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ABSTRACT

Advanced Driver-Assistance Systems (ADAS) have been thriving

and widely deployed in recent years. In general, these systems re-

ceive sensor data, compute driving decisions, and output control

signals to the vehicles. To smooth out the uncertainties brought by

sensor outputs, they usually leverage multi-sensor fusion (MSF)

to fuse the sensor outputs and produce a more reliable understand-

ing of the surroundings. However,MSF cannot completely eliminate

the uncertainties since it lacks the knowledge about which sensor

provides the most accurate data and how to optimally integrate

the data provided by the sensors. As a result, critical consequences

might happen unexpectedly. In this work, we observed that the

popular MSF methods in an industry-grade ADAS can mislead the

car control and result in serious safety hazards. We define the fail-

ures (e.g., car crashes) caused by the faulty MSF as fusion errors

and develop a novel evolutionary-based domain-specific search

framework, FusED, for the efficient detection of fusion errors. We

further apply causality analysis to show that the found fusion errors

are indeed caused by theMSF method. We evaluate our framework

on two widely used MSF methods in two driving environments.

Experimental results show that FusED identifies more than 150

fusion errors. Finally, we provide several suggestions to improve

the MSF methods we study.

CCS CONCEPTS

· Software and its engineering→ Search-based software en-

gineering; Software testing and debugging.

KEYWORDS

software testing, multi-sensor fusion, causal analysis, advanced

driving assistance system
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1 INTRODUCTION

Advanced Driver-Assistance Systems (ADAS) are human-machine

systems that assist drivers in driving and parking functions and

have been widely deployed on production passenger vehicles [6]

(e.g. Tesla’s AutoPilot and Comma Two’s Openpilot [23]). Unlike

the full automation promised by so-called self-driving cars, ADAS

provides partial automation like adaptive cruise control, lane de-

parture warning, etc., to promote a safe and effortless driving ex-

perience. Although ADAS are developed to increase road safety,

they can malfunction and lead to critical consequences[1]. It is thus

important to improve the reliability of ADAS.

A typical ADAS, as shown in Figure 1, takes inputs from a set of

sensors (e.g., camera, radar, etc.) and outputs driving decisions to

the controlled vehicle. It usually has a perception module that inter-

prets the sensor data to understand the surroundings, a planning

module that plans the vehicle’s successive trajectory, and a control

module that makes concrete actuator control signals to drive the

vehicle. Oftentimes individual sensor data could be unreliable un-

der various extreme environments. For example, a camera can fail

miserably in a dark environment, in which a radar can function

correctly. In contrast, a radar can miss some small moving objects

due to its low resolution, while a camera usually provides precise

measurements in such cases. To enable an ADAS to drive reliably

in most environments, researchers have adopted complementary

sensors and developed multi-sensor fusion (MSF) methods to aggre-

gate the data from multiple sensors to model the environment more

reliably. If one sensor fails,MSF can still work with other sensors

to provide reliable information for the downstream modules and

enable the ADAS to operate safely.

However, an MSF hardly knows which sensor output to rely

on at each time step. Thus, it neither thoroughly eliminates the

uncertainty nor always weighs more on the correct sensor data.

This inherent flaw may introduce safety risks to the ADAS. In this

paper, we study a popular commercial ADAS named Openpilot

and show that sometimes its MSF can mistakenly prioritize faulty
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Figure 1: The architecture of a typical ADAS system.

sensor information over the correct ones. Such incorrect fusion

logic can lead the vehicle to critical accidents. To this end, this

paper focuses on automatically detecting accidents (i.e., collisions)

that can occur due to incorrect fusion logicÐwe call such accidents

as fusion errors.

Similar to existing ADAS testing [2ś4], we resort to simulation

rather than real-world testing as the latter is prohibitively expensive.

A vehicle controlled by the ADAS, a.k.a. the ego car, drives through

the scenario generated by a simulator. Here, the MSF logic of the

ADAS is under test. The semantic validity of the generated scenarios

are guaranteed by the usage of the simulator’s traffic manager

which controls other vehicles (not controlled byADAS) to behave in

a realistic way. Our aim is to simulate scenarios that facilitate fusion

errors as detecting fusion errors even in a simulated environment

is challenging.

Challenges. There are two main challenges in simulating and

detecting fusion errors:

I. The failure (i.e., collision) cases in a commercial-grade ADAS

are rare since it functions properly most of time. The failure

cases caused by the fusion method are even more sparse since

there can be other causes of failure like the malfunctions of all

the sensors. Given testing an ADAS is costly, it is non-trivial

to identify these fusion-induced failure cases within a limited

time budget.

II. Even if we detect a failure, it is hard to conclude its root cause

is an incorrect fusion logic. Employing simple differential

testing (i.e., we simulate the whole driving scenario with al-

ternative fusion logic and avoid the collision) cannot say with

certainty that the root cause was the faulty fusion logic. This

is because many uncertainties are involved in the simulation

processÐnon-deterministic sensor outputs, random time de-

lays between simulator and ADAS, etc.; reproducing the exact

collision is non-trivial.

Our Approach. We treat a failure (i.e., collision) caused by the

faulty fusion method as a fusion error. A reasonable assumption

is that a fusion fault occurs as the fusion method chooses a wrong

sensor output while a correct output from another sensor was

available. Consequently, a fusion error usually takes place when (i)

some fusion faults happen, and (ii) a failure (i.e., ego car collision)

takes place. To detect fusion errors, we first use fuzz testing with

objectives promoting the occurrence of many fusion faults and

the resulting failure. If a failure happens, we further apply root

cause analysis to filter out the failures that may not have been

caused by faulty fusion logic. These two steps, as detailed below,

are carefully designed and implemented with a tool, FusED (Fusion

Error Detector), to address the challenges mentioned above.

Step-I: Fuzzing. To induce fusion errors, the simulator needs

to generate scenarios that promote the fusion component to pro-

vide inaccurate prediction although the non-chosen sensor out-

put provides accurate prediction, and lead the ego car to collision.

In the driving automation testing domain, recent works leverage

fuzz testing to simulate input scenarios in which an ego car runs

and the fuzzer is optimized to search for failure-inducing scenar-

ios [2, 21, 28, 45]. However, these methods treat the ego-car system

as a black-box and ignore the attainable run-time information of

the system. Inspired by the grey-box fuzzing of traditional software

fuzzing literature [32], we propose an evolutionary algorithm-based

fuzzing that utilizes the input and output information of the fusion

component of the system. In particular, to promote the fusion com-

ponent to make more fusion faults, we propose a novel objective

function that maximizes the difference between the fusion com-

ponent’s prediction and the ground-truth, while minimizing the

difference between the most accurate sensor’s prediction and the

ground-truth. Here, ground-truth is the actual relative location and

relative speed of the leading vehicle w.r.t. the ego-car. To promote

the ego car’s crash, similar to previous works [2, 28, 45], we use an

objective minimizing the ego car’s distance to its leading vehicle.

The two objectives synergistically promote finding scenarios that

trigger fusion errors.

Step-II: Root Cause Analysis. To address challenge-II, i.e., to check

whether the observed failure is indeed due to the fusion logic, we

study if the failure still happens after choosing an alternate fusion

logic in an otherwise identical simulation environment. Here, we

intend to do a controlled study to measure the effect of faulty

fusion logic. However, maintaining an identical setting is infeasible

because of many uncertainties and randomness in the environment

of simulator and controller. Thus, we rely on the theory of causal

analysis. Based on the understanding of the studied ADAS and the

simulator, we construct a causal graph, where graph nodes are all

the variables that can influence the occurrence of a collision during

a simulation, and the edges are links that show their influence

with each other. We then intervene and change the fusion logic

by keeping all the other nodes identical in the causal graph. Such

intervention is applied by setting the communications between the

simulator and ego-car deterministic and synchronous for all the

simulations. To efficiently find a fusion method that can avoid the

collision, we use a best-sensor fusion method, which always selects

the sensor’s output that is closest to the ground truth. If we no

longer see the collision in this counterfactual world, we conclude

that the root cause of the observed collision was incorrect fusion

logic. Otherwise, we discard the failure observed during fuzzing. To

further reduce double-counting the same fusion error, we propose a

new counting metric based on the coverage of the ego car’s location

and speed trajectory during each simulation.

To the best of our knowledge, our technique is the first fuzzing

method targeting the ADAS fusion component. In total, FusED

has found more than 150 fusion errors. In summary, we make the

following contributions:

• We define fusion errors and develop a novel grey-box fuzzing

technique for efficiently revealing the fusion errors in ADAS.

• We analyze the causes of the fusion errors using causal analysis.
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• We evaluate FusED in an industry-grade ADAS, and show that it

can disclose safety issues.

• We propose suggestions to mitigate fusion errors and effectively

reduce fusion errors in a preliminary study.

The source code of our tool and interesting findings are available

at https://github.com/AIasd/FusED.

2 BACKGROUND: FUSION IN ADAS

The "Standard Road Motor Vehicle Driving Automation System

Classification and Definition" [24] categorizes driving automation

systems into six levels. AdvancedDriver-Assistance Systems (ADAS)

usually consists of levels 0 to 2, which only provides temporary

intervention (e.g., Autonomous Emergency Braking (AEB)) or lon-

gitudianl/latitudinal control (e.g., Automated Lane Centering (ALC)

and Adaptive Cruise Control (ACC)) while requiring the driver’s at-

tention all the time. In contrast, Automated Driving Systems (ADS)

consist of levels 3 to 5, which allow the driver to not pay attention

all the time. In this section, we introduce commonly used fusion

methods and related errors for driving automation systems. In

particular, we focus on Openpilot, a level2 industry-grade ADAS.

However, we believe our approach can also generalize to ADS that

use similar fusion methods [9, 39].

We next define the terminologies used later.

ś A driving environment is a parameterized space where search

during the fuzzing will be bounded.

ś A scenario is a concrete instance in the driving environment.

ś The ego car is the vehicle controlled by the ADAS under test.

ś The NPC (non-player character) vehicles are the vehicles other

than the ego car.

ś The leading vehicle is the vehicle ahead of the ego car in the same

lane.

ś A high-fidelity simulator provides an end-to-end simulation en-

vironment for testing ADAS. It generates sensor data at regular

intervals (from cameras, radar, etc.) that can be fed into theADAS

under test, and receives control signal from the ADAS to update

the ego car in the simulated world.

2.1 Fusion in Driving Automation

Most industry-grade driving automation systems, including ADAS

and ADS, leverage multi-sensor fusion (MSF) to avoid potential

accidents caused by the failure of a single sensor [9, 14, 39]. MSF

often works with camera and radar, camera and Lidar, or the com-

bination of camera, radar, and Lidar. Yeong et al. [42] provide a

survey on sensor fusion in autonomous vehicles. They categorize

MSF into three primary types: high-level fusion (HLF), mid-level

fusion (MLF), and low-level fusion (LLF). These MSFs differ in how

the data from different sensors are combined. In HLF, each sensor

independently carries out object detection or a tracking algorithm.

The fusion is then conducted on the high-level object attributes

of the environment (e.g., the relative positions of nearby vehicles)

provided by each sensor and outputs aggregate object attributes to

its downstream components. LLF fuses the sensor data at the low-

est level of abstraction (raw data)[43]. MLF is an abstraction-level

between HLF and LLF. It fuses features extracted from the sensor

data, such as color information from images or location features of

radar and LiDAR, and then conducts recognition and classification

on them[29]. Among them, HLF is widely used in open-sourced

commercial-grade ADAS [14] and ADS [9, 39] because of its sim-

plicity. Thus, it is the focus of the current work. In particular, we

conduct a carla simulator-based case study on an industry-grade

ADAS, Openpilot, which uses an HLF for camera and radar.

2.2 Fusion in Openpilot

Fusion

camera

radar

steering

throttle/brake

DNN
Model

Clustering
&

Processing

car state

Latitudinal 
Control

Longitudinal 
Control

Figure 2: The role of fusion in Openpilot.

Figure 2 shows the the fusion component in Openpilot. It re-

ceives data about the leading vehicles from the camera processing

component and the radar processing component. Each leading vehi-

cle data, denoted as lead, consists of the relative speed, longitudinal,

and latitudinal distances to the leading vehicle, and the prediction’s

confidence (only for camera). The fusion component aggregates

all lead information from the upstream sensor processing modules

and outputs an estimation to the longitudinal control component.

Finally, the longitudinal control component outputs the decisions

for throttle and brake to control the vehicle. Since the latitudinal

control component only relies on camera data, we do not consider

accidents due to the ego car driving out of the lane. Different fusion

logics can be implemented. Here we studied Openpilot default one

and a popular Kalman-Filter-based fusion method [30, 34].

default: Heuristic Rule-based Fusion. Figure 3a shows the logic flow

of the Openpilot’s fusion method default. It first checks if the ego

car’s speed is low (ego𝑠𝑝𝑒𝑒𝑑 < 4) and close to any leading vehicle ( 1○).

If so, the closest radar leads are returned. Otherwise, it checks if the

confidence of any camera leads go beyond 50% ( 2○). If not, leading

vehicles will be considered non-existent. Otherwise, it checks if any

radar leads match the camera leads ( 3○). If so, the best-matching

radar leads are returned. Otherwise, the camera leads are returned.

C Leads
Conf>50%

Yes

No

R match
with C?

Yes

No

None C Leads

Matched 
R Leads

C 
Leads

R
Leads

2 3

Close    
Speed < 4

Yes

No

Closest 
R Leads

1

(a) default

C Leads

R Leads Find
Unclutter

Tracks  
Last Match

Find Most
Important

Predicted 
Leads

Tracks 
Current 

1

2

3

C Lane

(b) mathworks

Figure 3: Fusion logic of (a)Openpilot default and

(b)mathworks. C denotes camera andR denotes radar. Green,

orange, blue, red, and purple denote input, output, decision,

processing, and stored data over generations, respectively.

mathworks: Kalman-Filter Based Fusion. Figure 3b shows the logic

of mathworks which is a popular fusion method from Mathwork
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[34]. It starts with the camera-predicted lane to filter out cluttered

(i.e. stationary outside the ego car’s lane) radar leads in 1○. Then, it

groups together camera leads and uncluttered radar leads, and

matches them with tracked objects from last generation in 2○.

Tracked objects are then updated. Finally, matched tracked ob-

jects within the current lane are ranked according to their relative

longitudinal distances in 3○ and the data of the closest two leads

are returned.

2.3 Fusion Error & Motivating Example

A fusion error happens at the occurrence of the following:

i. Fusion logic makes some fusion faults as there is disagreement

between different sensor outputs, and the underlying fusion

logic trusts the incorrect one even when an alternate correct

input is present, and

ii. A failure, i.e., a critical accident, takes place due to such faulty

fusion method.

(a) 𝑡𝑖𝑚𝑒0
rel x:

camera:13.7m

(conf:0.1)

radar:19.2m

fusion:None

GT:None

(b) 𝑡𝑖𝑚𝑒1
rel x:

camera:11.8m

(conf:13.5)

radar: 3.9m

fusion: None

GT: 2.9m

(c) 𝑡𝑖𝑚𝑒2
collision happens.

Figure 4: A collision example. The ego car is the blue car

whose front view has been shown. rel x: relative longitudinal

distance of the ego car from the cycle. GT: the ground-truth

value. The fusion fault and GT are highlighted in red and

blue respectively.

Motivating Example. Figure 4 shows an example where the ego car

collides with a bicyclist cutting in. At 𝑡𝑖𝑚𝑒0 (Figure 4a), no leading

vehicle exists. At 𝑡𝑖𝑚𝑒1 (Figure 4b), the bicyclist on the right trying

to cut in. While the radar predicts that the lead is close (3.9 m) to

the ground-truth (GT) value (2.9m), the camera ignores the bicyclist.

The fusion component trusts the camera so the ego car does not

slow down, and finally a collision occurs at 𝑡𝑖𝑚𝑒2(Figure 4c). This

example shows an accident caused by a wrong result from the

fusion component. But how could the problem happen?

In the logic flow of the Openpilot’s default fusion method

(see Figure 3a), due to path ( 1○) and ( 2○), i.e., ¬(ego𝑠𝑝𝑒𝑒𝑑 < 4 ∧

close) and ¬(camera confidence > 50%), no leading vehicle is con-

sidered existent at 𝑡𝑖𝑚𝑒1 (i.e., Fusion output=None). Thus, the ego

car accelerates until hitting the bicyclist.

3 OVERVIEW

We focus on finding fusion errors, i.e., failures caused by the faulty

fusion method. We first define fusion fault and fusion error (see

Section 3.1). Fusion methods are faulty when (i) two sensors’ out-

puts differ significantly, and then (ii) the fusion logic (i.e., merging

the sensor outputs) prioritizes the faulty outputs over the correct

one. To simulate fusion errors, FusED first efficiently searches (a.k.a.

fuzz) the given driving environment to find scenarios where the fu-

sion method tends to prioritize faulty sensor outputs and thus, lead

to failures (i.e., collisions) (see Section 3.2). FusED then changes the

existing fusion logic with alternative ones and check whether the

updated logic can avoid the simulated crashes (see Section 3.3). If a

collision is avoidable with alternative fusion logic, FusED concludes

that original fusion logic was erroneous. Finally, FusED reports the

unique fusion errors, as described in Section 3.4.

3.1 Definitions

We first define the fusion fault of a fusion method 𝐹 . Let, at a

time step 𝑡 , 𝐹 read𝑚 sensor outputs 𝑆𝑡1,𝑆𝑡2,...,𝑆𝑡𝑚 respectively, and

outputs an aggregated prediction 𝐹𝑡 := 𝐹 (𝑆𝑡1, 𝑆𝑡2, ..., 𝑆𝑡𝑚). Let 𝐺𝑇𝑡
denote the corresponding ground-truth value at the time step 𝑡 . A

correct fusion method should choose the sensor output closest to

the ground truth to capture the most realistic situation. Thus, a

fusion fault occurs if there is at least one sensor input, say 𝑆𝑡 𝑗 at

time 𝑡 , whose distance from 𝐺𝑇𝑡 is less than the distance between

fusion output 𝐹𝑡 and𝐺𝑇𝑡 . To make the fault definition more tolerant

to small errors, we further introduce an error tolerance threshold

𝑡ℎ𝑒𝑟𝑟 .

Definition 1. 𝐹 makes a fusion fault at a time step 𝑡 if

min
𝑗 ∈{1,...,𝑚}

dist(𝑆𝑡 𝑗 ,𝐺𝑇𝑡 ) + 𝑡ℎ𝑒𝑟𝑟 < dist(𝐹𝑡 ,𝐺𝑇𝑡 ),

One example of dist is dist(𝑥,𝑦) = | |𝑥 − 𝑦 | |1 which is simply

the l1 distance. Note in this work we are not interested in benign

fusion faults that cannot lead to critical consequences. Besides, it

is difficult to attribute a failure to a particular fusion fault since a

failure may appear as an effect of several fusion faults. Thus, we

associate a failure to the underlying fusion method.

Definition 2. A fusion error occurs if the system under test using

the fusion method fails due to faulty fusion method.

In this paper, we focus on the crashes of the ADAS to study

fusion errors. As per its definition, a fusion error has the following

two properties:

• Failure-inducing: A simulation should witness a failure of the

system. In our context, the system is Openpilot and the failure

is the ego car’s crash. Besides, since only the longitudinal control

module in Openpilot uses fusion, we only consider ego car’s

collision happening within the lane it follows.

• Fusion-induced: The failure should be caused by the used fusion

method. In other words, if the rest of the system and environment

behave as it is, and we had a correct implementation of the fusion

method, the failure would not be observed.

Figure 5 illustrates such a fusion error. At time 1○, a simulation

starts and Openpilot is engaged. The simulation enters the pre-

crash period (i.e., the𝑚 seconds before an accident during which it

starts to misbehave) at time 2○ and finally, a collision happens at

3○. If a better fusion method is used from time 2○ onward, in the

counter-factual world, no collision happens (at time 3’○ ).
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Figure 5: An illustration of pre-crash period and fusion error.

3.2 Simulating Collisions with Fusion Fuzzing

To simulate fusion errors efficiently, we apply an evolutionary-

based fuzzing algorithm that searches for the scenarios in which

fusion errors are likely to happen. Since fusion errors have two

properties: failure-inducing and fusion-induced (Section 3.1), we

design the objective functions to optimize accordingly.

For capturing failure-inducing property, we adopt the safety po-

tential objective used in [28]. It represents the distance between

the ego car and the leading vehicle (subtracted by the ego car’s

minimum stopping distance)Ðminimizing it will facilitate the colli-

sion. We denote it as Fd (𝑥) for the scenario 𝑥 . To further promote

collision, we introduce another boolean objective function (Ffailure)

that is true only if a collision happens.

For the fusion-induced property, we define an objective Ffusion
measuring fusion faults during an simulation, and maximize it.

There can be many ways to define Ffusion. Here, we use the number

of time steps such that at each time step the fusion’s output is

far from the ground-truth and at least one sensor output is close

to the ground-truth. Given that we use a simulated environment

for testing, we can easily get the ground-truth lead information

from the simulator. We present the details of Ffusion in Section 4.1.

Putting the above objectives together, we obtain the following

fitness function that our evolutionary fuzzer tries to optimize (here

𝑐𝑖s are coefficients):

F(𝑥) = 𝑐failureFfailure (𝑥) + 𝑐dFd (𝑥) + 𝑐fusionFfusion (𝑥) (1)

3.3 Analyzing Root Causes of the Collisions

We next analyze the simulated failures (i.e., collisions) reported in

previous step and check they are indeed caused by the incorrect

fusion logic. The most intuitive approach to check this would be to

simply replace the fusion method with another fusion method and

check if the collision still happens. However, this approach has two

issues. First, compared with the initial simulation, some unobserved

influential factors (e.g., the communication delay between the sim-

ulator and Openpilot) might have changed. As a result, even if a

collision does not occur with an alternative fusion logic, it might be

due to the influence of other unobserved influential factors. Second,

the alternative fusion logic chosen randomly may not be able to

avoid the collision. Since simulation is costly, it is not possible to

explore all the different logic (e.g., all the if-else branches in the

fusion logic implementation Figure 3-a). Thus, we must choose the

alternative fusion method carefully.

To address the first issue, we resort to the theory of causal anal-

ysis. In particular, we consider the fusion method used as the in-

terested variable and the occurrence of a collision as the interested

event. We then consider all other factors that can directly or indi-

rectly influence the collision as well as their interactions based on

domain knowledge, the understanding of the source code of Open-

pilot and the carla simulator, and simulation runtime behavior

across multiple runs. The goal is to control all the factors that influ-

ence the collision and are not influenced by the fusion method to

stay the same across the simulations. For those influential variables

that cannot be controlled directly, we apply interventions on other

variables such that the uncontrollable variable’s influence on the

collision is eliminated. For example, to eliminate the influence of

the communication latency, which has been observed as the ma-

jor uncontrollable influential variable, we set the communication

configurations for Openpilot and simulator to be synchronous

and deterministic. Assuming that all the influential variables are

controlled, if the collision is avoided after the replacement in a

counterfactual world, we can say the fusion method used is the

actual cause.

To address the second issue, we define a fusion method called

best-sensor fusion, which always selects the sensor prediction that

is closest to the ground-truth as per dist in Definition 1. This fusion

method provides the best prediction among the sensors. Conse-

quently, it is reasonable to assume that it should help to avoid the

collision if the collision was due to the fusion method used.

3.4 Counting Fusion Errors

We design the principles for counting distinct fusion errors in this

section. Note that error counting in simulation-based testing re-

mains an open challenge. Related works [2, 31] consider two er-

rors being different if the scenarios are different. This definition

tends to over-count similar errors when the search space is high-

dimensional. Another approachmanually judges errors with human

efforts [28]. Such way is subjective and time-consuming when the

number of errors grows up.

Inspired by the location trajectory coverage [21], we consider the

ego car’s state (i.e., location and speed) during the simulation rather

than the input space variables or human judgement. We split the

pieces of the lane that ego car drives on into 𝑠 intervals and the ego

car’s allowed speed range into 𝑙 intervals to get a two-dimensional

coverage plane with dimensions 1𝑠×𝑙 . During the simulation, the

ego car’s real-time location and speed are recorded. The recorded

location-speed data points are then mapped to their corresponding

"bins" on the coverage plane. Given all the data points mapped

into the bins having the same road interval, their average speed is

taken, the corresponding speed-road bin is considered "covered",

and the corresponding field on the coverage plane is set 1. Note

a simulation’s final trajectory representation can have at most 𝑠

non-zero fields. We denote the trajectory vector associated with

the simulation run for a specification 𝑥 to be R(𝑥) and define:

Definition 3. Two fusion errors for the simulations runs on speci-

fications 𝑥1 and 𝑥2 are considered distinct if | |R(𝑥1) − R(𝑥2) | |0 > 0.

To demonstrate this error counting approach, we show two

fusion errors with different trajectories in Figure 6. In both Figure 4
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(a) (b) 𝑡𝑖𝑚𝑒0 (c) 𝑡𝑖𝑚𝑒1 (d) 𝑡𝑖𝑚𝑒2

(e) (f) 𝑡𝑖𝑚𝑒0 (g) 𝑡𝑖𝑚𝑒1 (h) 𝑡𝑖𝑚𝑒2

Figure 6: Examples of two fusion errors with different tra-

jectories. (a) and (e) show speed-location coverage where the

x-axis is speed and y axis is the road interval.
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Figure 7: The overall workflow of FusED.

and the first row of Figure 6, the ego car hits a bicyclist cutting in

from the right lane. The difference is only that the yellow car on

the left lane has different behaviors across the two runs. However,

the yellow car does not influence the ego car’s behavior. Hence,

the two simulation runs have the same trajectory coverage (ref.

Figure 6a). By contrast, the other fusion error on the second row

of Figure 6 has a different trajectory (ref. Figure 6e) that the ego

car in high speed collides with a motorcycle at a location close to

the destination. This example illustrates the necessity of counting

fusion errors upon Definition 3.

4 FUSED METHODOLOGY

In this section, we introduce FusED, our automated framework for

fusion errors detection. Figure 7 shows a high-level workflow of

FusED. It consists of three major components: the fuzzing engine,

the simulation, and the fusion error analyzer. The fuzzer runs for

predefined rounds of generations. At each generation, it feeds gen-

erated scenarios (a.k.a. seeds) into the simulation. In a simulation, at

each time step, the carla simulator supplies the sensor data of the

current scene toOpenpilot. AfterOpenpilot sends back its control

commands, the scene in carla updates. After the simulations for

all the seeds at the current generation have been run, the seeds

along with their objective values in the simulations are returned

as feedback to the fuzzer. Besides, all the collision scenarios are

recorded. The fuzzer then leverages the feedback to generate new

seeds in the execution of the next generation. After the fuzzing pro-

cess ends, all the collision scenarios are rerun with the best-sensor

fusion in the counterfactual world. The scenarios that avoid the

collision are reported as fusion errors.

4.1 Fuzzing Algorithm

FusED aims at maximizing the number of found fusion errors

within a given time budget. The search space is high-dimensional

and the simulation execution is costly. Evolutionary-based search

algorithms have been shown effective in such situation[28, 45].

We adopt an evolutionary-based search algorithm with a domain-

specific fitness function (defined in Section 3.2) promoting fusion

errors finding. We denote our method as ga-fusion.

The fuzzer tries to minimize a fitness function over generations.

At the beginning, random seeds are sampled from the search space

and fed into the simulation, as shown by 1○ in Figure 7. In 2○,

the simulation then runs Openpilot in carla with the supplied

scenarios. The violations found are recorded and the seeds with the

objective values are returned to the fuzzer accordingly. If the whole

execution runs timeout, the fuzzing procedure ends ( 3○). Otherwise,

seeds are ranked based on their objective values for further selection

( 4○). The fuzzer performs crossover and mutation operations among

the selected seeds to generate new seeds ( 5○) for the simulation.

The steps 2○- 5○ repeat until reaching the time threshold.

We next provide details for the selection step, the crossover &

mutation step, and 𝐹fusion, which is the objective promoting the

occurrence of more fusion faults (see Section 3.2).

Selection. We use binary tournament selection, which has shown

effectiveness in previous ADAS testing works [2]. For each parent

candidate seed, the selection method creates two duplicates and

randomly pairs up all the parent candidate seed duplicates. Each

pair’s winner is chosen based on their fitness function values. The

winners are then randomly paired up to serve as the selected parents

for the following crossover step.

Crossover & Mutation. We adopt the simulated binary crossover

[7] following the approach in [2].We set the distribution index𝜂 = 5

and probability=0.8 to promote diversity of the offspring. Further,

we apply polynomial mutation to each discrete and continuous

variable with mutation rate set to 5

𝑘
, where 𝑘 is the number of

variables per instance, and the mutation magnitude 𝜂𝑚 = 5 to

promote larger mutations.

Details of Ffusion. Ffusion is defined as the percentage of the num-

ber of frames in which the fusion predicted lead having a large devi-

ation from the ground-truth lead, while at least one predicted lead

from upstream sensor processing modules is close to the ground-

truth lead.

Metric Function. In order to quantify "a large deviation" and "close

to", we first define the metric function dist(·) : R |D | × R |D | → R

to measure the difference between two leads, where D is a set of

indices of the different dimensions of a lead as defined in Section 2.2

(i.e., relative longitudinal distance, relative latitudinal distance, and

relative speed). It takes in the two lead and outputs their distance.

The metric function can be set to any reasonable metric, e.g., l1

norm of the two lead’s difference. In the current work,

dist(𝑦,𝑦) :=
∑︁

𝑗 ∈D

1[|𝑦 𝑗 − 𝑦 𝑗 | > 𝑡ℎ 𝑗 ], (2)
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where 1[·] is a mapping of a condition’s truth value to a numeric

value in {0, 1}. The function dist(·, ·) thus counts the number of

dimensions of the two leads (𝑦 and 𝑦) that differ more than a corre-

sponding error threshold 𝑡ℎ 𝑗 . The threshold 𝑡ℎ 𝑗 is set to 4m, 1m,

and 2.5m/s for relative longitudinal distance, relative latitudinal

distance, and relative speed, respectively. They are chosen based on

domain knowledge. In particular, the length and width of a vehicle

are roughly 4m and 1.5m and the default step size of Openpilot’s

cruise speed is roughly 2.5m/s. We next formally define 𝐹fusion.

Definition of 𝐹fusion. Given a scenario 𝑥 ,

Ffusion (𝑥) :=
1

|P|

∑︁

𝑡 ∈P

1[∃ 𝑘 ∈ K s.t. dist(𝑠𝑡𝑘 , 𝑦𝑡 ) ≤ 𝑡ℎ

and dist(𝑓𝑡 , 𝑦𝑡 ) > 𝑡ℎ],

(3)

where P is a set of indices of the frames during the pre-crash period,

K is a set of indices of the sensors (camera and radar in our case),

𝑠𝑡𝑘 is a predicted lead by sensor 𝑘 at time frame 𝑡 , 𝑓𝑡 is the predicted

lead by the fusion component, 𝑦𝑡 is the ground-truth lead, and 𝑡ℎ

is a distance threshold. 𝑡ℎ can be set to any non-negative values. In

the current work, we set 𝑡ℎ to 0. This implies that for a time frame

𝑖 to be counted, the fusion predicted lead 𝑦𝑖 must violate at least

one dimension and at least one sensor’s predicted lead 𝑠𝑖𝑘 must not

violate any of the three dimensions.

4.2 Root Cause Analysis

This step analyzes the fusion errors found by the fuzzer to confirm

the incorrect fusion logic causes them. As described in Section 3.3,

we leverage causal analysis to find the root cause of the failures,

and if fusion logic is not the reason behind a failure, we filter it out.

Problem Formulation. In causality analysis, the world is de-

scribed by variables in the system and their causal dependencies.

Some variables may have a causal influence on others. This can be

represented by a Graphical Model [36], as shown in Figure 8, where

the graph nodes represent the variables, and the edges connect

the nodes that are causally linked with each other. For example,

the test scenario should influence the occurrence of a collision.

In a scenario involving many NPC vehicles, Openpilot is more

likely to crash. The variables are typically split into two sets: the

exogenous variables (𝑈 ), whose values are determined by factors

outside the model, and the endogenous variables (𝑉 ), whose values

are ultimately determined by the exogenous variables.

In our context, we define
−→
𝑋 to be the fusion method,

−→
𝑌 to be

a boolean variable representing the occurrence of a collision, and

𝜙 =

−→
𝑌 .

−→
𝑍 is the union of

−→
𝑋 and

−→
𝑌 .

−→
𝑊 is the complement of

−→
𝑍 in

𝑉 . Following the definition of actual cause in [18],

Definition 4. Given we know a collision (𝜙 = 𝑇𝑟𝑢𝑒) happens

when a fusion method is used (
−→
𝑋 =

−→𝑥 ), the fusion method is an

actual cause of a collision if: when another fusion method is used

(
−→
𝑋 =

−→
𝑥 ′), and all other endogenous variables (which influence the

collision and are not influenced by the fusion method) are kept the

same as in the original collision scenario (
−→
𝑊 =

−→𝑤 ), the collision

can be avoided (𝜙 = 𝐹𝑎𝑙𝑠𝑒).

The details of the justification for this definition can be found in

Appendix A in the extended version [44]. We use this definition as

the basis to check if a found collision is a fusion error (i.e., if the

used fusion method is the actual cause of the collision). In order

to use it in practice, we need to (i) construct the relevant causal

graph and make sure the other endogenous variables (
−→
𝑊 ) can be

controlled, and (ii) find an alternative fusion method (
−→
𝑥 ′) which is

likely to avoid the original collision.

Causal Relations Analysis. We construct a causal graph (Fig-

ure 8) specifying the relevant variables based on domain knowledge,

the understanding of the source code of Openpilot and the carla

simulator, and simulation runtime behavior across multiple runs.

The exogenous variables include test design and the state of the

system running simulation (e.g., real-time CPU workload, memory

usage, etc.). Based on the understanding of ADAS scenario-based

testing (see Section 6), test design influences the simulation result

indirectly through determining scenario to test, simulator configura-

tions, and Openpilot configurations (including the fusion method).

Based on the understanding of the source code, simulator config-

urations can be further split into communication configurations

and other configurations. Similarly, Openpilot configurations can

be split into fusion method, communication configurations, and

other configurations. The other exogenous variable system state

indirectly influences the collision result via an endogenous variable

communication latency. This is based on our observation that, in

a system with limited CPU capacity available, the latency of the

sensor information passed from the simulator to Openpilot can be-

come very high and influences the collision result. Communication

latency collectively represents the real-time latency of the commu-

nications between the simulator and Openpilot as well as among

each of their sub-components, and thus captures the influence of

the communication configurations of simulator and Openpilot, as

well as the system state. We assume that all the variables directly

influencing the occurrence of a collision have been included in the

graph.

Intervention for Eliminating Uncontrollable Influential Variable. To

check for causality, we need to be able to control the endogenous

variables
−→
𝑊 and block any influence of the unobserved exogenous

variables on the collision. With the default simulator and Open-

pilot communication configurations, communication latency (both

between and within each of the simulator and Openpilot) influ-

ences the collision result and prevents a deterministic simulation

replay. However, we cannot control the communication latency

since one of its parents ś the system state cannot be observed and

controlled. To address this issue, we set the communication con-

figurations of the simulator and the Openpilot to be deterministic

and synchronous (see Appendix C in the extended version [44]

for details). The communication latency then becomes zero thus

avoiding the potential side effects [22]. Note such change is kept

throughout the entire fuzzing process. We verify that no other un-

controllable influential variables on the collision results exist after

this intervention in RQ1 by checking the reproducibility of the

simulation results when using the same endogenous variables.
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Intervention for Cause Analysis. During the fusion error analyzing

step, we replace the initial fusion method (−→𝑥 ) with another fu-

sion method (
−→
𝑥 ′) and check if a collision still happen. This step is

regarded as an intervention on the fuzzing method after fuzzing.

System State

OpenPilot
Other Config

OpenPilot
Fusion Method

Simulator
Communication

Config

Simulator
Other Config

Collision

Communication
Latency

Endogenous VExogenous U

Test Design

throughout fuzzing:
set deterministic
and synchronous

Scenario

OpenPilot
Communication

Config

after fuzzing:
do(best-sensor

fusion)

throughout fuzzing:
set deterministic
and synchronous

Figure 8: Illustrating the causal graph with intervention.

Fusion Replacement Analysis. The next step is to efficiently

find a fusion method 𝑥 ′ avoiding collision. The fusion method 𝑥 ′

should possess additional properties like having no extra knowledge

and being functional. It should not have extra knowledge (e.g., the

ground-truth of the locations of the NPC vehicles) beyond what

it receives from the upstream sensor modules. Being functional

means it should be good enough to enable the ego car to finish the

original task. A counter-example is if the fusion method always

false positively report the presence of a stationary NPC vehicle

ahead and leads the ego car to stay stationary all the time.

To illustrate this, we define three different classes of fusion meth-

ods. Given everything else is kept the same, collision fusion class

and non-collision fusion class consist of the fusion methods that

lead to and avoid the collision, respectively. No extra knowledge &

functional class consists of fusion methods which have no extra

knowledge and are functional. If an failure is caused by the fusion

method and can be fixed by changing it to a no extra knowledge and

functional fusion method, there should be an intersection between

non-collision fusion and no extra knowledge & functional fusion

as shown in Figure 9(a) and Figure 9(c). Otherwise, there should

be no intersection as shown Figure 9(b). The initial fusion method

should fall into the intersection of the collision fusion class and

the no extra knowledge & functional fusion class since a collision

happens and it is reasonable to assume it (default or mathworks)

has no extra knowledge and is functional.

In the current work, for each found collision, we only run one

extra simulation to check if the fusion method is the cause. In par-

ticular, we set
−→
𝑥 ′ to best-sensor fusion. Note that this fusion method

is an oracle fusion method since in reality we won’t be able to know

the ground-truth. However, it serves a good proxy. First, it uses no

additional knowledge except for using the ground-truth to select

the best sensor output. In reality, an ideal fusion method might

potentially select the most reliable upstream sensor’s prediction

even without additional knowledge. Second, it is functional since

it provides more accurate prediction than methods like default

and thus should be able to finish the original cruising task. Third, if

best-sensor fusion cannot help to avoid a collision after the replace-

ment, there is a high possibility that the collision is not due to the

fusion method. The reason is that it already picks the best sensor

prediction and thus does not make fusion fault, and it is reasonable

to assume that the downstream modules perform better given its

output compared with those less accurate outputs.

Thus, best-sensor fusion serves as a proxy to check if there is

an intersection between no extra knowledge & functional fusion

and non-collision fusion. If best-sensor fusion can help avoid the

collision, the failure will be considered a fusion error. Otherwise,

it will be discarded. There are three situations: (a) the failure is

caused by the fusion method and the best-sensor fusion falls into

non-collision fusion class(Figure 9a). (b) the failure is not caused

by the fusion method and the best-sensor fusion does not fall into

non-collision fusion class(Figure 9b). (c) the failure is caused by the

fusion method and the best-sensor fusion does not fall into non-

collision fusion class(Figure 9c). (a) and (b) are the true positive and

true negative cases since the causation of the fusion method is con-

sistent with the collision results of the best-sensor fusion method,

while (c) is the false negative case. It also should be noted that there

is no false positive case since if best-sensor fusion helps avoiding

the collision, according to our reasoning earlier, the causation must

hold. The implication is that a predicted fusion error is a failure

caused by the fusion method but the reverse does not always hold.

5 RESULTS

To evaluate FusED, we explore the following research questions:

RQ1: Evaluating Performance. How effectively can FusED

find fusion errors in comparison to baselines?

RQ2: Case Study of Fusion Errors.What are the representa-

tive causes of the fusion errors found?

RQ3: Evaluating Repair Impact. How to improve MSF in

Openpilot based on our observations on found fusion errors?

5.1 Experimental Design

Environment.We use carla 0.9.11 [16] as the simulator andOpen-

pilot 0.8.5 as theADAS [14]. The experiments run on aUbuntu20.04

desktop with Intel i9-7940x, Nvidia 2080Ti, and 32GB memory.

Studied Fusion Methods.We apply FusED on default and math-

works introduced in Section 2.2.

Driving Environments. We utilize two driving environments

named S1 and S2. S1 is a straight local road and S2 is a left curved

highway road. Both S1 and S2 have 6 NPC vehicles. An illustration

is shown in Figure 10 (not all NPC vehicles are shown). The max-

imum allowed speed of the auto-driving car is set to 45 miles/hr

(≈ 20.1m/s) on the highway road (S2) and 35 miles/hr (≈ 15.6m/s)

on the local road (S1). For vehicle types, S2 only considers cars and

trucks while S1 additionally includes motorcycles and bicyclists.

The search space for each vehicle consists of its type, its speed and
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Figure 9: An illustration of three situations of replacing the fusion method.

S1: Local S2: Highway

Figure 10: An illustration of the two driving environments

where the orange car represents the ego car.

lane change decision (turn left/right, or stay in lane) at each time

interval. Weather and lighting conditions are also considered. See

Appendix E and Appendix F in the extended version [44] for the

details of the driving environments and how they comply to the

capability of Openpilot, respectively.

Baselines and Metrics. We use random search (random) and

genetic algorithm without Ffusion in the fitness function (ga) as two

baselines. We set the number of scenarios causing fusion errors and

distinct fusion errors (Definition 3) as two evaluation metrics.

Hyper-parameters.We set the default values for 𝑐failure, 𝑐𝑑 , 𝑐fusion
in the fitness function to−1, 1,−2. Since the crash-inducing property

has two terms (𝑐failure and 𝑐d) while the fusion aspect has one

(𝑐fusion), the default values balances the two’s contribution. The

sign for 𝑐d is positive since we want to minimize 𝐹d and the signs

for the other two are negative since we want to maximize 𝐹failure
and 𝐹fusion. We set the pre-crash period’s𝑚 to 2.5 seconds because

several states in US use 2.5s as the standard driver reaction time

and studies have found the 95 percentile of perception-reaction

time for human drivers is 2.5s [27]. Besides, in our context, when a

fusion-induced collision happens, it is often caused by the fusion

component’s failure for about 2.5s before the collision as in Figure 4.

We set 𝑠 and 𝑙 (defined in Section 3.4) to 30 and 10 such that each

road interval is about 5m and each speed interval is about 4m/s.

By default, we fuzz for 10 generations with 50 simulations per

generation; each simulation runs at most 20 simulation seconds.

5.2 RQ1: Evaluating Performance

We compare ga-fusion with the two baselines. Figure 11 shows

the average number of fusion errors found by the three methods

over three runs for each setting. On average, ga-fusion has found

65%, 27%, 23%, and 44% more fusion errors than the best baseline

method under each setting, respectively. Figure 12 shows the aver-

age number of distinct fusion errors (based on Definition 3) found

by the three methods over three runs for each setting. ga-fusion

has also found 58%, 31%, 25%, and 37% more distinct fusion errors

than the best baseline method, respectively. To test the significance

of the results, we further conduct Wilcoxon rank-sum test [12] and

Vargha-Delaney effect size test [8, 41] between the number of dis-

tinct fusion errors found by ga-fusion and the best baseline under

each setting. For each of the four settings, we have the p-value 0.05

and VD effect size interval (0.68, 1.32) at the 90% confidence inter-

val, suggesting the difference is significant and the difference has

medium effect size. These results show the effectiveness of FusED

and superiority of ga-fusion. The result also holds under different

pre-crash period𝑚 (see Appendix G in the extended version [44].
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Figure 11: # fusion errors found over # simulations.

The proposed ga-fusion can efficiently find more fusion errors

because: (1) Fd and Ffailure can differentiate collisions (including

both fusion errors and non-fusion errors) from no-collision, and (2)

Ffusion can differentiate fusion errors from non-fusion errors. The

first point is straightforward since when a collision happens, Fd
is usually smaller and Ffailure is 1. To show the second point, we

plot the empirical cumulative density functions (ECDFs) of Ffusion
for no-collision, non-fusion errors, and fusion errors, respectively,

when running ga-fusion under each setting.

As shown in Figure 13, on average, fusion errors tend to have

larger Ffusion than non-fusion errors. We also apply Two-sample
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Figure 12: # distinct fusion errors found over # simulations.
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Figure 13: Empirical Cumulative Density Functions (ECDFs)

of Ffusion for the three groups under the four settings. For

each group, at a given x-axis value, the y-axis value is the

proportion of scenarios in the group that have Ffusion less

than or equal to the given x-axis value. The plots show that a

larger portion of fusion errors have larger Ffusion than non-

fusion errors so Ffusion can help to differentiate the two.

KolmogorovśSmirnov test [38] on the ECDFs of Ffusion for fusion

errors and non-fusion errors. The test statistic versus the corre-

sponding 0.05 significance threshold for each setting are 0.76>0.27,

0.42>0.39, 0.58>0.38, and 0.67>0.39, respectively [26, 33], showing

the fusion errors and non-fusion errors differ at the 0.05 significance

level under each setting.

Note that in Figure 13(b), fusion errors have similar Ffusion as

no-collision. This can happen when fusion method is faulty but

that may not result in collision. Typical examples are scenarios in

which a leading vehicle’s relative longitudinal distance is wrongly

predicted but no collision happens since it is very far away from

Openpilot. However, these fusion errors are still more likely to

be selected at the selection stage since fusion errors involve the

occurrence of collisions which result in smaller Fd and larger Ffailure
than no-collision.

Sanity Check of the Causal Graph. In order to make sure the

causal graph (Figure 8) includes all the influential variables on the

collision result, from the scenarios we have run during the fuzzing

process, we randomly selected 100 collision scenarios and 100 no-

collision scenarios, and run them again with every controllable

endogenous variable kept the same. All the repeated runs repro-

duce the collision/no-collision results. This implies no influential

variables are likely to be omitted, since if such variables exist, re-

peated runs with the same endogenous variables should lead to

different simulation results.

Result 1: Under each of the four settings, at the 0.05 signifi-

cance level, FusED finds more distinct fusion errors (as well as

fusion errors) than the best baseline method. The difference has

a medium effect size at 90% confidence interval.

5.3 RQ2: Case Study of Fusion Errors

In this subsection, we show three representative fusion errors found

by FusED and analyze their root causes.

Case1: Incorrect camera lead dominates accurate radar lead.

The first row of Figure 14 shows a failure due to 2○ in Figure 3a.

In Figure 14a, both camera and radar give accurate prediction of

the leading green car at 𝑡𝑖𝑚𝑒0. At 𝑡𝑖𝑚𝑒1 in Figure 14b, the green

car tries to change lane, collides with a red car, and blocks the

road. The camera model predicts that the green car with a low

confidence (49.9%) and the fusion component thus misses all leading

vehicles due to 2○ in Figure 3a. The ego car keeps driving until

hitting the green car at 𝑡𝑖𝑚𝑒2 in Figure 14c. If the radar data is

used instead from 𝑡𝑖𝑚𝑒0, however, the collision can be avoided, as

shown in Figure 14d. Going back to Figure 3a, the root cause is

that Openpilot prioritizes the camera prediction and it ignores any

leading vehicles if the camera prediction confidence is below 50%.

As a result, despite the accurate information predicted by the radar,

Openpilot still causes the collision.

Case2: Inaccurate radar lead selected due to mismatch be-

tween radar and camera. The second row of Figure 14 shows

another failure caused by both 2○ and 3○ in Figure 3a. At 𝑡𝑖𝑚𝑒0 of

Figure 14e, camera overestimates the longitudinal distance to the

leading green car. At 𝑡𝑖𝑚𝑒1 of Figure 14f, though one radar data

(not shown) is close to the correct information of the green car, the

radar data of the Cybertruck on the left lane matches the camera’s

prediction. Thus, the Cybertruck lead data is selected regarding

3○ in Figure 3a. Consequently, although the ego car slows down,

the process takes longer time than if it selects the green car radar

data. This finally results in the collision at 𝑡𝑖𝑚𝑒2 in Figure 14g. If

the green car radar lead is used from 𝑡𝑖𝑚𝑒0, the ego car would slow

down quickly and thus not hit the green car at 𝑡𝑖𝑚𝑒 ′
2
in Figure 14h.

This failure also correlates to camera dominance but it additionally

involves mismatching in 3○ of Figure 3a.
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(a) 𝑡𝑖𝑚𝑒0, rel x:

camera:12.6m

(conf:95.4)

radar:11.9m

fusion:11.9m

GT:10.5m

(b) 𝑡𝑖𝑚𝑒1, rel x:

camera:8.9m

(conf:49.9)

radar:6.9m

fusion:none

GT:5.4m

(c) 𝑡𝑖𝑚𝑒2,

a collision

happens.

(d) 𝑡𝑖𝑚𝑒′
2
,

no collision.

(e) 𝑡𝑖𝑚𝑒0, rel x:

camera:23.2m

(conf:47.1)

radar:15.5m

fusion:none

GT:14.4m

(f) 𝑡𝑖𝑚𝑒1, rel v:

camera:-6.8m/s

(conf:62.3)

radar:-14.1m/s

fusion:-6.8m/s

GT:-14.0m/s

(g) 𝑡𝑖𝑚𝑒2,

a collision

happens.

(h) 𝑡𝑖𝑚𝑒′
2
,

no collision.

Figure 14: Two found fusion errors for default. rel v repre-

sents relative speed to the leading NPC vehicle.

Case3: Discarding correct lead due to a faulty selectionmethod.

Figure 15 shows an example when mathworks fails due to 3○ in

Figure 3b. At 𝑡𝑖𝑚𝑒0 in Figure 15a, a police car on the right lane

is cutting in. While radar gives a very accurate prediction of the

red car, the radar prediction is not used since 3○ in Figure 3b only

selects among the predicted leads within the current lane. Conse-

quently, a camera predicted lead is used, which overestimates the

relative longitudinal distance. At 𝑡𝑖𝑚𝑒1 in Figure 15b, the correct

radar prediction is used but it is too late for the ego car to slow

down, causing the collision at 𝑡𝑖𝑚𝑒2 in Figure 15c. If the best pre-

dicted lead (i.e. the one from the radar data) is used starting at 𝑡𝑖𝑚𝑒0,

the collision would disappear at the time 𝑡𝑖𝑚𝑒 ′
2
of Figure 15d.

(a) 𝑡𝑖𝑚𝑒0, rel x:

camera:10.3m

(conf:86.3)

radar:7.4m

fusion:10.5m

GT:7.2m

(b) 𝑡𝑖𝑚𝑒1, rel x:

camera:6.8m

(conf:97.8)

radar:3.0m

fusion:3.0m

GT:2.9m

(c) 𝑡𝑖𝑚𝑒2,

a collision

happens.

(d) 𝑡𝑖𝑚𝑒′
2
,

no collision.

Figure 15: A found fusion error for mathworks.

Result 2: The representative fusion errors found by FusED for

the two fusion methods are due to the dominance of camera over

radar, their mismatch, or the faulty prediction selection method.

5.4 RQ3: Evaluating Repair Impact

To avoid the fusion errors, one obvious alternative to the studied

fusion methods seems to simply let the radar predictions dominate

the camera predictions as the examples shown in Section 5.3 are

mainly caused by the dominance of unreliable camera prediction.

Such design, however, suffers from how to choose the fusion leads

from all radar predicted leads. If the fusion method simply chooses

the closest radar lead and that lead corresponds to an NPC vehicle

on a neighboring lane, the ego car may never pass the NPC vehicle

longitudinally even when the NPC vehicle drives at a low speed.

Table 1: # avoided / # distinct fusion errors.

S1 S1 S2 S2

default mathworks default mathworks

43/52 14/26 67/78 13/26

Based on our observation and analysis of the above fusion errors,

we suggest two improvements to enhance the fusion methods. First,

radar predictions should be integrated rather than dominated by

camera predictions (Cases 1-2). Second, vehicles intending to cut

in should be tracked and considered (Case 3). mathworks already

addresses the first aspect and thus has less fusion errors found.

Regarding the second one, for each tracked object by radar, we

store their latitudinal positions at each time step. At next time step,

if a vehicle’s relative latitudinal position gets closer to the ego car, it

will be included in the candidate pool for the leading vehicle rather

than discarded. We call this new fusion method mathworks+.

(a) 𝑡𝑖𝑚𝑒0 (b) 𝑡𝑖𝑚𝑒1 (c) 𝑡𝑖𝑚𝑒2 (d) 𝑡𝑖𝑚𝑒′
2

Figure 16: An fusion error avoided by mathworks+.

We evaluate mathworks+ via replacing the original fusion

method with it during the pre-crash window on the previously

found fusion errors. As shown in Table 1, at least 50% of found fu-

sion errors can be avoided. Figure 16 shows a fusion error found on

mathworks but avoided by mathworks+. At 𝑡𝑖𝑚𝑒0 (Figure 16a),

the ego car and a red truck drive on different lanes. At 𝑡𝑖𝑚𝑒1, math-

works does not consider the truck since it just starts to invade

into the current lane (the truck’s radar lead is discarded at 3○ in

Figure 3b). When the truck fully drives into the current lane, it is

too late for the ego car to avoid the collision at 𝑡𝑖𝑚𝑒2 (Figure 16c).

If mathworks+ is used since Figure 16a, the truck would be con-

sidered a leading vehicle at Figure 16b and the collision would be

avoided at 𝑡𝑖𝑚𝑒 ′
2
(Figure 16d). These results demonstrate the im-

provement of mathworks+. Further, it implies that with a good

fusion method, many fusion errors can be avoided without modify-

ing the sensors or the processing units.

Result 3: Based on the observations of the found fusion errors,

we adjust the fusion method we study and enable it to avoid

more than 50% of the initial fusion errors.
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6 RELATED WORK

Search Based Software Engineering(SBSE). SBSE formulates a

software engineering problem into a search problem and applies

search-based metaheuristic optimization techniques [19, 20, 35].

In our context, we apply evolutionary algorithm to search for test

cases (scenarios) which can cause ego car’s fusion errors.

Scenario-Based Testing(SBT). In order to identify the errors of

a driving automation system, comprehensive tests are being con-

ducted by autonomous driving companies. The public road testing

approach is the closest to a system’s use case, but it is incredibly

costly. It has been shown that more than 11 billion miles are re-

quired to have a 95% confidence that a system is 20% safer than an

average human driver [25]. Most of these miles, however, usually do

not pose threats to the system under test and are thus not efficient,

if not wasted. To focus on challenging test cases, SBT techniques

have been developed where a system is tested in difficult scenarios

designed by experts or found by algorithms. Besides, since many

dangerous cases (e.g., a pedestrian crossing a street close to the

ego car) cannot be tested in the real world, such tests are usually

conducted in a high-fidelity simulator [46]. Existing works usu-

ally treat the system under test as a black-box and search for hard

scenarios to trigger ego car’s potential failure. Search methods

leveraging evolutionary algorithms [2, 10, 28, 45], reinforcement

learning [13], bayesian optimization [5], and topic modeling[15]

have been used.

The failures found can have different causes like the failure of

the sensors, the planning module, or the modules’ interactions.

However, most existing works either ignore the root cause analysis

or merely analyze causes for general failures. In contrast, we focus

on revealing failures causally induced by the fusion component.

Abdessalem et al. [3] study the failure of an ADAS’s integration

component which integrates the decisions of different function-

alities (e.g., AEB and ACC). In contrast, we focus on the fusion

component which integrates the data from multiple sensors. Be-

sides, the fusion component can either be rule-based (e.g., default)

or algorithm-based (e.g., mathworks) while the integration com-

ponent studied in [3] is only rule-based.

Adversarial Attacks on Fusion. Some recent works study how to

attack the fusion component of an automated system and thus fails

the system [11, 37, 40]. In particular, Cao et al. [11] and Tu et al.

[40] study how to construct adversarial objects that can fool both

camera and Lidar at the same time and thus lead the MSF to fail.

Shen et al. [37] study how to send spoofing GPS signals to confuse a

MSF on GPS and Lidar. In contrast to creating artificial adversarial

objects or sending adversarial signals, we focus on finding scenarios

under which the faults ofMSF lead to critical accidents without the

presence of any malicious attacker.

7 THREATS TO VALIDITY

There remains a gap between testing in real-world and testing in a

simulator. However, road testing is overly expensive and not flexible.

Besides, a simulation environment allows us to run counterfactual

simulations easily and attribute an failure to the fusionmethod used.

Consequently, we focus on testing in the simulation environment.

The causal graph (Figure 8) constructed may not capture all the

influential variables. To mitigate this threat, in RQ1, we run sanity

check of the causal graph by checking the reproducibility of the

simulation results when using the same endogenous variables.

Since we change the communication within Openpilot and that

betweenOpenpilot and carla to be synchronous and deterministic

(see Appendix C in the extended version [44]), the behavior of

Openpilot can be different from the original Openpilot. However,

this change should not influence the found fusion errors since

Openpilot should perform better when it receives the latest sensor

data rather than the delayed ones.

As in [2, 31], we evaluate the proposedmethod using the number

of found scenarios leading to fusion errors. However, we have

observed that this metric might double-count similar fusion errors.

To mitigate this threat, we additionally use another counting metric

based on the ego car’s trajectory (Section 3.4).

Besides, similar to previous works[2, 28], we evaluate the studied

ADAS in two driving environments. Since ADAS only performs the

task of lane following, the complexity of its applicable environments

is limited and thus mostly covered in the two environments.

Another threat is that the hyper-parameters are not fine-tuned.

However, even with the current parameters, the proposed method

already outperforms the baselines. We believe that the performance

of the proposed method can be improved by fine-tuning.

Furthermore, we only test mathworks+ on limited detected

fusion errors on Openpilot. There might be corner cases that are

not covered. Since we focus on fusion errors finding rather than

fixing, we leave a comprehensive study for future work.

Finally, the current fusion objective only applies to HLF and is

only tested on two popular fusion methods in Openpilot. Concep-

tually, the proposed method can generalize to the fusion component

in ADS like Apollo[9] and Autoware[39] which use HLF compo-

nents. We plan to study other types of fusion methods like MLF

and LLF, as well as MSF in ADS in future work.

8 CONCLUSION

In this work, we formally define, expose, and analyze the root causes

of fusion errors on two widely used MSF methods in a commercial

ADAS. To the best of our knowledge, our work is the first study on

finding and analyzing failures causally induced by MSF in an end-

to-end system. We propose a grey-box fuzzing framework, FusED,

that effectively detects fusion errors. Lastly, based on the analysis

of the found fusion errors, we provide several learned suggestions

on how to improve the studied fusion methods.
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