
EIGENVECTOR PHASE RETRIEVAL: RECOVERING

EIGENVECTORS FROM THE ABSOLUTE VALUE

OF THEIR ENTRIES

STEFAN STEINERBERGER AND HAU-TIENG WU

Abstract. We consider the eigenvalue problem Ax = λx where A ∈ Rn×n

and the eigenvalue is also real λ ∈ R. If we are given A, λ and, additionally,
the absolute value of the entries of x (the vector (|xi|)

n

i=1
), is there a fast

way to recover x? In particular, can this be done quicker than computing x

from scratch? This may be understood as a special case of the phase retrieval
problem. We present a randomized algorithm which provably converges in
expectation whenever λ is a simple eigenvalue. The problem should become
easier when |λ| is large and we discuss another algorithm for that case as well.

1. Introduction

We discuss the following problem: given a matrix A ∈ R
n×n having a real eigenvalue

λ ∈ R with eigenvector Ax = λx, is it possible to ‘quickly’ recover the eigenvector
x ∈ R

n from knowing the absolute values of all its entries, i.e. |xi|ni=1? We assume
throughout the paper that both A ∈ R

n×n and λ ∈ R are known and that the
eigenvalue λ is simple which makes the associated eigenvector x unique (up to
sign): the problem is to recover the sign vector ε = (εi)

n
i=1 defined via the equation

xi = εi|xi|. Naturally, given A and λ, we can find the eigenvector x by look for a
vector in the nullspace

0 6= x ∈ ker(A− λ · Idn×n).

Can one do better by using knowledge about the size of the entries?

Problem. When computing an eigenvector Ax = λx, does it help
to know the magnitude |xi|ni=1 of all n entries of the eigenvector in
advance? If yes, how much does it help?

It is clear that there are cases when this helps: if, for example, we already know
that |xi| = 0 for many indices i, then we can simply look for an eigenvector of the
induced submatrix of A. This is clearly an easier problem because the sub-matrix
is going to be smaller. Or, if one entry |xi| is much larger than all the other entries,
then this should also be useful in recovering the eigenvector. The focus of this
paper will be on the most general case: we thus make no particular assumptions
on |xi|ni=1, we will only assume w.l.o.g. that they are all nonzero. There is another
natural case which we will not address in this paper: if x ∈ C

n is complex, then
reconstructing xi from |xi| would require reconstructing a phase xi = eiθi |xi| which
is more difficult than recovering a sign xi = εi|xi|. We will only consider the case
of real eigenvalues λ and real matrices A ∈ R

n×n.

2020 Mathematics Subject Classification. 05C50, 65F10, 94A12.
Key words and phrases. Eigenvector phase retrieval, phase retrieval, synchronization.
S.S. was partly supported by the NSF (DMS-2123224) and the Alfred P. Sloan Foundation.

1

ar
X

iv
:2

1
0
9
.1

1
1
4
3
v
3

[m

at
h
.F

A
]

 3
 A

u
g
 2

0
2
2

2

We quickly discuss some related problems: a matrix identity dating back to Jacobi
[7] and discovered many more times (see Denton, Parke, Tao & Zhang [6]) is as
follows: using Aj to denote minor of A that results from removing the j−th row
and column, the j−th entry of the i−th eigenvector satisfies

|vi,j |2
n
∏

k=1

k 6=i

(λi(A)− λk(A)) =

n−1
∏

k=1

(λi(A)− λk(Aj)).

In particular, if we were really good at finding eigenvalues, we could almost find
eigenvectors at the same speed: the only missing ingredient is recovering the sign.
There are other motivations. One could look at the problem combinatorially and
argue that (|xi|)ni=1 are step sizes on R and we have to arrange for each step to go
either left or right to hit a certain target – and this has to be done simultaneously
for n such problems. This interpretation suggests that the problem should become
easier when (|xi|)ni=1 has a few entries that are substantially larger than others. The
question is also naturally connected to other problems: the classical phase retrieval
problem [4, 10, 5, 13, 9] asks to recover a vector x ∈ R

n (or C
n) from ‘phaseless’

measurements |〈ai, z〉|, where ai ∈ R
n (or C

n) for 1 ≤ i ≤ m. Our problem is
naturally related in the sense that we are trying to solve |〈ai, x〉| = |λxi|, however,
it is clearly a more specialized case since we have additional information about
x. As such, it may be a useful toy model for the full phase retrieval problem. We
conclude with the Komlos conjecture [11]: given v1, . . . , vn ∈ R

n such that ‖vi‖ ≤ 1,
it is clear that there exists a universal constant cn (depending only on n but not
on the vectors) such that there exist signs ε1, ε2, . . . , εn ∈ {−1, 1} with

‖ε1v1 + ε2v2 + · · ·+ εnvn‖ ≤ cn.

Random signs show that cn ≤ √
n. The Komlos conjecture asks whether cn can be

taken to be independent of n and there are now algorithmic constructions that lead
good choices of signs (see [1, 2, 3]). Our result is of a similar flavor except that when
considering the eigenvectors v1, . . . , vn ∈ R

n of the matrix A−λ · Idn×n we know a
priori by assumption that there exist signs for which ε1v1 + ε2v2 + · · ·+ εnvn = 0.

2. Results

2.1. Summary. We quickly outline the structure of the paper.

(1) Algorithm 1, presented in §2.2, is an iterative, randomized algorithm for
recovering the true sign given A, λ and (|xi|)ni=1.

(2) One of the nice aspects of Algorithm 1 is that it can be analyzed. We prove
that it converges in the limit at a rate depending on the singular values of
an associated matrix. This result is stated in §2.3.

(3) Algorithm 1, in practice, can be slow. §2.4 presents Algorithm 2 which is
very simple and often faster. Algorithm 2 will not work for small eigenvalues
|λ| ∼ 0, however, it is often remarkably effective for |λ| large. We explain
the underlying reason in §4.4.

(4) All these points are numerically illustrated in §3.
(5) The proof of the main result is given in §4.

One interesting aspect of both Algorithm 1 and Algorithm 2 is that they tends
to quickly produce estimates for the true sign (εi)

n
i=1 of which more than 51% are

correct. This suggests a secondary question (which we do not pursue in this paper):

3

is it significantly easier to recover a nontrivial fraction of the true signs (say, 51%)
than it is to recover all of them? One would perhaps assume that recovering 51%
is the difficult part. It would be interesting to make this notion precise.

2.2. Algorithm 1. This section introduces Algorithm 1. Note that whenever
|xi| = 0, then xi = 0 and we can remove these coordinates from consideration.
This allows us to assume without loss of generality that xi 6= 0 for all 1 ≤ i ≤ n.
Our initial reduction will be to make the ansatz xi = εi|xi|. Then, for all 1 ≤ i ≤ n,

n
∑

j=1

aijεj |xj | = λεi|xi|

and thus, for all 1 ≤ i ≤ n,
n
∑

j=1

aij
|xj |
|xi|

εj = λεi

This means that the sign vector ε ∈ {−1, 1}n is an eigenvector of eigenvalue λ of
the matrix B ∈ R

n×n, where

Bij = aij
|xj |
|xi|

.

That is, B = D−1AD, where D ∈ R
n×n is a diagonal matrix with Dii = |xi|. The

true sign vector ε ∈ {−1, 1}n is a non-trivial solution of the linear system

(B − λ · Idn×n)y = 0

and we will assume that this solution is unique. We introduce the matrix

C = B − λ · Idn×n ∈ R
n×n

and use c1, . . . , cn ∈ R
n×n to denote its n rows. One way of interpreting C is that

it normalizes the matrix B so that each sign xi = εi|xi| has the same amount of
weight independently of the size of |xi|.

Algorithm 1. Start with an arbitrary initial guess 0 6= y0 ∈ R
n.

(1) Given yk, generate a random number i ∈ {1, 2, . . . , n} where
the likelihood of choosing 1 ≤ j ≤ n is given by

P(i = j) =
‖cj‖2
‖C‖2F

.

(2) Set

yk+1 = yk −
〈

yk,
ci

‖ci‖

〉

ci

‖ci‖
.

(3) When stopping afterm steps, use the signs of ym, (sign((ym)i))
n
i=1,

as an approximation for the true signs ε.

We quickly discuss what to expect: it is intuitive to suspect that the problem will
become more difficult if there are other eigenvectors of A with a similar eigenvalue
and eigenvalues that have entries with comparable size. It is certainly conceivable
that a matrix A has, for two eigenvalues λ1 6= λ2 two eigenvectors Ax1 = λ1x1

and A2x2 = λ2x2 such that, for each 1 ≤ i ≤ n, we have |(x1)i| = |(x2)i| for
all 1 ≤ i ≤ n. So having accurate information on the eigenvalue is certainly
required, since λ1 and λ2 could be arbitrarily close to each other: choosing a small
perturbation of the eigenvalue may lead to a different solution. This has to be

4

incorporated in the statement, and indeed our analysis will be phrased in terms of
the spectral gap of C. We denote the singular values of a matrix M ∈ R

n×n by

σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M).

Since C has a nontrivial null space, Cε = 0, we have σn(C) = 0. We will assume
that σn−1(C) > 0 to recover some form of uniqueness. The other relevant quantity
in our analysis is the Frobenius norm ‖C‖2F = tr (CCT). We can now informally
state properties of the algorithm.

(1) In a suitable sense, (ym) → λε, where λ ∈ R, in expectation as m → ∞.
The algorithm recovers a multiple of the ground truth in expectation.

(2) We expect, in a sense to be made precise, that (sign(ym)i)
n
i=1 coincides with

(εi)
n
i=1 with some nontrivial likelihood as soon as

m &
‖C‖2F

σ2
n−1(C)

log n.

(3) It is to be expected that (sign((ym)i))
n
i=1 and ε coincide in a nontrivial

fraction of entries (exceeding 50%) already for smaller values of m.

We note that Algorithm 1 can be interpreted as a simplified version of the Random
Kaczmarz method proposed by Strohmer & Vershynin [15] applied to the problem of
finding the nullspace of a matrix (see Steinerberger [12]): a crucial new ingredient is
that we know the solution to be an element in {−1, 1}n which allows for an effective
rounding procedures. We also refer to work of Jeong & Güntürk [8] and Tan &
Vershynin [14] (see also Wei [16]) who used Random Kaczmarz for the classical
phase retrieval problem which is somewhat related to our approach.

2.3. The Theorem: Analysis of Algorithm 1. This section describes some
properties of Algorithm 1. We will prove an inequality of the following type: the
number of signs that are incorrectly recovered by yk multiplied with the square
of ‖yk‖ is, in expectation, an exponentially decaying quantity in k: either the
number of incorrectly predicted signs or the norm ‖yk‖ has to decay in k. This is
complemented by a second bound stating that if y0 is chosen uniformly at random
from a sphere around the origin, then E‖yk‖ is bounded from below uniformly in k:
the exponential decay is given by the number of incorrectly predicted signs. There
is a small ambiguity: if Ax = λx is an eigenvector, then −x is an element from
the same eigenspace and can be viewed as the ‘same’ eigenvector. Therefore, the
‘correct’ signs ε ∈ {−1, 1}n as defined via the equation xi = εi|xi| are really only
defined up to sign in the global sense: if ε is a correct choice of signs, then so is
−ε. We fix one of the two admissible choices, call it ε and introduce the set of
incorrectly recovered signs

S = {1 ≤ i ≤ n : sign((yk)i) 6= εi} .
The goal is to have the size of S to be either as small as possible (if #S = 0, then
the signs of yk and ε coincide) or as large as possible (if #S = n, then the signs of
yk and −ε coincide which would then correctly reproduce the eigenvector −x).

Theorem (Main Result). If σn−1(C) > 0, then

E
[

min {#S, n−#S} · ‖yk‖2
]

≤ n

(

1− σ2
n−1(C)

‖C‖2F

)k

· ‖y0‖2 .

5

If y0 is chosen uniformly at random from a sphere centered at the origin, then

∀ k ∈ N E ‖yk‖2 ≥ ‖y0‖2
n

.

This result shows that we can expect complete recovery for a range of

k &
‖C‖2F

σ2
n−1(C)

log n.

This may at first glance be too good to be true since the dimension only appears
logarithmically. However, recalling that

σ2
n−1(C) ≤ 1

n− 1

n−1
∑

k=1

σk(C)2 ≤ 1

n− 1
‖C‖2F ,

we see that we require, independently of C, at least k & n log n iteration steps.

2.4. Algorithm 2. We now present Algorithm 2. We follow the same type of
reduction as in Algorithm 1 and arrive at the problem of finding a vector (εi)

n
i=1 ∈

{−1, 1}n in the nullspace of a given matrix

C = B − λ · Idn×n ∈ R
n×n.

Algorithm 2. Start with an arbitrary initial guess ε0 ∈ {−1, 1}n.
(1) Given εk, compute the vector v = Cεk.
(2) Generate a random number i ∈ {1, 2, . . . , n} where the likeli-

hood of choosing 1 ≤ j ≤ n is given by

P(i = j) =
|vj |2
‖v‖2 .

(3) Define εk+1 by taking εk and flipping its i′th entry, i.e.

(εk+1)i = −(εk)i

while keeping all other entries the same.

3. Numerical Examples

The purpose of this section is to give numerical examples that illustrate the per-
formance of the algorithms on highly structured and highly random matrices.

3.1. Hadamard matrices. We start with an explicit example: pick A to be a
256 × 256 Hadamard matrix and then set A11 = 2. A has one eigenvalue λ1 ∼ 2
and one eigenvalue λ256 ∼ −0.5, all other eigenvalues are ±1. We try to recover
the eigenvector corresponding to the largest eigenvalue, see Fig. 1.
We will now switch gears, see Fig. 2, and try to instead recover the eigenvector
corresponding to the smallest (absolute) eigenvalue λ256 ∼ −0.5. Algorithm 1
behaves in an essentially the same way: it trends towards recovering the ground
truth and achieves perfect recovery typically within a couple of thousand iterations
at roughly the same rate as the eigenvector associated to the largest eigenvalue.
In contrast, Algorithm 2 does not seem to converge at all, even when run for
many more iteration steps. This is explained in §4.4 and illustrates the point that
Algorithm 2 can only be effective for eigenvalues for which |λ| is disproportionately
large compared to the other eigenvalues.

6

2000 4000 6000 8000 10000

20

40

60

80

100

120

50 100 150 200 250 300

20

40

60

80

100

120

Figure 1. Number of incorrect signs (y−axis) vs. iteration steps
(x−axis). Left: sample run of Algorithm 1 for λ1. It correctly re-
covers all signs within a couple of thousand iteration steps. Right:
Algorithm 2 recovers the ground truth almost immediately.

2000 4000 6000 8000 10000

20

40

60

80

100

120

20000 40000 60000 80000 100000

50

100

150

Figure 2. Number of incorrect signs (y−axis) vs. iteration steps
(x−axis). Left: sample run of Algorithm 1 for λ256. It correctly re-
covers the signs within a couple of thousand iteration steps. Right:
Algorithm 2 does not seem to converge at all.

3.2. A Random Matrix. Our second example (see Fig. 3) will be as follows: we
choose a matrix A ∈ R

100×100 to have i.i.d. Gaussian entries aij ∼ N (0, 1). We
then replace A11 by 50 to create a nice spectral gap. Algorithm 1 works and has a
nice flow evolving towards the ground truth. Since the eigenvalue is extremal, we
expect Algorithm 2 to perform much better. Indeed, it recovers the ground truth
within relatively few iterations.

4. Proof

We start with an outline of the structure of the argument. We use ε ∈ {−1, 1}n
to denote the true solution and will analyze the algorithm with respect to the
orthogonal decomposition

yk =

〈

yk,
ε

‖ε‖

〉

ε

‖ε‖ +

(

yk −
〈

yk,
ε

‖ε‖

〉

ε

‖ε‖

)

.

Note that the first term is merely the orthogonal projection onto the one-dimensional
subspace spanned by ε, the second term is everything else. We will show (Lemma
1) that the first term fluctuates a little in k but preserves its value in expectation.
The second term, on the other hand, decays exponentially in expectation. We will

7

20000 40000 60000 80000 100000

10

20

30

40

50

200 400 600 800 1000

10

20

30

40

50

Figure 3. Left: a sample run of Algorithm 1 on a random Gauss-
ian matrix. Right: Algorithm 2 on the same matrix.

then argue (Lemma 2) that the size of the second term yields an upper bound on
the number of entries of yk whose sign disagrees with the corresponding sign of ε.
These two estimates then imply the Theorem.

4.1. Lemma 1: exponential shrinking.

Lemma 1. For all k ∈ N,

E 〈yk, ε〉 = 〈y0, ε〉 .
The orthogonal projection of yk in directions orthogonal to ε satisfies

E

∥

∥

∥

∥

yk −
〈

yk,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

≤
(

1− σ2
n−1(C)

‖C‖2F

)k

·
∥

∥

∥

∥

y0 −
〈

y0,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

.

Proof. We write yk as the sum of the projection onto ε and the rest. Therefore, for
each k, the decomposition yk = πk + rk, where

πk =

〈

yk,
ε

‖ε‖

〉

ε

‖ε‖
and

rk = yk − πk.

The Pythagorean theorem tells us that

‖yk‖2 = ‖πk‖2 + ‖rk‖2.
Our desired inequality can be phrased as an inequality for ‖rk‖2. We now observe
a deterministic identity: since Cε = 0, we have 〈ci, ε〉 = 0 for all 1 ≤ i ≤ n and
thus, independently of which 1 ≤ j ≤ n is chosen, that

yk+1 = yk −
〈

yk,
cj

‖cj‖

〉

cj

‖cj‖

= πk + rk −
〈

πk + rk,
cj

‖cj‖

〉

cj

‖cj‖

= πk + rk −
〈

rk,
cj

‖cj‖

〉

cj

‖cj‖
.

From this, we infer that πk+1 = πk whereas rk undergoes a random evolution and

rk+1 = rk −
〈

rk,
cj

‖cj‖

〉

cj

‖cj‖
with likelihood

‖cj‖2
‖C‖2F

.

8

We can now compute, conditional on rk, that

E ‖rk+1‖2 =

n
∑

j=1

‖cj‖2
‖C‖2F

∥

∥

∥

∥

rk −
〈

rk,
cj

‖cj‖

〉

cj

‖cj‖

∥

∥

∥

∥

2

= ‖rk‖2 −
1

‖C‖2F

n
∑

j=1

〈rk, cj〉2

= ‖rk‖2 −
‖Crk‖2
‖C‖2F

.

Since rk is orthogonal to ε (which is the unique vector associated to the smallest
singular value), we have ‖Crk‖2 ≥ σ2

n−1(C)‖rk‖2 and therefore

E ‖rk+1‖2 ≤
(

1− σ2
n−1(C)

‖C‖2F

)

‖rk‖2.

Iterating the inequality gives the desired result. �

4.2. A simple inequality. We will also use an elementary inequality for vectors
to show that the second term in our orthogonal decomposition is directly connected
to the number of incorrectly recovered signs. The inequality is independent of the
algorithm and true for all vectors y ∈ R

n.

Lemma 2. For any ε ∈ {−1, 1}n and any y ∈ R
n, denote the number of coordinates

where y and ε have a different sign by

S = {1 ≤ i ≤ n : sign(yi) 6= εi} .
Then

∥

∥

∥

∥

y −
〈

y,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

≥ min {#S, n−#S}
n

· ‖y‖2.

Proof. We start with the orthogonal decomposition

y =

〈

y,
ε

‖ε‖

〉

ε

‖ε‖ +

(

y −
〈

y,
ε

‖ε‖

〉

ε

‖ε‖

)

.

The Pythagorean theorem implies that

‖y‖2 =

〈

y,
ε

‖ε‖

〉2

+

∥

∥

∥

∥

y −
〈

y,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

.

We now observe
〈

y,
ε

‖ε‖

〉2

=
1

n
〈y, ε〉2 =

1

n

(

n
∑

i=1

yiεi

)2

=
1

n

(

∑

i∈S

yiεi +
∑

i/∈S

yiεi

)2

=
1

n

(

∑

i∈S

−|yi|+
∑

i/∈S

|yi|
)2

=
1

n

(

n
∑

i=1

|yi| (1− 2 · 1i∈S)

)2

.

This sum is being squared, therefore we have to bound it from above and below.
Bounding it from above is easy: certainly the sum becomes larger if y vanishes in
all coordinates indexed by the set S and the Cauchy-Schwarz inequality implies

n
∑

i=1

|yi| (1− 2 · 1i∈S) ≤
∑

i∈Sc

|yi| ≤
√

#Sc · ‖y‖.

9

Minimizing the sum is similar, the sum becomes smaller if y vanishes in all the
coordinates indexed by Sc and, again via Cauchy-Schwarz,

n
∑

i=1

|yi| (1− 2 · 1i∈S) ≥ −
∑

i∈S

|yi| ≥ −
√

#S · ‖y‖.

Therefore,

1

n

(

n
∑

i=1

|yi| (1− 2 · 1i∈S)

)2

≤ max {#S,#Sc}
n

‖y‖2

and thus, since #S +#Sc = n,
∥

∥

∥

∥

y −
〈

y,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

≥ min {#S, n−#S}
n

‖y‖2.

�

4.3. Proof of the Theorem.

Proof. Lemma 2 implies that for the set

S = {1 ≤ i ≤ n : sign((yk)i) 6= εi} ,
we have

min {#S, n−#S}
n

· ‖yk‖2 ≤
∥

∥

∥

∥

yk −
〈

yk,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

Taking an expectation over both sides and using Lemma 1 leads to

E
min {#S, n−#S}

n
· ‖yk‖2 ≤ E

∥

∥

∥

∥

yk −
〈

yk,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

≤
(

1− σ2
n−1(C)

‖C‖2F

)k

·
∥

∥

∥

∥

y0 −
〈

y0,
ε

‖ε‖

〉

ε

‖ε‖

∥

∥

∥

∥

2

≤
(

1− σ2
n−1(C)

‖C‖2F

)k

· ‖y0‖2 .

It remains to prove the lower bound on ‖yk‖. Naturally, for any yk ∈ R
n, we have

(using the proof of Lemma 1)

‖yk‖2 ≥
〈

yk,
ε

‖ε‖

〉2

=
1

n
〈yk, ε〉2 =

1

n
〈y0, ε〉2 .

�

4.4. A Look at Algorithm 2. We conclude by discussing Algorithm 2. Our
observations will be heuristic and apply to generic matrices but will not be rigorous
at the level of being applicable to all matrices. Algorithm 2 proceeds by analyzing

Cεk = Bεk − λεk

and hoping that the size of the entries are a reasonable indicator of ‘how incorrect’
the corresponding entry is. Larger entries are more likely to be randomly chosen
and flipped. Let us consider the size of the i−th entry: its size is given by

(Cε)i =

n
∑

j=1

aij
|xj |
|xi|

εj − λεi

10

If we now assume most entries to be roughly correct then (Cε)i will be roughly ∼ 0
if εi has the correct sign and roughly ∼ ±2λ if the sign εi was chosen incorrectly.
This suggests that flipping εi with likelihood proportional to (Cε)i might be a good
idea when λ is large: things will surely get harder when λ is small. We conclude
by estimating the scaling of the relevant quantities when A is a random matrix.
Let us assume, for simplicity, that the entries of the eigenvector |xi| ∼ |xj | are
roughly comparable (up to some constant factors). Then, for randomly chosen
signs ε ∈ {−1, 1}n, we expect

n
∑

j=1

aij
|xj |
|xi|

εj to follow roughly N
(

0, σ2
i

)

,

where the variance is given by

σ2
i =

n
∑

j=1

a2ij
|xj |2
|xi|2

∼
n
∑

j=1

a2ij .

Assuming that A is a random matrix, all the rows have comparable norm and we
expect that

σ2
i ∼

n
∑

j=1

a2ij ∼
1

n

n
∑

i,j=1

a2ij =
1

n
‖A‖2F =

1

n

n
∑

i=1

σi(A)2 ≤ ‖A‖2,

where the last inequality is typically far from sharp (and only sharp if all singular
values are identical). This means that as soon as λ is an eigenvalue close to the
operator norm |λ| ∼ ‖A‖, it will typically dominate expressions of the type

(Cε)i =

n
∑

j=1

aij
|xj |
|xi|

εj − λεi

and Algorithm 2 will be effective in recovering the sign of the eigenvector (see §3).

References

[1] W. Banaszczyk, Balancing vectors and gaussian measures of n−dimensional convex bodies.

Random Structures & Algorithms, 12(4):351–360, 1998.
[2] N. Bansal, D. Dadush and S. Garg, An algorithm for Komlós conjecture matching Ba-

naszczyk’s bound. SIAM Journal on Computing, 48, 534-553. (2019)
[3] N. Bansal, D., Dadush, S., Garg and S/ Lovett, The Gram-Schmidt walk: a cure for the

Banaszczyk blues. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (pp. 587-597).

[4] A. Barnett, C. Epstein, L. Greengard, and J. Magland. Geometry of the Phase Retrieval
Problem: Graveyard of Algorithms (Cambridge Monographs on Applied and Computational
Mathematics). Cambridge: Cambridge University Press. 2022. doi:10.1017/9781009003919

[5] E. Candes, T. Strohmer and V. Voroninski, PhaseLift: Exact and stable signal recovery from
magnitude measurements via convex programming. Communications on Pure and Applied
Mathematics 66, 8 (2013), 1241–1274.

[6] P. B. Denton, S. J. Parke, T. Tao and X. Zhang. Eigenvectors from eigenvalues: A survey of
a basic identity in linear algebra, Bull. Amer. Math. Soc, to appear

[7] C. G. J. Jacobi, De binis quibuslibet functionibus homogeneis secundi ordinis per substitu-
tiones lineares in alias binas tranformandis, quae solis quadratis variabilium constant; una

cum variis theorematis de tranformatione etdeterminatione integralium multiplicium (Latin),
J. Reine Angew. Math. 12 (1834), p. 1–69.

[8] H. Jeong and C. S. Güntürk, Convergence of the randomized Kaczmarz method for phase
retrieval. arXiv preprint arXiv:1706.10291.

11

[9] S. Mallat and I. Waldspurger, Phase retrieval for the Cauchy wavelet transform. Journal of
Fourier Analysis and Applications 21.6 (2015): 1251-1309.

[10] S. Marchesini, Phase retrieval and saddle-point optimization. JOSA A 24.10 (2007): 3289-
3296.

[11] J. Spencer. Ten Lectures on the Probabilistic Method: Second Edition. SIAM, 1994.
[12] S. Steinerberger, Randomized Kaczmarz converges along small singular vectors, SIAM J.

Matrix Anal. Appl., 42 (2021), 608–615.
[13] J. Sun, Q. Qu and J. Wright, A geometric analysis of phase retrieval. Foundations of Com-

putational Mathematics, 18 (2018), p. 1131-1198.
[14] Y. S. Tan and R. Vershynin, Phase retrieval via randomized Kaczmarz: Theoretical guaran-

tees, Information and Inference: A Journal of the IMA 8.1 (2019): 97-123.
[15] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm for linear systems with

exponential convergence, Journal of Fourier Analysis and Applications, 15 (2009): p. 262–278
[16] K. Wei. Solving systems of phaseless equations via Kaczmarz methods: a proof of concept

study, Inverse Problems, 31(12):125008, 2015.

Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Email address: steinerb@uw.edu

Department of Mathematics and Department of Statistical Science, Duke University,

Durham, NC, USA

Email address: hauwu@math.duke.edu

	1. Introduction
	2. Results
	2.1. Summary.
	2.2. Algorithm 1.
	2.3. The Theorem: Analysis of Algorithm 1.
	2.4. Algorithm 2.

	3. Numerical Examples
	3.1. Hadamard matrices.
	3.2. A Random Matrix.

	4. Proof
	4.1. Lemma 1: exponential shrinking.
	4.2. A simple inequality.
	4.3. Proof of the Theorem
	4.4. A Look at Algorithm 2.

	References

