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Abstract—Recently, the Resistive Random Access Memory
(RRAM) has been paid more attention for edge computing
applications in both academia and industry, because it offers
power efficiency and low latency to perform the complex analog
in-situ matrix-vector multiplication – the most fundamental
operation of Deep Neural Networks (DNNs). But the Stuck
at Fault (SAF) defect makes the RRAM unreliable for the
practical implementation. A differential mapping method (DMM)
is proposed in this paper to improve reliability by mitigate SAF
defects from RRAM-based DNNs. Firstly, the weight distribution
for the VGG8 model with the CIFAR10 dataset is presented and
analyzed. Then the DMM is used for recovering the inference
accuracies at 0.1% to 50% SAFs. The experiment results show
that the DMM can recover DNNs to their original inference
accuracies (90%), when the ratio of SAFs is smaller than 7.5%.
And even when the SAF is in the extreme condition 50%, it is
still highly efficient to recover the inference accuracy to 80%.
What is more, the DMM is a highly reliable regulator to avoid
power and timing overhead generated by SAFs.

Index Terms—resistive random access memory (RRAM), deep
neural network (DNN), edge computing, stuck at fault (SAF),
differential mapping method, power, latency

I. INTRODUCTION

The demand of edge devices is steadily increasing with the
rapid technological explosion on the Internet of Things (IoT)
domain. As the edge devices are getting more complex and
require larger computational capability, conventional CMOS
technology is becoming difficult to process the ever-growing
data with its constrained speed and power consumption [1].
Especially, when DNNs (Deep Neural Networks) have tremen-
dous succeeded in variety of applications including computer
vision, natural language processing, medical diagnosis, big
data analysis etc. [2], [3] creating the big space for them
used as a fundamental element in edge devices, which further
challenges CMOS technology based edge computing.

This work was supported in part by the National Science Foundation under
Grant 1953544 and Grant 1855646.

Recently, Resistive Random-Access Memory (RRAM) with
the attractive features, like non-volatility, faster switch-
ing, near-zero leakage power, uncomplicated co-integration
with CMOS technology, low programming voltage, and low
read/write latency has emerged to replace and/or complement
the conventional CMOS technology [4], [5] for running com-
plex DNN algorithms on edge devices.

RRAM was physically manufactured by Hewlett-Packard in
2008 [6] which was based on Professor Chua’s postulation
from 1971 [7]. RRAM can work for an analog operation
to generate multilevel conductive states and memorize the
amount of charge that has been flowed through it. It could
retain that state until a new pulse is provided to change
the previous conductive state [7]. This unique feature can
be exploited to implement in-situ matrix-vector multiplication
that is the most crucial operation for the weight update
in DNNs. Despite having excellent properties, the RRAM-
based DNN is yet to be commercially available because of
Stuck-At-Fault (SAF) defect resulting from the low yield in
the fabrication [8], device initialization (forming), and heavy
device utilization [8], [9]. SAFs cause a discrepancy between
original weights calculated from the algorithm and the mapped
weight to crossbar arrays. Since some RRAMs are forever
stuck at the Low Resistive State (LRS) or High Resistive State
(HRS) because of the SAF, the accuracy of the DNN model
drastically degrades.

To alleviate the impact of SAF on the accuracy in a RRAM-
based DNN, several works have been done before. The inher-
ent self-healing capability of the neural network was proposed
where weights with high influences will not be mapped to the
defected RRAM cell [10]. SAF rescuing method was proposed
where the algorithm identifies the significant weights first and
remaps the weights in the area with less defected RRAMs
[11]. On-Line Fault Detection [12], stuck-at-fault tolerance in
RRAM computing systems [13] and recovering stuck-at-fault
defects using matrix transformation [14] were also proposed
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to restore the accuracy drop because of SAFs.
Although these techniques can partly recover the perfor-

mance loss of a neural network, sometimes, they have to
face challenges. This is because: 1) considering the sporadic
nature of the SAF defect and the huge number of devices
in IoT applications, an individual optimization and custom
design for each device is too time consuming and is not
realistic; 2) considering the complex periphery control circuit,
the large hardware overhead in the system has made them
an undesirable solution. So, a more universal solution is
required to cover all devices irrespective of the distinctiveness
of defects in RRAM arrays. In this paper, a new technology
- differential mapping is proposed for the RRAM-based DNN
to create a strong immunity to the SAF. It does not target
to obtain the optimizing pattern for the individual device but
cover any RRAM product and can be largely used to improve
the overall inference accuracy.

This paper makes the following contributions:1) In order to
investigate the accuracy drop in RRAM based DNNs due to
SAFs, the weight distribution for the VGG8 model is presented
and analyzed. 2) As the SAF defects are immensely random
and vary from device to device, the accuracy drop of a DNN
is listed for different SAF ratios from 0.1% to 50%. 3) A
differential mapping method (DMM) is proposed to achieve
an outstanding accuracy recovery even in extremely high SAF
cases. This work validates the accuracy improvement in the
VGG8 model with the CIFAR10 dataset. 4) The detailed power
and latency information is provided to verify that the proposed
DMM can effectively suppress power and timing overhead.

II. METHODOLOGY

A. SA1 and SA0

A SAF denotes a RRAM with the resistant state fixated to
Stuck-At-1 (SA1) or Stuck-At-0 (SA0) [11], [14]. SAFs would
significantly degrade the inference accuracy of the RRAM-
based DNN, especially when RRAM cells with SAFs have the
high ratio in arrays. However, SAFs are usually has high ratio
in RRAM arrays [8], [9]. For example, researchers reported
that only 63% of the RRAM cells are fault-free for a fabricated
4-Mb RRAM test chip [12]. There are multiple mechanisms
to generate SAFs. In the manufacture, since a raw RRAM
cell contains extremely high resistance, the newly fabricated
RRAM has to experience a forming process before performing
the normal read/write operation [9]. A forming process is that
a high voltage pulse (as compared to the switching pulse)
applies on a RRAM to decrease the resistance level to a
normal LRS. Such a sophisticated forming process usually
lasts a long time, for example 100 us, which is highly likely to
make RRAM over formed. In this case, it becomes difficult to
change the existing resistive state and cannot switch to HRS
or in-between. Regrading the circuitry, one of mechanisms for
inducing SAF is as following, as shown in Fig. 1. Bit Line
(BL), Word Line (WL), and Select Line (SL) are the three
terminals for each RRAM cell in a crossbar architecture to
select a specific cell for performing the read/write operation.
The broken WL in RRAM arrays can result in an open circuit

to make RRAM cells inaccessible to write. Therefore, currents
cannot go through those RRAM cells, if these RRAM cells
originally are HRS, they would stay at HRS forever. In general,
as reported in [8], the ratio of SA1 to SA0 is 9.04 to 1.54,
85.44% of SAFs in RRAM arrays is SA1. Such an unfortunate
situation changes the training and inference accuracy of a
RRAM-based DNN to a large extent.

Fig. 1: Hardware Implementation for Differential Mapping
Method

B. Weight Distribution

The VGG8 model is trained with the CIFAR10 dataset,
weights have an approximately normal distribution, as shown
in Fig. 2. The number of weights is located within each specific
range. For instance, Fig. 2 shows that the number of weights
greater than 0 and less than or equal 1e-07 is more than 2.35
million.

Fig. 2: Overall Weight Distribution of VGG8 Model Trained
by CIFAR10 Dataset.

Although the VGG8 model contains more than 12.97 mil-
lion weights, among which, 5.61 million are negative, 3.31
million are positive, and 4.04 million are neutral, most of them
tend towards zero. As listed in Table I, in the VGG8 model,
mean values of weights in each layer and all layers approach
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0, and generally 99.83% of total weights are between -3e-07
and 3e-07. Therefore, when mapping such a VGG8 model to
a RRAM-based DNN, usually most of RRAM cells are set to
LRS. However, if the SAF occurs in RRAM, especially the
SA1 dominates the SAF [8], it will generate a large deviation
between the desired weight value and practical weight value,
while the inference accuracy of the RRAM-based DNN will
be significantly degraded.

TABLE I: Mean and Standard Deviation (STD) Values of
Weights in Each Layer and All Layers of VGG8 Model

Layers Mean STD Layers Mean STD
Layer 0 -3.05e-08 1.02e-07 Layer 4 -3.48e-08 1.05e-07
Layer 1 -2.81e-08 1.06e-07 Layer 5 -3.46e-08 1.07e-07
Layer 2 -3.47e-08 1.06e-07 Layer 6 -3.46e-08 1.07e-07
Layer 3 -3.44e-08 1.06e-07 Layer 7 -3.58e-08 1.07e-07
Overall -3:45e-08 1.07e-07

C. Differential Mapping Method (DMM)

DMM is proposed in this paper. Originally, in the RRAM-
based DNN, one RRAM cell is used to store one weight. In
our proposed DMM, one weight value is represented by the
difference of values from two RRAM cells in order to create
HRS as much as possible.

Since the SA1 dominates SAFs and causes most of the
accuracy drop [8], after the DMM, the enormous number of
SA1 overlap with HRS in RRAM arrays, which makes the
system greatly immune to the SAF. The following sections
will provide detailed information for the DMM.

In the traditional mapping method, when a certain weight
from the algorithm level is mapped onto a RRAM cell, the
weight value is mapped as a conductance or a resistance. So,
the weights ranging from [-1, 1] are mapped according to its
resistive state [LRS, HRS].

But in the DMM, one weight is split into a positive and
a negative portion and mapped onto two different RRAM
cells. Then the recombination of two memristor cells gives the
value of the original weight. As a result, the DMM creates a
weight ranging from [0, 1] and is mapped on the RRAM cell
according to the same resistive state [LRS, HRS].

As the SA1 is 5.2 times as compared with SA0 [8] in
RRAM arrays, the emphasis of achieving a hardware that
creates an immunity against SA1 is more important. The
original value of the algorithmic weight W within the range
[-1, 1] will be represented by the DMM as follows:

Wa =

{
1 W ≥ 0,

1− |W | W < 0,
(1) Wb =

{
1−W W > 0,

1 W ≤ 0,
(2)

where Wa and Wb are the two parts of a single weight
that will be stored in two different RRAM cells. And during
the computation, the original weight will be extracted from
two RRAM cells through a subtraction (Wa −Wb).

Fig. 1 represents the hardware implementation of the pro-
posed DMM. Here the weights Wa, Wb will be mapped on
two RRAM cells according to the cells resistive level Ra,

Rb respectively. Then an Op-Amp-based subtractor is used to
subtract the weights during the reading operation [15], [16],
as shown in Fig. 1.

Following this method, at least one of the two RRAM cells
will store “1” (HRS) during mapping. Furthermore, a weight
with 0 value will make two RRAM cells to separately store
“1”. So, the creation of more “1s” on the RRAM array will
generate more overlaps between such HRS and SA1.

Fig. 3: Differential Mapping Method

For example, as shown in Fig. 3, a weight of 0.3 in the
original array will be mapped as 1 and 0.7 in two new RRAM
cells and the difference of the two RRAM values will be used
as one weight while computing in a DNN. Actually, there are
no “1” in the original RRAM array, but in two new arrays,
eleven “1s” are generated and “1” is 11/18 of new RRAM
arrays. Accordingly, the deviation between the desired weight
value and practical weight value will greatly decrease when
SAFs occur, preventing the inference accuracy drop.

III. RESULT AND DISCUSSION

DNN+NeuroSIM platform is used to verify our proposed
method [17]. DNN+NeuroSIM is an integrated framework,
which is developed to emulate DNN on RRAM based hard-
ware accelerator. DNN+NeuroSim framework can support
hierarchical organization from the device level (RRAM) to
the circuit level (periphery circuits), to chip level (tiles of
processing-elements built up by multiple sub-arrays, and
global interconnect and buffer) and then to the algorithm level
(DNN), enabling the accurate evaluation on the inference or
training stage and the circuit-level performance metrics such
as the power and latency. Along with DNN+NeuroSIM, the
VGG8 model with CIFAR10 dataset as well as RRAM cells
and periphery circuits with 40 nm technology are used to
evaluate our proposed DMM regarding the inference accuracy,
power and latency.

A. SAFs in RRAM Arrays

At the beginning, the original weights are mapped to RRAM
arrays and SAFs (SA1 and SA0) are introduced to explore the
effect on the DNN. The original inference accuracy achieved
by an ideal RRAM-based DNN without SAFs is 90%. As the
SAF occurs in RRAM arrays, the accuracy degrades rapidly.
As listed in Table II, the accuracy degradation happens as
small as 0.2% SAFs. From 2.5% SAFs, the DNN model
is completely damaged and achieves only 10% inference
accuracy which is merely equivalent to a random guessing.
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TABLE II: Accuracy Degradation and Restoration with
Different SAF Conditions

SAF
(SA1 & SA0)

Accuracy
No SAF

Accuracy
Before DMa

Accuracy
After DM

0.1%

90%

90% 90%
0.2% 89% 90%
0.5% 80% 90%
1.0% 42% 90%
2.5% 10% 90%
5.0% 10% 90%
7.5% 10% 90%
10% 10% 89%
15% 10% 89%
20% 10% 88%
30% 10% 87%
40% 10% 81%
50% 10% 80%

aDM: Differential Mapping

Fig. 4: Weights Distributions with the DMM

B. DMM Used in RRAM Arrays with SAFs

Our proposed DMM is used to restore the inference ac-
curacy in RRAM-based DNNs. As listed in Table II, all
inference accuracies in different SAF conditions are restored
significantly. When SAFs from 0.2% to 7.5%, the RRAM-
based DNN regains the original inference accuracy (90%), and
even when SAFs is 50% in the extreme condition, the DMM is
still highly efficient to recover the inference accuracy to 80%,
as shown in Table II.

In the VGG8 model as shown in Fig. 4, after the DMM is
applied, two RRAM arrays (each one includes 12.97 million
elements) are employed for its original weights. In one array,
the number of “1” is 7.35 million as 56.67% of all elements.
The other array contains 9.65 million of “1” which is 74.40%
of all elements. As shown in Fig. 4, totally, more than 18
million “1” are created. If 0.1%-7.5% SAFs exists in the
RRAM-based DNN, most of SA1 will overlap with “1” in two
new RRAM arrays. What is more, even in new RRAM arrays
in the DMM, more than 7 million of weights (25.6%) less than
1 but greater than or equal 0.9 (sub-1) are mapped, it means
even if some SA1s do not overlap with “1” cell, they will be
mapped to such sub-1 cells, the difference between SAF1 and
sub-1 cell is really small and cannot damage the DNN model.
This is why the DMM provides the great immunity to SAFs.
Only when SAFs is over 50%, more SAFs cannot overlap
with “1” cell, so the accuracy can only be restored to 80%.
Also, as discussed in Section II-A, only 14.56% of SAFs in
RRAM arrays is SA0, so the inference of SA0 is neglectable.
Therefore, in general, the efficiency of the DMM is remarkable

as compared to the conventional mapping method.

C. Power and Latency Analysis

In this study, the DMM is applied in offline learning
scenario, accordingly the energy consumed by the RRAM
cell is for reading procedure. So, in RRAM-based DNNs, the
energy consumption of each RRAM cell is calculated using
the following equation [17],

Ecell = RI2rNTPULSE (3)
where R, Ir, N , and TPULSE are respectively the resistance

of a RRAM cell, the reading current, and number of applied
reading pulses, and pulse width. Total energy consumption for
a synaptic core is calculated using the sum of the energy for
all RRAM cells [18].

Before the DMM is applied, SAFs with the low ratio from
0.1% to 2.5% nearly do not generate the overhead of the
energy. But, with SAFs (mainly SA1) increasing, more and
more defective RRAM cells with a larger R are inserted to
replace original RRAM cells, and then the energy becomes
much larger than before. As listed in Table 5, with 20% SAFs,
the energy enlarges 3× than before. After the DMM is applied,
although two RRAM cells are used to replace one cell, the
total resistance R is not changed, R = Ra + Rb as shown
in Fig. 1. What is more, because the DMM use ”1” (HRS)
to cover most of SAFs and avoid many insertions of larger
R, as listed in Table III, even with 20% SAFs, there is no
significant changes of the energy consumption appeared after
the DMM is applied.

TABLE III: Power and Latency Comparison Before and
After Differential Mapping

SAF
(SA1 & SA0)

Before DMa After DM
Energy (J) Latency (s) Energy (J) Latency (s)

0.1% 2.55e-05 66.490e-05 2.55e-05 66.480e-05
1.0% 2.44e-05 66.499e-05 2.55e-05 66.479e-05
2.5% 2.55e-05 66.479e-05 2.55e-05 66.480e-05
20% 7.13e-05 12.019e-04 2.54e-05 66.480e-05

aDM: Differential Mapping

Latency is basically the time required for the output voltage
to reach the switching voltage threshold [18]. It can be
calculated using the following equation [17],

Latency = τf

√
ln(vs)2 +

2β(1− vs)

rampInput× τf
(4)

where vs and rampInput are the normalized switching volt-
age threshold (typically 0.5) and input voltage ramp rate. β =
1/(gmR) is the reciprocal of the normalized input transcon-
ductance gm times the output resistance R. τf is the total
RC time constant at the output node. So, Equation (5) can be
transferred as

Latency = RC

√
ln(vs)2 +

2(1− vs)

rampInput×RC × gmR
(5)

So, Latency ∝
√
mR2C2 + nC. m and n are constants.

The total latency is calculated as the sum of gate level latency
of all sub-circuits [19] [20].
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Similar with the energy analysis, before the DMM is ap-
plied, SAFs from 0.1% to 2.5% nearly do not generate the
overhead of the latency. But, with SAFs increasing, more and
more defective RRAM cells with a bigger RC are inserted to
replace original RRAM cells, and then the latency becomes
much larger than before. As listed in Table 5, with 20%
SAFs, the latency enlarges about 2× than before. The DMM
is applied to avoid many insertions of larger RC, as listed in
Table III, even with 20% SAFs, there is no significant changes
regarding the latency.

Therefore, the DMM acts as a great regulator to hold the
same energy and latency for all RRAM-based DNNs with
various SAF conditions.

IV. COMPARISON

As listed in Table IV, compared with the state-of-art,
our proposed method has some advantages. Till date, other
works on handling SAF defects require individual optimization
because most of them need to firstly identify the defective
cells and the most significant weights. Then they map those
weights to the fault free regions or cells. Additionally, a com-
plex control circuit is required and generates the significant
circuitry overhead. Our proposed DMM creates a universal
solution that would work in any RRAM device irrespective of
the randomness of the SAF defects. It is significantly func-
tional even in extreme hardware failure cases without adding
peripheral circuits. Besides, another unique feature is that it
is able to restore accuracy to a large extent against the non-
linear property which is an inevitable problem of RRAM cells.
Furthermore, the power and latency are thoroughly analyzed in
our work before and after the DMM to exhibit characteristics
of RRAM-based DNNs in different SAF conditions which the
other works often overlook.

TABLE IV: Comparison of the State-of-Art

Items [10] [11] [12] [13] [14] This Work
No Individual Optimization × × × × ×

√

No Complex Control Circuit × × × ×
√ √

Extreme SAF Considerations × × × ×
√ √

Power Analysis × × × × ×
√

Latency Analysis × × × × ×
√

V. CONCLUSION

Emerging RRAM are popular for the DNN hardware design
and have demonstrated their potential in boosting the speed
and energy efficiency of an analog matrix-vector multiplica-
tion. However, due to the immature fabrication technology and
heavy utilization, commonly occurring SAFs seriously degrade
inference accuracies of RRAM-based DNNs. In this paper, a
differential mapping method (DMM) is proposed to mitigate
SAF defects. Based on the VGG8 model with CIFAR10
dataset, the experiment results show that the DMM can recover
the DNN to 90%, when the ratio of SAFs is smaller than 7.5%.
And even when SAFs is in the extreme condition 50%, it is
still highly efficient to recover the inference accuracy to 80%.
Finally, the DMM can remove overhead of power and latency
even when SAFs hold the large ratio in RRAM arrays.
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