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ABSTRACT

Pre-trained Generative Language models (e.g., PLBART, CodeT5,
SPT-Code) for source code yielded strong results on several tasks
in the past few years, including code generation and translation.
These models have adopted varying pre-training objectives to learn
statistics of code construction from very large-scale corpora in a
self-supervised fashion; the success of pre-trained models largely
hinges on these pre-training objectives. This paper proposes a new
pre-training objective, “Naturalizing” of source code, exploiting
code’s bimodal, dual-channel (formal & natural channels) nature.
Unlike natural language, code’s bimodal, dual-channel nature al-
lows us to generate semantically equivalent code at scale. We in-
troduce six classes of semantic preserving transformations to in-
troduce un-natural forms of code, and then force our model to
produce more natural original programs written by developers.
Learning to generate equivalent, but more natural code, at scale,
over large corpora of open-source code, without explicit manual
supervision, helps the model learn to both ingest & generate code.
We fine-tune our model in three generative Software Engineering
tasks: code generation, code translation, and code refinement with
limited human-curated labeled data and achieve state-of-the-art
performance rivaling CodeT5. We show that our pre-trained model
is especially competitive at zero-shot and few-shot learning, and
better at learning code properties (e.g., syntax, data flow).
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« Software and its engineering — Language features; - Comput-
ing methodologies — Knowledge representation and reason-
ing.
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1 INTRODUCTION

Statistical models of the “naturalness” of code [33] have proven
useful for a range of Software Engineering tasks [7, 50], includ-
ing code generation [10], repair [15, 61], summarization [40], re-
trieval [47], and clone detection [20, 66]. The earlier work in this
area trained models directly on tasks, including the early work
on type recovery [8, 31], de-obfuscation [55, 62], repair [30], and
summarization [2, 35]. Training on-task requires a lot of labeled
data. While labeled data is abundant for tasks like code completion
(where the corpus inherently provides supervision), other tasks
like code generation, translation, summarization, repair, etc., re-
quire well-curated, high-quality data. Simply grabbing data from
Github might yield poor-quality [27], highly-duplicated data [5].
With increasing model capacity (hundreds of millions, even billions
of parameters, are pretty common; larger models tend to perform
better [17, 64]), this unacceptable disparity between vast model
capacity and the limited availability of well-curated, high-quality,
labeled data has increased and will likely worsen.

This shortage of high-quality labeled data for on-task training is
not unique to Software Engineering (SE), although it is complicated
here by the increased, specialized skill required for labeling SE data.
To address the issue of training large models in the presence of data
scarcity, such models are often pre-trained on some generic tasks,
which relate to actual downstream tasks. For example, consider two
SE tasks: code generation and code translation. Both tasks require
ML models to learn how to generate natural, syntactically, and se-
mantically correct code. This commonality across tasks motivates
a quest for better pre-trained models, using a self- (or un-) super-
vised task which transfers well to other downstream tasks. Such
pre-trained models can also learn a generic representation of the
input data, which, in turn, transfers to diverse downstream tasks.

A popular approach for dealing with this problem involves
derivatives of BERT style models, e.g., CodeBERT [22], GraphCode-
BERT [28], etc. These models are good at capturing generic code
representations. For code generation tasks, GPT-3 or BART-style
models (e.g., Codex, CodeT5, PLBART, SPTCode, etc. [3, 17, 46, 64])
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are popular. The important insight here is that independent of fi-
nal tasks, when very high capacity models are trained with huge
code corpora to learn simple, self-supervised, “busy work”, they
still learn general syntactic and semantic constraints of writing code.
Different approaches adopt different techniques to train the model
to write code. For instance, GPT-style models (e.g., Codex) learn to
generate code sequentially, mimicking the left-to-right language
model. CodeT5 masks out some tokens and asks the model to gen-
erate only those masked tokens. On the other hand, PLBART and
SPT-Code present the model with erroneous code (with deleted
or masked tokens) and ask the model to generate the corrected,
complete code. The models’ ability to generate code depends mainly
on the pre-training objective that the model is optimized for.

We propose a novel pre-training task: we ask the model to “nat-
uralize" code, i.e., take “weird", synthetic code as input and output
semantic equivalent, “natural” code that a human developer would
have written. This is a very demanding pre-training task—the model
has to learn both code naturalness and code semantics. We were
inspired by noting the work of human Editors (of books, journals,
newspapers): they digest imperfectly written but mostly correct
text, understand the intent, and then produce more perfect text
with pretty much the same meaning. Editing is hard: a skilled Editor
has to have very high levels of language comprehension, to under-
stand given, potentially badly-written text, and then deploy very
high-level writing skills to generate well-formed text. If Editing
could be used as an at-scale pre-training task, the learned model
would presumably have excellent language comprehension and also
generate excellent text. However, it’s not obvious how to generate
at-scale training data for this “Editing" task, say, for English.

a. Natural Code b. Un-natural code

Scanner sc = new Scanner(...);
while (sc.hasNext()) {
String 1n = sc.next();

Scanner sc = new Scanner(...);
for (; sc.hasNext() ;) {
String 1n = sc.next();

Figure 1: Example of a natural code fragment written by
developers and its ‘un-naturally’ transformed counterpart.
If the initialization and update part of the for loop were
to left empty, developers would write the while loop.

But our concern here is code, not natural language. We start with
the argument that, because of the bimodal, dual-channel nature of
code [12], it is indeed possible to generate at-scale training data for
the Editing task (a.k.a. refactoring in Software Engineering termi-
nology). Code has a formal channel, with well-defined semantics;
because of this, it’s possible to transform code into endless forms,
all meaning-equivalent. Essentially, we can deploy a set of meaning
preserving transformations to rewrite existing code from widely-
used GitHub projects (which presumably have good-quality code
that has passed human code review). These rewrites, (e.g., Figure 1),
preserve meaning but will make the code into an artificial, often
unnatural form!.

!Studies, with human-subjects [13, 14] suggest that humans find such rewritten but
semantically identical forms harder to read and understand.
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Nevertheless, we now have a matched pair of two semantically
equivalent forms of code: a “de-naturalized” form and the original
“natural” form. Furthermore, we can produce these pairs at-scale,
and then pre-train on a code “Naturalization” task. By analogy
with human Editors as described above, such pre-training forces
the model to learn two hard things: 1) capture the meaning of the
input code, and 2) generate an output that more closely resembles
human-written code. We hypothesize that the resulting model will
both learn better meaning representations, and also generate better
code.

To this end, we pre-trained our NATGEN model, using “Code Nat-
uralizing” task. NATGEN is based on a transformer-based sequence-
to-sequence model, and learns to “naturalize” artificially generated
“de-naturalized" code back into the form originally written by de-
velopers. We emphasize that NATGEN learns to generate the whole
code; this learned skill transfers to downstream fine-tuning tasks
that require code generation. We show that our pre-training objec-
tive helps model generate more natural code (complete code, with
high syntactic and semantic similarity with the original human-
written code). With proper fine-tuning, NATGEN achieves state-
of-the-art performance in various downstream fine-tuning tasks,
including code generation, code translation, bug fix, that demand
code generation. We also show that NATGEN is specially effective
when labelled data is scarce.

We summarize our main contributions.

(1) We introduce the idea of "Code naturalization" as a pre-training
task.

(2) Using code from Github, and custom tooling, we have generated
and released a large dataset for pre-training models on the
Naturalization task.

(3) We have built and released a large Sequence-to-Sequence model
pre-trained on Naturalization.

(4) We show that (when appropriately fine-tuned) NATGEN outper-
forms SOTA on several settings.

We publish our source code and data download script for pre-
training NATGEN anonymously in https://github.com/saikat107/
NatGen. We also share the pre-trained model in https://bit.ly/natgen-
pre-trained-models and all the finetuned model in https://bit.ly/
natgen-fine-tuned-models.

2 BACKGROUND & PROBLEM FORMULATION

This section presents the relevant technical background that leads
to this work and an overview of the main research questions.

2.1 The Dual Channels of Code

Humans can read and write both natural languages and code. How-
ever, unlike natural language, source code involves two channels of
information: formal & natural [14]. The formal channel, unique to
code, affords precise, formal semantics; interpreters, compilers, etc.,
use this channel. On the other hand, the natural channel (perhaps
more probabilistic and noisy) relies on variable names, comments,
etc., and is commonly used by humans for code comprehension
and communication [13, 14]. The formal channel’s precision en-
ables semantic preserving code transformation, which supports
static analysis, optimization, obfuscation, etc. For instance, major
refactoring of a source code may drastically change the syntactic


https://github.com/saikat107/NatGen
https://github.com/saikat107/NatGen
https://bit.ly/natgen-pre-trained-models
https://bit.ly/natgen-pre-trained-models
https://bit.ly/natgen-fine-tuned-models
https://bit.ly/natgen-fine-tuned-models

NATGEN: Generative Pre-training by “Naturalizing” Source Code

structure while preserving the semantics [20, 23]. However, not all
the semantically equivalent code is “natural" [32]—the usual way
developers write code and thus, amenable to statistical models [32].
In fact, deviation from such “naturalness" may lead to unintended
bugs [54], and increase difficulty of human comprehension [13, 14].

We leverage the natural/formal duality for our pre-training ob-
jective in this work. We keep the formal channel constant (not
changing the meaning) for a given code and modify the syntax
by creating “unnatural” code. Then we train the model to take
the “unnatural” code as input and do what a human Editor does
with natural language text: understand the “unnatural” code and
generate more natural code that a developer would write. Thus,
the model simultaneously learns to both comprehend code, and
generate “natural” code.

2.2

Naturalizing pre-training essentially follows in the tradition of
denoising pre-training, although, arguably, the former is more sub-
tle and challenging. Denoising pre-training [3, 38, 39] is a well-
established pre-training strategy for encoder-decoder models: the
encoder is presented with a noised-up input, and the decoder is
asked to generate the original, noise-free input. By training the
model to identify & remove “noise” in a noisy output, (in theory)
one teaches it to reason about and correctly generate text. Exactly
what a model learns largely depends on the noise types. For in-
stance, PLBART [3] uses syntactic noisez(i.e., token masking, token
deletion, etc.). Thus, denoising pre-training enables PLBART to
learn both about the syntax of input source code, and learn to gen-
erate syntactically correct code. Naturalizing pre-training, on the
other hand, begins with syntactically correct but artificially-created
unnatural source code and forces the model to generate correct
semantically equivalent natural code that is just what a human
originally wrote. Such pre-training requires more subtle changes to
the code. We hypothesize that this provides a more demanding pre-
training setting, which will lead to better on-task code generation
performance.

“Naturalizing" vs. De-noising

2.3 Research Questions

Our hypothesis is that our naturalizing task (see Section 3.1) endows
our pre-trained model with the ability to generate syntactically and
semantically correct, and natural code. This leads to several RQs.

RQ1. Does “Naturalization” help to improve code genera-]
tion?

In contrast to existing de-noising techniques [3] that help the
model learn lexical & syntactic structure, the naturalizing task,
which is arguably more demanding than de-noising, forces NaT-
GEN generating better code with higher syntactic and semantic
correctness.

The pre-training data we use (in NATGEN) challenges the model
to naturalize code that was “de-naturalized" in several ways, such
as dead-code inserted, variable renamed, etc. We investigate the
relative performance under different naturalization challenges.

ZNoise that breaks the syntax structure of code
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RQ2. How do different components in NATGEN contribute
to code generation?

We evaluate the performance under different challenges on a
held-out validation dataset. This dataset is sampled with the same
distribution of de-naturalizing transforms as the training dataset
(Dy); on this set, the model to reconstruct the original code. Our
exploratory investigation reveals that Variable Renaming is the
hardest transformation to undo: the model reconstructs original
code with only 40% accuracy. Dead Code, on the other hand, is the
easiest with 99% accuracy.

We further investigate NATGEN’s performance for downstream
source code generation tasks.

RQ3. How effective is NATGEN when fine-tuned for differ-
ent generative tasks in source code?

We fine-tune the pre-trained NATGEN on task-specific train-
ing dataset for a certain time budget and evaluate the fine-tuned
model on the benchmark testing dataset for corresponding task.
These tasks include source code (java) generation from text, code
translation (from Java to C# and C# to Java), and Bug fixing. After
fine-tuning, NATGEN achieves the state-of-the-art performance in
all these tasks. In addition, we also discover that, code generated
by NATGEN are syntactically and semantically more closer to the
expected code.

We observe that training a model for a complex task requires
sufficient labeled data. However, for most software engineering
tasks, finding labeled data is a significant challenge [4]. We investi-
gate potential scenario where size of the training data is extremely
small.

RQ4. How well does NATGEN’s pre-training help in tasks
where labelled data is scarce?

We simulate training data scarcity in two different ways - Zero-
shot learning, and Few-shot learning. For “Zero-shot” learning, we
evaluate the pre-trained NATGEN in different tasks without any task
specific fine-tuning. For “few-shot” setting, we simulate training
data scarcity by sub-sampling the benchmark training datasets.
We fine-tune the pre-trained NATGEN on these limited training
examples and measure the performance. We observe that NATGEN is
very efficient in low-data training. Since NATGEN learns to generate
syntactically and semantically correct code as part of pre-training,
it faces less burden while learning in low-data training.

3 METHODOLOGY

Our approach comprises three steps: (i) “De-Naturalize” source
code to accumulate pre-training data for NATGEN (§3.1); (ii) pre-
train NATGEN using this data for naturalization task (§3.2); (iii)
Fine-tune pre-trained NATGEN with task specific dataset (§3.3).

3.1 De-naturalizing Source Code

For the first step above, we use six rules to transform a natural code
into its unnatural counterpart. These transformations are semantic-
preserving but rewrite an original, natural, (human-) written code
to an artificial form. Given a natural code element, we deploy an
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. . . . . . 1 int search(int[] arr, int key, int low, int high){
1 int search(int[] arr, int key, int low, int high){
2 while (low <= high) { 2 for (; low <= high ;) {
3 int mid = low + ((high - low) / 2); 3 int mid = low + ((high - low) / 2);
4 if(arrfmid] == key) { return mid; 3} 4 if(arr[mid] == key) { return mid; }
5 else { high = mid + 1; } 5 else { high = mid + 1; }
6 } 6 3
7 return -1; 7 return -1;
8 3 8 )
(a) Original Code (b) Loop Transformation
1 int search(int[] arr, int key, int low, int high){

1 int search(int[] arr, int key, int low, int high){ . .
2 while (low <= high) { 2 while ( high >= low ) {
3 int mid = low + ((high - low) / 2); 3 int mid = low + ((high - low) / 2);
4 while ( i< i ) { 4 if( arr[mid] != key ) {
5 high = mid + 1; 5 high = mid + 1;
6 } 6 3
7 // ... Rest of the Code 7 else { return mid; }
8 } 8 }
9 return -1; 9 return -1;
10 } 10 }

(c) DeadCode Insertion (d) Block and Operand Swap
1 int search(int[] arr, int key, int low, int high){ 1 int search(int[] wvar 1 , int key, int low, int wvar 2 ){
2 while (low <= high) {
3 int mid = low + ((high - low) / 2); 2 while (low <= wvar2 ) {
4 if(arrfmid] == key) { return mid; } 3 int mid = low + (( var2 - low) / 2);
5 else {
6 high =  mids+ ; 4 if( var_1 [mid] == key) { return mid; }
7 } 5 else { wvar 2 = mid + 1; }
8 } 6 }
9 return -1; 7 return -1;
10 3 8 3

(e) Inserting confusing code element

(f) Variable Renaming

Figure 2: Semantic preserving transformation used to prepare the pre-training data for NATGEN.

appropriate transformation, based on its AST structure and rewrite
the code to “de-naturalize” it.

3.1.1 Designing Transformation Rules. We use six classes of de-
naturalizing transformations. These transformations are motivated
by prior work on functional reasoning about source code [20, 25, 26]
and semantic bug-seeding [48]. Figure 2 show the details.

Loop Transformation (Figure 2b). This rule modifies for
loops into equivalent while loop and vice-versa. We rewrite awhile

loop of the form while ( ) { loop-body }into a for
loop as for ( (3) () ) { loop-body }.Likewise, to

transform a for loop into a while loop, we move the initializer of
the for (if any) before the loop, and the update expression (if any)
of the for loop as the last statement in the loop. We also add this
update statement before any loop breaking statement (i.e., break,
continue). For example, we transform “for( i<10;
(@+D{ if(A){ foo(); continue;} bar(); }”as “
while(i < 10){ if(i){ foo(); continue;} bar();
Y.

Dead Code Injection (Figure 2c). We inject blocks of dead code
at random positions in the original code. By “dead code" we mean

21

code that appears in the source but is never executed. In Figure 2c,
we inject the code block high = mid + 1; at line 4 of the original
code (Figure 2a). To add challenge to the model, we transplant these
inserted statements from the same input code. To ensure the "death"
of inserted code, we put the inserted statements in a block headed
by either a loop or a branch, guarded by a unsatisfiable condition so
that the code inside the block will never execute. In Figure 2c, the
condition is always false ; and the code in line 5 is quite
dead.

Block Swap (Figure 2d). Here we swap the “then" block of a cho-
sen if statement with the corresponding else block. To preserve
semantic equivalence, we negate the original branching condition.
For instance, Figure 2d replaces the if block (line 4 in Figure 2a)
with the else block (line 5 in Figure 2a). We negate the original
condition (arr[mid] == key ) as (arr[mid] != key).

Operand Swap (Figure 2d). Here, we swap the operands of
binary logical operations. For instance, we change the expression
low <= highwith high >= lowinline 2 in Figure 2d. When swap-
ping the operands of a logical operator, we change the operator to
make sure the modified expression is the logical equivalent to the
one before modification. In case of asymmetric inequality operators
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Figure 3: “De-Naturalization” workflow in NATGEN.
(>, <, >=, <=), we change the direction - keep as is for symmetric
operators (i.e., ==, ! =).

Confusing Code Insertion (Figure 2e). We introduce con-
fusing code patterns in the code as outlined by Gopstein et al.
[25, 26]. In particular, we introduce two forms of confusing code.
First, we modify the of the form {i = j; j += 1;}toi = j++; .
Second, we introduce ternary operator as applicable. For example,
we transform the code if (x != 0){y = p;} else {y = q;}to
y=x!1=0)?p:q;.

Variable Renaming (Figure 2f). We rename some variables
to VAR_i. While renaming a variable, we analyze the dataflow of
that variable and rename all occurrences of that variable in the
entire code. From all the variables used in the code, we change
just a certain percentage. For instance, in Figure 2f, we renamed
variable arr to var_1 , and variable high to var_2 , leaving all
other variables unchanged. Note that, unlike other transformations,
variable renaming does not create AST of Dataflow graph difference.
However, this challenging task [9] forces the model to learn to
generate natural variable names. This resembles the de-obfuscation
pre-training task of [58].

3.1.2  Applying Transformation. Assume a set of transformation
rules ® = {1, P2, ¢3, ...}. Given original code c;, ¢;(c;) transforms
the code, changing the structure while preserving semantics. Fig-
ure 3 shows how to apply such transformation to c¢;. It works in
three steps:

o Find Transformation Location. Given a piece of source code (c;),
we first use tree-sitter’ to parse out the AST (T¢;). From the
AST, we extract potential locations for de-naturalization. These
locations are nodes (n) in T;. While choosing location ny from

3https://tree-sitter.github.io/tree-sitter/
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Te,;, we consult & — we extract the nodes where at least one of
¢; € @ is applicable.

Select Transformation Rule. Once we have a set of such nodes,
we filter out the transformation rules that cannot be applied
to any node of in T¢,. After such a filtration, we have a set of
transformations ®, C ®. At this stage, we randomly select one
transformation pattern ¢; € @, to apply at an application loca-
tion (AST node) ny.

Apply Transformation. We apply ¢; to ny to get the transformed
node n; . We then structurally match nj with the original AST
T, specifically nj.. We adapt the context of ny to the transformed
node’s (n;t) context. In that way, we get the transformed AST
(T¢,), which we then translate to get the transformed code c;.

We designed the transformation function ¢; and subsequent
context adaptation in such a way that preserves the meaning or
functionality of the original code. We use AST analysis and (ap-
proximated) data flow analysis on code AST.

3.2 Pre-training

Once we have a pool of “unnatural” code using the transformation
in Section 3.1 (i.e.,, transform code ¢; as ‘un-natural’ code ¢;(c;)),
we use a neural sequence-to-sequence translation model (M) to
reconstruct ¢; from ¢(c;), i.e, we want M(¢;(c;)) to approximate
¢; . In particular, given a training dataset D; = {cy, ¢z, ...} consisting
of developers written code, set of “de-naturalizing” transformations
D = {¢1, P2, P3, ...}, we optimize the following function to learn
M'’s optimal parameter ©.

© = argmin Z CrossEntropy (M (¢ (ci)) . ci)
0 CiEDt

1)

3.3 Fine-Tuning

The objective of our pre-training is to learn to both comprehend and
generate general-purpose source code. However, different tasks re-
lated to source code generation (e.g., text to code generation, code to
code translation, bug fixing) call for task-specific training of the pre-
trained model. This training phase on a pre-trained model is known
as fine-tuning [? ]. We consider the fine-tuning in NATGEN as a
translation task and follow the standard transformer based-machine
translation procedure [63]. First, the encoder generates the encoded
representation R(X) given the input X = [x1, X2, ..., xn]. The de-
coder then sequentially generates the output Y = [y1,y2, ..., ym]-
While encoding an input token xi, the encoder learns the attention
matrix wr.t. every token in the input, including xj. Such attention
matrix is known as self-attention. While generating an output to-
ken yp,, the decoder learns the attention matrix with all previously
generated tokens [y1, y2, ..., ym—1] through self-attention and the
encoder generated representation R(X) through cross-attention. We
refer to Vaswani et al. [63] for more detail about transformer-based
translation.

4 EXPERIMENTAL SETUP
This section details the experimental design of NATGEN.
Pre-training data. Following prior works [22, 28, 64], we primar-

ily use CodeSearchNet [34] dataset for the pre-training purpose.
CodeSerachNet is a publicly available dataset with six languages:
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Java, Python, Go, JavaScript, Ruby, and PHP. In addition to Code-
SearchNet, CodeT5 uses additional data for C and C#. We also use
1M functions each for C and C#. For these two additional languages,
we collected 5000 active projects from GitHub and randomly se-
lected 1M functions considering the maximum sequence length of
the model.

Table 1: Statistics of fine-tuning datasets.

Task Dataset Train# Dev# Test#

Text — Code Generation [36]  Concode 100000 2000 2000
Code — Code Translation [42] CodeXGLUE 10300 500 1000
. Small 46628 5828 5831

Text+code — Code  BugFix [60] Medium 53324 6542 6538

Fine-tuning data. We evaluate different variations of three bench-
mark tasks related to source code generation. The first task is Text
to Code generation, where the input is an NL description of a Java
method, and the output is the code. The second task is Code Trans-
lation between Java to C# and C# to Java. For this task, we evaluate
Java-C# parallel dataset proposed by Lu et al. [42]. The third and
final task is Bug Fix, where the given a buggy code and a summary
of the fix model generates the fixed code. For this task, we used
the two different versions of the dataset (small, with less than 50
tokens and medium with up to 100 tokens) proposed by Tufano
et al. [60]. Note that, similar to MODIT [16], we evaluate on concrete
version of the refinement datasets.Table 1 shows the datasets and
their statistics. For Text to Code Generation and Code Translation,
we reuse the same split from CodeXGLUE [42], and for Bug Fix, we
reuse the same split as MODIT.

Pre-training Model Configurations. We use 12 layer transformers
with 12 attention heads on both encoder and decoder following
the CodeT5 [64] architecture. As discussed in Section 3, we use de-
naturalization generative objectives for pre-training. We initialize
our model with CodeT5’s [64] released parameters. In particular, we
initialize NATGEN with “CodeT5-base” model. We pre-train NATGEN
on 2 Nvidia GeForce RTX 3090 GPUs for 25K steps, maintaining
the effective batch size at 1080 with learning rate 5e-5. We train
NATGEN for approximately 168 hours.

Evaluation Metric. Throughout the experiments in this work, we
evaluate accuracies w.r.t. exact match (EM), Syntax match (SM),
Dataflow match (DM), and CodeBLEU (CB) [56]. SM is the propor-
tion of matching subtrees between output code and tadget code’s
ASTs w.r.t. number of all possible subtrees in the target code’s AST.
DM is the percentage of matched (with target code) anonymized
dataflow edge (def-use edge) of output code wr.t. all dataflow edges
in the target code. Note that, both the SM and DM are components
of CB. We explicitly evaluate these for understanding the syntactic
and semantic correctness of generated code. We reuse Microsoft
CodeXGLUE tool [44] to compute SM, DM, and CB.

Baselines. While comparing the evaluation results for different
tasks, we compare with large scale pre-trained models, includ-
ing GPT-2 [51], CodeGPT [42], PLBART [3], SPT-Code [46] and
CodeT5 [64]. Most of our fine-tuning evaluation is on benchmarked
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dataset; thus, we report the available results from CodeXGLUE
leaderboard [45]. There are some task specific baselines, which we
discuss while describing corresponding task.

5 EMPIRICAL RESULTS

We evaluate NATGEN on (i) pre-training and (ii) three fine-tuning
tasks. We also check NATGEN’s effectiveness in zero-shot and few-
shot settings.

5.1 NATGEN’s Effectiveness on Pre-training

[ RQ1. Does “Naturalization” help to improve code generation? ]

Motivation. We investigate whether pre-training on naturalizing
task helps the model generate correct and natural code (code that
is syntactically and semantically similar to the original code).

Experimental Setup. We compare three large scale pre-trained
models: (i) CodeT5 [64], (ii) PLBART [3], and (iii) NATGEN. Note
that, since PLBART is only pre-trained on Java and Python, we
compare PLBART only for those languages, with the corresponding
results of other models. We ask each of these models to reconstruct
developers’ written code from its de-naturalized (but semantically
identical, see §3.1 & §3.1.1) variants. We use the held-out validation
data from our training procedure for this evaluation. We evaluate
the models for generating the Exact Match (EM), Syntax Match
(SM) and Dataflow Match (DM).

Table 2: Evaluation of NATGEN for code generation task. CS
is the percentage of examples where output is directly copied
from source, and ED is the median edit distance between
input code and output code.

Eval Data | Model EM SM DM CB CS ED
Full CodeT5 0 1393 1986 974 0% 60
NaATGEN | 70.39 98.78 97.69 97.31 | 0.01% 8
CodeT5 0 1383 2367 10.87 0% 65
Java&Py | PLBART 0 7317 7595 7456 | 7.05% 3
NATGEN | 64.13 9816 9685 96.82 | 0.01% 10

Results. Table 2 shows the evaluation results.

- Syntax Match. We find that the code generated by PLBART and
NATGEN are mostly syntactically correct. However, CodeT5’s does
not always generate syntactically valid code, suggesting an advan-
tage for naturalization pre-training. For instance, Figure 4 shows
code generated by different models from the given input. As we
can see, CodeT5 generates a syntactically erroneous fragment. In
contrast, PLBART made a minor edit on the input code, just re-
moving the protected keyword. Both PLBART and NATGEN are
pre-trained to generate complete code rather than fragments (which
is the case of CodeT5 [52]); thus, the former two generally do better
at generating syntactically correct code.

- Semantic Match. NATGEN is effective at recovering developers’
written code from its de-naturalized semantic variants—around 70%
of the generated code (CodeBlue = 97%) exactly matches the original
code. PLBART, which deploys syntactic denoising, is at the second
position in terms of CodeBlue.
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1. Input 2. PLBART output
protected SDV iam(SDV in,...){ SDV iam(SDV in, ...){
if(i < i){ if(i < i){
return new IAM(...); return new IAM(...);
} }
return new IAM(...); return new IAM(...);
3 }

3. NATGEN output 4. CodeT5 output

protected SDV iam(SDV in,...){
return new IAM(...);

if (in) {

return
}

Figure 4: Example of input generated code by different pre-
trained models (slightly simplified).

NATGEN also dominates the other two models in generating
syntactically (SM) & semantically (DM) valid code. While PLBART
appears to generate syntactically correct code, it mostly copies code
from the input—median edit distance from PLBART’s input and the
generated code is 3 (see Table 2). In fact, in 7.05% of cases, PLBART
just copies the input! By contrast, NATGEN learns to generate vari-
ants of the input code, with only 0.01% direct copy and a median
edit distance of 10. Since PLBART is trained to remove syntax errors
from the input, we conjecture that it does not inherently learn the
semantic variation of the code. By contrast, we expose NATGEN to
semantic code variations, forcing it to learn to generate code that
is both more natural and semantically equivalent.

- Closer look into CodeT5. Unlike NATGEN and PLBART, CodeT5
is not explicitly trained to generate complete code. During pre-
training, CodeT5 learned to “unmask” masked token sequences.
Thus, to better measure CodeT5’s generation capacity, we conduct
another experiment where we replaced all occurrences of some of
the variable names in code with a special MASK1, MASK2 tokens and
asked CodeT5 to generate. This is one of the objectives (masked
identifiers prediction) CodeT5 is pre-trained to optimize. We take
the CodeT5’s output and identify all potential identifiers *. Sur-
prisingly, in only 0.27% of the cases, could CodeT5 generate all
the variables, and in 0.61% of cases half of the masked variables.,
while NATGEN successfully translates 40.45% of those examples
back to its original code, including correctly predicting the replaced
variable names. In addition, CodeT5’s generated token sequence
contained a lot of other tokens than the variable names (Figure 4.4,
for example).

Result 1: Naturalization enables NATGEN to reason about code
semantics and thus help generate more natural code variants than
existing pre-training models and pre-training objectives.

We also did an ablation study evaluating the effect of NATGEN’s
different components on the results.

RQ2. How do different components in NATGEN contribute to code gen-

eration?

Motivation. In this RQ, we study how different transformation
rules (see §3.1)contribute to learn generating natural code from
different semantic variants . We also evaluate how well NATGEN
learns that in different programming languages over training time.

4we use regex "[A-Za-z_]+[A-Za-z0-9_]*" to find identifiers.
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Experimental Setup. While pre-training, we checkpoint the Nat-
GEN model every 1k training steps, for a full run of 25k steps. At
each checkpoint, we evaluate the naturalization task performance.
Before training, we held out 0.1% of the total data as validation
data. Note that, since our goal in this experiment is to understand
NATGEN’s pre-training better, we “de-naturalized" the validation
data using the same training data distribution. This setting gives
us a controlled environment for experimentation.

wava DeadCode Remover
BN Loop Transformer

=== Block Swap
EEEE Confusion Remover

Operand Swap
Var Renamer

5
\
\
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Figure 5: Performance of NATGEN pre-trained model under
different code transformations.

Results. Figure 5 shows NATGEN’s performance under different
types of semantic variants. Results show that NATGEN has most
trouble recreating the original code (just 40% Exact Match) with the
variable renaming task. Variable renaming is challenging even for
human developers [6]—different developers may propose different
names for the same object. Nevertheless, on this task, NATGEN
achieves good syntax and dataflow match (99% and 92% respec-
tively), indicating that NATGEN preserves syntax or semantics in
most cases while generating code with renamed variables.

On the other hand, NATGEN can eliminate Dead Code with 99%
accuracy. This result may be an artifact of our specific implementa-
tion of this transformation. Our dead-code insertion rule is simple,
and formulaic; so the NATGEN quickly learns to identify and remove
such dead code. A more complex pattern of dead code may chal-
lenge the model more, and help make it more robust; we leave this
for future work. For naturalizing other transformations, NATGEN
achieves more than 80% exact match accuracy for Block swap and
Confusion removing, and more than 75% exact match accuracy for
the rest. In all cases, syntax match, dataflow match, and CodeBLEU
are well above 90%.

Figure 6 shows how validation performance improves for differ-
ent languages, with more training steps. Across all the languages the
performance rapidly increases over the first few thousand training
steps. In fact, at the beginning of (step 0) of NATGEN’s pre-training,
the overall exact match is 0, syntax match is 13.93%, dataflow match
is 19.86% and CodeBLEU is 9.74% (see Table 2 for details®). However,
after just 1000 steps of training, the exact match rises to 61%, syntax
match to 97%, dataflow match to 94%, and CodeBLEU to 95%. These
metrics continue improving as training progresses. These results
confirm that across all the languages NATGEN gradually learns to
generate more natural code from semantic variants.

SNATGEN’s pre-training start from CodeT5-base. Thus, CodeT5-base is NATGEN’s
checkpoint at step 0.
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Figure 6: Progression of CodeBLEU of different language in
Validation dataset over number pre-training steps.
Result 2: pre-training performance depends on the types of se-
mantic variants—while variable renaming seems the most difficult
(~40% accuracy), dead-code elimination appears to be an easier
task (~99% accuracy) to learn.

5.2 NAaTGEN’s Effectiveness on Fine-Tuning
Tasks

This section evaluates NATGEN’s performance on three benchmark
source code generative tasks.

RQ3. How effective is NATGEN when fine-tuned for different generative
tasks in source code?

Table 3: Results of Text to Code Generation. ‘-’ implies that
those results are not reported by corresponding approaches.
M as: is the model after completing the fintuning, and M,;
is the intermediate model with best validation performance.

Approach EM SM DM CB
Seq2Seq 3.05 - - 26.39
Guo et al. [29] 10.05 - - 29.46
Iyer et al. [36] 12.20 - - -
GPT-2 17.30 - - 29.69
CodeGPT 20.10 - - 35.98
PLBART 18.75 - - 38.52
CodeT5-base
22.30 - - 43.20
(reported)
Codess Miast | 2185 4434 4452 4175
pest | 21.55 41.08 4371 3830
Miase | 2225 4559 46.87 43.73
NATGEN Mpese | 22,30 4438 4564  42.44

* Our reproduced result using CodeT5’s publicly available pre-trained model.

Baselines. In addition to the baselines discussed in Section 4, for
the Text to Java Code generation task, we compare with a group of
baselines with no pre-training involved. These baselines include
LSTM based Sequence to sequence models, Guo et al. [29]’s, and Iyer
et al. [36]’s proposed techniques. We also report our reproduced
version of CodeT5 results in different tasks, slightly different from
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what they reported. For both the Bug Fix task, we compare with the
reported results of MODIT [16] and our reproduced CodeT5 result.
Results.

Text to Code Generation. Table 3 shows evaluation results for
text to code generation. We trained for 30 epochs. We stopped the
training is the validation performance does not increase for more
than three(3) consecutive epochs. For both CodeT5 and NATGEN,
we report the performance of final model after the fine-tuning
terminated (M),;) and the performance of the model with best
validation perfomance (Mp,s;). Interestingly, for both CodeT5 and
NATGEN, the M;,s; model performs better than the corresponding
Mpes; model. The result shows that NATGEN’s generated code
are more syntactically and semantically closer to the target code.
The M5 model of NATGEN outperforms CodeT5’s M, ; model
by 2.8% in SM, 5.28% in DM and 4.74% in CB. We conjecture that
NATGEN’s pre-training with “naturalization” help generate more
natural code.

Table 4: Code Translation results. ‘-’ implies that those results
are not reported by corresponding approaches.

C# C#
Approach Java— — Java
EM SM DM CB | EM SM DM CB

PBSTM 12.5 - - 42.7 | 16.1 - - 43.5
CodeBERT | 59.0 - - 85.1 | 58.8 - - 79.4
SPT-Code | 64.1 - - - 60.2 - - -

PLBART 64.6 - - 87.9 | 65.0 - - 85.3

Codels | (g . - - 1669 - - -
(reported)

CodeT5* 659 90.4 919 87.8 | 66.0 904 889 844

NATGEN 66.2 910 920 88.1|67.3 91.0 89.8 852

* Our reproduced result using CodeT5’s publicly available pre-trained model.

Code Translation. Table 4 shows the results of NATGEN and
different baselines for Code Translation. For Java to C# translation,
NATGEN achieves exact match accuracy of 66.2% while CodeT5’s
accuracy is 65.9%. In C# to Java translation, NATGEN achieves 67.3%
exact match accuracy, which CodeT5 achieves 66.0%. In addition,
the syntactic match (SM), Dataflow match, and CodeBLEU are also
higher than that of CodeTS5.

Table 5: Result of Bug fix (Top 1 fix accuracy).

Approach BugFixsmall B“gFiXmedium
Unimodal | Multimodal | Unimodal | Multimodal
MODIT 20.35 21.57 8.35 13.18
CodeT5 21.79 22.97 12.59 14.94
NATGEN 22.26 23.43 13.32 14.93

Bug Fix. Similar to MODIT, we evaluate the top-1 accuracy of the
generated fixed code. We also evaluate uni-modal settings, where
the fix description is unavailable, and multi-modal settings, where
we have access to the fix description. Table 5 shows the results of
Bug Fix. For the BugFix,,,;; dataset, NATGEN outperforms both
CodeT5 and MODIT in both unimodal and multi-modal settings.
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Figure 7: Zero-shot transfer learning capability of NATGEN in for different tasks.
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Figure 8: Few shot Learning evaluation of NATGEN. In each case, the pre-trained model is fine-tuned on 200 training examples
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Figure 9: NATGEN’s results on different tasks with Few shot settings. X-axis shows number of training examples.

For For the BugFix,,¢q4iym dataset, NATGEN performs better than
CodeT5 and MODIT in unimodal setting and slightly worse than
CodeT5 in the multi-modal setting.

Result 3: NATGEN performs better than most of the existing
baselines. NATGEN’s improvement in Syntax match and Dataflow
match signifies NATGEN’s ability to generate code syntactically
and semantically closer to target code.

Finally, we evaluate NATGEN’s performance in the presence of
data scarcity.

Motivation. Learning to generate code usually requires a large
amount of annotated training data. A lot of time and effort goes
into curating high-quality training data [4, 38]. Unsupervised pre-
training endows machine learning models with necessary domain
knowledge about the task [21]. In practice, this knowledge appears
to transfer across multiple tasks. Such pre-training reduces the
effort to learn each different task. We therefore study the effective-
ness of NATGEN’s domain knowledge about source code syntax
and semantics. In particular, we stress test whether the knowledge

RQ4. How well does NATGEN’s pre-training help in tasks where labelled
data is scarce?
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NATGEN learned during pre-training is useful for downstream tasks,
by limiting available task-specific training data.

Experimental Setup. We evaluate NATGEN’s over several data-
limited tasks: Text to Code generation, Code Translation, and Bug
Fix. We consider two different settings. First, we consider zero-
shot [57, 67] evaluation. Here we evaluate different pre-trained
models without any task-specific training. Naturally, we don’t see
good performance in this setting. Nevertheless, this stress-test mea-
sures the code generation ability of models. Second, we try few-shot
learning [53, 59, 65]. We randomly choose a few training examples
for each task and fine-tune the pre-trained models on those exam-
ples, and evaluate their performance. We gradually increase the
number of training examples over several few-shot settings.

Results. Figure 7 shows the NATGEN’s and CodeT5’s zero-shot
performance. Lacking task-specific training, we can see here how
much transferable knowledge each model learned just during pre-
training. There are large differences in all the tasks between NaT-
GEN and CodeT5 across Syntax Match and Dataflow Match. It signi-
fies NATGEN learns to generate both syntactically and semantically
correct code during pre-training, which CodeT5 rarely can do. Fig-
ure 8 shows the performance of NATGEN and CodeT5 when trained
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on 200 training examples. NATGEN also has an advantage over
CodeTs5 here.

We note a larger performance gap in the Translation tasks (Fig-
ure 7a & 7b) and Bug Fix (Figure 7d) tasks, compared to Text to
Code Generation task (Figure 7c) in both the zero-shot and the few
shot (Figure 8) experiments. We conjecture that such discrepancy is
the artifact of the nature of the tasks. The cross-lingual alignment
between NL and Java code is the key factor in generating text to
code. In contrast, both the input and output are the programming
language in the translation and bug fix task. Thus, we hypothe-
size that NATGEN leverages its shared knowledge across different
programming languages learned during the pre-training.

We further stress test NATGEN’s with few-shot learning; we
gradually increased the number of training examples and trained
both CodeT5 and NATGEN. Figure 9 shows the performance progress
as the number of training examples increase. For all four tasks,
NATGEN significantly improves over CodeT5 when the number of
training examples is minimal. With increasing training examples,
the performance gap gradually decreases. Arguably, with enough
labeled data and enough resources, all high-capacity models will
get better at generating source code. Nevertheless, we learn two
critical lessons from NATGEN’s better performance in zero-shot and
few-shot learning. First, NATGEN’s better performance across all
tasks suggests that that the coding knowledge it learns from the
naturalization task is more generic and transferable. Second, for
any pre-trained model to be effective in code generation, especially
in a limited training data scenario, the pre-training should explicitly
teach the model how to write code. Otherwise, we hypothesize that
a big chunk of fine-tuning resources will be spent on the models’
learning to write code.

Result 4: NATGEN is very effective in source code generative
tasks when minimal training resource is available. Since NATGEN
explicitly learns to generate code during pre-training, it can avoid
learning such during fine-tuning saving fine-tuning resource.

6 LIMITATIONS & THREATS

Bias introduced by ‘de-naturalizing’ transformations. In
Section 3.1, we described our six transformations to “de-naturalize"
source code. The NATGEN model learns to revert one transformation
at a time. In fact, we found empirically that, when given code
with more than one ‘de-naturalization’ transformation applied, the
model reverses only one of them. There is thus a threat our limited
application of de-naturalization limits the ability of our NATGEN.
Regardless, we consider NATGEN as a proof-of-concept and the first
work towards teaching a model to write natural code. We leave the
investigation more natural code patterns and their effect on code
generation as a potential future work.

Table 6: NATGEN’s performance in Code summarization

Approach | Go Java JS Python Php Ruby | Overall
PLBART 18.91 18.45 15.56 19.30 23.58 14.11 18.32
CodeT5 19.56  20.31 16.16 20.01 26.03 15.24 19.55
NATGEN 1943  20.38 16.00 20.09 26.00 15.38 19.55
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Knowledge retention from CodeT5. As mentioned in Section 4,
we start NATGEN’s pre-training from CodeT5-base model [64]. Start-
ing further pre-training from an existing pre-trained checkpoint is
very common in large-scale pre-training. For instance, GraphCode-
BERT [28] is pre-trained based on CodeBERT [22] model, which
was pre-trained based on RoBERTa [41] model. Both the Open
AJ-CodeX [17] and GitHub Copilot [24] models are further pre-
trained in OpenAI-GPT3 [11]. Nevertheless, when we further train
a pre-trained model on different tasks, it is subject to “catastrophic
forgetting” [37] of the knowledge learned in the base model. In
order to test whether NATGEN is forgetting CodeT5’s knowledge
about natural language generation, we also evaluate NATGEN for
Code summarization. Here the input is source code, and the output
is Natural language. After fine-tuning NATGEN’s overall BLEU in
19.547 while CodeT5’s was 19.551, suggesting that NATGEN mostly
retains CodeT5’s capacity to generate NL (see Table 6 for detailed
results).

Fair Comparison with CodeT5. We initialize NATGEN with
pre-trained checkpoint from CodeT5 (already pre-trained 75K steps
with their objective) and train NATGEN for 25K steps with ‘natural-
code’ writing objective. A skeptic reader would want to know what
happens when we pre-train CodeT5 for 25K more steps with their
training objective. We argue that since the pre-training objective
does not explicitly account for generating code (See section 3.2 of
CodeT5’s original paper), further training with the CodeT5 objective
does not necessarily increase its code generation capacity. We do
acknowledge CodeT5’s ability to understand and reason about input.
Since the pre-training large model is extremely expensive (§4)°; we
leverage such knowledge by initializing NATGEN from CodeT5’s
publicly available pre-trained model. Moreover, CodeT5 release
neither their code for pre-training (only for fine-tuning), nor any
earlier or later checkpoints for us to carry out further investigation.

“Naturalization” with program-analysis. NATGEN is a proto-
type of a generative pre-trained model with “Naturalization” task,
trained to revert six classes of de-naturalization transformations
(see Figure 2). However, perfect performance w.r.t. these transforma-
tion is not the main objective of this research. Tools to accomplish
“naturalization” could surely be built using traditional refactoring
methods; however, our goal is to train NATGEN so that it learns to
generate natural code with the help of this “Naturalization” task.

NATGEN as “Code-Refactoring” tool. NATGEN suggests the
promise of neural transformers to build meaning-preserving code-
refactoring tools. However, to realize a more accurate and powerful
neural re-factoring tool, more training data, with a larger variety of
transformations, would be required. We leave this as future work.

7 RELATED WORKS

The approach of pre-training large Transformers without human
labels started in NLP domain with BERT [? ], which introduces
two pre-training objectives (i.e., Mask Language Modeling and
Next Sentence Prediction). Later, Liu et al. show that RoBERTa [41]
outperforms BERT only using Mask Language Modeling (MLM)
with new training strategies and hyper-parameter tuning. MLM is

CodeT5 was pre-trained on 16 NVIDIA A100s, with 40G memory each, for 12 days!
One might reasonably assume it was already well-trained on the original objective
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a self-supervised task that the model randomly masks or modifies
a certain number of tokens and tries to recover them.

Following the success of the pre-trained model in the NLP do-
main, researchers applied these models to code related tasks. Code-
BERT is one of the earliest that was specially trained for code
and relevant natural language descriptions. It is pre-trained with
two objectives (i.e., MLM and Replaced Token Detection [18]) and
demonstrated pre-training’s effectiveness for code. Later, an archi-
tecturally equivalent model, GraphCodeBERT, was introduced; it
improved over CodeBERT on most tasks by incorporating data-flow
information.

Though CodeBERT [22] & GraphCodeBERT [28], DietCode-
BERT [68] do well at code understanding tasks, these models are
not as good at generative tasks. Both models are encoder-only
and have to start with an untrained decoder in fine-tuning for
generative tasks, such as code repair, code generation, code sum-
marization, and code translation. To address this limitation, Ahmad
et al. introduced PLBART [3], pre-trained as a generative denois-
ing autoencoder. A specific set of noises is introduced to code and
relevant natural language description and used as the input to
the model. The model’s objective is to encode the noisy input in
the encoder and generate noise-free code or text in the decoder.
PLBART (builds on BART [39]) outperforms both CodeBERT [22]
and GraphCodeBERT [28] on both understanding and generative
tasks with a pre-trained encoder and decoder [3]. DOBF [58] uses
de-obfuscation (recovering variable names) as their pre-training
task; however, rather than generating code, they just generate a
dictionary of recovered names.

CodeT5 [64] (based T5 [52]) is the latest denoising model. CodeT5
uses the developer-assigned identifiers in code, adding two code-
specific pre-training objectives to the original T5, identifier tagging
and masked identifier prediction. CodeT5 is an encoder-decoder
model and excels at both understanding and generative tasks com-
pared to other models. Similar to CodeT5, [43, 49] are also built
based on T5 architecture and perform reasonably well in the dif-
ferent downstream tasks. NATGEN has a similar architecture to
CodeT5; but rather than CodeT5’s pre-training objectives, we “de-
naturalize" code, using the formal channel of code to inject meaning-
preserving transforms, and then force NATGEN to recreate, the
original, “natural” code. Rewriting semantically equivalent code
requires semantic understanding, and that can be applied to code
only because of its dual-channel nature. Our evaluation shows
that rewriting semantically equivalent programs in the pre-training
stage results in performance gains in at least three popular Software
Engineering tasks.

8 CONCLUSION

We introduce the “Code-Naturalization” pre-training objective for
generative models of code. As proof-of-concept we pre-trained our
NATGEN to write ‘natural’ source code from ‘un-natural’ counter-
part. With this pre-training, NATGEN learns to write code syntacti-
cally and semantically closer to developers’ written code. We “de-
naturalize” existing developers’ code, using six kinds of “semantic-
preserving” transformations. We further fine-tune the NATGEN on
different variations of three downstream tasks that require code
generation. NATGEN achieves state-of-the-art performance in these
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downstream tasks, and NATGEN’s generated code are syntactically
and semantically closer to the target code. Our pre-training on the
‘naturalizing’ task is especially effective in resource-constrained
setting i.e., zero-shot, and few-shot transfer learning.

9 DATA AVAILABILITY STATEMENT

We publicly code, and all processing scripts of NATGEN’s pre-
training [1]. NATGEN pre-trained model is also available through
https://huggingface.co/saikatc/NatGen.
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