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Abstract—For fast timescales or long prediction horizons,
the AC optimal power flow (OPF) problem becomes a com-
putational challenge for large-scale, realistic AC networks. To
overcome this challenge, this paper presents a novel network
reduction methodology that leverages an efficient mixed-integer
linear programming (MILP) formulation of a Kron-based
reduction that is optimal in the sense that it balances the degree
of the reduction with resulting modeling errors in the reduced
network. The method takes as inputs the full AC network
and a pre-computed library of AC load flow data and uses
the graph Laplacian to constraint nodal reductions to only be
feasible for neighbors of non-reduced nodes. This results in a
highly effective MILP formulation which is embedded within
an iterative scheme to successively improve the Kron-based
network reduction until convergence. The resulting optimal
network reduction is, thus, grounded in the physics of the full
network. The accuracy of the network reduction methodology
is then explored for a 100+ node medium-voltage distribution
feeder example across a wide range of operating conditions.
It is finally shown that a network reduction of 25-85% can be
achieved within seconds and with worst-case voltage magnitude
deviation errors within any super node cluster of less than
0.01pu. These results illustrate that the proposed optimization-
based approach to Kron reduction of networks is viable for
larger networks and suitable for use within various power
system applications.

I. INTRODUCTION

Understanding how to best utilize resources distributed
over a network has been and is an important question across
many industries. For the power/energy industry, solving the
centralized AC optimal power flow (OPF) problem is NP-
hard and has been the focus of much research since the
1960s [1]-[3] and more recently, as optimization solvers
matured [4], [5]. In some cases, the OPF problem is cast
within the setting of (transmission) expansion planning and
considers a large number of scenarios, decade-long predic-
tion horizons, and many possible investment decisions [6].
In other cases, the focus of the OPF problem is near-term
grid operations to determine active and/or reactive power
set-points for PV inverters, batteries, and other controllable
assets in the grid to minimize operating costs, line losses,
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voltage deviations from nominal, or to achieve a desired net-
load profile that reflects whole-sale energy market conditions.
These power set-points can be updated every minute or hour
in a microgrid [7] or distribution grid applications [8], [9]
corresponding to the timescales of grid or market conditions,
e.g., renewable injections or frequency regulation signals.
Thus, many applications of the AC OPF requires a mix
of long prediction horizons and frequent re-computations,
which for large networks are computationally challenging.
To overcome the computational challenges associated with
solving practical (large-scale) AC OPF problems to (global)
optimality, the power/energy community has often studied
approximations of the AC physics, such as the so-called
(linear) DC power flow [10], convex relaxations [11], [12],
convex restrictions [13], and various distributed implemen-
tations [14]. However, if the AC network could be made
a lot smaller, while representing the physics of the network
sufficiently well, the computational challenge would decrease
significantly [15]. Thus, in this paper, we focus on a novel
method for (optimally) reducing the AC network, which
could then be employed within an appropriate OPF setting.
Network reductions, not to be confused with model-
order reduction from systems theory [16]-[18], have been
studied extensively and employ a variety of methods, such as
similarity or (electrical) distance measures for clustering, bus
aggregations (e.g., REI), and equivalence techniques (e.g.,
Ward and Kron). In the case of reducing nodes belonging to
an “external” area, which are nodes that are geographically
or electrically distanced from the “internal” area, network
reduction via Ward- or Kron-based methods can be readily
applied and has been standard practice for decades [19].
However, recently techniques have focused inwards on the
internal area or so-called “backbone-type” network reduc-
tions, where any nodes can be reduced in the network rather
than just “external” nodes. These backbone-type equivalents
rely on either an initial clustering approach (e.g., k-means
clustering) to group nodes together into contiguous zones or
a pre-defined set of zones. Once the nodes are assigned to
specified zones (or subgrids), a network reduction can be
readily applied to said zones (e.g., via Ward and Kron or
heuristics) and possibly tuned based on some criteria. For
example, network-preserving bus aggregation methods by
[20] and [21] employ nonlinear and quadratic optimization,
respectively, to tune (susceptance values in) the reduced
admittance matrix so as to minimize tie line flow errors with
respect to the full network. In [20], the method depends
on pre-determined zones and a specific operating point
to calculate the full network’s power transfer distribution



factors (PTDFs). The algorithm [21] replaces the zonal input
requirement with a list of pre-determined salient tie lines and
also uses PTDFs, which inform a bus clustering algorithm
that defines internal zones, which are then subject to bus
aggregation. These methods can reduce 60,000-bus networks
by up to 100X in the order of minutes (on a super computer)
with small inter-zonal worst-case flow deviation errors -
even under different operating conditions. Other approaches
sidestep the dependence on operating points by employing
DC load flow analysis in deriving independent PTDF val-
ues [22]. In this case, a 15,000-bus network is reduced by
85X after eight hours with relative line flow errors of less
than 30%. Lastly, some methods are built around multiple
clustering objectives and heuristics that preserve physical
features and network structure, but are overly conservative
(i.e., only reduce by 2-3X while line flow deviation errors
are around 5-10%) [23].

Kron-based network reductions have been shown to be
valuable across numerous applications in power system anal-
ysis [19], [24]. For example, comprehensive transmission
planning schemes have been built around Kron-based equiv-
alents that employ various optimization formulations whose
solutions serve as seeds to identify a set of salient buses
and lines to partition the network [19]. To speed up 3-phase
distribution grid OPF, [9] presents a Kron-based network
reduction, where a desired level of reduction informs a nodal
clustering scheme that determines which nodes are reduced.
This method was able to achieve 10-50X reductions in
realistic distribution feeders with maximum voltage deviation
errors (between reduced nodes and their corresponding non-
reduced “super” node in the same cluster) of less than
0.015pu across a wide range of operating conditions.

Across these different approaches to network reductions
in power systems, they all depend on pre-specified salient
buses, tie-lines, and/or level of desired reduction as inputs.
Clearly, these inputs affect the resulting network reduction
and this is what motivates a simple, but interesting question:
is there an optimal Kron-reduction? More precisely: are there
a set of nodes and a level of reduction that is optimal (in
some sense) when reducing a network? Thus, as a first step
towards answering this question, the paper’s key contribution
is a novel network reduction methodology that leverages a
mixed-integer linear programming (MILP) formulation to
determine a Kron-based reduction that is optimal in the
sense that it automatically balances the level of reduction
(i.e., complexity) with resulting worst-case voltage deviation
errors between the reduced and full networks. The method
is based on a pre-computed library of AC load flow data
(i.e., operating points) and guarantees that any feasible so-
lution is a valid Kron reduction that preserves the network’s
structure. As far as the authors are aware, there is no other
literature that casts a Kron-based network reduction entirely
within an efficient MILP optimization formulation. To ensure
tractability in the MILP formulation, we constrain nodes
to only reduce to a “super node,” if they are neighbors
(as defined by the graph Laplacian). Then, we successively
reduce the network via an iterative scheme to overcome the

nodal neighbor limitation. The entire methodology, denoted
Opti-KRON, is validated via simulation-based analysis on
a 115-node, radial and balanced IEEE test network, which
represents a minor contribution as it provides insight on
different optimal Kron-based network reductions.

The remaining paper is structured as follows. Section II
presents the network model and summarizes Kron reduc-
tions. In Section II-A, the MILP formulation for Kron-based
network reduction is presented. Simulation-based analysis
is presented in Section III. Finally, the paper concludes in
Section IV with a summary and a brief discussion on future
directions and applications.

II. NETWORK MODEL AND KRON-REDUCTION

For the sake of notational simplicity, consider a single-
phase power system network whose graph 4 (¥, &) has edge
set &, |&| = m, vertex! set ¥, |#|=n, and signed nodal
incidence matrix E € R"™*". The complex nodal admittance
matrix (i.e., Y-bus matrix) ¥, € C**" associated with this
system is constructed via

Y, =E"YE+Y,, (1)

where Y, € C™ is the diagonal matrix of complex line
admittances and Yy € C"*" is the diagonal matrix of complex
nodal shunt admittances. In this paper, we generally assume
Y; # 0, implying Y}, is a nonsingular matrix. Leveraging this
property, the so-called nodal impedance matrix Z, € C™"
can be directly computed as the inverse of (1): Z;, = Yb’l. The
nodal admittance (and impedance) matrices directly relate
complex nodal voltages and current injections via I = Y,V
(and ZpI1 =V).

A. The Kron-Reduction Procedure

Without loss of generality, we partition the network via
I=Y,V 2)
Ll [ Y |Ye Vi
AN R T
where subscripts “r” and “k” denote nodes which are ulti-

mately reduced and kept, respectively. As in [24], Gaussian
elimination of the nodal voltages V, is achieved by

I = (Yp1 — Yi2Y, ' Yi3) Vi + (YiaY, ') I 4)

The Kron reduction of (2), which is used to ‘“eliminate”
nodes with zero current injection (i.e., I, = 0), is canonically
given by the following Schur complement:

Yk = Y1 — V¥, Vs, (%)

Alternatively, Yx can be constructed using the network
impedance matrix, whose associated partition is given by

Zpr | Zpo L | _ |k ©)

Zp3 | Zpa 0 Vi
'In power systems, a vertex in a power network is commonly denoted a
node in distribution systems and a busbar (or bus) in transmission systems.

Given the general discussion of power networks, we will use node and bus
interchangeably.




Fig. 1. Illustration of how a network can be partitioned in two different
ways to yield two different Kron-reduced networks. The partition is based on
reduced and kept (super) nodes. The , numbered circles represent kept
nodes or super nodes, while red circles are reduced nodes and eliminated
in the reduced network. The dashed (- --) ellipses illustrate which reduced
nodes are assigned to which super nodes and define how injected currents
are assigned to each super node.

Remark 1. The Kron-reduced admittance Yk is equal to the
inverse of sub-impedance Zy;.

Proof. By construction, the Kron admittance relates I =
Yk Vi. From (6), Zp Iy = Vi. Therefore, Z, = Y . ]

In the following, we define the Kron impedance matrix
as Zx £ 7y, from (6). Note that any removal of rows and
columns from Zg will result in a valid Kron impedance
matrix, in the sense that it will relate nodal voltages and
currents. Thus, if we can optimally select which nodes
to reduce and where to assign them, we can effectively
choose an optimal set of rows and columns to remove from
Zk. This would then allow us to define an optimal Kron
impedance matrix through a set of binary decisions, which
is illustrated in Fig. 1. This inspires the following mixed-
integer formulation.

B. Mixed-Integer Approach for Constructing Kron Matrices

In the following, we define binary variable s; € {0,1},
which selects the optimal Kron impedance matrix Z;, where
s;i = 0 or 1 indicates if the i node is reduced or kept,
respectively. We accordingly define binary vector s € {0,1}"
and the associated diagonal selection matrix S = diag{s}. For
any given binary values, the matrix product SZ,S thus yields
a matrix which we refer to as a generalized Kron impedance,
defined as Zg £ 5§7,,S. This generalized Kron impedance has
the dimensions of the full nodal impedance matrix (n X n),
but a subset of its rows and columns are zeroed-out. As an
example, the generalized Kron impedance of (6) is

1|0 Zp1 | Zpo 1|0 Zp1 0
s [ato Loz ol -] o
where the diagonal binary values of S “kept” the top nodes
and “reduced” the bottom ones.

We define an additional binary decision matrix, A €
{0, 1}, which codifies where currents from reduced nodes
are placed. Accordingly, A; ; = 1 if the nodal current injection
from bus j is placed at bus i, and A; ; = 0 otherwise. Since
current can only be assigned to a single bus, };A; ;=1 is

always enforced. Furthermore, Y, jA,;, j < MyS;; ensures that
currents cannot be assigned to a reduced bus and S;; = A;;

guarantees that each non-reduced bus does not move its own
current. Based on these rules, the matrix vector product Ix =
AI naturally and properly aggregates currents at non-reduced
nodes (i.e., Kron currents), and the following product allows
for the direct computation of Kron voltages:

Vi = SZ,SAI 3

We define the non-reduced nodes as “super nodes”, and the
Kron reduced voltages at these super nodes are given by (8).

In order to compute an optimal Kron reduction, we need
to define an objective function, which balances the trade off
between complexity (i.e., level of detail) and corresponding
nodal voltage deviation error (i.e., performance of reduced
network). As the number of reduced nodes is a measure of
reduction in network complexity, we can capture this by min-
imizing the number non-zero binary values in the reduction
vector s. In order to quantify voltage deviation error (which
generally increases as network reduction increases), we take
the infinity norm of the difference between the Kron voltage
at the i super node (Vg ;) and the voltages at all nodes
within its cluster Ck;, across all potential super nodes. The
resulting objective function is then given by

1 n
"g:HVKJ—VJ'GCKJHm_a; Z(l—sj), )
—_—— -
error ﬁ] : —
complexity

where o balances these two terms. We note that the network
currents / in (8) and the cluster voltages V; in (9) are assumed
to be given as input data libraries for the optimization
problem. Ideally, these data vectors (or matrices) come from
representative AC power flow solutions collected on the full
network. Thus, an optimal (with respect to (9)), yet, naive

MILP-based Kron reduction can be stated as
n

. o
min [[Vii =Viecy [l.—— ¥ (1=s))  (102)
S, j:l

s.t. Vg =S87,5A1 (10b)
si, Aij €1{0,1} (10c)
S = diag(s) (10d)
YAij=1 (10e)

i
Y Aij < M,Sii (10f)

J
Sii=Aij. (10g)

While (10) will generally compute a valid Kron impedance
matrix in (10b), the given formulation presents a variety
of challenges. First, it does not formally constrain current
injections associated with reduced nodes from being placed
on super nodes which are electrically or geographically “far”
from their physical location. Second, the product SZ,SAI in
(10b) contains cubic binary terms. And third, this problem is
generally intractable for large-scale systems, since matrix A
is a binary matrix which engenders a large branch-and-bound
search space for MILP solvers. In the following subsection,
we address all three of these challenges to engender a
tractable MILP-based Kron reduction.



C. Formulation Improvements

The issue of cubic binary terms in (10b) is sidestepped by
first simplifying the product term SA.

Lemma 1. SA = A.

Proof. Constraint (10f) forces the j-th row of A to 0 if
S;.j = 0; thus, reduced nodes (i) must place their currents
somewhere else (A; ; = 0) and (ii) cannot receive currents
from other reduced nodes (A;; = 0). If when a binary, whose
value is 0, only multiplies other binaries whose value is also
0, then the original binary has no effect. Thus, SA=A. W

Using SA = A, we now have that Vg = SZ,Al. However,
we cannot apply the same trick again to simplify SZ,A since
Zp, is generally a dense matrix. This means that each element
of A is multiplied by each diagonal element of S. Since the
product of any two binaries can be reformulated in linear
form (thus, “linearizing” the expression) by introducing a
third auxiliary binary variable, directly linearizing SZ,A will
generally require n® binary auxiliary variables; e.g., binary
matrices By =S1,1 XA, By =S5 XA, etc. Rather than directly
linearizing this expression, however, we can leverage the
physically motivated observation that any error accumulated
by removing S from the Kron voltage equation (denoted with
a tilde: Vx = Z,AI) can be subsumed into auxiliary big-M
slack factors. To do so, we reformulate the infinity norm
in the objective function of (10) with a continuous slack
variable &:

n

min 6_3./21(1_SJ) (11a)
S.t. VKJ' — VjECKj < 1) +Mb(1 7A,',J'),Vl' (11b)
Vieck, — Vi < 8 +My(1—A;j),Vi (11c)
Vi = Z,Al (11d)

(10e) — (10g)

Lemma 2. Despite the Kron voltage error in (11d) caused by
the elimination of S, (11) and (10) have identical minimizers.

Proof. Multiplying SVx yields Vg, so S effectively zeros-out
non-super node voltages. However, it does not change the
value of the super node voltage itself. A; ; = 1 indicates that
node j is inside the cluster associated with super node i. In
this case, M;(1 —A; ;) =0, and § will be a supremum for
the exact intra-cluster voltage deviations (since super node
voltages are preserved in VK). However, when A; ; = 0, node
J is not internal to the cluster associated with node i, which
may or may not be a super node. Therefore, M,(1—A,; ;) =
M, will safely upper bound any voltage deviation between
Vi and Viecy ;> thus leaving 6 unaffected. Since & accurately
captures the infinity norm value from (10a), the programs
must have identical minimizers. ]

In order to avoid allowing the optimizer to add current
from reduced nodes far from the super node itself, we employ
the graph Laplacian to constrain current aggregation only
at neighboring nodes. To accomplish this, we enforce the

binary values in matrix A (which chooses where currents are
aggregated) to satisfy

Ai; <|ETE|i}, (12)

where |[ETE|;; is the i, j-th entry of the absolute value of
the graph Laplacian. Therefore, if two nodes are not direct
neighbors, then their currents cannot be aggregated together.
Not only does this prevent currents from being placed in non-
physically meaningful places, it also greatly limits the size
of the search space, thus greatly increasing the tractability
of (10).

D. Successive Enhancement of Reduced Networks

While (11) & (12) jointly represent a highly tractable
mathematical program, the degree of reduction it can achieve
is limited by the graph Laplacian constraint in (12). Since
nodes can only aggregate with their neighbors, the algorithm
cannot typically achieve more than a 60% network reduction
in a given solve. To overcome this hurdle, we propose an
iterative implementation. That is, find an optimal network
reduction, construct the reduced network, and then find an-
other optimal network reduction of the pre-reduced network.
This procedure is repeated until either (i) the desired level of
reduction is achieved, or (ii), zero nodes are reduced. In order
to control the maximal size § of network reduction (i.e.,
force optimizer to make small network reductions at each
step), or control the maximal acceptable voltage deviations 7,
we can embed associated constraints directly in the program.

n

. o
tmip 5—;]‘;(1—@,) (13a)
s.t. iu—AM) <np (13b)
j=1
§<vy (13¢)

(10e) — (10g), (11b) — (11d), (12).

This iterative approach is illustrated in Fig. 2 and described
algorithmically in Algorithm 1. We refer to the tractable
mathematical program given by (13) as Opti-KRON. Next,
we apply Opti-KRON and Algorithm 1 to optimally Kron
reduce an IEEE test network, which represents a balanced,
medium-voltage, radial distribution feeder.

III. EXPERIMENTAL RESULTS FOR 115-NODE RADIAL
NETWORK

The 115-node radial, balanced IEEE distribution test
feeder from [25] provides ¥}, and is used herein to illustrate
Algorithm 1. To balance complexity and error, o = 0.002,
while the maximum reduction in complexity for a single
iteration of (11) is limited initially to 25% (i.e., B = 0.25).
The worst-case voltage deviation error is effectively uncon-
strained by setting Y = 1.0pu. Finally, two distinct nodal
net-injection profiles are applied to the network to beget
the network’s necessary data scenarios on complex branch
currents, /, and nodal voltages, V. The corresponding voltage
profiles, |V;| Vi=1,...,n are shown in Fig. 3.
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Fig. 2. The algorithm for successively enhancing the Kron-reduced network
uses Opti-KRON, which is given by (13). The inputs are network and
AC load flow data and the parameters that define the MILP formulation’s
objective function. The output is an optimal Kron-reduced network where
kept nodes are denoted super nodes.

Algorithm 1: Opti-KRON Successive Enhancement
Data: Y,,V,I,a, B,y
Result: Zx (Optimal Kron-reduced network)
p=0,5P =1, As??") =p ;
Z,=Y,";
while As(?) >0 do
sP1) « Solve Opti-KRON in (13);
AstPHD) = 1] (s5(P) — 5Py
pptl;
end
S « diag{s"};
Zk < SZ,5A ;

With all input data now available, Algorithm 1 can be
executed and converges in eight iterations and under five
seconds total, which highlights tractability of Opti-KRON.
The resulting optimal Kron-based network reduction has
eliminated 85% of nodes, yet embodies a worst-case intra-
cluster voltage deviation error across both load scenarios
of less than 0.007pu. To investigate the accuracy of Opti-
KRON, we subject the optimal Kron reduction at each
iteration to operating conditions that sweep from low-load to
high-load conditions (via a convex combination of the initial
injection data). Then, we record the maximum intra-cluster
(super node) voltage deviation errors, which are illustrated
in Fig. 4. These results clearly show that despite subjecting
the optimal Kron reduction to a wide range of operating
conditions, the worst-case voltage deviation errors are still
very small across all super nodes and loading conditions
(i.e., all super node clusters deviate from their corresponding
reduced nodes by less than 0.0065pu). The fact that errors
do not increase away from known input data scenarios (V,[)
(which are at either end in Fig. 4) may seem surprising.
However, AC load flows are nonlinear, the optimal Kron-
reduction minimizes the worst-case voltage errors, and the
two load scenarios were low- and high-load conditions. This
means that away from high-load conditions (which was in
our initial set of data), the voltages at each node will become
closer to 1.00pu and, thus, closer to each other, which
reduces voltage deviation errors. Thus, including high net-
load demand profiles to generate initial input data that has
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Fig. 3. The voltage profile resulting from two distinct net-load injections.

The red line represents a heavily loaded scenario, while the higher voltage
for the blue line represents a lightly loaded scenario with more solar PV
injections.

large voltage deviations may help find an optimal network
reduction that captures the full system behavior accurately.
In addition, the structure-preserving nature of the optimal
Kron reduction appears quite valuable to represent a wide
range of operating conditions.

Lastly, to understand the effects of constraining the com-
plexity at each iteration, we explored different upper bounds,
B =1{0.10,0.25,0.50,0.75}. Then, we looked at the number
of iterations required to achieve a converged optimal Kron-
based network reduction, the level of the reduction, and the
corresponding worst-case voltage errors. Results are sum-
marized in Table I and show that smaller bounds can reduce
overall errors, but at the cost of the reduction itself. The best
overall point is B = 0.25, with high level of reduction and
reasonably small voltage error (< 0.01pu).

TABLE I
DIFFERENT UPPER BOUNDS ON COMPLEXITY (ﬁ)

item p=0.10 0.25 0.50 0.75
Iterations (#) 17 8 7 7

Reduction (%) 75 85 83 83.5
Voltage error (pu) 0.0030 0.0065 0.0035 0.005

IV. CONCLUSION AND FUTURE WORK

This paper develops a novel and efficient mixed-
integer linear optimization-based methodology for generating
structure-preserving network reductions of electric power
networks. The MILP formulation enables trading off com-
plexity (in the number of reduced nodes) and errors (in
terms of worst-case voltage deviations across all super node
clusters) and uses the network’s graph Laplacian to restrict
nodal eliminations to only include neighbors of chosen
super nodes. By leveraging the efficient MILP formulation,
an iterative scheme is employed to successively enhance
the network reduction while ensuring that each iterate is
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Fig. 4.  Worst-case super node intra-cluster voltage errors for all iterate
Kron-reduced versions of the 115-node test feeder is optimally reduced via
eight iterations in Algorithm 1 and

a valid Kron reduction of the full network. Furthermore,
simulation-based analysis is used to numerically explore the
formulation and characterize and compare the optimal Kron
reductions. The computational results illustrate that Opti-
KRON can reduce full networks of more than 100 nodes
by 25-90% at optimality and within seconds. These optimal
network reductions engender worst-case intra-cluster voltage
magnitude deviations of less than 0.01pu.

Future work will pursue a number of open questions
resulting from discoveries herein. First, we will investigate
the For example, while the iterative scheme is guaranteed
to converge to a Kron-reduced network, we have not estab-
lished global optimality guarantees at convergence. However,
for radial networks, it may be possible to prove that the
successive iterations will yield the globally optimal Kron
reduced network [26]. Furthermore, we are interested in
using the optimal Kron-reduced networks in OPF problems
and want to incorporate the corresponding worst-case intra-
cluster voltage deviations to yield robust OPF formula-
tions (e.g., via tightened voltage bounds) whose solutions
guarantee admissibility in the underlying full network [9].
Similarly, solving the OPF on a reduced network will require
a disaggregation policy to lift the optimal solution on the
reduced network (e.g., a dispatch of aggregated resources) to
the full network’s (individual) resources. This lifting may not
be unique and can be carried out in numerous ways, which
results in loss of optimality relative to solving the OPF on the
full network [15]. Thus, developing disaggregation policies
with optimality guarantees is of interest.

APPENDIX

While the Opti-KRON formulation is stated in complex
variables in (13), it was decomposed into purely real rectan-
gular coordinates to be solved. Decomposing the admittance
and impedance matrices into their real and imaginary parts,
we have

<Yb>:{§§ }?],@w:[g _fo]. (14)

To build the generalized Kron impedance, we extend the
selection matrix into a block diagonal form:

(Zx) = S 0 Zc —Zp S 0
=10 s||zs Z 0S|
Likewise, for super node voltage selection and current ag-

gregation, the following block diagonal expressions produce
the desired quantities:

e l=Le s Il L [0 AL oo

The remainder of the formulation follows likewise, but it is
not included due to space limitations.

15)
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