreads by distance a. This means that at
a large distance x the electron accumulates an action
Sx/a = x/ξ where

(26)

 λ − = 
 

2
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−α Δ Γ=
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The fast decrease of S with growing Γ/Δ leads to
growth of dimensionless conductance G between two
neighboring puddles

(27)

so that we get G =1 at some critical value (Γ/Δ)c.

Substituting Eq. (25) into Eq. (27) and setting G = 1,
in terms of power law we arrive at the critical point1

(28)

valid for α ∈ (1.2 × 10–4, 0.12). This range of α is
obtained by substituting Eq. (28) into the requirement
for the argument of the logarithm (Γ/Δ)7/3 ∈ (3, 100).2

At larger Γ/Δ the localization length grows expo-
nentially as ξ = aeG. This leads to dramatic growth of
the conductivity, namely to insulator–almost metal
transition if the sample size is much larger than ξ. For
a very small sample, this (Γ/Δ)c effectively plays the
role of the critical value of insulator–metal transition.

4. HOPPING CONDUCTIVITY

The character of the conductivity of our system
apparently changes at Γ/Δ = (Γ/Δ)c. At moderate dis-
order when 1 < Γ/Δ < (Γ/Δ)c electrons are well local-
ized within a puddle and the temperature dependence
of the conductivity follows the three-mechanism
sequence discussed in the Introduction. In strong dis-
order case Γ/Δ > (Γ/Δ)c, the localization length ξ ≫ a
and at all temperatures the conductivity is due to ES
VRH with very small TES and the prefactor σ0 ~ e2/ .
In the limited temperature range it can look like acti-
vated transport with very small activation energy.

Below we concentrate on the three-mechanism
sequence case, when with decreasing temperature the
activated conductivity with activation energy Δ is
replaced first by NNH and then by ES VRH. This case
reminds systems of densely packed metallic granules
separated by a thin insulator with Coulomb impurities
and we can follow the calculation of their conductivity
[51, 52].

Let us start from the discussion of NNH conduc-
tivity. By decreasing the temperature such that Δ/T ≫
S or T ≪ T1 = Δ/S, NNH starts playing role and
replacing the Δ activation energy by the charging
energy of a puddle EC. In the case of large Γ/Δ we
study the fractal structure of puddles which leads to a

1 In the limit of α → 0, the asymptotic expression to first order
reads (Γ/Δ)c = α–1/3[ln(α–1)]–2/3.

2 Note that this mesoscopic optimization method based on
Eq. (23) is selfconsistent if Γ/Δ < (Γ/Δ)c (or G < 1), so that
eS > L/λ.

= λ −( / )exp( ),G L S

−Γ Δ = α 9/41( / ) ,c

�
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peculiar expression for EC, smaller than standard EC =
e2/κa. Namely we are going to show that

(29)

Substituting Eqs. (13) and (19) into Eq. (29) one
arrives at Eq. (4). Let us illustrate how this happens
comparing the self-capacitance of an isolated puddle
C0 ~ κa with the capacitance of the same puddle sur-
rounded by other puddles, C. In the latter case, extra
electron charge of a puddle e is located at the distance
of screening radius λ from its border of the length L,
while neighboring metallic puddles provides opposite
charge on the other side of the border. Thus, all elec-
tric field is concentrated at the border between two
puddles, mostly between long fingers of electron and
hole puddles shown in Fig. 5.

In our system it means that C ~ κL and leads to
Eq. (29). The role of fingers interaction in creating
large capacitance was also recognized by electrical
engineering community [57].

The use of the activation energy EC is justified when
it is larger than the energy level spacing in a puddle.
The level spacing is given by

(30)
where g is the 2D DOS given by Eq. (18) and A is the
area of a puddle given by Eq. (15). Therefore the ratio
δ/EC = (Δ/Γ)7/36 ≪ 1 and our use of EC is legitimate.

Let us now switch to VRH conductivity which
replaces NNH one at low enough temperature enough
temperature. In the ground state, each puddle i of our
system is charged by a random fractional charge |qi| ≤
e/2. This happens because some impurities contribute
their potential to neighboring puddles effectively by
sharing their charge between neighboring puddles, so
that each puddle effectively gets a fraction of impurity
charge e. On the other hand, electrons contribute their
integer charge e to their puddles. Fractional charging
provides background disorder and creates random
potential resulting in background density of localized
states in which Coulomb attraction between excited
electrons and remaining at its initial place hole pro-
duces the Coulomb gap around the Fermi level [51,
52]. This leads again to ES law in the low temperature
limit.

We can calculate TES in ES law starting from the
standard expression TES = e2/κξ [2, 58]. Using ξ = a/S
and Eq. (25) we arrive at Eq. (8). We see now that
TES ≪ Δ. Equating (TES/T)1/2 to EC/T with help of
Eqs. (8) and (29) we arrive at T2 given by Eq. (10).

Note that at T = T2 the typical hop length of ES
VRH is ξ(TES/T)1/2 = L ≫ a so that the range of appli-
cability of Eq. (29) goes beyond the range a of NNH.
The reason for this is that in the case Γ ≫ Δ the energy
of the Coulomb interaction between electron and hole

Δ= =
κ κ Γ

2 2
.C

e eE
L a

−δ = = α Δ Γ Δ1 2 55/36( ) ( / ) ,gA
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at distance r determining ES VRH V(r) has a peculiar
form: V(r) = e2/κr at r ≫ L and V(r) = e2/L at r ≪ L.3

For such a potential ES law crosses over to acti-
vated behavior Eq. (29) when hop length r becomes
smaller than L [59]. Thus, NNH is responsible only
for the high temperature part of the temperature range
of validity of Eq. (29), the second low temperature one
is ES VRH corresponding to V(r) = e2/κL.

Above we studied the simplest case of the gapped
Dirac spectrum Eq. (1). In an important case of BLG
gapped by perpendicular external electric field,4 the
spectrum is somewhat different, namely, it has the
“mexican hat” shape, where the energy minimum
| (k)| = Δ is degenerate and located along a ring |k| = k0
in 2D k-space [60]. Nevertheless, at | (k)| ≫ Δ the
spectrum returns to the same Dirac cone as Eq. (1)
and | (k)| ~ Δ is the only characteristic low energy
scale. This is why Eqs. (20) and (21) are still valid and
the order of magnitude of S is not changed. Thus, all
our results for the most interesting case. Γ ≫ Δ are still
the same as for the gapped Dirac spectrum Eq. (1).

5. MODEST CONCENTRATION OF 
IMPURITIES

Above we assumed the gap Γ ≫ Δ so that we used
the Dirac dispersion (k) ≈ k to calculate energies
EC and TES. In this section we study the opposite case
when Γ ≪ Δ or N ≪ N0, where N0 is given by Eq. (6).
In this case, Γ given by Eq. (20) does not describe the
potential f luctuation amplitude and Γ can be consid-
ered only as a measure of N. Indeed, when the Fermi
level is within the gap there is no screening, unless the
Coulomb potential bends the conduction band bottom
and the valence band ceiling by an energy slightly larger
than Δ and creates small electron and hole droplets.

3 Here we would like to compare energies of two likely configura-
tions of electric field produced by electron and hole located in
the plane of a 2D semiconductor at distance r from each other.
First configuration corresponds to electric field lines connecting
two charges through 3D space with dielectric constant κ. In this
configuration the energy stored in the electric field is e2/κr. In
the second configuration electric field stays in the plane of the
semiconductor with dielectric constant κ. It runs through metal-
lic puddles and connects their perimeters of length ~L, so that
puddles form capacitors with capacitance C ~ κL. In a typical
linear cross-section of the area r2 there are r/a parallel capaci-
tors with charge ea/r in each of them. Here a is the diameter of a
puddle. Each capacitor therefore carries an energy (ea/r)2/C.
The total number of involved capacitors is (r/a)2. Thus, total
energy of this capacitor network is e2/κL. It is clear now that at
r > L electric fields prefer to stay in 3D space leading to V(r) =
‒e2/κr for electron–hole interaction energy, while at r < L elec-
tric fields stay inside the plane and V(r) = –e2/κL is indepen-
dent on r. (This argument ignores logarithmic factors.)

4 Graphene has a Fermi velocity  =1 × 106 m/s, and in order to
apply our theory we need α = e2/κ   2.2/κ ≪ 1. Namely, the
dielectric constant of the environment surrounding the BLG
should be κ ≫ 2.2.
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Electron and hole droplets form alternating in space
fractal electron and hole clouds (puddles) of the size

(31)
obtained by equating Δ and the random potential
amplitude (e2/κ)(NΛ3)1/2/Λ inside a cube of size Λ.
Such a system of droplets and puddles is the two-
dimensional analog of the three-dimensional com-
pletely compensated semiconductor [1, 2] schemati-
cally shown in Fig. 1.

If the kinetic energy of degenerate electrons in
droplets satisfies (k) ≪ Δ, then one can use the para-
bolic dispersion law for them

(32)

with m = Δ/ .To show that indeed (k) ≪ Δ we first
find the size of a typical droplet Rq, following [1, 2].
Namely, we equate the depth of the potential well
(e2/κ)(N )1/2/Rq created by a typical f luctuations of
charge in a cube of size Rq to the kinetic energy of

(N )1/2 electrons  = (N )1/2 /m  in the disk of

radius Rq and arrive at Rq = aB, where aB = κ/me2 is

the semiconductor Bohr radius and m = Δ/  is the
effective mass.5 When deriving Rq = aB we assumed

N  = (Γ/Δ)3α–4 ≫ 1, or equivalently 1 ≫ Γ/Δ ≫ α4/3.
Substituting Rq = aB back to  = (N )1/2/m  we
get

(33)

Next we discuss the conductivity when N ≪ N0 or
Γ ≪ Δ. Similarly to the case Γ/Δ ≫ 1 there are three
mechanisms of the conductivity. Activation of free
electrons by energy Δ is the same as at N > N0. The
tunneling between droplets inside the same puddle is
faster than the tunneling between neighbor puddles.
For the latter we can find the action S substituting Λ
for r into Eq. (22):

(34)
This leads to the crossover from activation to hop-

ping at  = Δ/S or

(35)

In the adjacent interval of lower temperatures  ≫
T ≫  where

5 The same result can be obtained by equating the total number of

electron states gγ(Rq)  to the excess number of impurity

charges , where γ(Rq) = (e2/κ)(N )1/2/Rq is the potential

depth and g = m/  is the 2D DOS.
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Fig. 6. Schematic map of nearest neighbor electron and
hole puddles containing many electron (blue) and hole
(red) puddles. The continuous lines are equipotential con-
tours of the electron energy. As in geographical maps the
direction of descent is indicated by a short stroke. The
smallest contours represent boundaries of droplets at the
chemical potential. The dashed arrow shows the shortest
hop between the two puddles. At T ≪  electron searches
in dashed circles of radius R for droplets 3 and 4 with closer
to the chemical potential energies, which provide a smaller
inter-puddle hop resistance.

3

1

2

4
R

R

1'T
(36)

we deal with the hopping conductivity of electrons
between nearest puddles, but each puddle has many
droplets and we should explore hopping between all
pairs of droplets of two neighboring puddles searching
for the smallest Miller-Abrahams resistors [2]. Thus,
focusing on puddles we deal with NNH and focusing
on droplets we deal with VRH. Therefore, we call this
mechanism of the hybrid hopping conductivity and
illustrate it in Fig. 6. At T3 ≪ T ≪ , where as we
show below

(37)

an electron hops between two closest droplets 1 and 2
of the nearest neighbor electron and hole puddles.
When temperature gets lower it chooses slightly more
distant droplets of the same two puddles with energies
closer to the Fermi level. At low enough temperature,
T = , it chooses the optimal in energy two droplets
of the two puddles. At even lower T <  it hops to the
second nearest puddle and we arrive at ES VRH. Such
a theory of hybrid hopping conductivity was proposed
for strongly compensated semiconductors [61] before
the discovery of the Coulomb gap and ES law [58].
Here we revise this theory by adding the Coulomb gap
to its argumentation.

To find the optimal path at  ≪ T ≪ T3, an elec-
tron searches for more distant droplets 3 and 4 located
in two discs of radius R around droplets 1 and 2. This
leads to the increase δS = R/ξ(R) of the tunneling
action S, where ξ(R) = /(mγ(R))1/2 and γ(R) =
(e2/κR)(NR3)1/2 is height of typical barrier in the spa-
cial scale R. This increase can be overcompensated by

= α Δ3 2
2 0' ( / ) ,T N N

1'T

= α Δ �
3 1/4

3 0 2'( / )T N N T

2'T
2'T

2'T

�
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the reduction of activation energy necessary for the
hop between new pair of droplets. Using the two-
dimensional Coulomb gap density of states g( ) =
κ2 /e4 we find that minimum energy  of a droplet
in a disc of area R2 is determined by the condition  =
[g( )R2]–1, which leads to  = e2/κR.

Thus, the logarithm of conductivity generated by
optimization in a given scale R is

(38)
It has maximum at

(39)

where TH = α6/5(N/N0)1/5Δ as shown in Eq. (12). Sub-
stituting Ropt back to Eq. (38) we arrive at Eq. (11).
Equating Ropt to the maximum distance Λ between
droplets inside a puddle we arrive at  in Eq. (36). On
other hand, equating Ropt to the minimum distance aB
between droplets inside a puddle we arrive at the high
temperature limit of the hybrid hopping conductivity
T3 given by Eq.(37).

When N tends to N0 the temperature T3 tends to ,
so that the range of validity of Eq. (11) vanishes. This
allows the conductivity we calculated in Section 5 for
N > N0 to match at N = N0 the conductivity we found
for N < N0 in Section 4.6

At lower temperatures T < , the conductivity is
dominated by ES VRH. The localization length is
given by

(40)
with Λ given by Eq. (31) and S given by Eq. (34). Sub-
stituting Eq. (40) into TES = e2/κξ, we get the charac-
teristic temperature for ES VRH

(41)
which is valid if α4 < N/N0 < 1 and matches Eq. (8) at
Γ = Δ and N = N0.

Our results for TES and EC as a function of dimen-
sionless impurity concentration N/N0 = (Γ/Δ)3

obtained in Sections 4 and 5 are summarized in Fig. 4.
So far we assumed that α ≪ 1. Let us explore what

happens when α ~ 1 as, for example, in twisted bilayer
graphene. In this case at N0 = κ3Δ3e–6 =  and at N =

N0 we have N  = 1. Both sides of N/N0 = 1 on Fig. 4

now shrink. At N/N0 ≫ 1 or N  ≫ 1 we get almost
metallic conductivity, in spite of complete compensa-

6 Above for simplicity we concentrated on the case of N > α8/5N0,
when T3 > . In this case, in the range  > T > T3 conductiv-
ity has a constant activation energy. At N < α8/5N0 the high tem-
perature border of the hybrid hopping conductivity Eq. (11) is
given by .
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Fig. 7. Schematic n–N phase diagram in a two-dimen-
sional semiconductor. The shaded blue domain is the insu-
lator phase while the white domain is the almost metal
phase. On the left (small N) side of the diagram the phase
boundary follows Eq. (43) (dashed line) and reaches the

maximum near N  = N0  = α–4. On the right side the
maximum of the phase boundary is determined by crite-
rion G(n, N) = 1 for tunneling between electron puddles.
When with decreasing n this tunneling rate yields to the
tunneling between electron and hole puddles, the bound-

ary becomes vertical, i.e., sticks to the critical point N  =

Nc  = α–191/41 all the way till n = 0 (c.f. Eq. (28)).We use
α = 0.12 for this plot.
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tion. On the other side, N/N0 ≪ 1, the conductivity
obeys ES law with TES = Δ at low temperature T ≪
(N/N0)2Δ. At higher temperatures interval (N/N0)2Δ ≪
T ≪ (N/N0)Δ the conductivity is due to the hybrid

hopping described by Eq. (11) with TH = Δ(N )1/5. At
T ≫ (N/N0)Δ the conductivity is dominated by free
electrons activated by energy Δ. As a result, at low
enough temperature the local apparent activation
energy is of the order of (TΔ)1/2 ≪ Δ. Note also that at
α ~ 1 the Bohr energy of hydrogen like impurities EB =
e2/κaB = α2Δ becomes of the order of Δ so that local-
ized donor and acceptor states play the role of metallic
droplets in the lightly doped limit N ≪ N0 (see Chapter
3 of [2]).

6. “PHASE DIAGRAM” OF TRANSITION 
BETWEEN INSULATOR AND ALMOST METAL

Above we focused on the charge neutrality point
where EF = 0. However, for 2D devices one can easily
move away from the neutrality point by applying a gate
voltage, for example, making EF > 0 and inducing a
nonzero net 2D concentration n of electrons. As a
result one can study the whole n–N phase diagram.
We show below that such a phase diagram has an inter-
esting re-entrant metal–insulator transition (MIT) as
a function of increasing N (see Fig. 7).

We already know from Eq. (28) that if n = 0, there
is an insulator–metal transition (IMT) at Γ/Δ =
(Γ/Δ)c, or N = Nc = N0α–27/41, where the disorder tun-
neling plays decisive role. On the other hand, for mod-
est impurity concentrations 1 ≪ N  ≪ N0  = α–4,
there is also an MIT induced at some n = nc. This MIT
happens because by increasing n the electron kinetic
energy becomes larger than the random Coulomb
potential energy, and electron puddles become con-
nected with each other and turn the system from an
insulator to an almost metal. We find the net electron
concentration nc associated with the MIT by equating

the Fermi energy EF = n/m with the Coulomb
potential energy f luctuations [62]

(42)

where the Bohr radius aB plays the role of the linear
screening length rs for nonrelativistic 2D electron gas.
Solving Eq. (42) one gets the critical percolation
threshold concentration

(43)

In the left side of the phase diagram Fig. 7, the MIT
border line follows Eq. (43) shown by the dash line. It
continues till the maximum at N ~ N0, where EF ~ Γ ~
Δ. Therefore, for the whole phase diagram EF ≤ Δ and
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our use of the nonrelativistic expressions for EF and rs
in Eq. (42) is justified.

Now we turn to the right side of Fig. 7and find the
IMT border line, which starts at n = 0 and N = Nc and
matches Eq. (43)near N = N0. Apparently, this part of
the border is determined by tunneling between pud-
dles. This tunneling can be illustrated by the small
square section of the “chessboard” potential u(x, y) =
u0cos(2πx/b)cos(2πy/b) which at neutrality point has
four identical electron and hole puddles (see the b × b
square in Fig. 8). There are two kinds of electron tun-
neling events contributing in the conductivity of such
a chess-board, the side-to-side tunneling between
electron and hole puddles and the diagonal tunneling
through the saddle point between two neighboring
electron puddles.

At n = 0 (see Fig. 8a) in both cases the tunneling
barrier is of the same height Δ, while the tunneling dis-
tance in the side-to side case, w is substantially shorter
than the diagonal distance W. Thus, at n = 0 the side-
to-side tunneling dominates and so far in this paper we
dealt only with this tunneling. The side-to-side tun-
neling distance w is weakly affected by growing n (see
Fig. 8b). As a result the right side of the IMT border at
small n is almost a vertical line. On the other hand, we
see in Fig. 8b that the distance between electron pud-
YSICS  Vol. 135  No. 4  2022
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Fig. 8. Illustration of the competition of the two tunneling
rates for a chessboard potential. Blue and red domains are
the electron and hole puddles separated by insulating gap
(white). (a) At the neutrality point, n = 0, EF = 0, the
shortest tunneling distance between electron puddles W is
much larger than the distance w between electron and hole
puddles. (b) At EF > 0 and growing n, W decreases. Even-
tually it becomes smaller than w and vanishes at the perco-
lation transition where all electron puddles merge into the
infinite cluster.

(a) EF = 0 (b) EF > 0

W w
dles W steeply decreases with growing n. Eventually, W
becomes smaller than w and the diagonal tunneling
starts dominating.

Although in Fig. 8 we used a simplified model, the
same dynamics is valid for our disordered system. The
crossover to the diagonal tunneling leads to a sharp
decrease of the slope of the right side border of the
insulating phase of Fig. 7, given by the condition
G(n, N) = 1 for the dimensional conductance. Even-
tually, with growing n large fraction of diagonal gaps
between electron puddles close near n  ~ α–2, where
EF ~ Δ ~ Γ and electron puddles merge at the percola-
tion transition. This means that the right side border
merges with the left one near N ~ N0 as shown in
Fig. 7.

We see that at 1 < n  < α–2 there is an unconven-
tional reentrant MIT. At small N ≪ N0 disorder drives
a percolation MIT, when Γ exceeds Fermi energy of
electrons so that they are forced into isolated puddles.
On other hand, at large N > N0 or Γ > Δ the disorder
drives electrons back to metal, because of increase of
tunneling which becomes dramatic near Γ/Δ = (Γ/Δ)c.
Of course, making n < 0 one can explore re-entrant
MIT phase diagram for holes.

Changing the concentration of impurities N at
fixed n and Δ in real experiments is difficult. Instead,
one can change the band gap Δ at fixed n and N as this
is done, for example, in [63]. However, in this case,
with decreasing Δ there is only one MIT at small Δ as
in the case of n = 0. There is no second transition at
large Δ, because as we see from Eq. (43) using aB =
e2/(κα2Δ), the critical concentration of MIT nc ∝ Δ1/2

eventually becomes larger than any fixed n, so that the
insulator phase persists. One can return to a re-entrant
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MIT transition at fixed N by changing Δ and n simul-
taneously, for example, by fixing n  as this is clear
from Fig. 7.

We would like to emphasize that predicted in this
section reentrant MIM transition is different from
MIM transition observed near filling factor ν = 1,
where the Mott–Hubbard gap has maximum [64].
Along a horizontal line of Fig. 7, Δ and n are fixed and
the concentration of impurities N changes monotoni-
cally. Monotonically growing random potential then
leads to the classical MIT via creating puddles when N
is relatively small, and to the quantum IMT transi-
tion via enhanced tunneling when N is big. For the
transition discussed in our previous paragraph, N is
fixed and both n and Δ change monotonically, such
that two transitions are due to the interplay of two
different, classical and quantum, disorder effects.
Our MIM transition exists when there is no Mott–
Hubbard physics.

7. THIN FILM OF THREE-DIMENSIONAL 
TOPOLOGICAL INSULATOR

In previous sections we dealt with the general
model of the trivial 2D semiconductor with gaped
Dirac spectrum Eq. (1). In this section we concentrate
on special case of a thin film of 3D TI, where the nar-
row gap 2Δ can be a result of the hybridization of sur-
face states on opposite surfaces of the film [8, 9, 37–
43] or created by a concentration of magnetic dopants
like Cr [10, 12–24, 34, 35, 44–49]. Because of the
promise of such films to achieve a metrological preci-
sion of the quantum anomalous Hall effect and the
quantum spin Hall effect, in this section we are more
specific with material parameters and numerical esti-
mates.

We have in mind TI thin films based on
(BixSb1 ‒ x)2Te3, which have very large dielectric con-
stant κ ~ 200 [65–67]. Using κ ~ 200 and the Fermi
velocity of TI  ~ 4 × 105 m/s [68], one gets α ~ 0.027.
We assume that such a film of width d ~ 7 nm is depos-
ited at the substrate with much smaller dielectric con-
stant κe, so that electric fields of Coulomb impurities
residing inside the film are trapped within the film
[69–73]. Namely, electric lines stay inside the film at
distances r from impurity if d < r < dκ/κe and in the
absence of screening exit the film at r > dκ/κe. Thus,
the electric field of a charged impurity is E(r) = 2e/κdr
at d < r < dκ/κe and E(r) = e/κer2 at r > dκ/κe. This
leads to electrostatic potential V(r) = (e2/κd)ln(κd/r)
weakly dependent on r in the range d < r < dκ/κe.

At Γ > Δ electrons and holes created by band bend-
ing self consistently screen electric field at the distance
λ, such that d ≪ λ ≪ (κ/κe)d. Very slow decay of the
electrostatic potential of distant Coulomb impurities
allows larger number of them to contribute to Γ. TI
films have large concentrations of Coulomb impuri-
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ties, N ~ 1019 cm–3, so that we study only their effect
and ignore impurities inside the substrate.

Peculiar electrostatics we discussed above leads to
new results of self-consistent theory of screening [72]
at EF = 0 and Γ ≫ Δ

(44)

(45)
Note that the expression for Γ in this case is the

same as Eq. (20), i.e. while the expression for λ differs
from Eq. (21) and is valid if λ ≫ d. Using above esti-
mates for α, d, and N we get λ ~ 50 nm, so that
inequality λ ≫ d holds and we can use Eq. (45).

Similarly to the Section 4, below we calculate the
tunneling action S and the critical (Γ/Δ)c and describe
hopping conductivity of the film. Notice the electric
field in the film plane created by charge f luctuations in
a disk of radius r and thickness d is given by

(46)

which turns out to be independent on r. Therefore,
there is no, similar to the one in Section 4, enhance-
ment of the electric field at scales shorter than λ. Sub-
stituting Eq. (46) or equivalently E = Γ/eλ into
Eq. (22), we arrive at the action

(47)

However, the electric field E = eM/κλd can still be
enhanced by a rare f luctuation of the number of
charges M ≫ (Nλ2d)1/2 with Gaussian probability
exp(–M2/Nλ2d). This replaces Eq. (23) by

(48)

Solving the above equation we obtain the largest M
available in the perimeter

(49)
Substituting the electric field E = eM/κλd into the

action Eq. (22) we obtain

(50)
which is smaller than the action given by Eq. (47). In
the last step, as in the Section 3 we used the power-law
approximation lnx = x1/3 valid for x ∈ (3, 100) with
accuracy better than 30%.

Substituting Eq. (50) into the expression of G,
Eq. (27), and setting G = 1, we arrive at the critical point7

7 In the limit of α(Nd3)–1/2 → 0, the asymptotic expression to
first order reads (Γ/Δ)c = α–1/6(Nd3)1/12{ln[α–1(Nd3)1/2]}–3/4.
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(51)

Using the estimates α ~ 0.027, N ~ 1019 cm–3 and
d = 7 nm we get (Γ/Δ)c = 1.6.

Let us switch to hopping conductivity of thin TI
film and start from NNH where activation energy is
determined by the charging energy of a puddle. Simi-
larly to Section 3, capacitance of a puddle within the
film is determined by its long border adjacent to neigh-
boring puddles. Near the border there are two stripes
with charges –e and e of the length L and width λ. But
now electric field at the border is concentrated in the
film of width d ≪ λ with the large dielectric constant
κ. This changes the capacitance of the puddle border
to C ~ κL(d/λ) and leads to

(52)

at 1 < Γ/Δ < (Γ/Δ)c. This charging energy, plays the
role of NNH activation energy.

At lower temperatures T < T2 conductivity obeys
the ES law with the characteristic temperature TES =
e2/κeξ, where ξ = a/S. Note that here we use κe
because at large distances electric field lines leave the
film and go through the environment. Using Eqs. (13)
and (50) we get

(53)

Crossover between Eq. (2) and Eq. (3) happens at

(54)

while crossover between Eq. (3) and Eq. (7) hap-
pens at

(55)

Equations (53) and (51) show that in TI films as in
trivial semiconductors (c.f. Eqs. (8) and (28) and
Fig. 4) reduction of TES and crossover from strong
localization case to the practically metallic conductiv-
ity happens dramatically fast when Γ exceeds Δ.

Now let us study the case of a modest concentra-
tion of impurities where Γ < Δ or N < N0 where N0 is
defined by Eq. (6). First we should find the size of a
droplet Rq in the cloud, and show that the kinetic
energy of a droplet  is smaller than Δ so that the
energy dispersion is nonrelativistic at Γ < Δ. Equating
the depth of the potential well e2(N d)1/2/κd created
by typical f luctuations of charges in a disk of radius Rq

and thickness d to the Fermi energy of (N d)1/2 elec-

trons in the disc of radius Rq,  = (N d)1/2/m ,
we arrive at Rq = . This Rq is valid if aB > d (or Δ <
α–2e2/κd) so that the droplet is still disk-like. Substi-
tuting Rq =  back to the droplet Fermi energy we
get the ratio /Δ given by Eq. (33). Therefore, at
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N < N0 the kinetic energy is smaller than Δ and the use
the parabolic dispersion law is justified.

Next, we study the three-mechanism conductivity
at N < N0. Let us start with the NNH conductivity.
Similarly to Section 4, we obtain the nonlinear screen-
ing length

(56)

(the size of a puddle) by equating Δ and the random
potential of a disk of size Λ.

(57)

As a result, the tunneling action S is again given by
Eq. (47) and S ≫ 1. The activation energy for the
NNH conductivity is equal to the charging energy of a
droplet. Radial electric field of a charged droplet stays
in insulating TI film till distance (κ/κe)d and only then
exits to the environment with small dielectric constant
κe. Therefore, the charging energy determining hop-
ping activation energy at T4 > T > T5 is

(58)

which matches Eq. (52) at Γ = Δ.8 At lower tempera-
ture T < T5, using the localization length ξ = Λ/S we
get the characteristic temperature for ES law

(59)
which matches Eq. (53) at Γ = Δ.9

Now we can estimate the characteristic energies Γ,
Δ, EC, TES, T4, T5 and Δ1 for TI thin films based on
(BixSb1 – x)2(TeySe1 – y)3. Using κ = 200, α = 0.027,
N = 1019 cm–3, we have Γ  17 meV. The hybridization
gap is related to the thickness by Δ = Δ0  with Δ0 =
0.5 eV and d0 = 2 nm [9]. For example, if d = 7 nm,
then Γ  17 meV, Δ  15 meV, S  3, EC  0.8 meV, T4 =

Δ/S  60 K, T5 = /TES = 0.6 K, TES  130 K and
Δ1 = 70 meV (here assume that the film has hBN on
both sides and use κe = 5). In this case, ES conductiv-
ity starts when (TES/T5)1/2 ~ 15, so large that ES law is
hardly observable because of very large resistance.

8 This result of EC is valid if the size of a droplet Rq is smaller than
the electric field confinement distance (κ/κe)d, or Δ >
(κe/κα)2e2/κd.

9 The above theory assumes that Λ < dκ/κe, or Δ < Δ1 =

(e2/κe) . In this case, the Coulomb interaction energy
between two droplets inside a puddle is equal to e2/κd and is
independent on the distance between two droplets R. Therefore,
there is no optimization with respect to R similar to Eq. (38),
and no hybrid mechanism. On the other hand if Δ > Δ1, there is
intermediate between Eqs. (58) and (59) hybrid regime which
we skip here.
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Thus, observable activation energy is given by EC ~
0.05Δ.

In slightly thicker films with d ≥ 8 nm the half-gap
Δ(d) ≤ 9 meV and Γ/Δ > (Γ/Δ)c, so that they are almost
metallic and show ES conductivity with much smaller
TES. On the other hand, in slightly thinner films, d <
7 nm, for which Δ > Γ energies Ec and TES given by
Eqs. (58) and (59) match Eq. (52) and (53)so that
practically conductivity is similar to films with d =
7 nm.

Notice that critical thickness d = dc = 7 nm is very
sensitive to values of Δ0, N, κ, α, and most impor-
tantly d0, which are different for different materials.
This can explain differences between experimental
results in [8, 9].

For the case of magnetically doped TI thin films,
the exchange half gap Δ induced by magnetic impuri-
ties is of order of 20 meV [20, 21, 49] (which is not
directly related to d), so that we have practically the
same numbers as in the previous example.

Let us now dwell on the n–N plane phase diagram
of the TI film, which as we show below looks almost
identical to Fig. 7. At a modest impurity concentration
N < N0, we equate the Fermi energy with the Coulomb
potential energy f luctuations to find the critical con-
centration nc

(60)

where we use rs =  for the screening radius rs of
nonrelativistic 2D electron gas in a TI thin film of
thickness d. This result can be derived by substituting

the nonrelativistic DOS g = m/  into rs = 
[72]. (Note that the expression of rs looks like the one
in 3D bulk semiconductor, because of peculiar elec-
trostatics of TI film with large dielectric constant.)
Equation (60) gives the same expression of nc as
Eq. (43), so the left boundary of the TI phase diagram
is exactly the same as in Fig. 7. The only difference
between TI diagram and Fig. 7 is that the distance
between Nc and N0 is smaller on the right hand side of
the TI phase diagram.

8. NARROW GAP COMPLETELY 
COMPENSATED THREE-DIMENSIONAL 

SEMICONDUCTOR
In this section we return to the case of a three-

dimensional (3D) completely compensated semicon-
ductor with a gapped Dirac dispersion, from which we
started the Introduction section. This problem was
studied previously [1–3] for relatively large gap semi-
conductors, when the random potential is screened by
small and well-separated electron and hole droplets, as
depicted in Fig. 1 (see also Fig. 13.4 of [2]). But the
recent interest in three-dimensional Dirac semimetals
has brought renewed emphasis on 3D materials with a

= κ = κ�
2 2 2 2/ / / ,s Bn m e Nr d d e Na

Ba d

�
2 κ 2/d e g
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Dirac-like dispersion and very small gap. Such a dis-
persion arises ubiquitously near the boundary between
topological and trivial insulator phases. Examples
include ZrTe5 and HfTe5 [74], BiTeI [75], BiTeBr
[76], and BiSb [77, 78]. In these materials the gap Δ
can be controlled by external parameters like pressure
or magnetic field.

Below we address both cases Γ1 ≪ Δ and Γ1 ≫ Δ.
Here our notation Γ1 replaces Γ of previous sections
because in the 3D strong disorder case the self-consis-
tent amplitude of the potential is somewhat smaller
than for 2D. According to the self-consistent theory of
[79], the amplitude of the disorder potential at Δ = 0
follows

(61)

As in Section 5, below we use the notation Γ1 only
to represent the impurity concentration N. In the limit
Γ1 ≪ Δ the actual amplitude of the random potential
is of order Δ. We also define the characteristic concen-
tration N1 = α3/2e–6κ3Δ3, such that Γ1/Δ = (N/N1)1/3.

Below we briefly discuss the temperature depen-
dence of the conductivity at Γ1 ≪ Δ, which is similar
to the 2D case with Γ ≪ Δ, discussed in Section 5. We
then consider the conductivity in the case when the
amplitude of the random potential Γ1 ≫ Δ, and we
emphasize the dramatic difference between 2D and
3D in this case.

In the case Γ1 ≪ Δ, a 3D completely compensated
semiconductor is an insulator with three low tempera-
ture mechanisms of conductivity. At relatively high
temperature electrons and holes can be activated from
the Fermi level to their percolation levels. Because in
3D percolation requires only a small fraction of space,
~17%, this activation energy is relatively small [3], Ea ≈
0.3Δ.

At lower temperatures activation to the percolation
level is replaced by NNH, with activation energy given
by the charging energy of a droplet, EC = e2/κR, where

the droplet radius R = aB(N )–1/9 for N  ≫ 1 or

N/N1 ≫ α9/2 and R = aB for N  ≪ 1 or N/N1 ≪ α9/2.
This leads to Ec = α3/2(N/N1)1/9 for N/N1 ≫ α9/2 and
Ec = α2Δ for N/N1 ≪ α9/2.

The prefactor of NNH conductivity is equal to
exp(–S), where using Eq. (31)we get

(62)

At the lowest temperatures the conductivity is
dominated by ES VRH. Using Eqs. (31), (40), and
(62) we get TES = e2/κξ = αΔ.

Let us now turn to the conductivity in the case
Γ1 ≫ Δ, for which the bending of conduction and

Γ =
κα
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valence bands looks similar to Fig. 2. In this case elec-
trons occupy almost half of space, but we know that
only 17% of the space is enough to provide percola-
tion. This means that in the 3D case, in contrast with
the 2D case discussed in Section 3, at Γ1 ≫ Δ we deal
with a good metal. There is therefore a critical disorder
strength, such that (Γ1/Δ)c ~ 1, which produces a per-
colative insulator-to-metal transition (IMT).

Assuming that the random potential energy u(r)
follows the Gaussian distribution, we can estimate
(Γ1/Δ)c and the critical concentration Nc of IMT by
equating the volume fraction of electron (or hole)
puddles to 17%. Since the condition to have hole pud-
dles is u > Δ (c.f. Fig. 1), we have

(63)

By solving this equation we get the critical
(Γ1/Δ)c = 1.05 and the corresponding impurity con-
centration Nc = 1.15N1 at the IMT.

One can estimate the small width of this IMT by
calculating the hopping conductivity at the vicinity of
IMT where (Γ1/Δ)c – Γ1/Δ ≪ 1 and finding the dis-
tance from the IMT where [(Γ1/Δ)c – Γ1/Δ] ceases to
be exponentially small. This estimate would remind
the calculation of the width of integer QHE steps [80].
Such a theory is beyond the scope of this paper.

So far in this section we dealt with completely com-
pensated semiconductor. Let us now briefly consider
strongly compensated n-type semiconductor in which
concentrations of donors ND and acceptors NA are
close, but different. It is convenient to describe such a
semiconductor by the total concentration of Coulomb
impurities N = ND + NA and three dimensional con-
centration of electrons n3 = ND – NA ≪ N. We are
interested in the phase diagram of IMT in the n3–N
plane, which is shown in Fig. 9.

At modest impurity concentration 1 < N  <
N1 = α–9/2, we equate the Fermi energy with the
Coulomb potential energy f luctuations to find the
critical concentration n3c

(64)

where rs =  is the screening length for nonrel-
ativistic 3D electron gas. By solving Eq. (64) one
obtains [2, 81]

(65)
which is shown by the small N side phase boundary in
Fig. 9. Near N = N1 the phase boundary drops almost
vertically to n3 = 0 at N = Nc = 1.15N1. Thus, as in 2D
case we arrive at disorder driven reentrant metal–
insulator–metal transition. Note that for 3D case, we
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Fig. 9. Schematic n3–N plane phase diagram of a 3D nar-
row gap strongly compensated semiconductor. The shaded
blue domain is the insulator phase while the white domain
is the metal phase. The phase boundary follows Eq. (65) on

the left side, reaches the maximum n3  = α–3 near

N = N1  = α–9/2, and then vertically drops at N =
Nc = 1.15N1.
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use the word “metal” as opposite to 2D term “almost
metal” we used in Fig. 7. This is because real metallic
phase is allowed only in 3D.

9. SUMMARY AND CONCLUSIONS
In this paper we have considered the temperature-

dependent conductivity of a two-dimensional insula-
tor subjected to disorder by Coulomb impurities in the
substrate. Our primary results can be summarized as
follows. When the impurity concentration N is below a
certain value N0 (see Eq. (6)), the random potential of
charged impurities necessarily produces large band
bending, which the amplitude Δ becomes much larger
than Δ. Then the system can be described as a network
of large and closely-spaced fractal puddles (Fig. 2)
separated by narrow insulating barriers (Fig. 5). This
disorder landscape implies low-energy pathways for
electron conduction, leads to the “three-mechanism
sequence” illustrated in Fig. 3. The high temperature
regime with Ea = Δ is relegated to only such high tem-
peratures that T is comparable to Δ. The second
regime, the nearest neighbor hopping between pud-
dles (NNH), exhibits a parametrically smaller activa-
tion energy, whose value depends on the impurity con-
centration. At the lowest temperatures the conductiv-
ity is due to the Efros–Shklovskii variable range
hopping (VRH), which may appear as an even smaller
activation energy when measured over a limited tem-
perature range. Experiments are instead more likely to
observe NNH or ES VRH, with an activation energy
that declines very rapidly with increasing N (Fig. 4).
JOURNAL OF EXPERIMENTAL AN
When the impurity concentration N exceeds
another critical value Nc the tunnel barriers between
puddles become thin enough to be nearly transparent,
and electrons are delocalized across many puddles. In
this limit the conductivity follows ES law with the
localization length growing exponentially with
increased disorder. The corresponding apparent acti-
vation energy falls exponentially, so that in meso-
scopic samples one effectively has an unconventional
disorder-induced insulator-to-metal transition. The
analogous problem for three-dimensional insulators
(see Section 8) shows a genuine IMT due to percola-
tion of electron and hole puddles separately.

Above we were talking about the neutrality point.
When the Fermi level is away from neutrality point
and the concentration of impurities is relatively small,
there is a conventional metal-insulator transition with
increasing disorder. Combining it with insulator–
metal transition at large impurity concentrations away
from neutrality we arrive at a disorder driven re-
entrant metal–insulator–metal transition. (See phase
diagrams of such transitions shown in Figs. 7 and 9.)

Our results have implications for a wide variety of
experiments on 2D electron systems with a narrow
energy gap. Some of these include 2D and thin 3D
TIs, Bernal bilayer graphene with a perpendicular dis-
placement field, and twisted bilayer graphene, as men-
tioned in the Introduction. In such systems the tem-
perature-dependent conductivity is often used as a pri-
mary way to diagnose the magnitude of energy gaps.
Our results here suggest that such studies suffer an
essentially unavoidable limitation, since the apparent
activation energy Ea at low temperature has no simple
relation to the energy gap, and in general Ea can be
taken only as a weak lower bound. No wonder that the
transport activation energy in many cases is 10–
100 times smaller than the value expected theoretically
or measured by probes like optical absorption or tun-
neling spectroscopy. In this paper we studied in details
gapped thin films of 3D topological insulators, which
due to the large dielectric constant have peculiar 3D-
like electrostatics (see Section 7).

The existence of an apparent disorder-induced
IMT in strongly compensated semiconductor is an
especially striking result of our analysis. For conven-
tional insulators, this apparent transition cannot be
called a true IMT, since in 2D the zero-temperature
conductance f lows toward zero in the thermodynamic
limit for any finite amount of disorder [82]. However,
the situation may be different for thin TI films, since
the spin–orbit coupling of the TI surface states per-
mits a stable metallic phase [83, 84]. A full theory of
this IMT in TI films is beyond the scope of our current
analysis.

Above we discussed how conductivity changes with
the growth of the concentration of impurities N. How-
ever, in a typical experiment N is not well known and
remains fixed, while Δ is tuned. For example, in BLG
D THEORETICAL PHYSICS  Vol. 135  No. 4  2022
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this tuning is done by changing orthogonal displace-
ment field D. Then our theory implies that measured
at high temperature activation energy Ea agrees with
the value of the gap Δ(D) ∝ D predicted by [60, 85], if
roughly Δ(D) > Γ = α–2/3e2κ–1N1/3. On the other hand,
if Δ(D) < Γ then the observed activation energy Ea is
much smaller than the gap Δ(D). Thus, measuring
minimum value of Ea coinciding with theoretical Δ(D)
one can find N. Let us do this for the studied in [86]
sample of BLG separated by thin hexagonal boron
nitride (hBN) layers from silicon oxide, assuming that
the majority of charged impurities are located in the
bulk of SiO2. The smallest observed Ea(D) = 11 meV
still resides on the theoretical line Δ(D) (c.f. Fig. 3c in
[86]). This means that N ≤ N0(Ea). Using the Dirac
velocity for graphene  ~ 106 m/s for bilayer graphene
layers with SiO2 κ = 4, we get α  0.5. For Ea(D) =
11 meV we get N ≤ 1016 cm–3.

Let us now estimate the concentration of charged
impurities for BLG samples sandwiched between two
hBN layers and deposited on the graphite gate [86]
(they are likely C atoms [87] substituting for B and N).
For this sample Ea agrees with theoretical Δ(D) till
Ea = 0.5 meV. This means that in hBN N is so small
that impurities are distributed in the layer of thickness
d much smaller that N–1/3. We generalized our theory
to this case and arrived at the estimate N ≤ 2 × 1014 cm–3

for the state-of-the-art hBN. Indeed, for impurities
located in a thin hBN layer of thickness d ≪ N–1/3 < λ
the potential mean-square f luctuation

Combining with Eq. (19), we get

Using Ea  0.5 meV and d  20 nm, we get that in

hBN N ≤ N0(Ea) = α4/7κ2 /e4d  2 × 1014 cm–3.
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