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ABSTRACT

Pre-trained Generative Language models (e.g., PLBART, CodeT5,

SPT-Code) for source code yielded strong results on several tasks

in the past few years, including code generation and translation.

These models have adopted varying pre-training objectives to learn

statistics of code construction from very large-scale corpora in a

self-supervised fashion; the success of pre-trained models largely

hinges on these pre-training objectives. This paper proposes a new

pre-training objective, łNaturalizingž of source code, exploiting

code’s bimodal, dual-channel (formal & natural channels) nature.

Unlike natural language, code’s bimodal, dual-channel nature al-

lows us to generate semantically equivalent code at scale. We in-

troduce six classes of semantic preserving transformations to in-

troduce un-natural forms of code, and then force our model to

produce more natural original programs written by developers.

Learning to generate equivalent, but more natural code, at scale,

over large corpora of open-source code, without explicit manual

supervision, helps the model learn to both ingest & generate code.

We fine-tune our model in three generative Software Engineering

tasks: code generation, code translation, and code refinement with

limited human-curated labeled data and achieve state-of-the-art

performance rivaling CodeT5. We show that our pre-trained model

is especially competitive at zero-shot and few-shot learning, and

better at learning code properties (e.g., syntax, data flow).

CCS CONCEPTS

· Software and its engineering→ Language features; · Comput-

ing methodologies → Knowledge representation and reason-

ing.

KEYWORDS

Source Code Pre-training, Neural Network, Source Code Trans-

former, Semantic Preserving Transformation
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1 INTRODUCTION

Statistical models of the łnaturalness" of code [33] have proven

useful for a range of Software Engineering tasks [7, 50], includ-

ing code generation [10], repair [15, 61], summarization [40], re-

trieval [47], and clone detection [20, 66]. The earlier work in this

area trained models directly on tasks, including the early work

on type recovery [8, 31], de-obfuscation [55, 62], repair [30], and

summarization [2, 35]. Training on-task requires a lot of labeled

data. While labeled data is abundant for tasks like code completion

(where the corpus inherently provides supervision), other tasks

like code generation, translation, summarization, repair, etc., re-

quire well-curated, high-quality data. Simply grabbing data from

Github might yield poor-quality [27], highly-duplicated data [5].

With increasing model capacity (hundreds of millions, even billions

of parameters, are pretty common; larger models tend to perform

better [17, 64]), this unacceptable disparity between vast model

capacity and the limited availability of well-curated, high-quality,

labeled data has increased and will likely worsen.

This shortage of high-quality labeled data for on-task training is

not unique to Software Engineering (SE), although it is complicated

here by the increased, specialized skill required for labeling SE data.

To address the issue of training large models in the presence of data

scarcity, such models are often pre-trained on some generic tasks,

which relate to actual downstream tasks. For example, consider two

SE tasks: code generation and code translation. Both tasks require

ML models to learn how to generate natural, syntactically, and se-

mantically correct code. This commonality across tasks motivates

a quest for better pre-trained models, using a self- (or un-) super-

vised task which transfers well to other downstream tasks. Such

pre-trained models can also learn a generic representation of the

input data, which, in turn, transfers to diverse downstream tasks.

A popular approach for dealing with this problem involves

derivatives of BERT style models, e.g., CodeBERT [22], GraphCode-

BERT [28], etc. These models are good at capturing generic code

representations. For code generation tasks, GPT-3 or BART-style

models (e.g., Codex, CodeT5, PLBART, SPTCode, etc. [3, 17, 46, 64])
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are popular. The important insight here is that independent of fi-

nal tasks, when very high capacity models are trained with huge

code corpora to learn simple, self-supervised, łbusy workž, they

still learn general syntactic and semantic constraints of writing code.

Different approaches adopt different techniques to train the model

to write code. For instance, GPT-style models (e.g., Codex) learn to

generate code sequentially, mimicking the left-to-right language

model. CodeT5 masks out some tokens and asks the model to gen-

erate only those masked tokens. On the other hand, PLBART and

SPT-Code present the model with erroneous code (with deleted

or masked tokens) and ask the model to generate the corrected,

complete code. The models’ ability to generate code depends mainly

on the pre-training objective that the model is optimized for.

We propose a novel pre-training task: we ask the model to łnat-

uralize" code, i.e., take łweird", synthetic code as input and output

semantic equivalent, łnatural" code that a human developer would

have written. This is a very demanding pre-training taskÐthemodel

has to learn both code naturalness and code semantics. We were

inspired by noting the work of human Editors (of books, journals,

newspapers): they digest imperfectly written but mostly correct

text, understand the intent, and then produce more perfect text

with pretty much the samemeaning. Editing is hard: a skilled Editor

has to have very high levels of language comprehension, to under-

stand given, potentially badly-written text, and then deploy very

high-level writing skills to generate well-formed text. If Editing

could be used as an at-scale pre-training task, the learned model

would presumably have excellent language comprehension and also

generate excellent text. However, it’s not obvious how to generate

at-scale training data for this łEditing" task, say, for English.

a. Natural Code

Scanner sc = new Scanner (...);

while (sc.hasNext ()) {

String ln = sc.next();

...

}

...

b. Un-natural code

Scanner sc = new Scanner (...);

for ( ; sc.hasNext () ; ) {

String ln = sc.next();

...

}

...

Figure 1: Example of a natural code fragment written by

developers and its ‘un-naturally’ transformed counterpart.

If the initialization and update part of the for loop were

to left empty, developers would write the while loop.

But our concern here is code, not natural language. We start with

the argument that, because of the bimodal, dual-channel nature of

code [12], it is indeed possible to generate at-scale training data for

the Editing task (a.k.a. refactoring in Software Engineering termi-

nology). Code has a formal channel, with well-defined semantics;

because of this, it’s possible to transform code into endless forms,

all meaning-equivalent. Essentially, we can deploy a set of meaning

preserving transformations to rewrite existing code from widely-

used GitHub projects (which presumably have good-quality code

that has passed human code review). These rewrites, (e.g., Figure 1),

preserve meaning but will make the code into an artificial, often

unnatural form1.

1Studies, with human-subjects [13, 14] suggest that humans find such rewritten but
semantically identical forms harder to read and understand.

Nevertheless, we now have a matched pair of two semantically

equivalent forms of code: a łde-naturalized" form and the original

łnatural" form. Furthermore, we can produce these pairs at-scale,

and then pre-train on a code łNaturalization" task. By analogy

with human Editors as described above, such pre-training forces

the model to learn two hard things: 1) capture the meaning of the

input code, and 2) generate an output that more closely resembles

human-written code. We hypothesize that the resulting model will

both learn better meaning representations, and also generate better

code.

To this end, we pre-trained our NatGenmodel, using łCode Nat-

uralizingž task. NatGen is based on a transformer-based sequence-

to-sequence model, and learns to łnaturalize" artificially generated

łde-naturalized" code back into the form originally written by de-

velopers. We emphasize that NatGen learns to generate the whole

code; this learned skill transfers to downstream fine-tuning tasks

that require code generation. We show that our pre-training objec-

tive helps model generate more natural code (complete code, with

high syntactic and semantic similarity with the original human-

written code). With proper fine-tuning, NatGen achieves state-

of-the-art performance in various downstream fine-tuning tasks,

including code generation, code translation, bug fix, that demand

code generation. We also show that NatGen is specially effective

when labelled data is scarce.

We summarize our main contributions.

(1) We introduce the idea of "Code naturalization" as a pre-training

task.

(2) Using code from Github, and custom tooling, we have generated

and released a large dataset for pre-training models on the

Naturalization task.

(3) We have built and released a large Sequence-to-Sequence model

pre-trained on Naturalization.

(4) We show that (when appropriately fine-tuned) NatGen outper-

forms SOTA on several settings.

We publish our source code and data download script for pre-

training NatGen anonymously in https://github.com/saikat107/

NatGen.We also share the pre-trainedmodel in https://bit.ly/natgen-

pre-trained-models and all the finetuned model in https://bit.ly/

natgen-fine-tuned-models.

2 BACKGROUND & PROBLEM FORMULATION

This section presents the relevant technical background that leads

to this work and an overview of the main research questions.

2.1 The Dual Channels of Code

Humans can read and write both natural languages and code. How-

ever, unlike natural language, source code involves two channels of

information: formal & natural [14]. The formal channel, unique to

code, affords precise, formal semantics; interpreters, compilers, etc.,

use this channel. On the other hand, the natural channel (perhaps

more probabilistic and noisy) relies on variable names, comments,

etc., and is commonly used by humans for code comprehension

and communication [13, 14]. The formal channel’s precision en-

ables semantic preserving code transformation, which supports

static analysis, optimization, obfuscation, etc. For instance, major

refactoring of a source code may drastically change the syntactic
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structure while preserving the semantics [20, 23]. However, not all

the semantically equivalent code is łnatural" [32]Ðthe usual way

developers write code and thus, amenable to statistical models [32].

In fact, deviation from such łnaturalness" may lead to unintended

bugs [54], and increase difficulty of human comprehension [13, 14].

We leverage the natural/formal duality for our pre-training ob-

jective in this work. We keep the formal channel constant (not

changing the meaning) for a given code and modify the syntax

by creating łunnaturalž code. Then we train the model to take

the łunnatural" code as input and do what a human Editor does

with natural language text: understand the łunnatural" code and

generate more natural code that a developer would write. Thus,

the model simultaneously learns to both comprehend code, and

generate łnaturalž code.

2.2 łNaturalizing" vs. De-noising

Naturalizing pre-training essentially follows in the tradition of

denoising pre-training, although, arguably, the former is more sub-

tle and challenging. Denoising pre-training [3, 38, 39] is a well-

established pre-training strategy for encoder-decoder models: the

encoder is presented with a noised-up input, and the decoder is

asked to generate the original, noise-free input. By training the

model to identify & remove łnoisež in a noisy output, (in theory)

one teaches it to reason about and correctly generate text. Exactly

what a model learns largely depends on the noise types. For in-

stance, PLBART [3] uses syntactic noise2(i.e., token masking, token

deletion, etc.). Thus, denoising pre-training enables PLBART to

learn both about the syntax of input source code, and learn to gen-

erate syntactically correct code. Naturalizing pre-training, on the

other hand, begins with syntactically correct but artificially-created

unnatural source code and forces the model to generate correct

semantically equivalent natural code that is just what a human

originally wrote. Such pre-training requires more subtle changes to

the code. We hypothesize that this provides a more demanding pre-

training setting, which will lead to better on-task code generation

performance.

2.3 Research Questions

Our hypothesis is that our naturalizing task (see Section 3.1) endows

our pre-trained model with the ability to generate syntactically and

semantically correct, and natural code. This leads to several RQs.

RQ1. Does łNaturalizationž help to improve code genera-

tion?

In contrast to existing de-noising techniques [3] that help the

model learn lexical & syntactic structure, the naturalizing task,

which is arguably more demanding than de-noising, forces Nat-

Gen generating better code with higher syntactic and semantic

correctness.

The pre-training data we use (in NatGen) challenges the model

to naturalize code that was łde-naturalized" in several ways, such

as dead-code inserted, variable renamed, etc. We investigate the

relative performance under different naturalization challenges.

2Noise that breaks the syntax structure of code

RQ2. How do different components in NatGen contribute

to code generation?

We evaluate the performance under different challenges on a

held-out validation dataset. This dataset is sampled with the same

distribution of de-naturalizing transforms as the training dataset

(D𝑡 ); on this set, the model to reconstruct the original code. Our

exploratory investigation reveals that Variable Renaming is the

hardest transformation to undo: the model reconstructs original

code with only 40% accuracy. Dead Code, on the other hand, is the

easiest with 99% accuracy.

We further investigate NatGen’s performance for downstream

source code generation tasks.

RQ3. How effective is NatGen when fine-tuned for differ-

ent generative tasks in source code?

We fine-tune the pre-trained NatGen on task-specific train-

ing dataset for a certain time budget and evaluate the fine-tuned

model on the benchmark testing dataset for corresponding task.

These tasks include source code (java) generation from text, code

translation (from Java to C# and C# to Java), and Bug fixing. After

fine-tuning, NatGen achieves the state-of-the-art performance in

all these tasks. In addition, we also discover that, code generated

by NatGen are syntactically and semantically more closer to the

expected code.

We observe that training a model for a complex task requires

sufficient labeled data. However, for most software engineering

tasks, finding labeled data is a significant challenge [4]. We investi-

gate potential scenario where size of the training data is extremely

small.

RQ4. How well does NatGen’s pre-training help in tasks

where labelled data is scarce?

We simulate training data scarcity in two different ways ś Zero-

shot learning, and Few-shot learning. For łZero-shotž learning, we

evaluate the pre-trained NatGen in different tasks without any task

specific fine-tuning. For łfew-shotž setting, we simulate training

data scarcity by sub-sampling the benchmark training datasets.

We fine-tune the pre-trained NatGen on these limited training

examples andmeasure the performance.We observe thatNatGen is

very efficient in low-data training. SinceNatGen learns to generate

syntactically and semantically correct code as part of pre-training,

it faces less burden while learning in low-data training.

3 METHODOLOGY

Our approach comprises three steps: (i) łDe-Naturalizež source

code to accumulate pre-training data for NatGen (ğ3.1); (ii) pre-

train NatGen using this data for naturalization task (ğ3.2); (iii)

Fine-tune pre-trained NatGen with task specific dataset (ğ3.3).

3.1 De-naturalizing Source Code

For the first step above, we use six rules to transform a natural code

into its unnatural counterpart. These transformations are semantic-

preserving but rewrite an original, natural, (human-) written code

to an artificial form. Given a natural code element, we deploy an

20
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1 int search(int[] arr , int key , int low , int high){

2 while (low <= high) {

3 int mid = low + ((high - low) / 2);

4 if(arr[mid] == key) { return mid; }

5 else { high = mid + 1; }

6 }

7 return -1;

8 }

(a) Original Code

1 int search(int[] arr , int key , int low , int high){

2 for ( ; low <= high ; ) {

3 int mid = low + ((high - low) / 2);

4 if(arr[mid] == key) { return mid; }

5 else { high = mid + 1; }

6 }

7 return -1;

8 }

(b) Loop Transformation

1 int search(int[] arr , int key , int low , int high){

2 while (low <= high) {

3 int mid = low + ((high - low) / 2);

4 while ( i < i ) {

5 high = mid + 1;

6 }

7 // ... Rest of the Code

8 }

9 return -1;

10 }

(c) DeadCode Insertion

1 int search(int[] arr , int key , int low , int high){

2 while ( high >= low ) {

3 int mid = low + ((high - low) / 2);

4 if( arr[mid] ! = key ) {

5 high = mid + 1;

6 }

7 else { return mid; }

8 }

9 return -1;

10 }

(d) Block and Operand Swap

1 int search(int[] arr , int key , int low , int high){

2 while (low <= high) {

3 int mid = low + ((high - low) / 2);

4 if(arr[mid] == key) { return mid; }

5 else {

6 high = mid+ + ;

7 }

8 }

9 return -1;

10 }

(e) Inserting confusing code element

1 int search(int[] var_1 , int key , int low , int var_2 ){

2 while (low <= var_2 ) {

3 int mid = low + (( var_2 - low) / 2);

4 if( var_1 [mid] == key) { return mid; }

5 else { var_2 = mid + 1; }

6 }

7 return -1;

8 }

(f) Variable Renaming

Figure 2: Semantic preserving transformation used to prepare the pre-training data for NatGen.

appropriate transformation, based on its AST structure and rewrite

the code to łde-naturalizež it.

3.1.1 Designing Transformation Rules. We use six classes of de-

naturalizing transformations. These transformations are motivated

by prior work on functional reasoning about source code [20, 25, 26]

and semantic bug-seeding [48]. Figure 2 show the details.

Loop Transformation (Figure 2b). This rule modifies for

loops into equivalent while loop and vice-versa.We rewrite a while

loop of the form while ( condition ) { loop-body } into a for

loop as for ( ; condition ; ) { loop-body }. Likewise, to

transform a for loop into a while loop, we move the initializer of

the for (if any) before the loop, and the update expression (if any)

of the for loop as the last statement in the loop. We also add this

update statement before any loop breaking statement (i.e., break,

continue). For example, we transform łfor( int i = 0; i < 10;

i++ ){ if(i){ foo(); continue;} bar(); }ž as ł int i = 0;

while(i < 10){ if(i){ foo(); i++; continue;} bar();

i++; }ž.

Dead Code Injection (Figure 2c).We inject blocks of dead code

at random positions in the original code. By łdead code" we mean

code that appears in the source but is never executed. In Figure 2c,

we inject the code block high = mid + 1; at line 4 of the original

code (Figure 2a). To add challenge to the model, we transplant these

inserted statements from the same input code. To ensure the "death"

of inserted code, we put the inserted statements in a block headed

by either a loop or a branch, guarded by a unsatisfiable condition so

that the code inside the block will never execute. In Figure 2c, the

condition i < i is always false ; and the code in line 5 is quite

dead.

Block Swap (Figure 2d).Herewe swap the łthen" block of a cho-

sen if statement with the corresponding else block. To preserve

semantic equivalence, we negate the original branching condition.

For instance, Figure 2d replaces the if block (line 4 in Figure 2a)

with the else block (line 5 in Figure 2a). We negate the original

condition (arr[mid] == key ) as (arr[mid] != key ).

Operand Swap (Figure 2d). Here, we swap the operands of

binary logical operations. For instance, we change the expression

low <= highwith high >= low in line 2 in Figure 2d. When swap-

ping the operands of a logical operator, we change the operator to

make sure the modified expression is the logical equivalent to the

one before modification. In case of asymmetric inequality operators

21
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Figure 3: łDe-Naturalizationž workflow in NatGen.

(>, <, >=, <=), we change the direction ś keep as is for symmetric

operators (i.e., ==, ! =).

Confusing Code Insertion (Figure 2e). We introduce con-

fusing code patterns in the code as outlined by Gopstein et al.

[25, 26]. In particular, we introduce two forms of confusing code.

First, we modify the of the form {i = j; j += 1;} to i = j++; .

Second, we introduce ternary operator as applicable. For example,

we transform the code if (x != 0){y = p;} else {y = q;} to

y = (x != 0)? p : q; .

Variable Renaming (Figure 2f). We rename some variables

to VAR_i. While renaming a variable, we analyze the dataflow of

that variable and rename all occurrences of that variable in the

entire code. From all the variables used in the code, we change

just a certain percentage. For instance, in Figure 2f, we renamed

variable arr to var_1 , and variable high to var_2 , leaving all

other variables unchanged. Note that, unlike other transformations,

variable renaming does not create AST of Dataflow graph difference.

However, this challenging task [9] forces the model to learn to

generate natural variable names. This resembles the de-obfuscation

pre-training task of [58].

3.1.2 Applying Transformation. Assume a set of transformation

rules Φ = {𝜙1, 𝜙2, 𝜙3, ...}. Given original code 𝑐𝑖 , 𝜙 𝑗 (𝑐𝑖 ) transforms

the code, changing the structure while preserving semantics. Fig-

ure 3 shows how to apply such transformation to 𝑐𝑖 . It works in

three steps:

• Find Transformation Location. Given a piece of source code (𝑐𝑖 ),

we first use tree-sitter3 to parse out the AST (𝑇𝑐𝑖 ). From the

AST, we extract potential locations for de-naturalization. These

locations are nodes (𝑛𝑘 ) in 𝑇𝑐𝑖 . While choosing location 𝑛𝑘 from

3https://tree-sitter.github.io/tree-sitter/

𝑇𝑐𝑖 , we consult Φ ś we extract the nodes where at least one of

𝜙 𝑗 ∈ Φ is applicable.

• Select Transformation Rule. Once we have a set of such nodes,

we filter out the transformation rules that cannot be applied

to any node of in 𝑇𝑐𝑖 . After such a filtration, we have a set of

transformations Φ𝑎 ⊆ Φ. At this stage, we randomly select one

transformation pattern 𝜙 𝑗 ∈ Φ𝑎 to apply at an application loca-

tion (AST node) 𝑛𝑘 .

• Apply Transformation. We apply 𝜙 𝑗 to 𝑛𝑘 to get the transformed

node 𝑛′
𝑘
. We then structurally match 𝑛′

𝑘
with the original AST

𝑇𝑐𝑖 , specifically 𝑛𝑘 . We adapt the context of 𝑛𝑘 to the transformed

node’s (𝑛′
𝑘
) context. In that way, we get the transformed AST

(𝑇 ′
𝑐𝑖
), which we then translate to get the transformed code 𝑐′𝑖 .

We designed the transformation function 𝜙 𝑗 and subsequent

context adaptation in such a way that preserves the meaning or

functionality of the original code. We use AST analysis and (ap-

proximated) data flow analysis on code AST.

3.2 Pre-training

Once we have a pool of łunnaturalž code using the transformation

in Section 3.1 (i.e., transform code 𝑐𝑖 as ‘un-natural’ code 𝜙 𝑗 (𝑐𝑖 )),

we use a neural sequence-to-sequence translation model (M) to

reconstruct 𝑐𝑖 from 𝜙 (𝑐𝑖 ), i.e., we want M(𝜙 𝑗 (𝑐𝑖 )) to approximate

𝑐𝑖 . In particular, given a training datasetD𝑡 = {𝑐1, 𝑐2, ...} consisting

of developers written code, set of łde-naturalizingž transformations

Φ = {𝜙1, 𝜙2, 𝜙3, ...}, we optimize the following function to learn

M’s optimal parameter Θ.

Θ = argmin
𝜃

∑︁

𝑐𝑖 ∈D𝑡

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦
(

M
(

𝜙 𝑗 (𝑐𝑖 )
)

, 𝑐𝑖
)

(1)

3.3 Fine-Tuning

The objective of our pre-training is to learn to both comprehend and

generate general-purpose source code. However, different tasks re-

lated to source code generation (e.g., text to code generation, code to

code translation, bug fixing) call for task-specific training of the pre-

trained model. This training phase on a pre-trained model is known

as fine-tuning [? ]. We consider the fine-tuning in NatGen as a

translation task and follow the standard transformer based-machine

translation procedure [63]. First, the encoder generates the encoded

representation 𝑅(𝑋 ) given the input 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛]. The de-

coder then sequentially generates the output 𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑚].

While encoding an input token 𝑥𝑘 , the encoder learns the attention

matrix w.r.t. every token in the input, including 𝑥𝑘 . Such attention

matrix is known as self-attention. While generating an output to-

ken 𝑦𝑚 , the decoder learns the attention matrix with all previously

generated tokens [𝑦1, 𝑦2, ..., 𝑦𝑚−1] through self-attention and the

encoder generated representation 𝑅(𝑋 ) through cross-attention. We

refer to Vaswani et al. [63] for more detail about transformer-based

translation.

4 EXPERIMENTAL SETUP

This section details the experimental design of NatGen.

Pre-training data. Following prior works [22, 28, 64], we primar-

ily use CodeSearchNet [34] dataset for the pre-training purpose.

CodeSerachNet is a publicly available dataset with six languages:
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Java, Python, Go, JavaScript, Ruby, and PHP. In addition to Code-

SearchNet, CodeT5 uses additional data for C and C#. We also use

1M functions each for C and C#. For these two additional languages,

we collected 5000 active projects from GitHub and randomly se-

lected 1M functions considering the maximum sequence length of

the model.

Table 1: Statistics of fine-tuning datasets.

Task Dataset Train# Dev# Test#

Text −→ Code Generation [36] Concode 100000 2000 2000

Code −→ Code Translation [42] CodeXGLUE 10300 500 1000

Text+code −→ Code BugFix [60]
Small 46628 5828 5831

Medium 53324 6542 6538

Fine-tuning data. We evaluate different variations of three bench-

mark tasks related to source code generation. The first task is Text

to Code generation, where the input is an NL description of a Java

method, and the output is the code. The second task is Code Trans-

lation between Java to C# and C# to Java. For this task, we evaluate

Java-C# parallel dataset proposed by Lu et al. [42]. The third and

final task is Bug Fix, where the given a buggy code and a summary

of the fix model generates the fixed code. For this task, we used

the two different versions of the dataset (small, with less than 50

tokens and medium with up to 100 tokens) proposed by Tufano

et al. [60]. Note that, similar to MODIT [16], we evaluate on concrete

version of the refinement datasets.Table 1 shows the datasets and

their statistics. For Text to Code Generation and Code Translation,

we reuse the same split from CodeXGLUE [42], and for Bug Fix, we

reuse the same split as MODIT.

Pre-training Model Configurations. We use 12 layer transformers

with 12 attention heads on both encoder and decoder following

the CodeT5 [64] architecture. As discussed in Section 3, we use de-

naturalization generative objectives for pre-training. We initialize

our model with CodeT5’s [64] released parameters. In particular, we

initializeNatGenwith łCodeT5-basež model.We pre-trainNatGen

on 2 Nvidia GeForce RTX 3090 GPUs for 25K steps, maintaining

the effective batch size at 1080 with learning rate 5e-5. We train

NatGen for approximately 168 hours.

Evaluation Metric. Throughout the experiments in this work, we

evaluate accuracies w.r.t. exact match (EM), Syntax match (SM),

Dataflow match (DM), and CodeBLEU (CB) [56]. SM is the propor-

tion of matching subtrees between output code and tadget code’s

ASTs w.r.t. number of all possible subtrees in the target code’s AST.

DM is the percentage of matched (with target code) anonymized

dataflow edge (def-use edge) of output code w.r.t. all dataflow edges

in the target code. Note that, both the SM and DM are components

of CB. We explicitly evaluate these for understanding the syntactic

and semantic correctness of generated code. We reuse Microsoft

CodeXGLUE tool [44] to compute SM, DM, and CB.

Baselines. While comparing the evaluation results for different

tasks, we compare with large scale pre-trained models, includ-

ing GPT-2 [51], CodeGPT [42], PLBART [3], SPT-Code [46] and

CodeT5 [64]. Most of our fine-tuning evaluation is on benchmarked

dataset; thus, we report the available results from CodeXGLUE

leaderboard [45]. There are some task specific baselines, which we

discuss while describing corresponding task.

5 EMPIRICAL RESULTS

We evaluate NatGen on (i) pre-training and (ii) three fine-tuning

tasks. We also check NatGen’s effectiveness in zero-shot and few-

shot settings.

5.1 NatGen’s Effectiveness on Pre-training

RQ1. Does łNaturalizationž help to improve code generation?

Motivation. We investigate whether pre-training on naturalizing

task helps the model generate correct and natural code (code that

is syntactically and semantically similar to the original code).

Experimental Setup. We compare three large scale pre-trained

models: (i) CodeT5 [64], (ii) PLBART [3], and (iii) NatGen. Note

that, since PLBART is only pre-trained on Java and Python, we

compare PLBART only for those languages, with the corresponding

results of other models. We ask each of these models to reconstruct

developers’ written code from its de-naturalized (but semantically

identical, see ğ3.1 & ğ3.1.1) variants. We use the held-out validation

data from our training procedure for this evaluation. We evaluate

the models for generating the Exact Match (EM), Syntax Match

(SM) and Dataflow Match (DM).

Table 2: Evaluation of NatGen for code generation task. CS

is the percentage of examples where output is directly copied

from source, and ED is the median edit distance between

input code and output code.

Eval Data Model EM SM DM CB CS ED

Full
CodeT5 0 13.93 19.86 9.74 0% 60

NatGen 70.39 98.78 97.69 97.31 0.01% 8

Java & Py

CodeT5 0 13.83 23.67 10.87 0% 65

PLBART 0 73.17 75.95 74.56 7.05% 3

NatGen 64.13 98.16 96.85 96.82 0.01% 10

Results. Table 2 shows the evaluation results.

· Syntax Match.We find that the code generated by PLBART and

NatGen are mostly syntactically correct. However, CodeT5’s does

not always generate syntactically valid code, suggesting an advan-

tage for naturalization pre-training. For instance, Figure 4 shows

code generated by different models from the given input. As we

can see, CodeT5 generates a syntactically erroneous fragment. In

contrast, PLBART made a minor edit on the input code, just re-

moving the protected keyword. Both PLBART and NatGen are

pre-trained to generate complete code rather than fragments (which

is the case of CodeT5 [52]); thus, the former two generally do better

at generating syntactically correct code.

· Semantic Match. NatGen is effective at recovering developers’

written code from its de-naturalized semantic variantsÐaround 70%

of the generated code (CodeBlue = 97%) exactly matches the original

code. PLBART, which deploys syntactic denoising, is at the second

position in terms of CodeBlue.
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1. Input

protected SDV iam(SDV in ,...){

if(i < i){

return new IAM (...);

}

return new IAM (...);

}

2. PLBART output

SDV iam(SDV in, ...){

if(i < i){

return new IAM (...);

}

return new IAM (...);

}

3. NatGen output

protected SDV iam(SDV in ,...){

return new IAM (...);

}

4. CodeT5 output

if (in) {

return

} }

Figure 4: Example of input generated code by different pre-

trained models (slightly simplified).

NatGen also dominates the other two models in generating

syntactically (SM) & semantically (DM) valid code. While PLBART

appears to generate syntactically correct code, it mostly copies code

from the inputÐmedian edit distance from PLBART’s input and the

generated code is 3 (see Table 2). In fact, in 7.05% of cases, PLBART

just copies the input! By contrast, NatGen learns to generate vari-

ants of the input code, with only 0.01% direct copy and a median

edit distance of 10. Since PLBART is trained to remove syntax errors

from the input, we conjecture that it does not inherently learn the

semantic variation of the code. By contrast, we expose NatGen to

semantic code variations, forcing it to learn to generate code that

is both more natural and semantically equivalent.

· Closer look into CodeT5. Unlike NatGen and PLBART, CodeT5

is not explicitly trained to generate complete code. During pre-

training, CodeT5 learned to łunmaskž masked token sequences.

Thus, to better measure CodeT5’s generation capacity, we conduct

another experiment where we replaced all occurrences of some of

the variable names in code with a special MASK1, MASK2 tokens and

asked CodeT5 to generate. This is one of the objectives (masked

identifiers prediction) CodeT5 is pre-trained to optimize. We take

the CodeT5’s output and identify all potential identifiers 4. Sur-

prisingly, in only 0.27% of the cases, could CodeT5 generate all

the variables, and in 0.61% of cases half of the masked variables.,

while NatGen successfully translates 40.45% of those examples

back to its original code, including correctly predicting the replaced

variable names. In addition, CodeT5’s generated token sequence

contained a lot of other tokens than the variable names (Figure 4.4,

for example).

Result 1: Naturalization enables NatGen to reason about code

semantics and thus help generate more natural code variants than

existing pre-training models and pre-training objectives.

We also did an ablation study evaluating the effect of NatGen’s

different components on the results.

RQ2. How do different components in NatGen contribute to code gen-

eration?

Motivation. In this RQ, we study how different transformation

rules (see ğ3.1)contribute to learn generating natural code from

different semantic variants . We also evaluate how well NatGen

learns that in different programming languages over training time.

4we use regex "[A-Za-z_]+[A-Za-z0-9_]*" to find identifiers.

Experimental Setup. While pre-training, we checkpoint the Nat-

Gen model every 1k training steps, for a full run of 25k steps. At

each checkpoint, we evaluate the naturalization task performance.

Before training, we held out 0.1% of the total data as validation

data. Note that, since our goal in this experiment is to understand

NatGen’s pre-training better, we łde-naturalized" the validation

data using the same training data distribution. This setting gives

us a controlled environment for experimentation.

Figure 5: Performance of NatGen pre-trained model under

different code transformations.

Results. Figure 5 shows NatGen’s performance under different

types of semantic variants. Results show that NatGen has most

trouble recreating the original code (just 40% Exact Match) with the

variable renaming task. Variable renaming is challenging even for

human developers [6]Ðdifferent developers may propose different

names for the same object. Nevertheless, on this task, NatGen

achieves good syntax and dataflow match (99% and 92% respec-

tively), indicating that NatGen preserves syntax or semantics in

most cases while generating code with renamed variables.

On the other hand, NatGen can eliminate Dead Code with 99%

accuracy. This result may be an artifact of our specific implementa-

tion of this transformation. Our dead-code insertion rule is simple,

and formulaic; so theNatGen quickly learns to identify and remove

such dead code. A more complex pattern of dead code may chal-

lenge the model more, and help make it more robust; we leave this

for future work. For naturalizing other transformations, NatGen

achieves more than 80% exact match accuracy for Block swap and

Confusion removing, and more than 75% exact match accuracy for

the rest. In all cases, syntax match, dataflow match, and CodeBLEU

are well above 90%.

Figure 6 shows how validation performance improves for differ-

ent languages, withmore training steps. Across all the languages the

performance rapidly increases over the first few thousand training

steps. In fact, at the beginning of (step 0) of NatGen’s pre-training,

the overall exact match is 0, syntax match is 13.93%, dataflow match

is 19.86% and CodeBLEU is 9.74% (see Table 2 for details5). However,

after just 1000 steps of training, the exact match rises to 61%, syntax

match to 97%, dataflow match to 94%, and CodeBLEU to 95%. These

metrics continue improving as training progresses. These results

confirm that across all the languages NatGen gradually learns to

generate more natural code from semantic variants.

5
NatGen’s pre-training start from CodeT5-base. Thus, CodeT5-base is NatGen’s
checkpoint at step 0.

24



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore S. Chakraborty, T. Ahmed, Y. Ding, P. Devanbu, B. Ray

Figure 6: Progression of CodeBLEU of different language in

Validation dataset over number pre-training steps.

Result 2: pre-training performance depends on the types of se-

mantic variantsÐwhile variable renaming seems the most difficult

(∼40% accuracy), dead-code elimination appears to be an easier

task (∼99% accuracy) to learn.

5.2 NatGen’s Effectiveness on Fine-Tuning
Tasks

This section evaluates NatGen’s performance on three benchmark

source code generative tasks.

RQ3. How effective is NatGen when fine-tuned for different generative

tasks in source code?

Table 3: Results of Text to Code Generation. ‘-’ implies that

those results are not reported by corresponding approaches.

M𝑙𝑎𝑠𝑡 is the model after completing the fintuning, andM𝑏𝑒𝑠𝑡

is the intermediate model with best validation performance.

Approach EM SM DM CB

Seq2Seq 3.05 - - 26.39

Guo et al. [29] 10.05 - - 29.46

Iyer et al. [36] 12.20 - - -

GPT-2 17.30 - - 29.69

CodeGPT 20.10 - - 35.98

PLBART 18.75 - - 38.52

CodeT5-base
22.30 - - 43.20

(reported)

CodeT5*
M𝑙𝑎𝑠𝑡 21.85 44.34 44.52 41.75

M𝑏𝑒𝑠𝑡 21.55 41.08 43.71 38.30

NatGen
M𝑙𝑎𝑠𝑡 22.25 45.59 46.87 43.73

M𝑏𝑒𝑠𝑡 22.30 44.38 45.64 42.44

* Our reproduced result using CodeT5’s publicly available pre-trained model.

Baselines. In addition to the baselines discussed in Section 4, for

the Text to Java Code generation task, we compare with a group of

baselines with no pre-training involved. These baselines include

LSTM based Sequence to sequencemodels, Guo et al. [29]’s, and Iyer

et al. [36]’s proposed techniques. We also report our reproduced

version of CodeT5 results in different tasks, slightly different from

what they reported. For both the Bug Fix task, we compare with the

reported results of MODIT [16] and our reproduced CodeT5 result.

Results.

Text to Code Generation. Table 3 shows evaluation results for

text to code generation. We trained for 30 epochs. We stopped the

training is the validation performance does not increase for more

than three(3) consecutive epochs. For both CodeT5 and NatGen,

we report the performance of final model after the fine-tuning

terminated (M𝑙𝑎𝑠𝑡 ) and the performance of the model with best

validation perfomance (M𝑏𝑒𝑠𝑡 ). Interestingly, for both CodeT5 and

NatGen, the M𝑙𝑎𝑠𝑡 model performs better than the corresponding

M𝑏𝑒𝑠𝑡 model. The result shows that NatGen’s generated code

are more syntactically and semantically closer to the target code.

The M𝑙𝑎𝑠𝑡 model of NatGen outperforms CodeT5’s M𝑙𝑎𝑠𝑡 model

by 2.8% in SM, 5.28% in DM and 4.74% in CB. We conjecture that

NatGen’s pre-training with łnaturalizationž help generate more

natural code.

Table 4: Code Translation results. ‘-’ implies that those results

are not reported by corresponding approaches.

Approach
Java −→ C# C# −→ Java

EM SM DM CB EM SM DM CB

PBSTM 12.5 - - 42.7 16.1 - - 43.5

CodeBERT 59.0 - - 85.1 58.8 - - 79.4

SPT-Code 64.1 - - - 60.2 - - -

PLBART 64.6 - - 87.9 65.0 - - 85.3

CodeT5
65.9 - - - 66.9 - - -

(reported)

CodeT5* 65.9 90.4 91.9 87.8 66.0 90.4 88.9 84.4

NatGen 66.2 91.0 92.0 88.1 67.3 91.0 89.8 85.2

* Our reproduced result using CodeT5’s publicly available pre-trained model.

Code Translation. Table 4 shows the results of NatGen and

different baselines for Code Translation. For Java to C# translation,

NatGen achieves exact match accuracy of 66.2% while CodeT5’s

accuracy is 65.9%. In C# to Java translation, NatGen achieves 67.3%

exact match accuracy, which CodeT5 achieves 66.0%. In addition,

the syntactic match (SM), Dataflow match, and CodeBLEU are also

higher than that of CodeT5.

Table 5: Result of Bug fix (Top 1 fix accuracy).

Approach
BugFix𝑠𝑚𝑎𝑙𝑙 BugFix𝑚𝑒𝑑𝑖𝑢𝑚

Unimodal Multimodal Unimodal Multimodal

MODIT 20.35 21.57 8.35 13.18

CodeT5 21.79 22.97 12.59 14.94

NatGen 22.26 23.43 13.32 14.93

Bug Fix. Similar to MODIT, we evaluate the top-1 accuracy of the

generated fixed code. We also evaluate uni-modal settings, where

the fix description is unavailable, and multi-modal settings, where

we have access to the fix description. Table 5 shows the results of

Bug Fix. For the BugFix𝑠𝑚𝑎𝑙𝑙 dataset, NatGen outperforms both

CodeT5 and MODIT in both unimodal and multi-modal settings.

25



NatGen: Generative Pre-training by łNaturalizingž Source Code ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

(a) Java to C# Translation (b) C# to Java Translation (c) Text to Code Generation (d) Bug Fix (small, multimodal)

Figure 7: Zero-shot transfer learning capability of NatGen in for different tasks.

(a) Java to C# Translation (b) C# to Java Translation (c) Text to Code Generation (d) Bug Fix (small, multimodal).

Figure 8: Few shot Learning evaluation of NatGen. In each case, the pre-trained model is fine-tuned on 200 training examples

for 10 epoch and the result is on the full test set.

(a) Java to C# Translation. (b) C# to Java Translation. (c) Text to Code Generation. (d) Bug Fix (small, multimodal).

Figure 9: NatGen’s results on different tasks with Few shot settings. X-axis shows number of training examples.

For For the BugFix𝑚𝑒𝑑𝑖𝑢𝑚 dataset, NatGen performs better than

CodeT5 and MODIT in unimodal setting and slightly worse than

CodeT5 in the multi-modal setting.

Result 3: NatGen performs better than most of the existing

baselines. NatGen’s improvement in Syntax match and Dataflow

match signifies NatGen’s ability to generate code syntactically

and semantically closer to target code.

Finally, we evaluate NatGen’s performance in the presence of

data scarcity.

RQ4. How well does NatGen’s pre-training help in tasks where labelled

data is scarce?

Motivation. Learning to generate code usually requires a large

amount of annotated training data. A lot of time and effort goes

into curating high-quality training data [4, 38]. Unsupervised pre-

training endows machine learning models with necessary domain

knowledge about the task [21]. In practice, this knowledge appears

to transfer across multiple tasks. Such pre-training reduces the

effort to learn each different task. We therefore study the effective-

ness of NatGen’s domain knowledge about source code syntax

and semantics. In particular, we stress test whether the knowledge

NatGen learned during pre-training is useful for downstream tasks,

by limiting available task-specific training data.

Experimental Setup. We evaluate NatGen’s over several data-

limited tasks: Text to Code generation, Code Translation, and Bug

Fix. We consider two different settings. First, we consider zero-

shot [57, 67] evaluation. Here we evaluate different pre-trained

models without any task-specific training. Naturally, we don’t see

good performance in this setting. Nevertheless, this stress-test mea-

sures the code generation ability of models. Second, we try few-shot

learning [53, 59, 65]. We randomly choose a few training examples

for each task and fine-tune the pre-trained models on those exam-

ples, and evaluate their performance. We gradually increase the

number of training examples over several few-shot settings.

Results. Figure 7 shows the NatGen’s and CodeT5’s zero-shot

performance. Lacking task-specific training, we can see here how

much transferable knowledge each model learned just during pre-

training. There are large differences in all the tasks between Nat-

Gen and CodeT5 across Syntax Match and Dataflow Match. It signi-

fies NatGen learns to generate both syntactically and semantically

correct code during pre-training, which CodeT5 rarely can do. Fig-

ure 8 shows the performance of NatGen and CodeT5 when trained
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on 200 training examples. NatGen also has an advantage over

CodeT5 here.

We note a larger performance gap in the Translation tasks (Fig-

ure 7a & 7b) and Bug Fix (Figure 7d) tasks, compared to Text to

Code Generation task (Figure 7c) in both the zero-shot and the few

shot (Figure 8) experiments. We conjecture that such discrepancy is

the artifact of the nature of the tasks. The cross-lingual alignment

between NL and Java code is the key factor in generating text to

code. In contrast, both the input and output are the programming

language in the translation and bug fix task. Thus, we hypothe-

size that NatGen leverages its shared knowledge across different

programming languages learned during the pre-training.

We further stress test NatGen’s with few-shot learning; we

gradually increased the number of training examples and trained

both CodeT5 andNatGen. Figure 9 shows the performance progress

as the number of training examples increase. For all four tasks,

NatGen significantly improves over CodeT5 when the number of

training examples is minimal. With increasing training examples,

the performance gap gradually decreases. Arguably, with enough

labeled data and enough resources, all high-capacity models will

get better at generating source code. Nevertheless, we learn two

critical lessons from NatGen’s better performance in zero-shot and

few-shot learning. First, NatGen’s better performance across all

tasks suggests that that the coding knowledge it learns from the

naturalization task is more generic and transferable. Second, for

any pre-trained model to be effective in code generation, especially

in a limited training data scenario, the pre-training should explicitly

teach the model how to write code. Otherwise, we hypothesize that

a big chunk of fine-tuning resources will be spent on the models’

learning to write code.

Result 4: NatGen is very effective in source code generative

tasks when minimal training resource is available. Since NatGen

explicitly learns to generate code during pre-training, it can avoid

learning such during fine-tuning saving fine-tuning resource.

6 LIMITATIONS & THREATS

Bias introduced by ‘de-naturalizing’ transformations. In
Section 3.1, we described our six transformations to łde-naturalize"

source code. TheNatGenmodel learns to revert one transformation

at a time. In fact, we found empirically that, when given code

with more than one ‘de-naturalization’ transformation applied, the

model reverses only one of them. There is thus a threat our limited

application of de-naturalization limits the ability of our NatGen.

Regardless, we consider NatGen as a proof-of-concept and the first

work towards teaching a model to write natural code. We leave the

investigation more natural code patterns and their effect on code

generation as a potential future work.

Table 6: NatGen’s performance in Code summarization

Approach Go Java JS Python Php Ruby Overall

PLBART 18.91 18.45 15.56 19.30 23.58 14.11 18.32

CodeT5 19.56 20.31 16.16 20.01 26.03 15.24 19.55

NatGen 19.43 20.38 16.00 20.09 26.00 15.38 19.55

Knowledge retention from CodeT5. As mentioned in Section 4,

we startNatGen’s pre-training from CodeT5-base model [64]. Start-

ing further pre-training from an existing pre-trained checkpoint is

very common in large-scale pre-training. For instance, GraphCode-

BERT [28] is pre-trained based on CodeBERT [22] model, which

was pre-trained based on RoBERTa [41] model. Both the Open

AI-CodeX [17] and GitHub Copilot [24] models are further pre-

trained in OpenAI-GPT3 [11]. Nevertheless, when we further train

a pre-trained model on different tasks, it is subject to łcatastrophic

forgettingž [37] of the knowledge learned in the base model. In

order to test whether NatGen is forgetting CodeT5’s knowledge

about natural language generation, we also evaluate NatGen for

Code summarization. Here the input is source code, and the output

is Natural language. After fine-tuning NatGen’s overall BLEU in

19.547 while CodeT5’s was 19.551, suggesting that NatGen mostly

retains CodeT5’s capacity to generate NL (see Table 6 for detailed

results).

Fair Comparison with CodeT5. We initialize NatGen with

pre-trained checkpoint from CodeT5 (already pre-trained 75K steps

with their objective) and train NatGen for 25K steps with ‘natural-

code’ writing objective. A skeptic reader would want to know what

happens when we pre-train CodeT5 for 25K more steps with their

training objective. We argue that since the pre-training objective

does not explicitly account for generating code (See section 3.2 of

CodeT5’s original paper), further trainingwith the CodeT5 objective

does not necessarily increase its code generation capacity. We do

acknowledge CodeT5’s ability to understand and reason about input.

Since the pre-training large model is extremely expensive (ğ4)6; we

leverage such knowledge by initializing NatGen from CodeT5’s

publicly available pre-trained model. Moreover, CodeT5 release

neither their code for pre-training (only for fine-tuning), nor any

earlier or later checkpoints for us to carry out further investigation.

łNaturalizationž with program-analysis. NatGen is a proto-

type of a generative pre-trained model with łNaturalizationž task,

trained to revert six classes of de-naturalization transformations

(see Figure 2). However, perfect performancew.r.t. these transforma-

tion is not the main objective of this research. Tools to accomplish

łnaturalization" could surely be built using traditional refactoring

methods; however, our goal is to train NatGen so that it learns to

generate natural code with the help of this łNaturalizationž task.

NatGen as łCode-Refactoringž tool. NatGen suggests the

promise of neural transformers to build meaning-preserving code-

refactoring tools. However, to realize a more accurate and powerful

neural re-factoring tool, more training data, with a larger variety of

transformations, would be required. We leave this as future work.

7 RELATED WORKS

The approach of pre-training large Transformers without human

labels started in NLP domain with BERT [? ], which introduces

two pre-training objectives (i.e., Mask Language Modeling and

Next Sentence Prediction). Later, Liu et al. show that RoBERTa [41]

outperforms BERT only using Mask Language Modeling (MLM)

with new training strategies and hyper-parameter tuning. MLM is

6CodeT5 was pre-trained on 16 NVIDIA A100s, with 40G memory each, for 12 days!
One might reasonably assume it was already well-trained on the original objective
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a self-supervised task that the model randomly masks or modifies

a certain number of tokens and tries to recover them.

Following the success of the pre-trained model in the NLP do-

main, researchers applied these models to code related tasks. Code-

BERT is one of the earliest that was specially trained for code

and relevant natural language descriptions. It is pre-trained with

two objectives (i.e., MLM and Replaced Token Detection [18]) and

demonstrated pre-training’s effectiveness for code. Later, an archi-

tecturally equivalent model, GraphCodeBERT, was introduced; it

improved over CodeBERT on most tasks by incorporating data-flow

information.

Though CodeBERT [22] & GraphCodeBERT [28], DietCode-

BERT [68] do well at code understanding tasks, these models are

not as good at generative tasks. Both models are encoder-only

and have to start with an untrained decoder in fine-tuning for

generative tasks, such as code repair, code generation, code sum-

marization, and code translation. To address this limitation, Ahmad

et al. introduced PLBART [3], pre-trained as a generative denois-

ing autoencoder. A specific set of noises is introduced to code and

relevant natural language description and used as the input to

the model. The model’s objective is to encode the noisy input in

the encoder and generate noise-free code or text in the decoder.

PLBART (builds on BART [39]) outperforms both CodeBERT [22]

and GraphCodeBERT [28] on both understanding and generative

tasks with a pre-trained encoder and decoder [3]. DOBF [58] uses

de-obfuscation (recovering variable names) as their pre-training

task; however, rather than generating code, they just generate a

dictionary of recovered names.

CodeT5 [64] (based T5 [52]) is the latest denoisingmodel. CodeT5

uses the developer-assigned identifiers in code, adding two code-

specific pre-training objectives to the original T5, identifier tagging

and masked identifier prediction. CodeT5 is an encoder-decoder

model and excels at both understanding and generative tasks com-

pared to other models. Similar to CodeT5, [43, 49] are also built

based on T5 architecture and perform reasonably well in the dif-

ferent downstream tasks. NatGen has a similar architecture to

CodeT5; but rather than CodeT5’s pre-training objectives, we łde-

naturalize" code, using the formal channel of code to inject meaning-

preserving transforms, and then force NatGen to recreate, the

original, łnatural" code. Rewriting semantically equivalent code

requires semantic understanding, and that can be applied to code

only because of its dual-channel nature. Our evaluation shows

that rewriting semantically equivalent programs in the pre-training

stage results in performance gains in at least three popular Software

Engineering tasks.

8 CONCLUSION

We introduce the łCode-Naturalizationž pre-training objective for

generative models of code. As proof-of-concept we pre-trained our

NatGen to write ‘natural’ source code from ‘un-natural’ counter-

part. With this pre-training, NatGen learns to write code syntacti-

cally and semantically closer to developers’ written code. We łde-

naturalizež existing developers’ code, using six kinds of łsemantic-

preservingž transformations. We further fine-tune the NatGen on

different variations of three downstream tasks that require code

generation. NatGen achieves state-of-the-art performance in these

downstream tasks, and NatGen’s generated code are syntactically

and semantically closer to the target code. Our pre-training on the

‘naturalizing’ task is especially effective in resource-constrained

setting i.e., zero-shot, and few-shot transfer learning.

9 DATA AVAILABILITY STATEMENT

We publicly code, and all processing scripts of NatGen’s pre-

training [1]. NatGen pre-trained model is also available through

https://huggingface.co/saikatc/NatGen.
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