
N

922 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 4, DECEMBER 2022

Stuck-at-Fault Immunity Enhancement of
Memristor-Based Edge AI Systems

Md. Oli-Uz-Zaman, Student Member, IEEE, Saleh Ahmad Khan, Student Member, IEEE,
William Oswald , Student Member, IEEE, Zhiheng Liao , and Jinhui Wang , Senior Member, IEEE

Abstract—Deep Neural Networks (DNNs) are widely used
in edge AI. But the complex perception and decision-making
demands the overlarge computation and makes the DNN archi-
tecture very sophisticated. Memristors have multilevel resistance
property that enables faster in-memory DNN computation to
remove the bottleneck caused by the von Neumann architec-
ture and CMOS technology. However, the Stuck-at-Fault (SAF)
defect of memristor generated from immature fabrication and
heavy device utilization makes the memristor-based edge AI
commercially unavailable. To mitigate this problem, an Adaptive
Mapping Method (AMM) is proposed in this paper. Based on
the analysis for the VGG8 model with CIFAR10 dataset, the
experiment results show that the AMM is efficient in restoring
the inference accuracy up to 90% (the original accuracy without
SAF) under SAFs from 0.1% to 50%, where Stuck-at-One
(SA1): Stuck-at-Zero (SA0) = 5:1, 1:5, and 1:1. Additionally,
the AMM has a significant immunity against the nonlinearity
and conductance drift. The AMM improves the accuracy more
than 50% in presence of high nonlinearity LTP = 4 and LTD =
−4 and the standard conductance drift (10 years at 85 degree
centigrade) nearly has no influence on the inference accuracy of
the DNN in edge AI with the AMM.

Index Terms—Memristor, deep neural network (DNN), artifi-
cial intelligence (AI), edge system, stuck-at-fault (SAF), inference
accuracy, nonlinearity, conductance drift.

I. INTRODUCTION

OWADAYS a DNN (Deep Neural Network) model
deployed on edge devices is more popular to fulfil the

desire of edge AI (Artificial Intelligence). This is because
DNNs have achieved a tremendous success due to their
unparallel performance in important applications, such as com-
puter vision, image processing, natural language processing,
etc., [1], [2], and meanwhile edge devices are highly effective
in the Internet of Things (IoT) systems to perform compu-
tation, communication, and storage functions. For example,
in the Autonomous Vehicles industry, DNNs along with a

Manuscript received 2 May 2022; revised 16 August 2022; accepted 12
September 2022. Date of publication 16 September 2022; date of cur-rent
version 19 December 2022. This work was supported in part by the National
Science Foundation under Grant 2218046, Grant 1953544, and Grant
1855646. This article was recommended by Guest Editor S. Yu.
(Corresponding author: Jinhui Wang.)

Md. Oli-Uz-Zaman, Saleh Ahmad Khan, William Oswald, and
Jinhui Wang are with the Department of Electrical and Computer
Engineering, University of South Alabama, Mobile, AL 36688 USA (e-
mail: jwang@southalabama.edu).

Zhiheng Liao is with the Department of Electrical and Computer Engineer-
ing, North Dakota State University, Fargo, ND 58105 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2022.3207687.

Digital Object Identifier 10.1109/JETCAS.2022.3207687

large number of edge devices have been exploited for sensing,
localization, perception, and decision making [3]. However,
with the increasing customer demand, DNN structures become
more complex and require huge computational resources.
Since the downscaling of the conventional CMOS (Comple-
mentary Metal Oxide Semiconductor) technology is coming to
the plateau [3], [4], the CMOS-based edge AI hardware are
facing insurmountable challenges to deal with such DNN
problems: 1) the computing speed of the CMOS-based edge
AI has no space to improve and cannot further accelerate AI
tasks; 2) the COMS-based edge AI hardware consumes large
power during performing the vector matrix multiplication in
the DNN model. This situation creates an undesirable standstill
towards the further advancement of the edge AI in the IoT
industry [5].

As the emerging non-volatile memory, memristors can be a
rescuer from this deadlock. Following Professor Chua’s con-
cept about memristor from 1971, Hewlett-Packard discovered
world’s first physical memristor device in 2008 where a Tita-
nium Dioxide (T i O2) and an oxygen deficient layer (T i O2−x)
was sandwiched between two platinum electrodes [6]. So, the
memristor is a metal-insulator-metal (MIM) architecture where
the insulator layer is responsible for the storage of informa-
tion. The internal storage layer is dynamically reconfigurable
through electrical stimulation. Memory function of the mem-
ristor is obtained from this reconfiguration where the resistance
of the insulator layer depends on the history of current that
has been flown through it. If the power supply is removed,
this programmed state is not lost. Besides non-volatility and
multilevel resistive state property, memristor exhibits won-
derful characteristics like low computational complexity [7],
sub-nanosecond switching speed [8], [9], [10], sub-10-nm
scalability [11], low energy dissipation of few pJ per bit [8],
[12], [13], [14], [15], long write-erase endurance [16] and
CMOS-compatibility [17], [18]. Additionally, since processing
and the storage units are separate, shutting data back and
forth between them causes huge latency and energy consump-
tion, the conventional von Neuman architecture is becoming
obsolete for DNN tasks. To solve this bottleneck, Compute-
In-Memory (CIM) approach has been considered where the
memory would be integrated into processing task to boost the
system. The crossbar architecture and multilevel cell storage
(multiple bits per cell) of memristors can very efficiently
perform the vector matrix multiplication as the CIM, which is
the most pivotal operation in the DNN algorithm.

Although memristor exhibits excellent properties, immature
fabrication technique and low manufacturing yield prevent

2156-3357 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

OLI-UZ-ZAMAN et al.: SAF IMMUNITY ENHANCEMENT OF MEMRISTOR-BASED EDGE AI SYSTEMS 923

memristor-based computing system to be commercially avail-
able. Hard Faults and Soft Faults are two kind of faults that
can be found in memristors. Memristors with soft fault, e.g.,
Read-One-Disturb (R1D) and Read-Zero-Disturb (R0D) flip
the original stored bits during the read operation. This fault
can be removed since the resistance of the oxide layer is still
changeable. But hard fault, also known as Stuck-at-Fault
(SAF), is impossible to remove. SAF denotes a device when
the resistance of a memristor freezes at High Resistive State
(HRS) or Low Resistive State (LRS) [19]. Since the
resistance variation is directly related to the mapped weights,
the defective memristor will provide wrong weight and result in
the inference error to the output of the DNN.

To increase the immunity against SAF defect, several works
have been proposed so far. Previously proposed hardware-
based solutions in [20], [21], [22], [23], and [24] have some
limitations. They work in the following sequence: Learning,
Retraining, and Remapping. In the learning phase, a com-
plex algorithm classifies the synaptic weights into significant
and insignificant weights. The classification is based on the
influence of the weights on the performance of the network.
This process causes high computational cost and hinders the
possibility of getting a real time response from the edge device.
In retraining phase, the SAF defects in memristor crossbar is
mimicked. Here, another complex algorithm compensates the
SAF caused computation error by retuning the weights over
and over again. Repeated weight initialization and updating
are needed. This repetitive process causes additional delay.
At last in remapping phase, a complex control circuits prevent
those significant weights to be mapped to the defective cells
obtained in retraining phase. Those methods were successful to
restore the high accuracy up to 20% SAFs. But Random
patterns in SAF defect require individual optimization for each
memristor array that is impossible when it comes to mass
memristor-based edge device production. Then a software-
based solution is proposed in [25]. This is a good solution as it
does not require any individual optimization. But software-
based approaches struggle with enormous amount of latency
and power consumption. For example, when the IBM team
developed a cortical simulation at the complexity of the cat
brain, the response was hundred times slower than the original
neuron firing rate [26]. Besides, the power consumption was
1.4 MW while the power consumption of more complex task
performed by human is only 10 W [27].

Apart from SAF, memristor also suffers from nonlinear-ity
which creates inaccurate weight updating and reduces the
inference accuracy of the DNN. The required width or
amplitude of input signals is highly desirable for achieving
the needed conductance of the memristors. But nonlinearity
makes this process challenging and hence degrades the infer-
ence accuracy [28], [29]. What is more, when nonlinearity
incorporates with the SAF, the DNN model gets completely
damaged very quickly.

So, a new technology – Adaptive Mapping Method (AMM)
is proposed in this paper to mitigate the influence of SAFs as
well as high nonlinearity without existing limitations of previ-
ously proposed techniques. Our proposed AMM will eliminate
the complex control circuits and additional algorithms for

individual optimization. This paper will make the following
contributions:

• The weight distribution of the VGG8 model using
CAIFER 10 dataset is presented and analyzed.

• Considering the sporadic nature of the SAF (SA1 and
SA0) from device to device, when the memristor crossbar
arrays suffer from different defected conditions (0.1% to
50%) with different SAF ratios (SA1:SA0 = 5:1, 1:5 and
1:1), the accuracy drop of the DNN model is presented.

• Novel mapping technique – AMM is proposed to restore
the high accuracy from different defected conditions
(0.1% to 50%) with different SAF ratios (SA1:SA0 =
5:1, 1:5 and 1:1).

• Considering the nonlinearity and conductance drift, the
AMM is further verified under LTP=4 and LTD=-4, as
well as with the standard conductance drift (LTP: long-term
potentiation; LTD: long-term depression).

• The design flow and applicability is summarized.
• The proposed AMM is compared with state-of-the-art.

The rest of the paper is organized as follows. In Section II, an
Adaptive Mapping Method (AMM) is introduced in detail. The
results and discussions regarding accuracy restoration, chip
area estimation, and influence by non-linearity and con-
ductance drift, have been presented in Section III. The Design
Flow, Applicability, and Comparison with State-of-the-Art are
described in section IV, V, and VI respectively. Finally, the
conclusion is drawn in VII.

II. METHODOLOGY

A. Stuck-at-Fault (SAF)

When the resistance state of the memristor is stuck at LRS,
it is known as SA0 defect. A newly fabricated memristor
possesses extremely high resistance. So, a forming process
is required at the wafer level to initialize the memristor
for regular read/write operations. The forming process is an
action of inserting high tester voltage in every memristor for
decreasing the resistance level to the normal LRS. This highly
sophisticated process should last around 100 us. The delicate
insulator layer in the metal-insulator-metal (MIM) structure
can severely be compromised during this process. Thus, some
memristors would be overly formed because of variations in
the unstable taster voltage and the thickness of the insulator
layer. The resistance of the overly formed memristors stay at
LRS forever and input stimulus pulse(s) fail(s) to change its
resistance state.

On the other hand, When the resistance state of the mem-
ristor is stuck at HRS, it is known as SA1 defect. As shown in
Fig. 1, the word line (WL), bit line (BL), and select line
(SL) are the three terminals to access each memristor inside
the crossbar. But the broken WL makes memristor cells
inaccessible for new write operation. Broken WL creates an
open circuit where the resistance is unlimited. When the read
circuit tries to read the resistance of those memristors, it
always mistakes the cell as in HRS.

In a previous research, it has been found that 9.04% and
1.75% memristor cells are affected by SA1 and SA0
respectively, which is approximately SA1:SA0=5:1 [19]. But

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

W = (1)

W = (2)

924 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 4, DECEMBER 2022

Fig. 1. Hardware implementation for adaptive mapping method (AMM).

this is not always the case. This ratio may vary from device to
device. It has also been mentioned in [19] that over forming
can cause 60% of the memristor cells to be SA0.

Actually, SAF is prevalent in all kinds of RRAM-based
memristors. Such as H f O2 [19], Ag:a-Si [30], and T i Ox

(memristor in HP lab with 1T1R: One Transistor One mem-
ristor) [31], [32] and 1R structure [33]), all have the same
mechanism for SA1 and SA0 inside the crossbar array.

B. Weight Distribution

To validate the effectiveness of the memristor based edge
AI system, a VGG8 model along with CIFAR10 dataset are
used. Fig. 2 shows the overall weight distribution of VGG8
model trained by CIFAR10 dataset. VGG8 model contains
12.97 million synapses to represent weights. Among the
12.97 million synaptic weights, 43.38% is negative, 25.53% is
positive, and 31.18% is neutral weight. As listed in Fig. 2, the
mean values of the layers are inclined towards zero and the
standard deviations implies that those values are clustered
closely. Besides, 99% of the weights are situated within
± (3 × 10−7).

Since the weights of the DNN model is represented in
terms of raw conductance value, the weights are in the range of
10−7 S as shown in Fig. 2. The Ag:a-Si memristor [30] used
in this research, as shown in Fig. 6, has a very wide
conductance range between 0.1µS to 1µS . Any conductance
range among this wide range can be selected to map the weight
range [-1, 1]. The selection of the conductance range depends
on the weight precision and the selection of the number of
conductance level [34].

C. Adaptive Mapping Method (AMM)

After analyzing the weight distribution in Fig. 2, an Adap-
tive Mapping Method (AMM) is proposed in this paper. SAF
causes huge discrepancy between the original weight and

mapped weight. Hence, accuracy degrades significantly even
with a very small amount of SAFs inside the memristor
crossbar array. The AMM maximally avoids the negative
impact of SAF cells for systems and bring back the high
accuracy. Since the SAF varies from device to device, our
proposed AMM works for all the possible cases where the
ratio of SA1:SA0 can be 5:1, 1:5, or 1:1.

1) AMM When SA1:SA0 = 5:1: According to conventional
mapping, weights from the algorithm ranging from [-1, 1] will
be mapped to memristor devices based on the resistance level
[LRS, HRS]. The AMM will use the same resistance level
[LRS, HRS], but it rearranges the same weights between [0, 1].
When SA1:SA0 = 5:1, most of SAFs are SA1. The algorithm
for the AMM is as follows.

1 W ≥ 0,
a

1 − |W| W < 0,
1 − W W > 0,

b
1 W ≤ 0,

where, Wa and Wb are the two positive portions of a single
weight stored in two different memristors. The desired weight is
extracted from the simple subtraction (Wa-Wb) during the
execution.

As shown in Fig. 3, when SA1:SA0 = 5:1, the AMM splits
the original weight 0.3 into 1 and 0.7. Those two weights will be
mapped in two memristors and an op-amp based subtractor will
extract the original weight (1 - 0.7) during the execution. In the
conventional mapping, all the weights from the left side of
the Fig. 3 directly map to memristors, and there are no “1”.
So, the conventional mapping faces a challenge as a big
discrepancy between the original weight and the mapped
weight. But after the AMM, 61.11% cells are mapped to “1”, as
shown in the right side of Fig. 3. The mapped “1” replace most
of SA1s. In this case, the accuracy degradation can be greatly
suppressed.

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

W = (3)

W = (4)

��

��
�
�

��

OLI-UZ-ZAMAN et al.: SAF IMMUNITY ENHANCEMENT OF MEMRISTOR-BASED EDGE AI SYSTEMS 925

Fig. 2. Overall weight distribution of VGG8 model trained by CIFAR10 dataset.

Fig. 3. Adaptive mapping method (AMM) When SA1:SA0 = 5:1. Fig. 4. Adaptive mapping method (AMM) when SA1:SA0 = 1:5.

2) AMM When SA1:SA0 = 1:5: When SA1:SA0 = 1:5,
SA0s are dominant in the memristor crossbar array. The
algorithm for the AMM is as follows.

W W ≥ 0,
a

0 W < 0,
0 W > 0,

b |W| W ≤ 0,

Same as before, each weight is split into two positive
weights Wa and Wb, and be mapped to two different memris-
tors. During the execution, the subtractor subtracts the two
weights (Wa-Wb) and bring back the original algorithmic
weight.

Fig. 4 shows that negative weight -0.3 is split into 0 and
+0.3 and is mapped in two memristors. At the end the op-amp
based subtractor subtract (0-0.3), the original weight (-0.3) is
brought back. Since the conventional mapping takes place
between [−1, 1] according to the resistance state [LRS, HRS],
memristors stuck at LRS always report -1. But, the range of
weight values are changed to [0, 1] with respect to the same
resistance level [LRS, HRS] after applying the AMM. So the
newly programmed memristors will provide “0” when it is
stuck at LRS. In the conventional mapping, the weights from
the left side of the Fig. 4 is directly mapped to the crossbar

array where only a single “0” can be seen. But as shown in
the right side of the Fig. 4, 55.56% weights are mapped to “0”
according to the AMM. So, the huge amount of “0” will surely
replace SA0s and work towards decreasing the discrepancy
between the original weight and the mapped weight, therefore
improving inference accuracy of the DNN model with SAFs.

3) AMM When SA1:SA0 = 1:1: In previous conditions, the
AMM works in such a way that most of weights inside the
crossbar array are mapped to either HRS or LRS based on
the dominance of the SAF. But sometimes SA1 and SA0 are
equal and happen simultaneously, for example, SA1:SA0 =
1:1. To handle this situation, the AMM uses the same approach
of splitting a single weight into two positive weights. But
it creates enormous amount of “1” as well as “0” at the
same time so that most of the SA1 and SA0 are replaced
by those newly mapped “1” and “0”. This condition follows
the following algorithm.

�
W W > 0,

Wa = 0 W < 0, (5)

1 W = 0,

�0 W > 0,
Wb = |W| W < 0, (6)

1 W = 0,

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

926 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 4, DECEMBER 2022

Fig. 7. Weight distribution of VGG8 model after applying AMM for

Fig. 5. Adaptive mapping method (AMM) when SA1:SA0 = 1:1.
SA1:SA0 = 5:1.

Fig. 8. Weight distribution of VGG8 model after applying AMM for
SA1:SA0 = 1:5.

Fig. 6. Ag:a-Si based memristor device.

Fig. 5 shows a demonstration of the AMM when
SA1:SA0 = 1:1. Newly mapped crossbar achieves 22.22%
cells to be mapped to HRS and 38.89% cells to be mapped to
LRS.

D. Hardware Implementation

Hardware implementation of the AMM is shown in
Fig. 1 [35]. According to Equation 1, 2, 3, 4, 5, 6, the AMM
will create two positive weights Wa and Wb from the original
weight W of any polarity. Wa and Wb is mapped to two
memristors based on resistance state Ra and Rb [35], [36].

III. RESULT AND DISCUSSION

A physical 40 nm Ag(Silver):a-Si (amorphous Silicon)
memristor device, as shown in Fig. 6 [30], is manufactured
and tested thoroughly for extrapolating the real-world behav-
ior of the memristor-based edge AI systems. Characteris-
tics of the Ag(Silver):a-Si memristor is incorporated into
DNN+NeuroSim platform for evaluations. DNN+NeuroSim is
an integrated framework that emulates neural networks (DNN)
inference performance on the memristor-based hardware [34].
An 8-layer DNN model VGG8 for CIFAR10 dataset is utilized.

A. Weight Distribution After Applying AMM

To enhance the immunity against SAFs when SA1:SA0 =
5:1, after applying the AMM, the initial weight distribution

of the VGG8 model, as shown in Fig. 2, is altered into a
different shape, as shown in Fig. 7 [8]. Algorithm 1 shows the
pseudocode that enabled this feat. When SA1 is dominant, the
algorithm maps 69.96% weights to “1” or HRS. As a result,
most of the newly mapped “1” replaces the defective cells that
are stuck at HRS (SA1). Similarly, the other 30.04% cells are
mapped to sub-1 regions (less than 1 but greater than or equal
0.9). If those sub-1 values are mapped to the SA1 defective
cell, the deviation between the mapped weight and the weight
from the algorithm is very insignificant. Accordingly, it results
in very low accuracy loss in extreme SAF conditions.

Similarly, if the SA0 is dominant inside the crossbar, that
is SA1:SA0 = 1:5, through the Algorithm 2, the AMM maps
65.71% of the weights to the “0” or LRS, and the rest of
the 34.29% weights are also mapped to near zero regions,
as shown in Fig. 8. Most of the newly mapped “0” replaces
the defective cells that are stuck at LRS (SA0). Therefore,
memristors affected by the SA0 act like a defect free device
and do not contribute much to the degradation of the inference
accuracy of the DNN.

However, when both parts of the SAF are dominant,
Algorithm 3 assigns a large number of weights to both LRS
and HRS. As shown in Fig. 9, 34.41% weights are converted to
“0” or LRS and 31.82% weights are converted to “1” or HRS in
case of SA1:SA0 = 1:1. The rest of the weights are very
small, and most of them almost equal to zero which are not so
much affected by the SA0 defects. By mapping enormous
weights to “0” or “1”, the AMM creates significant immunity
against SA1:SA0 = 1:1.

B. Accuracy With AMM Under Different SAF Conditions

1) Accuracy Restoration When SA1:SA0 = 5:1: The orig-
inal inference accuracy of the DNN model achieved by the

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

OLI-UZ-ZAMAN et al.: SAF IMMUNITY ENHANCEMENT OF MEMRISTOR-BASED EDGE AI SYSTEMS 927

TABLE II

ACCURACY DEGRADATION AND RESTORATION WITH DIFFERENT SAF
CONDITIONS WHEN SA1:SA0 = 1:5

Fig. 9. Weight distribution of VGG8 model after applying AMM for
SA1:SA0 = 1:1.

TABLE I

ACCURACY DEGRADATION AND RESTORATION WITH DIFFERENT SAF
CONDITIONS WHEN SA1:SA0 = 5:1

TABLE III

ACCURACY DEGRADATION AND RESTORATION WITH DIFFERENT SAF
CONDITIONS WHEN SA1:SA0 = 1:1

ideal memristor-based edge AI system is 90% without any
SAFs. To investigate the deteriorating impact of SAF, SAFs
from 0.1% to 50% is introduced. As listed in Table I, before
the AMM is used, the inference accuracy decrease starts as
0.2% SAFs. From 2.5% SAFs, the DNN model becomes
completely damaged and provides only 10% accuracy which is
like random guessing. The AMM can restore the inference
accuracy to 90% when the SAF is less than 10%. The
AMM is also super-efficient even with extreme conditions.
At 50% SAFs, it restores 80% accuracy. According to Table I,
when SA1:SA0 = 5:1, SAFs from 0.1% to 50%, inference
accuracies of DNNs are improved between 70% and 80%.

2) Accuracy Restoration When SA1:SA0 = 1:5: Similarly,
when SA1:SA0 = 1:5, conventional mapping degrades the
inference accuracy quicky. As listed in Table II, with as small as
1% SAFs, the DNN model becomes completely damaged and
shows only 10% accuracy.

The AMM quickly recovers the original inference accuracy
(90%) when SAF is smaller than or equal 10%. Table II also
demonstrates that, for the AMM with SA1:SA0 = 1:5, the
maximum and minimum accuracy improvements are 80% and
72%, respectively.

3) Accuracy Restoration When SA1:SA0 = 1:1: Unlike
the other two conditions, even the conventional mapping can
create a relatively strong immunity with low ratio SAFs when
SA1:SA0 = 1:1. As listed in Table III, the conventional
mapping can achieve high accuracy up to 7.5% SAFs without
the AMM. As shown in Fig. 2, 31.18% weights of the DNN
model are neutral and the overall mean of the eight layers

TABLE IV

COMPARISON OF ACTUAL DEFECT AND VISIBLE DEFECT AFTER APPLY-
ING ADAPTIVE MAPPING METHOD (AMM) WHEN SAF = 10%

are inclined towards zero. When the conventional mapping
deals with SA1:SA0 = 1:1, the circuit nearly reads equal
number of “1” and “-1” from the crossbar array based on the
resistance level [LRS, HRS]. After the execution of the DNN
model, those “1” and “-1” cancel out each other’s adverse
impact and bring back the mean value closer to zero again.
However, the inference accuracy of the conventional mapping
drops fast when the SAFs are greater than 7.5%. It even
drops to 10% accuracy at 15% SAFs. With the AMM, the DNN
model achieves approximately 90% accuracy even

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

928 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 4, DECEMBER 2022

TABLE V

ACCURACY RESTORATION USING ADAPTIVE MAPPING METHOD IN PRESENCE OF SIGNIFICANT NON-LINEARITY

with significantly high ratio SAF. According to Table III, the
AMM can improve the inference accuracy up to 78%. The
reason behind this significant improvement is shown in Table
IV. Here a practical scenario, SA1:SA0 = 1:1 with 10% SAF, is
taken as an example. After the AMM, approximately 6% of
defective cells are successfully replaced by the newly mapped
“0” and “1”. So, the 10% SAFs acts like a 4% SAFs.
Accordingly, as listed in Table III, the AMM restores 89%
accuracy where conventional mapping provides only 54%
accuracy at 10% SAFs under SA1:SA0 = 1:1. Table III also
shows that conventional mapping achieves 88% accuracy with
5% SAFs which validates the result of achieving 89% accuracy
when the AMM deals with 10% SAFs (the visible defect is
4%, similar with 5%).

Moreover, the scenario in Table IV is the worst-case sce-
nario. After the AMM is applied, the range of weight is
squeezed within [0,1] instead of [-1,1] and 34.41% weights
are mapped to near zero region, as shown in Fig. 9. The AMM
not only reduces the weight range but also creates a huge near
zero regions that helps compensate the accuracy loss caused
by the SA0 defective cells.

However, the AMM struggle to achieve very high accuracy
with extreme 50% SAF, when SA1:SA0 = 1:1. This is
because, when the SAF is 50%, SA1 is 25% and SA0 is 25%,
but as shown in Fig. 9, the AMM maps 34.41% cells to “0”
and 31.82% cells to “1”. SA1 and SA0 defective cells cannot
replace all the mapped “1” and “0” respectively, which may
possibly entail relatively low inference accuracy.

Overall, AMM creates high precision when it reduces the
weight range from [−1, 1] to [0, 1]. If the conventional
mapping utilizes n level of conductance or resistance to map
the weights within [1, −1], AMM changes the range into [0, 1]
whereas the number of levels n is kept the same. As a result
the conductance or resistance becomes more precise and the
change of weights also becomes more precise. The highly
precise weight values contribute to improve the accuracy of
the DNN model.

C. Accuracy Restoration With Non-Linearity Property

Apart from SAFs, memristor is additionally afflicted by
non-linearity that generates improper weight updating and
degrades the inference accuracy of the DNN model. Nor-
mally, memristor changes conductance/resistance according
to current fluxing through it. The weight of the synapse is
represented by the resistance/conductance of the memristor,
which must be updated frequently during the training and
inference process as specified by learning algorithms. Weight

Fig. 10. Non-linearity of memristor cells.

TABLE VI

IMPACT OF DRIFT ON AMM

increment (or long-term potentiation, LTP) and decrement (or
long-term depression, LTD) should ideally be proportionate to
the number of writing pulses [28]. However, physical
restrictions such as inherent drift and diffusion dynamics of
the ions/vacancies cause the inaccurate weight updating with
respect to the input stimulus pulse(s) [37], [38]. Ideally, in the
weight updating process, the change in the resistance of an
ideal synapse device is proportional to number of stimulus
pulses. In Fig. 10, the curves (dark) represent the actual
resistance value of a memristor device with respect to the
number of input pulses where the pulses possess the same
duty cycle and the same amplitude, and the straight line
(light) represents the hypothetical resistance value of the ideal
case. For instance, as shown in Fig. 10, with LTP = 0 and
LTD = 0, two ideal memristors produce two resistive states A
and B, respectively. However, with strong nonlinearity LTP
= 4, LTD = −4, an abrupt incline and decline of the resistive
state is obtained, which are labeled as C and D, respectively.
This inaccurate weight updating directly impact the overall
performance of the DNN model.

The nonlinearity of LTP = 1.75 and LTP = -1.46 is taken
into account in all of the results from Tables I, II, and III.
However, the conventional mapping totally fails with the
inclusion of very high nonlinearity. For example, as shown

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

OLI-UZ-ZAMAN et al.: SAF IMMUNITY ENHANCEMENT OF MEMRISTOR-BASED EDGE AI SYSTEMS 929

TABLE VII

AREA COMPARISON BETWEEN BEFORE AND AFTER ADAPTIVE MAPPING METHOD

TABLE VIII

APPLICABILITY OF ADAPTIVE MAPPING METHOD (AMM)

TABLE IX

STATE-OF-THE-ART

in Tables I, II, and III, when 0.1% SAF appears with a
ratio of SA1:SA0 = 5:1/1:5/1:1, the accuracy before applying
the AMM is 90%/88%/90% respectively, but the accuracies
are 61%/56%/71% under the influence of high nonlinearity, as
shown in Table V.

The AMM is efficient in restoring the high accuracy even
with high nonlinearity. As listed in Table V, when SAF is 1%
for SA1:SA0 = 1:5, 1:1, and 5:1, the AMM recovers 70%
inference accuracy which was 10% before. Similarly when
SAF is 20%, the AMM achieves over 60% accuracy.

This is because the AMM maps majority of the weights
at the LRS or HRS where the influence of the non-linearly
is absent, as shown in Fig. 10. Hence, the nonlinearity cannot
cause any negative impact. As shown in Fig. 7, 8, and 9, when
SA1:SA0 = 5:1, 99% weights are mapped to “1” or HRS and
sub-1 region; when SA1:SA0 = 1:5, 99% weights are mapped
to “0” or LRS and sub-0 region; when SA1:SA0 = 1:1, 99%
weights are mapped to HRS and LRS; they are all not affected
by the non-linearity.

Since in each case, the tendency of the AMM is to map
weights to the HRS or LRS are almost always equal about
65% (as shown in Figs. 7, 8, and 9), the AMM has a similar
effectiveness for three conditions SA1:SA0 = 1:5, 1:1, and

5:1. Accordingly, Table V listed a similar accuracy restoration
after applying the AMM for three conditions.

D. Retention

Retention is defined as the ability of the memristor device to
retain its programmed state over a long period of time [39].
Typically the retention ability of a memristor is more than 10
years at 85 degree centigrade. As shown in Table VI, four
conductance drift scenarios have been discussed for the
retention analyzed: Drift to HRS, Drift to LRS, Drift to
Middle, and Random Drift.

Here 10% SAF along with different drift has been consid-
ered in Table VI. The AMM can successfully restored the high
inference accuracy even with the different drift conditions. The
reason is that we split a single weight into two numbers and
store it in two memristors. In some cases, the two weights are
affected by the same amount of drifts, and therefore after the
subtraction, the same difference is obtained before/after drift.
Finally, the DNN can get the desired weight during execution.

E. Chip Area Estimation

The memristor based edge DNN chip is made up of a
number of tiles, a global buffer, neural functional computation

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

i

i

i

i
−
i

i p

i

930 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 4, DECEMBER 2022

Fig. 11. Flow chart for choosing algorithm.

units such as accumulating units, activation units, pooling
units, as well as computation units for weight gradient. In each
tile, there are several processing elements (PEs), tile buffers for
loading neural activations, accumulation modules for adding
partial sums from PEs and output buffers. The total size of a
memristor based DNN chip is shown in Table VII.

To improve the accuracy of the DNN model, the AMM
requires twice of the number of memristors as the DNN
without the AMM. Additionally, the AMM requires one op-
amp based subtractor for each two columns of memristor. A
5000×5000 crossbar architecture is enough to store 25 million
weights. It demands 2500 op-amps. As shown in Table VII,
considering the silicon area of op-amp based subtractors in 32
nm [40] technology, the total chip area with AMM is 0.38%
larger than the DNN without the AMM. It can be negligible,
considering the great contribution of the AMM on the accuracy
and immunity to SAFs.

IV. DESIGN FLOW

The design flow of the proposed method is shown in
Fig. 11. Forming and heavy device utilization causes the SAF
inside the memristor crossbar array. Before we decide which
algorithm will be used for AMM, we will firstly test the simple
chip to find dominator (SA1 or SA0). The testing platform in
[38] or [19] is available. Based on such a dominator,
Algorithm 1, 2, or 3 will be selected. Additionally, these
algorithms are useful irrespective of the type of the memristor
device.

V. APPLICABILITY

AMM method can act as a universal method. The
method of splitting one weight into two memristors achieves
tremendous accuracy restoration. From the analysis of the
weights as shown in Fig. 2, it indicates when the weights are
clustered towards the weight range [-1, 1], choosing
algorithms 1, 2, and 3 can help realize high accuracy. But
even if the weight distribution is different with Fig. 2, AMM
still has good chance to restore the high accuracy. The worst-
case scenario is shown in Table VIII including all the weights

Algorithm 1 AMM When SA1:SA0 = 5:1
1: Weight Matrix W , Matrix Element Index i , Total Matrix

Elements N , Percentage of Stuck-at-1 Fault S A1, Percent-
age of Stuck-at-0 Fault S A0.

2: for i = 0, 1, 2, . . . , N − 1
3: if (W ≥ 0)
4: W + = 1 #1st weight matrix
5: W − = 1 − Wi #2nd weight matrix
6: else
7: W + = 1 − |Wi|
8: W = 1
9: end if

10: end for
11: Append W + value to a matrix, Mtx ;
12: Append W − value to matrix Mtxn ;
13: #pseudocode for SAF inside the weight matrix
14: for j = 0,1,2,…,N-1 in Mtx p

15: R1 = random()×100% #Random num generation
16: if (R1 ≤ S A1)
17: Mt x p (j) = 1
18: else
19: Mt x p (j) = Mt x p (j)
20: end if
21: end for
22: for j = 0,1,2,…,N-1 in Mtx p

23: R2 = random()×100% #Random num generation
24: if (R1 ≤ S A0)
25: Mt x p (j) = 0
26: else
27: Mt x p (j) = Mt x p (j)
28: end if
29: end for
30: for j = 0,1,2,…,N-1 in Mtxn

31: R1 = random()×100% #Random num generation
32: if (R2 ≤ S A1)
33: Mt xn (j) = 1
34: else
35: Mt xn (j) = Mt xn (j)
36: end if
37: end for
38: for j = 0,1,2,…,N-1 in Mtxn

39: R2 = random()×100% #Random num generation
40: if (R2 ≤ S A0)
41: Mt xn (j) = 0
42: else
43: Mt xn (j) = Mt xn (j)
44: end if
45: end for
46: Mtx p - Mtxn //final weight matrix

are clustered towards HRS or all the weights are clustered
towards LRS.

VI. COMPARISON WITH STATE-OF-THE-ART

As shown in Table IX, our proposed method offers some
advantages over the state-of-the-art. So far, most of the SAF

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

i

i i

i

i

i

i
−
i

i

i i

i

i

i

i

i

i

i

i p

i

OLI-UZ-ZAMAN et al.: SAF IMMUNITY ENHANCEMENT OF MEMRISTOR-BASED EDGE AI SYSTEMS 931

Algorithm 2 AMM When SA1:SA0 = 1:5
1: Weight Matrix W , Matrix Element Index i , Total Matrix

Elements N , Percentage of Stuck-at-1 Fault S A1, Percent-
age of Stuck-at-0 Fault S A0.

2: for i = 0, 1, 2, . . . , N − 1
3: if (W ≥ 0)
4: W + = W
5: W − = 0
6: else
7: W + = 0
8: W − = |Wi|
9: end if

10: end for
11: Append W + value to a matrix, Mtx p ;
12: Append W value to matrix Mtxn ;
13: #pseudocode for SAF inside the weight matrix
14: for j = 0,1,2,…,N-1 in Mtx p

15: R1 = random()×100% #Random num generation
16: if (R1 ≤ S A1)
17: Mt x p (j) = 1
18: else
19: Mt x p (j) = Mt x p (j)
20: end if
21: end for
22: for j = 0,1,2,…,N-1 in Mtx p

23: R2 = random()×100% #Random num generation
24: if (R1 ≤ S A0)
25: Mt x p (j) = 0
26: else
27: Mt x p (j) = Mt x p (j)
28: end if
29: end for
30: for j = 0,1,2,…,N-1 in Mtxn

31: R1 = random()×100% #Random num generation
32: if (R2 ≤ S A1)
33: Mt xn (j) = 1
34: else
35: Mt xn (j) = Mt xn (j)
36: end if
37: end for
38: for j = 0,1,2,…,N-1 in Mtxn

39: R2 = random()×100% #Random num generation
40: if (R2 ≤ S A0)
41: Mt xn (j) = 0
42: else
43: Mt xn (j) = Mt xn (j)
44: end if
45: end for
46: Mtx p - Mtxn //final weight matrix

handling approaches develop an intricate algorithm to deter-
mine the significant weights first. Then a complex read circuit
identifies SAFs free regions for mapping those significant
weights. Although using intricate algorithms and the complex
read circuit can recover accuracy to a certain extent, but they
cause a large hardware and software overhead, and generates
additional energy consumption and latency. However, the

Algorithm 3 AMM When SA1:SA0 = 1:1
1: Weight Matrix W , Matrix Element Index i , Total Matrix

Elements N , Percentage of Stuck-at-1 Fault S A1, Percent-
age of Stuck-at-0 Fault S A0.

2: for i = 0, 1, 2, . . . , N − 1
3: if (W ≥ 0)
4: W + = W
5: W − = 0
6: end if
7: if (W ≤ 0)
8: W + = 0
9: W − = |Wi|

10: end if
11: if (W = = 0)
12: W + = 1
13: W − = 1
14: end if
15: end for
16: Append W + value to a matrix, Mtx ;
17: Append W − value to matrix Mtxn ;
18: #pseudocode for SAF inside the weight matrix
19: for j = 0,1,2,…,N-1 in Mtx p

20: R1 = random()×100% #Random num generation
21: if (R1 ≤ S A1)
22: Mt x p (j) = 1
23: else
24: Mt x p (j) = Mt x p (j)
25: end if
26: end for
27: for j = 0,1,2,…,N-1 in Mtx p

28: R2 = random()×100% #Random num generation
29: if (R1 ≤ S A0)
30: Mt x p (j) = 0
31: else
32: Mt x p (j) = Mt x p (j)
33: end if
34: end for
35: for j = 0,1,2,…,N-1 in Mtxn

36: R1 = random()×100% #Random num generation
37: if (R2 ≤ S A1)
38: Mt xn (j) = 1
39: else
40: Mt xn (j) = Mt xn (j)
41: end if
42: end for
43: for j = 0,1,2,…,N-1 in Mtxn

44: R2 = random()×100% #Random num generation
45: if (R2 ≤ S A0)
46: Mt xn (j) = 0
47: else
48: Mt xn (j) = Mt xn (j)
49: end if
50: end for
51: Mtx p - Mtxn //final weight matrix

AMM can be used as a ubiquitous solution to avoid all these
complexities. Besides, the AMM has approved not to add

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

932 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 4, DECEMBER 2022

energy and latency to the system [8]. Furthermore, the AMM
has strong immunity to the nonlinearity and conductance drift.

VII. CONCLUSION

High integrated density and simple crossbar architecture
makes memristor suitable for the implementation of large
and complex DNN model in edge AI systems. But unavoid-
able SAF defects impede its commercial success, because
the inference accuracy drop is inevitable. In this paper, the
AMM is proposed to deal with such accuracy degradation.
The experiment results show that the AMM can restore the
interference accuracy to 90% when the SAF is less than or
equal to 7.5%/10%/2.5% at SA1:SA0 = 5:1/1:5/1:1. Even in
some extreme cases, for example SAF = 50%, the AMM
also effective and achieves the accuracy up to 80%/82%/66% at
SA1:SA0 = 5:1/1:5/1:1. The AMM remaps the original
weights to HRS or (and) LRS and makes it immune against the
SAFs no matter which SAF is dominator. Besides, this unique
mapping causes memristor-based edge AI system invulnerable
towards nonlinearity and conductance drift. As a result, with
significant nonlinearity (LTP = 4, LTD = -4), and 2.5% SAF,
the DNN with the AMM achieves 70%/69%/65% accuracy at
SA1:SA0 = 5:1/1:5/1:1. Finally, as compared with state-of-
the-art, our proposed method implies the superiority.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[3] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing for
autonomous driving: Opportunities and challenges,” Proc. IEEE, vol.
107, no. 8, pp. 1697–1716, Aug. 2019.

[4] M. M. Waldrop, “The chips are down for Moore’s law,” Nature, vol. 530,
no. 7589, pp. 144–147, Feb. 2016.

[5] J. Fu, Z. Liao, and J. Wang, “Memristor-based neuromorphic hardware
improvement for privacy-preserving ANN,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 27, no. 12, pp. 2745–2754, Dec. 2019.

[6] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, and R.
S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nat. Nanotechnol., vol. 3, no. 7, pp. 429–433, Jul. 2008.

[7] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:
Threshold adaptive memristor model,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 60, no. 1, pp. 211–221, Jan. 2013.

[8] M. Oli-Uz-Zaman et al., “Mapping transformation enabled high-
performance and low-energy memristor-based DNNs,” J. Low Power
Electron. Appl., vol. 12, no. 1, pp. 10–24, 2022.

[9] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,” Nanotech-
nology, vol. 22, no. 48, Dec. 2011, Art. no. 485203.

[10] B. J. Choi et al., “High-speed and low-energy nitride memristors,” Adv.
Funct. Mater., vol. 26, no. 29, pp. 5290–5296, 2016.

[11] B. Govoreanu et al., “10×10nm2 Hf/HfOx crossbar resistive ram with
excellent performance, reliability and low-energy operation,” in IEDM
Tech. Dig., Dec. 2011, pp. 31.6.1–31.6.4.

[12] S. C. Bartling, S. Khanna, M. P. Clinton, S. R. Summerfelt, J. A.
Rodriguez, and H. P. McAdams, “An 8mhz 75µa/mhz zero-leakage non-
volatile logic-based cortex-m0 MCU SoC exhibiting 100% digital
state retention at V(DD)=0V with <400ns wakeup and sleep transitions,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2013,
pp. 432–433.

[13] Z. Liao, J. Fu, and J. Wang, “Ameliorate performance of memristor-
based ANNs in edge computing,” IEEE Trans. Comput., vol. 70, no. 8,
pp. 1299–1310, Aug. 2021.

[14] N. Sakimura et al., “10.5 A 90nm 20MHz fully nonvolatile microcon-
troller for standby-power-critical applications,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 184–185.

[15] P.-F. Chiu et al., “Low store energy, low VDDmin, 8T2R nonvolatile
latch and SRAM with vertical-stacked resistive memory (memristor)
devices for low power mobile applications,” IEEE J. Solid-State Circuits,
vol. 47, no. 6, pp. 1483–1496, Jun. 2012.

[16] K.-H. Kim, S. Hyun Jo, S. Gaba, and W. Lu, “Nanoscale resistive
memory with intrinsic diode characteristics and long endurance,” Appl.
Phys. Lett., vol. 96, no. 5, 2010, Art. no. 05310.

[17] Q. Xia et al., “Memristor–CMOS hybrid integrated circuits for recon-
figurable logic,” Nano Lett., vol. 9, no. 10, pp. 3640–3645, Oct. 2009.

[18] J. Fu, Z. Liao, J. Liu, S. C. Smith, and J. Wang, “Memristor-based
variation-enabled differentially private learning systems for edge com-
puting in IoT,” IEEE Internet Things J., vol. 8, no. 12, pp. 9672–9682,
Jun. 2021.

[19] C.-Y. Chen et al., “RRAM defect modeling and failure analysis based on
March test and a novel squeeze-search scheme,” IEEE Trans. Comput.,
vol. 64, no. 1, pp. 180–190, Jan. 2015.

[20] L. Chen et al., “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 19–24.

[21] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based
neuromorphic design with high defects,” in Proc. 54th Annu. Design
Autom. Conf., Jun. 2017, pp. 1–6.

[22] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang, “Fault-tolerant
training with on-line fault detection for RRAM-based neural computing
systems,” in Proc. 54th Annu. Design Autom. Conf., Jun. 2017, pp. 1–6.

[23] L. Xia et al., “Stuck-at fault tolerance in RRAM computing systems,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 102–115,
Mar. 2018.

[24] B. Zhang, N. Uysal, D. Fan, and R. Ewetz, “Handling stuck-at-fault
defects using matrix transformation for robust inference of DNNs,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp.
2448–2460, Oct. 2020.

[25] M. Hu et al., “Dot-product engine for neuromorphic computing: Pro-
gramming 1T1M crossbar to accelerate matrix-vector multiplication,” in
Proc. 53rd Annu. Design Autom. Conf., Jun. 2016, pp. 1–6.

[26] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “A low
energy oxide-based electronic synaptic device for neuromorphic visual
systems with tolerance to device variation,” Adv. Mater., vol. 25, pp.
1774–1779, Mar. 2013.

[27] E. R. Kandel, “From nerve cells to cognition: The internal cellular
representation required for perception and action,” Princ. Neural Sci.,
vol. 1, pp. 381–403, Jan. 2000.

[28] J. Fu, Z. Liao, N. Gong, and J. Wang, “Mitigating nonlinear effect
of memristive synaptic device for neuromorphic computing,” IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 377–387,
Jun. 2019.

[29] P.-Y. Chen et al., “Mitigating effects of non-ideal synaptic device
characteristics for on-chip learning,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2015, pp. 194–199.

[30] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano Lett., vol. 10, no. 4, pp. 1297–1301, 2010.

[31] Y.-X. Chen and J.-F. Li, “Fault modeling and testing of 1T1R memristor
memories,” in Proc. IEEE 33rd VLSI Test Symp. (VTS), Apr. 2015, pp.
1–6.

[32] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Modeling, detection,
and diagnosis of faults in multilevel memristor memories,” IEEE Trans.
Comput.-Aided Design Integr., vol. 34, no. 5, pp. 822–834, May 2015.

[33] N. Z. Haron and S. Hamdioui, “On defect oriented testing for hybrid
CMOS/memristor memory,” in Proc. Asian Test Symp., Nov. 2011, pp.
353–358.

[34] X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim
V2.0: An end-to-end benchmarking framework for compute-in-memory
accelerators for on-chip training,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 40, no. 11, pp. 2306–2319, Nov. 2021.

[35] O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive circuits
for edge computing: A review,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 1, pp. 4–23, Jan. 2020.

[36] G. Yuan et al., “Improving DNN fault tolerance using weight pruning
and differential crossbar mapping for ReRAM-based edge AI,” in
Proc. 22nd Int. Symp. Quality Electron. Design (ISQED), Apr. 2021,
pp. 135–141.

[37] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics
based on memristive systems,” Nature Electron., vol. 1, no. 1, pp. 22–29,
Jan. 2018.

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

OLI-UZ-ZAMAN et al.: SAF IMMUNITY ENHANCEMENT OF MEMRISTOR-BASED EDGE AI SYSTEMS

[38] J. Fu, Z. Liao, and J. Wang, “Level scaling and pulse regulating to
mitigate the impact of the cycle-to-cycle variation in memristor-based
edge AI system,” IEEE Trans. Electron Devices, vol. 69, no. 4, pp.
1752–1762, Apr. 2022.

[39] P.-Y. Chen and S. Yu, “Reliability perspective of resistive synaptic
devices on the neuromorphic system performance,” in Proc. IEEE Int.
Rel. Phys. Symp. (IRPS), Mar. 2018, p. 5.

[40] A. Dendouga, S. Oussalah, D. Thienpont, and A. Lounis, “Program for
the optimization of an OTA for front end electronics based on multi
objective genetic algorithms,” in Proc. 29th Int. Conf. Microelectron.,
2014, pp. 443–446.

[41] G. Jung, M. Fouda, S. Lee, J. Lee, A. Eltawil, and F. Kurdahi, “Cost- and
dataset-free stuck-at fault mitigation for ReRAM-based deep learning
accelerators,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Feb. 2021, pp. 1733–1738.

[42] J. Zhang, D. Kline, L. Fang, R. Melhem, and A. K. Jones, “Dynamic
partitioning to mitigate stuck-at faults in emerging memories,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017, pp.
651–658.

[43] G. Charan, A. Mohanty, X. Du, G. Krishnan, R. V. Joshi, and Y. Cao,
“Accurate inference with inaccurate RRAM devices: A joint algorithm-
design solution,” IEEE J. Explor. Solid-State Comput. Devices Circuits,
vol. 6, pp. 27–35, 2020.

[44] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection
adaption: End-to-end ReRAM crossbar non-ideal effect adaption for
neural network mapping,” in Proc. 56th Annu. Design Autom. Conf.,
Jun. 2019, pp. 1–6.

[45] I. Yeo, M. Chu, S.-G. Gi, H. Hwang, and B.-G. Lee, “Stuck-at-fault
tolerant schemes for memristor crossbar array-based neural networks,”
IEEE Trans. Electron Devices, vol. 66, no. 7, pp. 2937–2945, Jul. 2019.

933

William Oswald (Student Member, IEEE) received
the B.S. degree in computer engineering and the
M.S. degree in electrical engineering from the
University of South Alabama in 2020 and 2021,
respectively. He is currently pursuing the Ph.D.
degree. He has worked in industry as a Sys-
tems Analyst at Packaging Corporation of America
from 2019 to 2020. His research interests include
computer architecture design, machine learning, and
neural networks.

Zhiheng Liao received the B.E. and M.S. degree in
electrical engineering from the Beijing University of
Technology, China, in 2014 and 2017, respectively,
and the Ph.D. degree from North Dakota State
University, Fargo, ND, USA, in 2021. His research
focuses on the emerging device and algorithm opti-
mization for neuromorphic computing and artificial
intelligence (AI) technology.

Md. Oli-Uz-Zaman (Student Member, IEEE)
received the B.S. degree in electronics and telecom-
munication engineering from the Rajshahi Uni-
versity of Engineering and Technology (RUET),
Bangladesh, in 2016. He is currently pursuing the
Ph.D. degree with the University of South Alabama,
Mobile, AL, USA. His research focuses on AI
hardware design and neuromorphic computing.

Saleh Ahmad Khan (Student Member, IEEE)
received the B.S. degree in electrical and electronics
engineering from American International University-
Bangladesh, Bangladesh, in 2019. He is currently
pursuing the M.S. degree with the University of
South Alabama, Mobile, AL, USA. He received
the Dean’s Award from American International
University-Bangladesh for the best undergraduate
capstone project. His research focuses on AI hard-
ware design and neuromorphic computing.

Jinhui Wang (Senior Member, IEEE) received the
B.E. degree in electrical engineering from Hebei
University, Hebei, China, and the Ph.D. degree in
electrical engineering from the Beijing University
of Technology, Beijing, China. He was a Post-
Doctoral Fellow with the University of Rochester,
Rochester, NY, USA; a Visiting Professor with the
State University of New York at Buffalo, Buffalo,
NY; and a Visiting Scholar with IMEC, Leuven,
Belgium. He is currently an Associate Professor with
the Department of Electrical and Computer Engi-

neering, University of South Alabama, Mobile, AL, USA. He has published
over 150 refereed journal/conference papers and holds 20 patents in the
area of emerging semiconductor technologies. His research interests include
neuromorphic computing, AI technology, low-power, high-performance, and
variation-tolerant IC design, 3-D IC, and thermal solution in VLSI. His
previous work received the Best Paper Award/Nomination at DATE 2021,
ISVLSI 2019, ISLPED 2016, ISQED 2016, and EIT 2016.

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on February 21,2023 at 03:00:50 UTC from IEEE Xplore. Restrictions apply.

