
Malware Network Traffic Classification on the Edge
1st Eric Chen

Computer and Information Science and Engineering
University of Florida

Gainesville, USA
echen2@ufl.edu

2nd Alexander Perez-Pons
Electrical and Computer Engineering

Florida International University
Miami, USA

aperezpo@fiu.edu

Abstract—Network traffic classification is a part of many cy-
bersecurity applications, such as intrusion detection systems and
anomaly detection. Currently, many cybersecurity tasks employ a
cloud computing architecture, including network traffic classi-
fication. However, this architecture may not be able to meet the
latency demands in the future with the ever-increasing number of
network data. Therefore, we propose to perform network traffic
classification utilizing edge computing and applying tiny machine
learning to classify closer to the data source. Our approach uses
TensorFlow Lite to convert a traditional convolutional neural
network into a tiny machine learning model that runs on an
edge device. In order to access the impact of edge classification,
we ran simulations on the edge device and compared these results
to a cloud-computing counterpart. We determined that the edge
device was faster and had reduced latency compared to a cloud
computing alternative, with a negligible reduction in accuracy
throughout all experiments.

Index Terms—Traffic Classification, Convolutional Neural Net-
work, Edge Computing

I. INTRODUC T I ON

Network traffic classification is the process of determining
the type of traffic that occurs on a specific network. It is a cru-
cial and fundamental component of modern-day cybersecurity,
providing functionality to services such as quality of service
(QOS) control, anomaly detection, and intrusion detection
systems [1]. Currently, network traffic classification is usually
done through machine learning techniques, specifically deep
learning techniques. Much research has shown that utilizing
deep learning techniques, such as convolutional neural net-
works (CNNs) and Long Short-Term Memory (LTSM), can
efficiently and accurately perform network traffic classification
[2].

Fig. 1. Cloud-based architecture of malware network traffic classification

There are many approaches to conducting network traffic
classification using machine learning models, but the most

common one is to use a cloud computing architecture. In this
architecture, network data is locally captured, then sent to a
server on the cloud that actually performs the classification.
Figure 1 displays an example of a cloud computing architec-
ture for network traffic classification. While this architecture is
sufficient for current needs, it may not be sufficient to meet
future demands, given the forecasted growth of network
devices. Statista reports that the number of Internet of Things
(IoT) devices will drastically increase as time goes on, more
than doubling by 2030 [3]. As a result, network traffic will
exponentially increase, causing bottleneck issues for a cloud
computing architecture. The increasing amount of data needing
to be sent to the cloud and receiving results will cause lag
and increase the delay in obtaining results [4]. The increase in
delay will impair the functionality and efficiency of many
cybersecurity systems, especially for new advancements like
autonomous vehicles that require results quickly.

One solution to combat delays is to convert from a cloud
computing structure to an edge computing structure. Edge
computing processes data on edge devices, devices close to the
data source that controls data flow on the boundary, without
interacting with the cloud. It allows edge computing many
advantages over cloud computing with decreased response
time, less bandwidth pressure, and real-time processing by
reducing delays [5]. The field of edge computing that the
paper focuses on is tiny machine learning (TinyML). TinyML
focuses on allowing microcontrollers with low processing
power and memory to use machine learning techniques and al-
gorithms to perform tasks [6]. It has the same benefits as cloud
computing with reduced latency. Furthermore, there is support
to easily convert traditional machine learning models used for
applications like malware network traffic classification to their
tiny counterparts that edge devices can use. The main goal
of this paper is to establish the feasibility and benefits of
converting a traditional malware network classification model
to a tinyML model and having it run on an edge device.

This paper uses TensorFlow Lite, a popular TinyML frame-
work, to achieve the benefits of edge computing. The original
model created was a CNN that was trained using the USTC-
TFC2016 dataset by Keras [7]. It was then post-training integer
quantized and converted to a TensorFlow Lite model using
built-in TensorFlow functions and resources. The average
accuracy of both models was tested, with both models seeing
100% average accuracy. Furthermore, compared to a cloud

computing architecture with the initial model, the TensorFlow
Lite model on an edge device was faster at every input size.

I I . R E L AT E D WO R K S

Three main methods have been researched and implemented
to perform network traffic classification: port-based methods,
payload-based methods, and machine learning methods.

The first approach to doing network traffic classification
uses port-based methods. They used predefined hard-coded
rules, classifying based on mapping and checking ports used
by well-known applications [8], [9]. However, this approach
has become functionally obsolete in recent years due to the
increase in applications using dynamic port allocation and
sometimes even intentionally disguising their port numbers to
avoid detection [8]–[12].

To overcome the deficiencies of port-based methods, re-
searchers began investigating and implementing payload-based
methods. Payload-based methods perform Deep Packet In-
spection (DPI), a technique that examines packets to look
for distinctive application characteristics for classification [9],
[10]. While this advancement in traffic classification has shown
promising results, it still has inherent flaws. Performing DPI
requires expensive hardware and has high computational costs
[8], [9]. Furthermore, DPI does not work on encrypted traffic,
something becoming more prevalent in recent history [8]–[12].

These flaws in the previously mentioned methods led
to modern research about utilizing machine learning tech-
niques to perform network traffic classification. Machine
learning techniques use flow statistical features that are port
and payload-independent, allowing them to be more flexible
while avoiding some problems that arise with port-based
and payload-based approaches [11]. Much research has been
done on this topic, especially concerning deep learning. In
[7], they first proposed using a CNN to perform network
traffic classification using raw network data. Later, Lim et
al. [13] further expanded on this idea by proposing the use
of ResNet, a CNN involving a shortcut connection, that saw
promising results. Further research saw positive results for
implementing recurrent neural networks (RNNs), sparse auto-
encoders (AEs), and generative adversarial networks (GANs)
[14].

While research is being done on finding effective models
for network traffic classification, fewer resources have been
allocated to finding effective ways to implement them. The
other main research on effectively implementing network traf-
fic classification is from Kim et al. [15]. They proposed using a
hybrid edge computing and cloud computing architecture to
perform network traffic classification [15]. This paper takes
inspiration from deep learning works like [7] to construct and
show the effectiveness of an edge-computing architecture in
practice that is similar to the serving phase mentioned in [15].

I I I . ME T HODO L OGY

A. Dataset and Preprocessing
In theory, a device that could collect network traffic data

would collect raw data in bytes. To emulate real-time raw

network traffic, we used the session data with every layer in
the USTC-TFC2016 dataset. It saw the highest accuracy in [7]
paper and satisfied the requirement of being raw data. Lastly,
the successful results found by [7] and the similarities between
our models led to the choice of using their dataset.

Fig. 2. Example images of network traffic

For preprocessing to be realistic for an edge device, it
must take a low amount of memory and processing power.
Fortunately, preprocessing raw network traffic data is very
simple. The only preprocessing for an individual data point in
this dataset is to shorten it to 784 bytes if it is over 784 bytes
or append zeros to the end if it is less than 784 bytes. This is
simple enough for an edge device to replicate with real-time
data. However, when training and testing the execution times
of the models, we used the already preprocessed data, avoiding
the step of conducting preprocessing. Figure 2 provides images
of the data after preprocessing as a 28*28 image.

B. Model Architecture

As mentioned previously, the model architecture is very
similar to the one proposed by [7], a CNN architecture like
LeNet-5, with some more channels in each convolutional layer.
However, there are fewer channels than the model proposed
by [7] to lower the model size so that it can be used by an
edge device more efficiently, given the edge device’s inherent
lack of memory and processing power.

Initially, we obtain traffic images of size 28*28*1 associated
with each packet. The image pixels were not normalized to
increase the accuracy of the tinyML model since it would be
post-training integer quantized. Furthermore, the edge device
used would only accept integer inputs. Therefore, by not
normalizing the model, the model was trained to deal with
integer inputs in the first place.

The model architecture has eight layers with 206,017 train-
able parameters. The first convolutional layer has 16 filters
with a 5*5 kernel size and a relu activation function. Then,
there is a 2*2 max pool layer that performs a max pooling
operation. Following that, there is another convolutional layer

with 32 filters and a 3*3 kernel size with a relu activation
function. After that, there is another 2*2 max pool layer.
Then the results are flattened to shift towards fully connected
layers. The first fully connected layer has 128 outputs with a
relu activation function. Then, there is a dropout layer with a
rate of 0.5. The final layer is a fully connected layer with
an output size of one with a sigmoid activation function.
This is the model structure for the original Keras model used
later to test the execution times between a cloud computing
architecture and an edge computing architecture. Figure 3
shows the pipeline of the original model architecture.

parameters and post-training integer quantized as specified
according to the TensorFlow Lite indications.

C. Hardware

Fig. 4. Picture of the WIO Terminal

To render an edge-computing architecture, we employed a
WIO Terminal to run our tinyML model. This device has built-in
support for tiny machine learning, has WiFi capabilities with an
RTL8720DN, and embodies the low processing power and
memory constraints typically associated with edge devices. It
is powered by an ATSAMD51P19 microchip with an ARM
Cortex-M4F core with a 4 MB external flash, 192 K B RAM,
and 512 K B program memory size [16]. Figure 4 displays a
picture of the WIO Terminal.

D. System Model

Throughout an area, there can be many WiFi access points.
To implement malware network traffic classification, you could
have an edge device that sniffs the packets of each access
point. Then, the edge device could preprocess the packets,
classify them using a model, and send the data to a monitoring
station upon the detection of suspicious communications.
Figure 5 illustrates an example of one access point.

Fig. 3. Original model architecture

The original Keras model was then directly converted to a Fig. 5. Edge computing architecture for malware network traffic classification
TensorFlow Lite model, which was optimized using the default

I V. E VA L UAT I O N

A. Experiment Setup

The environment used to create the integer-based Tensor-
Flow Lite model and float-based Keras model used Python 3.8,
TensorFlow 2.3, and Keras 2.4.3. The original Keras model
was uploaded to the Google Cloud Platform and called through
Cloud Run. It was hosted on the default execution environment
with 16 GiB of memory and eight virtual CPUs.Then, the xxd
command was used to convert the TensorFlow Lite model into a
C array that an Arduino can use. The xxd command creates a
hex dump of the TensorFlow Lite file, allowing an Arduino to
read and use the model. After that, we uploaded the model to
the WIO Terminal facilitated through the Arduino IDE and
TensorFlow Lite Arduino library to have the WIO Terminal
perform classification.

B. Performance Metrics

Three evaluation metrics were used, consisting of the model
size, model accuracy, and execution time. The model sizes
were the file sizes provided in the development environment.
Accuracy was calculated by taking the total number of test
examples predicted correctly over the total number of test
examples. The execution time measured the time to feed inputs
into the model, use the model to get an output and print the
label to a device.

C. Experiment Results and Analysis

As seen in figure 6, the tinyML model is smaller than
the original Keras model, only 25% of the size of the
original model. Furthermore, figure 6 shows that the array
representation of the tinyML model is smaller than the array
representation of the original Keras model, roughly 25% the
size of the array representation of the original Keras model.
This shows that different representations of a tiny model will
require less space to store than the same representations of
their original model.

Fig. 6. File sizes of models in different forms

Both models saw an accuracy of 100%. Although the
original model is slightly different, it is similar in nature to the

original model architecture in [7], meaning it makes sense that
the accuracy of the original model is basically the same as the
accuracy reported in [7]. Even with the integer quantization
and reduced complexity, the tiny model does not suffer from
a severe drop in accuracy. This shows that the tinyML model
approximates the original model effectively. Since the model
accuracies are essentially the same, an edge device using the
tinyML model would classify network traffic similarly to that
model on the cloud.

Finally, as seen in figure 7, the edge-computing architecture
saw a lower execution time than a cloud-computing architec-
ture at every load. In the beginning, the execution times on
the edge device are around 60% of the execution times for
the cloud architecture. However, as the load size increased,
the execution times of the edge device became even better
compared to the cloud model, taking less than 50% of the
time. This shows that doing network traffic classification on
an edge device is not only possible but is faster than a cloud-
based model as well.

Fig. 7. Malware network classification execution times of an edge-based
architecture versus a cloud-based architecture

V. CO N C L U S I O N

A. Principal Findings
In order to prepare for the exponentially increasing amount

of network data being transferred, we proposed using an edge-
computing architecture to perform network traffic classifica-
tion. We created a CNN model through Keras and converted it
to a TensorFlow Lite model for an edge device to use. Through
our experiments, we discovered that the accuracy of the Ten-
sorFlow Lite model traffic classification is sufficiently accurate
to be used, not showing a relevant decrease in accuracy
compared to the original model. Furthermore, the experimental
results showed that an edge device performs network traffic
classification far faster than a cloud-based architecture. Based
on this, we believe that this provides quantitative evidence
and shows that performing network traffic classification with
an edge device is both feasible and efficient.

B. Limitations
The major limitation of this study is the edge device we

used. While the WIO Terminal has internet connectivity, it

`

does not support actively sniffing out packets itself. Because of
this, only an approximation of an edge device performing
network traffic classification could be used to collect results.
Furthermore, the small amount of memory and space of edge
devices limit the program size and how much traffic they can
realistically capture and compute at once. Lastly, our study
only performs known malware traffic classification, meaning
that we are unsure about the prospects of classifying unknown
traffic.

C. Future Work
Because of the limitations we faced, we could only do

a simulation of an edge-computing architecture instead of
actually creating one. In the future, we would like to create
the architecture itself and show its functionality and prowess
in performing network traffic classification. Furthermore, we
would like to research conducting network traffic classification
on unknown traffic on the edge as it is important for systems
like a network intrusion detection system. Lastly, given some
promising results in moving network traffic classification to
the edge, we would like to research and promote research
about the feasibility of moving other standard cybersecurity
procedures to the edge.

V I . AC K N OW L E D G E M E N T

This research was supported by the National Science Foun-
dation under award No. 2150248.

R E F E R E N C E S

[1] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and
Y. Guan, “Network traffic classification using correla-
tion information,” I EEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 1, pp. 104–117, 2013.
DOI: 10.1109/TPDS.2012.98.

[2] Y. Pan, X . Zhang, H. Jiang, and C. Li, “A network traffic
classification method based on graph convolution and
lstm,” I EEE Access, vol. 9, pp. 158 261–158 272, 2021.
DOI: 10.1109/ACCESS.2021.3128181.

[3] L . S. Vailshery. “Number of Internet of Things (IoT)
connected devices worldwide from 2019 to 2030.” (May
2022), [Online]. Available: https://www.statista.com/
statistics / 1183457 / iot - connected - devices - worldwide/
(visited on 06/30/2022).

[4] J. Pan and Z. Yang, “Cybersecurity challenges and op-
portunities in the new ”edge computing + iot” world,” in
Proceedings of the 2018 ACM International Workshop
on Security in Software Defined Networks Network
Function Virtualization, ser. SDN-NFV Sec’18, Tempe,
AZ, USA: Association for Computing Machinery, 2018,
pp. 29–32, I S B N: 9781450356350. DOI: 10 . 1145 /
3180465.3180470. [Online]. Available: https://doi.org/
10.1145/3180465.3180470.

[5] K . Cao, Y. Liu, G. Meng, and Q. Sun, “An overview
on edge computing research,” I EEE Access, vol. 8,
pp. 85 714–85 728, 2020. DOI: 10.1109/ACCESS.2020.
2991734.

[6] Y. Y. Siang, M. R. Ahamd, and M. S. Z. Abidin,
“Anomaly detection based on tiny machine learning:
A review,” Open International Journal of Informatics,
vol. 9, no. Special Issue 2, pp. 67–78, Nov. 21, 2021.

[7] W. Wang, M. Zhu, X . Zeng, X . Ye, and Y. Sheng, “Mal-
ware traffic classification using convolutional neural
network for representation learning,” in 2017 Interna-
tional Conference on Information Networking (ICOIN),
Jan. 2017, pp. 712–717. DOI: 10 . 1109 / ICOIN . 2017 .
7899588.

[8] J. Zhang, X . Chen, Y. Xiang, W. Zhou, and J. Wu, “Ro-
bust network traffic classification,” IEEE/ACM Trans.
Netw., vol. 23, no. 4, pp. 1257–1270, 2015, ISSN: 1063-
6692. DOI: 10 . 1109 / TNET. 2014 . 2320577. [Online].
Available: https://doi.org/10.1109/TNET.2014.2320577.

[9] Z. Fan and R. Liu, “Investigation of machine learning
based network traffic classification,” in 2017 Interna-
tional Symposium on Wireless Communication Systems
(ISWCS), Aug. 2017, pp. 1–6. DOI: 10.1109/ISWCS.
2017.8108090.

[10] M. Shafiq, X . Yu, A. A. Laghari, L . Yao, N. K .
Karn, and F. Abdessamia, “Network traffic classification
techniques and comparative analysis using machine
learning algorithms,” in 2016 2nd IEEE International
Conference on Computer and Communications (ICCC),
Oct. 2016, pp. 2451–2455. DOI: 10.1109/CompComm.
2016.7925139.

[11] B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz, and
M. E. Karsligil, “Application identification via network
traffic classification,” in 2017 International Confer-
ence on Computing, Networking and Communications
(ICNC), Jan. 2017, pp. 843–848. DOI: 10.1109/ICCNC.
2017.7876241.

[12] S. Valenti, D. Rossi, A. Dainotti, A. Pescape, A.
Finamore, and M. Mellia, “Reviewing traffic classi-
fication,” in Data Traffic Monitoring and Analysis,
Springer, 2013, pp. 123–147.

[13] H.-K. Lim, J.-B. Kim, J.-S. Heo, K . Kim, Y.-G. Hong,
and Y.-H. Han, “Packet-based network traffic classi-
fication using deep learning,” in 2019 International
Conference on Artificial Intelligence in Information and
Communication (ICAIIC), Feb. 2019, pp. 046–051. DOI:
10.1109/ICAIIC.2019.8669045.

[14] S. Rezaei and X. Liu, “Deep learning for encrypted traf-fic
classification: An overview,” I EEE Communications
Magazine, vol. 57, no. 5, pp. 76–81, May 2019. DOI:
10.1109/MCOM.2019.1800819.

[15] K . Kim, J.-H. Lee, H.-K. Lim, S.-W. Oh, and Y.-H. Han,
“Deep rnn-based network traffic classification scheme
in edge computing system,” Computer Science and
Information Systems, vol. 19, no. 1, pp. 165–184, 2022.
DOI: 10.2298/CSIS200424038K.

[16] Wio terminal user manual d51r, version 2, Seeed
Studio, pp. 1–10. [Online]. Available: https : / / files .
seeedstudio.com/wiki/Wio-Terminal/res/Wio-Terminal-
User-Manual.pdf (visited on 06/12/2022).

