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Abstract—Memristors offer advantages as a hardware solu-
tion for neuromorphic systems. However, their nonlinear device
property makes the weight update inaccurately and reduces the
inference accuracy of a neural network. A Programmed Analog
Weights for Nonlinearity (PAWN) method is proposed in this
paper to update the conductance of a memristor by following
the nonlinear curve during the training in a neuromorphic
system. The experiment results indicates the PAWN method is
effective to alleviate the nonlinearity influence to memristors in all
different LTP/LTD conditions. Especially in extreme nonlinearity
(LTP=6, LTD=-6), the memristor-based neuromorphic system has
significantly low accuracy (51.77%), but the PAWN method en-
ables large accuracy improvement (9.87%) without the inference
energy and latency overhead. In addition, overall performance of
the neuromorphic system is also evaluated for further verification.
Finally, comprehensive experiments show that the PAWN method
is still greatly valid even considering device-to-device variations,
cycle-to-cycle variations, various technology nodes, and different
architectures.

Index Terms—Memristor, neuromorphic system, artificial in-
telligence (AI), inference accuracy, nonlinearity.

I. INTRODUCTION

LTHOUGH the transistor scaling of traditional Com-

plementary Metal-Oxide Semiconductor (CMOS) tech-
nology has supported the growing computational demand
from customers in last decades, physical limitations such
as quantum tunneling [1] would suppress its further devel-
opment. Therefore, a new platform with high speed and
low power enabling computationally intensive applications,
such as large datacenters and IoT systems, is needed and
necessary. Memristor-based neuromorphic system brings such
promising technology which has a potential of making smooth
transition from CMOS-based system to memristive devices by
unlocking computing in memory (CIM) capability. Memristor
uses multi-level conductance sates to regulate current flow as
well as storing the amount of charge that has previously been
flowed through it. If powering off, such programmed state
and charge are not lost. Besides non-volatility and multilevel
resistive state property, memristor exhibits characteristics like
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low computational complexity [2], sub-nanosecond switching
speed [3]-[5], sub-10-nm scalability [6], low energy dissi-
pation of few pJ per bit [3], [7]-[10], long write-erase en-
durance [11], and CMOS-compatibility [12], [13]. As a result,
it can efficiently implement high performance neural networks
in hardware for CIM [14]. In a neuromorphic computing
system, the conductance switching property of the memristor
is exceptionally suitable to represent the weight update of
bio-inspired neural connection. Conductance of memristor in
the neuromorphic system depends on the external stimula-
tion, such as voltage pulses. Based on the input pulses, the
conductance of memristor positively and negatively changes
which enables the weight increase and decrease respectively
as Long-Term Potentiation (LTP) and Long-Term Depression
(LTP). However, the non-ideal property [15]-[18] of such con-
ductance modulations including nonlinearity, device-to-device
and cycle-to-cycle variations, and Stuck-at-Fault (SAF) defects
have significantly negatively impacts the inference accuracy
of such a neuromorphic system. Especially, the nonlinearity
makes it challenging to determine a proper width or amplitude
of input signals for achieving the desired conductance of mem-
ristors. It is reported that the linear conductance change is the
major requirement of a memristor-based neuromorphic system
to realize high accuracy for the online learning [19]. For
example, four state-of-the-art memristors in literature, Ag:a-
Si [20], TaO,,/TiOy [21], PCMO [22], and AlO,/H O
[23] are all characterized by device nonlinearity. The inference
accuracy based on Ag:a-Si with nonlinearity decreases over
20% than that without nonlinearity [19], [20].

Regarding the non-ideal properties, for overall performance
improvement, researchers come up with diverse techniques
including level scaling and pulse regulating method [24], pulse
compression method [8], mapping transformation method [3]
for optimizing conductance level, reforming pulse distribution,
improving inference accuracy, and saving energy consumption
in a neuromorphic hardware.

As for nonlinearity optimizations, researchers propose dif-
ferent techniques as three categories: new device structure,
new control method, and new programming method. New
device structure: A thermal enhanced layer is added to
confine heat in the switching layer to the H fOx memristor
for the nonlinearity optimization in [25]; an ion-diffusion
limiting layer is built for the TiN/TaOx memristor for
linearity enhancement in [26]; a charge trap layer is utilized
to a gated Schottky diode in order to cancel the nonlinearity
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factor in [27]. Although these devices can achieve relatively
better linear property, they may ignore the other important
features designated for neuromorphic computing, such as the
ON/OFF ratio and endurance characteristics. For instance, the
reconfigurable gated Schottky diode has better linearity, but
with low ON/OFF ratio [27], which limits its application as
an analog synapse. Moreover, nonlinearity is widespread and
intrinsic in almost all memristors. Due to the high process
and implementation cost, it is impossible to always create
a new device structure for nonlinearity optimizations. New
control method: Some improved methods are proposed to
control the conductance change for memristors with current,
time-, flux-, and charge-domain. The current and time-domain
control mechanisms are based on transistor gate voltage and
time duration in the configuration of one transistor and one
memristor [28], [29]. The flux- and charge-domain control
method describes a device state as a function of flux or
charge and change the conductance of a memristor according
to quantization of the flux or charge [30]. In theory, these
methods can accurately control the conductance of the mem-
ristor. However, the voltage or current inputs required by these
methods are too complex to be implemented, because they
need many irregular pulses which are difficult to generate.
For example, for the time-domain control [31], 3rd, 4th, 7th, or
9th order function for the input voltage curve are required, but
generating that voltage consumes too much time and power,
it is often impossible to be realized at circuit level. New
programming method: Programming methods are another
solutions to achieve controllable conductance modulation. In
[32], [33], the bipolar-pulse scheme applies a pair of positive
and negative pulses with different amplitudes and durations.
It partly mitigates nonlinearity at the low conductance stages
where usually have large overshoots. However, the nonlinearity
at the high conductance stages still exists. Also, in order to
obtain precise conductance tuning, in [34]-[36], write-and-
verify tuning with feedback circuits are used to adjust the
device reliably. A linear and symmetric relation is demon-
strated but using a much larger digital memory and multiple
types of pulses in [35] and requiring to identify and verify
the precise conductance of the device for each weight update.
Consequently, extra processing circuits and a specific pulse
generator are added, which increases the complexity of circuits
and leads to area overhead and performance penalty.

Therefore, although above existing methods partly remove
the influence of the nonlinearity on neuromorphic systems, in
order to avoid cost for developing new structure, high order
function in circuit level, and extra periphery circuits, a new
solution is needed.

Accordingly, a new method - Programmed Analog Weights
for Nonlinearity (PAWN) - is proposed in this paper to update
the conductance of a memristor by following the nonlinear
curve during the training of a neural network. The PAWN
method avoids the deviation between the active device and
learning algorithm. Thus, it will greatly enhance the inference
accuracy. This paper will make the following contributions:

o The algorithm and working flow of the PAWN method is
introduced in detail.
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o Experiments are conducted to verify general nonlinearity
mitigation of the PAWN method.

o Considering device-to-device variations, cycle-to-cycle
variations, various technology nodes, different architec-
tures, and overall performance, the PAWN method is
further verified through comprehensive experiments.

o The PAWN method is compared with the state-of-the-art.

The rest of the paper is organized as follows. In Section II,

a Programmed Analog Weights for Nonlinearity (PAWN)
method is presented. The results and discussions regarding
inference accuracy considering device-to-device variations,
cycle-to-cycle variations, various technology nodes, and differ-
ent architectures have been provided in Section III. Compar-
ison with State-of-the-Art is described in section IV. Finally,
the conclusion is drawn in V.

II. METHODOLOGY

A. Nonlinearity in Memristor-based Neuromorphic Systems
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Fig. 1. Conductance Change with Nonlinearity in (a) LTP and (b) LTD

The nonlinearity of the memristor happens as the conduc-
tance of a memristor is not updated following the ideal curve.
In a practical memristor, most of time, conductance does
not change in proportion to the external stimulus. In case of
multistate [37] or different models [38] of memristor presented
in other research works, it also shows the same properties
of conductance change. The conductance of the memristor
represents the weight of the neural network and in the case of
increasing the weight, it is termed as Long-Term Potentiation
(LTP). Conductance can also be decreased and it is termed as
Long-Term Depression (LTD). As demonstrated in Fig. 1, the
red curve depicts the conductance of an actual memristor. The
pulses have the same duration and the same amplitude, and
the light green line represents the function of the ideal case. In
LTP, as shown in Fig. 1 (a), according to the result obtained
by the algorithm, the conductance of memristor theoretically
needs to be changed from point b to c. Then, the corresponding
number of pulses is calculated according to the ideal curve
(green). However, when these pulses are applied to the actual
memristor, instead of changing from point b to ¢, the device
conductance changes from point a to d. Consequently, the
actual change of conductance and the required change are not
same. Similarly, Fig. 1 (b) shows the occurrence in the LTD,
where the actual conductance changes to point d instead of
point c¢. The nonlinearity of the memristor causes the weight
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Fig. 2. Memiristors Response to Pulse Stimulates.

change to be inconsistent with the change required by the
learning algorithm, thereby reducing the inference accuracy.
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Fig. 3. Conductance Change Curves under Various Nonlinearity of LTP and
LTD.

B. Device Specifics and Implementation in Image Recognition

In order to verify the proposed PAWN method, the fab-
ricated memristor with Silver (Ag) and Silicon (S%) struc-
ture and tested current-pulse characteristics are utilized. As
shown in Fig. 2, the curves indicates that the memristor
is programmed by consecutive 100 identical positive (LTP,
3.2V, 300 us) pulses followed by consecutive 100 identical
negative pulses (LTD, -2.8 V, 300 ps) [20]. We adopted
MLP NeuroSIM [19] framework with above tested parameters
and results to define device and verify the proposed PAWN
method. The neural network uses iterative Stochastic Gradient
Descent (SGD) algorithm on standard MNIST handwritten
digits dataset. A three layer multilayer perceptron (MLP)
neural network configuration is used in this work. The neural
network consists of three layers with 400, 100 and 10 neuron
topology (denoted as 400-100-10, neurons in hidden layer will
change for the further architecture verification). The dataset
includes 70000 images among which 60,000 are used to train
the network and 10,000 images are used for testing. The input
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images from the training dataset are cropped and encoded
into black and white data for simplification on the hardware
implementation. The weights are mapped to the conductance
of the memristor cells. Finally, the memristor cells are embed-
ded in crossbar architecture where weights update with other
hardware control logics (Adder, Mux, Registers) is performed.

C. Programmed Analog Weights for Nonlinearity

To eliminate the nonlinear property in the memristor-based
neuromorphic system, a PAWN method is proposed in this
work. This method is to ameliorate the error by updating
weights following the nonlinear curve of memristor. Such
a nonlinear curve is generated from a mathematical model
(Equations (1) and (2)) [19], as shown in Fig. 3. The curve
is labeled with a NL value (it is the normalized value of
parameter A in Equations (1) and (2)) from +6 to -6, which
represents the extent to the curve deviates from the ideal
linear device. Here the positive (+) and negative (-) signs are
merely to label LTP and LTD, respectively. Equation (3) is our
proposed conductance update algorithm for LTP cases.

Grrp = B(1— %) + Gpin (1)
Grrp = —B(1 — 7)) 4 Groga ®)
GNew = (GQ*Gl) X (P*PI)JrGl 3)

where Grrp and Gprp are the conductance for LTP and
LTD cases, respectively. Gaz, Gmin, and Py, ., are extracted
from the experimental and testing data, which represents the
maximum conductance, minimum conductance, and maximum
pulse number required to switch the device between the
minimum and maximum conductance states. Parameter A
controls the nonlinear behavior of weight update. B is a
function of A that fits the functions within the range of
Gmazs Gmin, and Py, 4. In the PAWN method, the number of
pulses is calculated firstly from the initial conductance value
of memristors (each memristor has a random initial value
conductance). Then 2 new conductance values G; and G5 are
calculated (one from the current number of pulses calculated
from the algorithm and another from the ceiling of the current
number of pulses) based on Equation (1) for LTP cases and
Equation (2) for LTD cases. For LTP cases in Equation (3),
P is the number of current pulses and P, is the integer value
of P.
Gola — G1
P=PF+ Gy — Gy 4)
For LTD cases, conductance values gradually decrease with
the increased number of negative pulses. Therefore, to pre-
cisely get the pulse numbers, the conductance states in terms
of the pulse number is calculated through Equation (4) where
P; is the initial number of pulses, G4 is the old conductance
value (finalized in the last epoch), G2 represents the conduc-
tance value after increasing the number of pulses and P is
the pulse numbers needed to achieve the next conductance.
Through this process, the weight update disturbance can be
avoided and the inference accuracy of the neural network can
be enhanced.
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Fig. 4. Architecture of Memristor-based Neuromorphic System to Implement PAWN Method

D. Architecture Design

The architecture of memristor-based neuromorphic system
to implement the PAWN method is shown in Fig. 4. It works
as follows: In order to guarantee the conductance tuning
is correctly finished, the weight change (Aweight) is firstly
calculated in the ALU. In the PAWN block, control signals
enables the pulse generator for producing positive/negative
pulses for conductance tuning. A comparator is added as an
indicator for distinguishing the polarity (positive/negative) of
pulse. G; and G, in Equations (3) and (4) are stored in
Register 1 and Register 2, respectively. A subtractor is used
to take the difference between these two registers and the
difference is fed into the adder. Finally, GG; is taken as input
to the same adder which generates the updated conductance.
This process is iterated for all positive and negative pulses
to make the weight update for LTP and LTD cases. It is also
described in Algorithm 1 for the implementation of the PAWN
method. Theoretically, higher NL (denoted in Fig. 3) for LTP
and LTD means conductance deviates more from the ideal
curve calculated from the algorithm (green line in Fig. 1),
resulting in higher accuracy drops.

What is more, because the PAWN block is added to the
architecture, it will inevitably generate hardware overhead
including a pulse generator, comparator, registers, subtractor,
and adder. However, the neuromorphic system consists of
memristor arrays, analog-to-digital converter (ADC), accu-
mulation circuits on chip (adders and accumulation units),
and other peripheral circuits (decoders, MUX, switch matrix,
buffers, and activation units) [39]. As compared with the entire
neuromorphic system, the PAWN block is tiny and can be
negligible.

III. RESULT AND DISCUSSION

Comprehensive experiments have been performed to vali-
date the proposed PAWN method that seeks to mitigate the

Algorithm 1 Pseudocode for PAWN

1:

SO T T NC TN N S NC YN NG G U g S
AN e e B A A e 4

R A A A T o

Weight difference deltawetght, conductance numbers in-
dex ¢, Maximum conductance state N,,.,, Number of
Pulse numPulse

. if deltaweight > 0 :

Initialize current pulse;

if numPulse > 0 :
G5 = Conductance calculated from the ceiling of
current pulse;
(1 = Conductance calculated from the current pulse;
Updated Conductance = G1q + (G2 - G1)

else:
Updated Conductance = G4

. else if: deltaweight < 0 :

Initial pulse position, pulse_position = -1

cfori=0,1,2,..., Noax

Weight_i, = Conductance for current pulse
Weight_io = Conductance for (current pulse + 1)
Temp = (Weight_iy - cond.) * (Weight_is - cond.)
if Temp <=0:

pulse_position = i

- if numPulse < 0 :

G = Conductance with pulse_position;

G5 = Conductance with (pulse_position +1);
new_pulse = pulse_position + %
Updated Conductance = conductance with
new_pulse;

: else:

Updated Conductance= G;4; //no conductance update
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TABLE I
ACCURACY FOR DIFFERENT NONLINEARITIES WITH 32 NM TECHNOLOGY AND (400-100-10) ARCHITECTURE
LTP LTD Before PAWN After PAWN Accuracy
Accuracy Energy (J) Latency (S) Overall Accuracy Energy (J) Latency (S) Overall Improvement
0 0 93.12% 4.1943e-04 4.0590 546.9712 93.12% 4.1943e-04 4.0590 546.9712 0%
1 -1 87.81% 4.1948e-04 4.0590 515.7196 89.37% 4.1943e-04 4.0590 524.9443 1.56%
2 -2 77.37% 4.1950e-04 4.0590 454.3824 83.81% 4.1947e-04 4.0590 492.2388 6.44%
3 -3 66.03% 4.1951e-04 4.0590 387.7751 78.81% 4.1947e-04 4.0590 462.8724 6.44%
4 -4 64.35% 4.1950e-04 4.0590 378.9751 73.39% 4.1947e-04 4.0590 431.0394 9.04%
5 -5 62.20% 4.1949¢-04 4.0590 365.3000 71.24% 4.1946¢-04 4.0590 418.4218 9.04%
6 -6 51.77% 4.1947e-04 4.0590 304.0592 61.64% 4.1944e-04 4.0590 362.0543 9.87%
extreme nonlinearity (LTP=6 and LTD=-6), the memristor-
Gpet '_:”'5‘3 based neuromorphic system has significantly low accuracy
osition (51.77%), but has the great accuracy improvement (9.87%)
after the PAWN method is applied.
¥
conductance Conductance B. Energy, Latency, and Overall Performance
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Fig. 5. Working Flow of Weight Programming in Memristor-based Neuro-
morphic Hardware

nonlinearity of memristors in a hardware implementation for
a neuromorphic system. For various LTP (1 to 6) and LTD
(-1 to -6), experiments are conducted following the working
flow of the PAWN method in Fig. 5. At the beginning of the
training process, the accuracy is very low for default conditions
since the weights are randomized, but after several epochs,
the weights show more stability. The experiment runs for 125
epochs to achieve optimum performance.

A. General Nonlinearity Mitigation

As listed in Table I, using 32 nm technology and (400-100-
10) architecture mentioned in Section II.B, if no nonlinearity
or other fault is considered, the memristor-based neuromorphic
system can achieve 93.12% accuracy. When nonlinearity (LTP,
LTD) are incorporated into the model, the accuracy starts
to decline. And with the increased LTP/LTD, the accuracy
decreases more. Also, the Table I indicates that the PAWN
method is effective to alleviate the nonlinearity influence to
memristors in all different LTP/LTD conditions. Especially in
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The inference energy and latency are also listed in Table L.
Because the proposed PAWN is only used in the training stage
for the weight mapping from learning algorithm to memristors,
it will not generate the inference energy and latency overhead.
Furthermore, considering the trade-off among inference accu-
racy, energy, and latency, the overall performance is calculated
using following equation, and the PAWN method is still
effective to improve the overall performance of neuropmorphic
systems.

Accuracy

&)

P =
overall Energy X Latency

In addition, as compared with very high accuracy (over
98%) from pure learning algorithm, lower than 90% accu-
racy is normal conditions for memristor based neuromorphic
systems [40]. This is because memristors have non-ideal
properties such as large nonlinearity and device variations
(device variations will be discussed in following sections),
and more importantly, quantization effects from Analog-to-
Digital Converter (ADC) and from the mapping technique are
inevitable. Our proposed PAWN method provide a solutions
to improve the overall performance of neuromorphic systems
with such non-ideal properties. Although it cannot recover the
accuracy to 90%, it is not limited to a specific memristor,
but universal for all memristor based neuromorphic systems,
and avoid the inference energy and latency. It provides a good
reference for following designer and different applications.

C. Impact of Device-to-Device Variations

Since the switching mechanism of the memristor conduc-
tance is prompted by the applied voltage, a memristor switches
its conductance levels from one to another when pulse is larger
than a threshold voltage for at least the minimum required time
[41]. However, variations are always concerns in memristors,
as shown in Fig. 6. From weight update perspective, one of the
synaptic device variations is the spatial variation from device-
to-device, which results in different conductance changes
when the same pulse is applied in different memristors. The
stochastic nature of the formation and rupture of conductive

:47 UTC from |IEEE Xplore. Restrictions apply.
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TABLE II
ACCURACY COMPARISON OF NONLINEARITIES WITH DEVICE-TO-DEVICE VARIATIONS USING 32 NM TECHNOLOGY AND (400-100-10) ARCHITECTURE
o LTP || LTD Accuracy Before PAWN Accuracy After PAWN Accuracy Improvement
1 -1 86.34% 89.89% 3.55%
2 -2 80.06% 84.00% 3.94%
59, 3 -3 74.99% 80.78% 5.79%
4 -4 71.23% 72.43% 1.20%
5 -5 63.23% 70.09% 6.86%
6 -6 53.13% 69.27% 16.14%
1 -1 86.80% 89.62% 2.82%
2 -2 77.16% 84.10% 6.94%
10% 3 -3 68.93% 78.63% 9.70%
4 -4 69.80% 75.54% 5.74%
5 -5 61.96% 67.69% 5.73%
6 -6 32.22% 64.82% 32.60%
1 -1 87.42% 90.15% 2.73%
2 -2 79.55% 83.05% 3.50%
20% 3 -3 74.90% 79.65% 4.75%
4 -4 68.77% 74.17% 5.40%
5 -5 62.28% 72.97% 10.69%
6 -6 42.04% 65.52% 23.48%
TABLE III
ACCURACY COMPARISON OF NONLINEARITIES WITH CYCLE-TO-CYCLE VARIATIONS USING 32 NM TECHNOLOGY AND (400-100-10) ARCHITECTURE
o LTP LTD Accuracy Before PAWN Accuracy After PAWN Accuracy Improvement
1 -1 86.23% 87.48% 1.25%
2 -2 78.01% 69.50% -8.51%
0.5% 3 -3 67.77% 65.65% -2.12%
’ 4 -4 68.91% 62.46% -6.45%
5 -5 61.57% 63.47% 1.90%
6 -6 53.66% 64.53% 10.87%
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Fig. 6. Device-to-Device and Cycle-to-Cycle Variations

filament is believed to be the main reason for this variations.
It is a major hindrance for information storage in memris-
tors [42]. Due to this random nature of the conductive filament,
the prediction and the precise control of the shape of the
conductive filament becomes extremely challenging [43].
Device-to-device variation represents nonlinearity varia-
tions of memristors in crossbar array, which subjects to
N(NL(LTP),0) and N(NL(LTD), o) distribution [44]. In
our experiments, the parameter (o) is varied from 5% to 20%.
From results listed in Table II, using 32 nm technology and
(400-100-10) architecture, generally, in each case, the accuracy
with PAWN method shows great improvement, verifying the
efficiency of the PAWN method. With the increase of (o),
LTD, and LTP, the accuracy improvement increases. For each
specific o, the condition with LTD=6 and LTP=-6 always
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have the highest accuracy improvement. They are respectively
16.14%, 32.60%, and 23.48%.

Since different devices have different weight update curve
(depending on A in Equations (1) and (2)), the accuracy
for same LTP and LTD in different devices varies. Here,
because the PAWN method updates the weight with SGD
algorithm which is fundamentally stochastic in nature, the
accuracy improvement with the PAWN method does not follow
any specific pattern. The same interpretation of accuracy
applies for Table III, IV, and V where the impact of different
technology nodes, cycle to cycle variations, and architectures
are investigated.

D. Impact of Cycle-to-Cycle Variations

The fluctuation in conductance change at each program-
ming pulse is referred to as the cycle-to-cycle weight update
variation. This fluctuation (o) is represented as a percentage
of the entire conductance range. Because of the form of
the conductive filament, the oxygen vacancy distribution at
and around the filament, and the shifting position of the
active filament from one cycle to the next, memristors display
significant cycle-to-cycle variations [45], as shown in Fig. 6.
In Table III, 0.5% cycle to cycle variation is considered for
different LTP and LTD cases which shows 10.87% accuracy
improvement in extreme nonlinearity (LTD=6 and LTP=-6).
In some cases, the accuracy tends to fall after the PAWN
method is applied. This is because the proposed PAWN method
follows onlinear curves but cycle-to-cycle variation introduces
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TABLE IV
ACCURACY COMPARISON OF NONLINEARITIES WITH DIFFERENT TECHNOLOGY NODES IN (400-100-10) ARCHITECTURE
Technology Node LTP LTD Accuracy Before PAWN Accuracy After PAWN Accuracy Improvement
1 -1 87.81% 89.37% 1.56%
2 2 77.37% 83.81% 6.44%
32 nm 3 -3 66.03% 78.81% 12.78%
4 -4 64.35% 73.39% 9.04%
5 -5 62.20% 71.24% 9.04%
6 -6 51.77% 61.64% 9.87%
1 -1 88.00% 89.40% 1.40%
2 2 75.54% 82.56% 7.02%
14 nm 3 -3 67.34% 78.94% 11.60%
4 -4 64.35% 74.19% 1.78%
5 -5 58.80% 68.71% 9.91%
6 -6 44.26% 67.88% 23.62%
1 -1 86.79% 89.73% 2.94%
2 2 74.21% 84.12% 9.91%
10 nm 3 -3 74.05% 78.52% 3.63%
4 -4 71.68% 77.76% 6.08%
5 -5 64.53% 71.66% 7.13%
6 -6 50.81% 69.20% 18.39%

the erratic change in weight updates and makes the weight
update hard to follow such nonlinear curves. Therefore, for
some cycle to cycle variations (LTP/LTD= 2/-2, 3/-3, 4/-4)
accuracy even drops as compared with the accuracy before
the PAWN method is applied.

E. Impact of Technology Nodes

Following Moore’s law, a new technology node is released
every 2 years to make feature size of transistors smaller in
every 2 years. Starting in 1971 with 10 pm technology node,
the semiconductor industry have invested heavily to develop
those technology nodes that enable essentially faster, cheaper,
and smaller chips. It is pertinent to verify the proposed PAWN
method for different technology nodes to make sure it can
be similarly effective for smaller and faster memristor-based
neuromorphic systems. In this verification process, technology
nodes from 32 nm to 10 nm are considered for different LTP
and LTD configurations.

From Table IV, using (400-100-10) architecture, it can be
observed that the PAWN method enable all accuracy im-
provement in different technology nodes. In each technology
node, with the increased LTP and LTD, the accuracy decrease.
Also in each technology node, the condition with LTD=6 and
LTP=-6 always has the high accuracy improvement. They are
respectively 9.87% for 32 nm, 23.62% for 14 nm, and 18.39%
for 10 nm.

F. Impact of Different Architectures

To further investigate the impact of different architectures
for nonlinearity, different numbers of neurons in the hid-
den layer are considered. In the previous experiments, the
structure of the neural network is (400-100-10) for three-
layer network. Now, (400-150-10), (400-250-10), and (400-
350-10) architectures are included in the experiments. As
accurate weight/conductance update is related with the number
of neurons, this set of experiments verifies the effectiveness
of the PAWN method in different architectures.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.org/gublications/rights/index.html for more information.

From Table V, using 32 nm technology, after the PAWN
method is applied, the more neurons in the hidden layers,
the higher accuracy is obtained. That is, from LTP/LTD=1/-
1 to LTP/LTD=6/-6, with the PAWN method, (400-150-10)
architecture has accuracy as 65.98%-90.98%, while (400-
250-10) and (400-350-10) architectures have accuracies as
high as 75.23%-92.16% and 75.53%-92.42%. However, the
accuracy improvement is stochastic. The highest accuracy
improvement for (400-150-10), (400-250-10), and (400-350-
10) architectures are respectively 42.87% at LTD/LTP=6/-6,
69.57% at LTD/LTP=4/-4, and 16.60% at LTD/LTP=6/-6.

IV. COMPARISON WITH STATE-OF-THE-ART

The PAWN technique offers a simple and feasible method
to address nonlinearity issue in memristor-based neuromorphic
systems. As shown in Table VI, nine other research works
which addresses to mitigate nonlinearity in memristors are
compared with this work. [32] considers device variations
during weight update, but excludes other 4 certeria. In [46],
[33] [47], [39], and [3], the nonlinearity is optimized, but
they do not explore criteria mentioned in Table VI. Although
[48], [49] uses linear optimization method to mitigate extreme
nonlinearities, but fails to validate in different variations,
technology nodes, and architectures. [44] has verified similar
criteria with our work, but ignores different technology nodes.
The PAWN method stands out in terms of many criteria in-
cluding device variations, cycle to cycle variations, technology
nodes, and network architectures, finally mitigating effects in
extreme nonlinearity conditions. The proposed method not
only provides accuracy enhancement in different configura-
tions but also meets the requirements of device characteristics
which makes it an efficient solution for different applications.

V. CONCLUSION

In this paper, a Programmed Analog Weights for Nonlin-
earity (PAWN) method is presented to mitigate nonlinearity
impact on the memristor-based neuromorphic systems. The
detailed experiments are conducted in all different LTP/LTD
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TABLE V
ACCURACY COMPARISON OF NONLINEARITIES WITH VARIABLE NEURONS IN HIDDEN LAYER USING 32 NM TECHNOLOGY
Neurons in Hidden Layer LTP LTD Accuracy Before PAWN Accuracy After PAWN Accuracy Improvement

1 -1 87.35% 90.98% 3.63%

2 -2 79.25% 86.78% 7.53%

150 3 -3 74.76% 82.77% 8.01%

4 -4 72.46% 81.13% 8.67%

5 -5 38.66% 72.42% 33.76%

6 -6 23.11% 65.98% 42.87%

1 -1 89.98% 92.16% 2.18%

2 -2 60.80% 88.36% 27.56%

250 3 -3 56.63% 83.85% 27.22%

4 -4 31.60% 79.67% 69.57%

5 -5 26.07% 76.66% 50.59%

6 -6 33.53% 75.23% 41.70%

1 -1 88.87% 92.42% 3.55%

2 -2 85.77% 88.56% 2.79%

350 3 -3 70.00% 82.08% 12.08%

N 4 -4 77.55% 81.24% 3.69%

5 -5 76.74% 79.87% 3.13%

6 -6 59.93% 75.53% 15.60%

TABLE VI
COMPARISON WITH STATE-OF-THE-ART
Criteria [46] 33] [44] [47] [32] [39] [3] [48] [49] This Work
Device to Device Variations X X v X v X X X X 4
Cycle to Cycle Variation X X v X X X X X X 4
Different Architectures X X v X X X X X X v
Technology Nodes X X X X X X X X X 4
Nonlinearity Mitigation in Extreme Conditions (LTP/LTD=+/-6) X X v X X X X v v 4
v (Work is done) v/ (More data than previous work)

conditions from 1/-1 to 6/-6. Especially, in extreme nonlin-
earity (LTP=6, LTD=-6), the PAWN method can always has
the high improvement for the inference accuracy. Also, the
PAWN method has significant immunity to device-to-device
variations. For example, in specific 0=10%, the condition with
LTD=6 and LTP=-6 has the accuracy improvement as high as
32.60%. What is more, even with different technology nodes
and architectures, the PAWN method still effectively improves
accuracy up to 23.62% and 69.57%, respectively. Actually, the
PAWN method is for the algorithm of conductance updating,
but not depending on the specific device, so it is a universal
method for any memristor with different materials and mech-
anisms. In future work, we will consider larger nonlinearity
such as -7/+7, -8/+8, and -9/49 to adapt to more devices
or extreme conditions. And some other non-ideal properties,
such as Stuck-At-Fault (SAF) may be considered for further
verification.
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