
A General Scheduling Framework for
Multi-objective Real-time Systems

Sen Wang1, Ashrarul Haq Sifat1, Xuanliang Deng1, Shao-Yu Huang2,
Changhee Jung2, Jia-Bin Huang3, Ryan Williams1, and Haibo Zeng1

1Virginia Polytechnic Institute and State University
2Purdue University

3The University of Maryland, College Park

Abstract—We regard the industry challenge as a multi-

objective real-time scheduling problem. Different from tradi-

tional methods, we model it as a nonlinear program (NLP)

and use gradient-based methods for efficient solutions. Different

requirements can be freely added as constraints, which gives

the proposed method effective for a large range of problems.

Furthermore, the proposed NLP scheduling method can utilize

available scheduling algorithm as initialization method, and

improve their performance even further. Preliminary evaluation

shows advantages against simple heuristic methods in compli-

cated problems.

I. INTRODUCTION

In this brief paper, based on the scheduling problem posed
by RTSS 2021 industry challenge [1], we model it as a
multi-objective scheduling problem and propose a general
scheduling method. Specifically, given a computing system
and multiple scheduling requirements, our method returns an
efficient scheduling algorithm that satisfies all the requirements
at the worst cost of pseudo-polynomial complexity. We envi-
sion that our approach can address the scheduling problem in
a broad range of real-time systems. In the following, we use
the original industry challenge as an example to illustrate our
methods. Necessary notations are introduced in this section.

We consider a single directed acyclic graph (DAG) model
G = (V,E) to describe computation works. Each node vi
has their own period Ti, worst-case execution time ci, relative
deadline di. An edge Eij , (vi, vj), goes from node vi to node
Vj means vj’s input depends on vi’s output. The overall DAG
graph G is not necessarily fully connected. The hyper-period,
the least common multiple of periods for all nodes in G, is
denoted as H . Within a hyper-period, the k-th instance of node
vi starts execution at time ski non-preemptively (required by
the industry challenge, but may be relaxed in our method),
and finishes at fki = ski + ci. For a node vi with precedence
constraints, we denote all its source tasks as pre(vi), and all
its successor as suc(vi).

A path in DAG is described by a node sequence �be =
{vb, ..., ve}, which starts at node vb and ends at node ve, and
is connected in sequence, i.e., (vi, vi+1) 2 E.

Any questions about this paper can be sent to Sen Wang: swang666@vt.edu,
Haibo Zeng: hbzeng@vt.edu

There are multiple requirements posed to the scheduling
system:

• Schedulability. All the nodes should be schedulable, i.e.,

ri  di (1)

In this paper, we consider implicit deadline for simplicity,
i.e., di = Ti.

• Computation resource bounds. All the computation
resources Ri (e.g., CPU, GPU) are not overloaded for any
time interval from ti to tj . The mathematical description
is given by demand bound function (DBF) [2] as follows

8Ri,DBF(ti, tj)  tj � ti (2)

We will give a more detailed description for this require-
ment in the methodology section.

• Sensor bound. If we use vi to denote a node under
consideration, and {vl|vl 2 pre(vi)} represents all its
predecessor nodes, then for any instance vik with start
time at sik, the time difference of all the source data
tokens vlj must be smaller than ⇥s.

8sik, 8slj 2 {0  l  H

Tl
|slj  sik < sl(j+1)} : (3)

max
l

slj �min
l

slj  ⇥s (4)

• Event chain. For all the event chains �be, the response
time from its start at sbi to its end at sej should be
bounded:

8 2 �be, sej + ce � sbi  ⇥e (5)

where the instances of vik 2 �be are matched by the
following constraints:

8b  i  e, s(i�1)l  sik  s(i�1)(l+1) (6)

• Period constraints. All the instances of each task cannot
start earlier than the beginning of their periods.

8i, k, sik � Ti(k � 1) (7)

• DAG dependency. Each node cannot start until all its
dependency tasks have finished.

8vi, 8l 2 pre(vi), sl0 + cl  si0 (8)

1

Unlike traditional DAG systems where all the nodes have
same frequency, in our model where different nodes have dif-
ferent frequency, over-sampling or under-sampling [3] would
be unavoidable.

II. METHODOLOGY

We model the scheduling problem as an optimization prob-
lem, and propose to use gradient-based methods to solve it for
efficiency. The main framework is shown in Fig. 1.

Establish feasibility
problem

Unconstrained
op�miza�on

Ini�al solu�on es�ma�on

Solve unconstrainted
op�miza�on

Check
Elimina�on

Yes

No

Manage Elimina�on Tree

Result

Figure 1: Main optimization framework

A. Schedulability analysis
We propose a new method to analyze schedulability for non-

preemptive situations based on the ILP formulation proposed
by Baruah [4]. The proposed algorithm is proved to yield the
same results as [4], but with worst computation cost of only
O(N2) (in average O(N log(N))) as opposed to O(N3) in
[4]. Formal description and proof are skipped because of word
limits, but the basic ideas are described as follows:

In non-preemptive situations, an equivalent schedulability
analysis can be obtained by calculating “interval” overlapping,
where an “interval” is defined as a task instance’s execution
interval. For example, job vik’s execution interval starts at sik,
and ends at sik + ci. If all the intervals are not overlapping
with each other, then the system is schedulable.

B. Optimization problem formulation
In this paper, we decide to formulate the scheduling problem

as an optimization problem. Inspired from operation research

[4], the variables are the start time of all the node instances
in the DAG graph G within a hyper-period. Such modeling
method is very flexible and can easily describe all the con-
straints without pessimistic assumptions. The constraints are
described in the previous section, as specified by Equation
eqs. (1) to (8). The optimization problem that we are con-
sidering is general, in the sense that different constraints can
be added or removed freely if only they can be expressed
mathematically.

The objective of the optimization is to find a set of start
variables for each task instance such that all the constraints
are satisfied.

C. Approximated unconstrained optimization

Depending on task periods, the optimization problem pro-
posed could have a large number of variables and constraints.
As such, integer linear programming proposed in Baruah’s
formulation [4] is not appropriate in our case. However,
efficient algorithms exist by noticing that most constraints as
described above are only concerned with a few variables. Such
sparsity is well exploited in many robotics and optimization
problems such as simulated localization and mapping (SLAM)
[5], [6], motion planning [7], where thousands or even millions
of variables are optimized together with fast speed.

To exploit such sparsity with nonlinear optimizer, we trans-
form the feasibility problem above into an unconstrained opti-
mization problem with barrier function [8]. Given a constraint
such as

f(x)  0 (9)

It is transformed into an objective function

Barrier(f(x)) =

(
0, f(x)  0

g(x), otherwise
(10)

where the g(x) > 0 is a punishment function for violated
constraints.

Since most constraints are linear with respect to their
variables, the punishment function is usually straightforward
to design. For example, the schedulability constraints

ri(s)� di  0 (11)

is transformed to

Barrier(ri(s)� di) =

(
0, ri(s)� di  0

di � ri(s), otherwise
(12)

After transforming constraints into objective function with
the barrier method, we formulate a least-square minimization
problem as follows:

min
s

MX

m=1

Barrier2(fi(s)) (13)

Since the Barrier function always gives a positive error if some
constraints are violated, objective function 13 establishes a

2

necessary and sufficient condition for schedulability analysis:
s is schedulable if and only if:

MX

m=1

Barrier2(fi(s)) = 0 (14)

D. Gradient-based optimization method

After formulating an optimization problem, we use gradient-
based trust-region methods [7], [9] to solve it.

1) Numerical Jacobian evaluation: Since many constraints
are not differentiable, numerical methods are used to estimate
Jacobian matrix in these situations:

@f

@xi
=

f(x1, ..., xi + h, ..., xN)� f(x1, ..., xi � h, ..., xN)

2h
(15)

The h parameter above should be reasonably small to properly
estimate Jacobian matrix. Although numerical Jacobian is
simple, analytic Jacobian should always be preferred whenever
possible because it would save lots of computation cost.

2) Vanishing gradient problem: During optimization, some
points have 0 gradient with non-zero error, as shown in Fig.
2. To handle this issue, a simple idea would be increasing the
granularity, i.e., h in Equation 15, until the gradient is not zero
if the interval overlap error is not 0. More effective ideas such
as random walk will be exploited in the future.

Time0
Task 1

Task 2

Figure 2: When task 1’s interval(see section II-A) fully covers
task 2’s interval, gradient for both the start time of task 1
and task 2 would become 0, even though the system is not
schedulable.

E. Managing elimination forest

In this section, we propose a new algorithm named elimina-
tion forest to bring more efficient and effective optimization.
Let’s consider an unconstrained optimization problem:

min
x

f(x) (16)

where f(x) : Rn �! Rm is a discrete function. Furthermore,
we assume this optimization problem is solved by gradient-
based methods as mentioned above. Two definitions are given
there for the ease of presentation.

Definition II.1 (Local optimal point). A point x0 is a local
optimal point if

8� 2 {Rn| |�| = 1}, � �! 0 :

f(x0)  f(x0 +��) (17)

Definition II.2 (Pseudo-local optimal point (PSOP)). A point
x0 for an objective function f(x) is called pseudo-local
optimal point if

• It is judged as a local optimal point from Jacobian J ,
Hessian H or their variants:

� �! 0 : f(x0) < f(x0 +�(J,H)) (18)

where � is given by the common gradient based meth-
ods such as steepest descent, Gauss-Newton, Levenberg-
Marquardt (LM) [10], [11], Dogleg(DL) [12], etc.

• It is not a local optimal point, i.e.,

9� 2 {Rn| |�| = 1}, � �! 0 :

f(x0 +��)  f(x0) (19)

1) Leaving PSOC by elimination: In our experience, it is
very common that the optimization algorithm is stuck at a
local optimal or a pseudo-local optimal point. Two possible
reasons are summarized:

• Numerical Jacobian at a discrete point is not estimated
appropriately such that the Jacobian matrix becomes
very large towards one direction. As a result, optimizer
tends to go along the opposite direction, which may be
misleading.

• Some constraints are very tight such that slightly adjust-
ing some variables to optimize the objective function in
one direction will cause other constraints to be violated.

Both two situations suggest that we may be able to leave
this situation if we can leave some dimension of objective
function out of consideration. For example, if the optimization
algorithm terminates at some point x0 and f(x0) > 0, we
would go through each dimension fi(x)0, if we find that

fi(x0) = ✓ (20)

where ✓ � 0 is smaller than a very small pre-defined threshold,
then we stop optimizing toward this criteria, and eliminate this
dimension from objective function. To keep variables remain
at fi(x0) in the future, we transform it into a constraint added
to the variables in such a form

xk = g(x0, ✓) (21)

In other words, xk depends on other variables and can be
derived from Equation 21. In the following optimization loops,
xk will always be replaced with its dependency variables based
on Equation 21.

2) Building elimination forest: As the iteration loop con-
tinues, more and more variables may be eliminated and
could bring confliction. Inspired from Bayes tree proposed by
Kaess et al. [13], we propose elimination forest, an efficient
algorithm for managing elimination.

Building an elimination forest is simple. First create a node
(root for a tree) for each variables. Each time a variable
is eliminated, add dependency edges from the eliminated
variables to the dependency variables. Since all the nodes in a
tree have fixed relative value (given by equation 21), adding a

3

2

3 5

8

6

7

0

9 4

1

Tree 1 Tree 2 Tree 3 Tree 4

Figure 3: Managing elimination forest: After adding an edge
from node 7 to node 8, all the nodes in tree 1 and 2 have fixed
relative value. Careful attention must be paid to prevent related
nodes, such as node 6 and node 2, violate some constraints.

new dependency may indirectly make some nodes in those two
trees violate some constraints. In that case, confliction check
must be performed to all the nodes in the two related trees.
An example is given in Fig. 3.

Building elimination forest is also helpful in improving al-
gorithm efficiency because all the nodes inside an elimination
tree are already checked to be confliction-free. When two
nodes are considered to be added together, we only need to
check confliction between the two trees. It will save more
time and effort when performing optimization with respect to
a large number of variables.

F. Initial solution estimation

Flexible initialization policy makes NLP compatible with
most available scheduling algorithms to achieve further per-
formance boost. If only one scheduling algorithm could satisfy
parts of requirements, then it can be used as initialization
and the proposed algorithm is expected to work better. For
example, Rate Monotonic is used in our experiments.

III. PRELIMINARY RESULTS

Because of time limits, we only finished partial, slow
implementation of the proposed ideas. The algorithm is tested
in 500 random task sets, whose periods are limited to a small
range {100, 200, 300, 400, 500} for fast evaluation. The results
are summarized in Table tables I to V. The first row reports
initialization method’s performance, second row reports base-
line optimization method simulated annealing (SA), third row
are the proposed NLP algorithm. All the experiments within
one table have the same initialization, and all the experiments
are evaluated based on the same task sets.

Several preliminary conclusions can be drawn from these
experiments:

Algorithm 1: Managing elimination forest inside one
iteration
Input: variables x after performing unconstrained

optimization, elimination graph G
Output: elimination graph G

1 if G is empty then

2 Add x as independent nodes to G
3 else

4 end

// iterate over objective function
5 for (i = 0; i < m; i = i+ 1) do

6 if fi(x)  ✓ then

7 x0 = Eliminated variable
8 X = Dependency variables
9 Trees = {}

10 for (xj 2 {x0, X}) do

11 Trees.add(ExtractSubGraph(G, xj))
12 end

13 if CheckConfliction(Trees) then

14 G. AddEdge(x0, X)
15 end

16 end

17 end

18 return G

• The proposed algorithm improves around 50% to 1000%
acceptance rate in the experiments, which proves the
validity and effectiveness of the algorithm.

• The proposed algorithm can easily handle systems with
different constraints and requirements.

• Although relying on a reasonable initialization method,
the proposed algorithm does not require a very good
initialization, which is critical in practice.

• It takes a longer time than the baseline methods, which
we believe is mostly an implementation issue and can be
improved.

In the near future, we will perform more extensive experi-
mental evaluation on larger random task sets. Another major
goal is to look at ways to improve the runtime efficiency of
the proposed methods.

REFERENCES

[1] PerceptIn, “2021 rtss industry challenge.” http://2021.rtss.org/
industry-session/, 2021.

[2] S. Baruah, M. Bertogna, and G. Buttazzo, “Multiprocessor scheduling
for real-time systems,” in Embedded Systems, 2015.

[3] J. Abdullah, G. Dai, and W. Yi, “Worst-case cause-effect reaction latency
in systems with non-blocking communication,” 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1625–1630,
2019.

[4] S. Baruah, “Scheduling dags when processor assignments are speci-
fied,” Proceedings of the 28th International Conference on Real-Time
Networks and Systems, 2020.

[5] F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Found.
Trends Robotics, vol. 6, pp. 1–139, 2017.

[6] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The International
Journal of Robotics Research, vol. 25, pp. 1181 – 1203, 2006.

4

Table I: Random task sets subject to DBF, DAG constraints, single processor

Algorithm Accept rate
(Error<1)

Accept rate
(Error<0.1)

Average Initial Error
(time units)

Average Optimized Error
(time units)

Average time
(seconds)

RM&DAG Initialize 54.4% 54.4% 54.87 - 2e-4

SA RM Optimize 54.4% 54.4% 54.87 54.87 0.446

NLP RM Optimize 72% 66.6% 54.87 3.43 0.165

Table II: Random task sets subject to DBF, DAG, SensorBound constraints, single processor

Algorithm Accept rate
(Error<1)

Accept rate
(Error<0.1)

Average Initial Error
(time units)

Average Optimized Error
(time units)

Average time
(seconds)

RM&DAG Initialize 31.4% 31.4% 158.29 - 2e-4

SA RM Optimize 31.4% 31.4% 158.29 158.29 0.443

NLP RM Optimize 58% 53.6% 158.29 31.12 1.58

Table III: Random task sets subject to DBF, DAG, SensorBound, two processors

Algorithm Accept rate
(Error<1)

Accept rate
(Error<0.1)

Average Initial Error
(time units)

Average Optimized Error
(time units)

Average time
(seconds)

RM&DAG Initialize 40.2% 38.4% 115.04 - 2e-4

SA RM Optimize 40.2% 38.4% 115.04 115.04 0.471

NLP RM Optimize 66.2% 63.4% 115.04 22.28 1.65

Table IV: Random task sets subject to DBF, DAG constraints, two processors

Algorithm Accept rate
(Error<1)

Accept rate
(Error<0.1)

Average Initial Error
(time units)

Average Optimized Error
(time units)

Average time
(seconds)

RM Initialize 7.8% 7.8% 91.45 - 3e-4

SA RM Optimize 7.8% 7.8% 91.45 91.45 0.453

NLP RM Optimize 81.6% 78.8% 91.45 2.63 0.22

Table V: Random task sets subject to DBF, DAG, SensorBound, two processors

Algorithm Accept rate
(Error<1)

Accept rate
(Error<0.1)

Average Initial Error
(time units)

Average Optimized Error
(time units)

Average time
(seconds)

RM Initialize 6.8% 6.8% 168.94 - 3e-4

SA RM Optimize 6.8% 6.8% 168.94 168.94 0.451

NLP RM Optimize 66.2% 64.8% 168.94 24.50 2.13

[7] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,” The
International Journal of Robotics Research, vol. 37, pp. 1319 – 1340,
2018.

[8] S. P. Boyd and L. Vandenberghe, “Convex optimization,” IEEE Trans-
actions on Automatic Control, vol. 51, pp. 1859–1859, 2006.

[9] S. Wang, J. Chen, X. Deng, S. Hutchinson, and F. Dellaert, “Robot
calligraphy using pseudospectral optimal control in conjunction with a
novel dynamic brush model,” 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6696–6703, 2020.

[10] K. Levenberg, “A method for the solution of certain non – linear
problems in least squares,” Quarterly of Applied Mathematics, vol. 2,
pp. 164–168, 1944.

[11] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of The Society for Industrial and Applied Mathe-
matics, vol. 11, pp. 431–441, 1963.

[12] M. Powell, “A new algorithm for unconstrained optimization,” 1970.
[13] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert,

“isam2: Incremental smoothing and mapping using the bayes tree,” The
International Journal of Robotics Research, vol. 31, pp. 216 – 235, 2012.

5

	Introduction
	Problem Definition
	Verification Constraints & Analysis
	Constraint Maximum Reaction Time
	Constraint Maximum Data Age
	Maximum Time Stamp Difference

	References
	System model
	Stochastic Heterogeneous Conditional DAGs
	Stochastic Conditional Nodes in DAG Models
	Sensor and Synchronization Nodes in DAG Models

	Shifting Bottleneck Scheduling Algorithm
	A Safety-Performance Metric
	References

