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Abstract. In many real world oscillatory signals, the fundamental component
of a signal f(t) might be weak or does not exist. This makes it difficult to
estimate the instantaneous frequency of the signal. Traditionally, researchers
apply the rectification trick, working with |f(t)| or ReLu(f(t)) instead, to
enhance the fundamental component. This raises an interesting question: what
type of nonlinear function g : R → R has the property that g(f(t)) has a more
pronounced fundamental frequency? g(t) = |t| and g(t) = ReLu(t) seem to

work well in practice; we propose a variant of g(t) = 1/(1− |t|) and provide a
theoretical guarantee. Several simulated signals and real signals are analyzed

to demonstrate the performance of the proposed solution.

1. Introduction

1.1. The problem. We start by describing the problem in the simplest possible
setting: suppose we are given a 1−periodic signal

(1) f(t) =

∞∑

k=0

ak cos (2πkt) + bk sin (2πkt)

and define the support of S to be S =
{
k ∈ N : a2k + b2k > 0

}
. Our goal is to recover

gcd(S), the greatest common divisor of all the elements in S. If we have recorded
two or more periods of the signal, then the gcd will be bigger than 1. In that case,
we call gcd(S) the fundamental frequency. Mathematically speaking, there is no
difficulty: compute the Fourier transform of f and check.

Figure 1. Left: f(t) = 0.8 cos (2π6t) + 1.4 cos (2π9t) +
0.9 cos (2π33t) has gcd(S) = 3. Right: the spectrogram shows
three distinct frequencies but not the fundamental frequency 3n.
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There are several reasons why this seemingly trivial problem is difficult in practice.

(1) In practice, all Fourier coefficients of f will be distinct from 0; some form
of thresholding to decide significance is required.

(2) The actual fundamental frequency may not be constant, it may change from
time to time, or it may not exist at all [1, 4, 10, 11, 13].

(3) We only have f sampled at finitely many points; moreover, in practice one
should always expect some form of noise.

1.2. Motivation from medicine. We describe an explicit problem coming from
medical signal processing which was partially the motivation for our paper. Our
example can be seen in Figure 2(a) and comes from a phonocardiogram (PCG)
signal [2]: this is a sound signal created by the vibrations created by the closure of
the heart valves. One fundamental component of the signal, one heartbeat, can be
seen within each of the two red boxes: it is comprised of two ingredients, S1 and
S2 (indicated by blue errors): S1 is due to the atrioventricular valves closing at the
beginning of systole and S2 is the consequence of the aortic and pulmonary valves
closing at the end of systole.

Figure 2. Phonocardiogram (a) and Spectrogram (b): no clear
fundamental frequency is visible. The heart rate of this subject is
about 2Hz; that is, there are two cardiac cycles per second.

Due to the heart rate variability, the periods between two consecutive cycles are
not fixed: an important but challenging problem is to estimate the heart rate at
a local point in time, this amounts to estimating the time-varying period, or the
instantaneous frequency. Naturally, one would be inclined to apply time-frequency
(TF) analysis [3]. This signal oscillates roughly twice per second, so the frequency
is around 2 Hz, and we would expect to see a dominant curve around 2 Hz that rep-
resents the fundamental component of the signal. However, we cannot see anything
concrete around 2 Hz from the standard spectrogram shown in Figure 2(b) and, in
this sense, the fundamental component of the signal does not exist. In short, we
need a different solution if we want to estimate the time-varying heart rate.
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1.3. The rectification trick. There is a surprisingly simple and widely applied
solution; that is, take the ‘rectification’ of the signal before running any sort of time-
frequency analysis. Mathematically speaking, take the signal |f(t)| where f(t) is
the signal of interest. We refer to Figure 3 where the signal from Figure 2 has been
analyzed after rectification: we analyze |f(t)| instead of f(t).

Figure 3. Rectified Phonocardiogram (a) and its Spectrogram
(b): a fundamental frequency around 2 Hz starts emerging, indi-
cated by red arrows.

Here, rectification leads to a dramatically different and much more informative
spectrogram in which a clearly defined fundamental frequency exists (indicated
by the red arrows). This simple solution has been widely applied in practice if
we want to estimate the fundamental frequency, for example, in the problem of
extracting fetal electrocardiogram (ECG) from the trans-abdominal maternal ECG
[9] or extracting f-wave from the ECG signal of a patient with atrial fibrillation
[6], which is a far from complete list. To the best of our knowledge, there is no
theoretical argument explaining why the rectification trick works to enhance the
fundamental component. We believe this to be of substantial theoretical interest.

Open problem. Why is standard time frequency analysis ap-
plied to |f(t)| better able to recover the fundamental underlying
frequency? Why does the ‘rectification’ trick work?

Abstracting the trick, we may interpret the rectification trick as the application of
a nonlinear activation function g(t) = |t|: instead of analyzing f(t), one analyzes
g(f(t)). Naturally, there are many other choices of the activation function [7], like
the commonly used Rectified Linear Unit (ReLU) function g(t) = ReLU(f(t)) and
other widely applied activation functions from the theory of neural networks that
are at our disposal. In practice, ReLU seems to work and work roughly as well as
the absolute value. We do not know of any theoretical support for any of these
functions and can now formulate the main question that motivates our paper.

Open problem. Which nonlinear activation function g : R → R

leads to the ‘best’ recovery of the fundamental frequency?

One of the main points of our paper is to discuss the problem from the point of view
of classical Fourier analysis and to propose, based on that, a somewhat unorthodox
choice, provide theoretical support and discuss its behavior in practice.
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2. Main Result

2.1. An adaptive activation function. We define, for ε > 0 small, an adaptive
activation function. Introducing, for 0 < ε < 1, the function hε : [−1, 1] → R≥0

hε(x) =
1

1− (1− ε)|x| ,

we propose to run standard time frequency on the normalized signal

hε

(
f(t)

‖f‖L∞

)
=

1

1− (1− ε) |f(t)|
‖f‖L∞

and expect it to enhance the fundamental component of f . This activation function
is adaptive to the input signal since it depends on the L∞ norm of the input signal.
Note that hε is also 2π−periodic. So by construction, it inherits the periodicity of f .
The question is now: can we determine the strength of the fundamental component
of hε? To provide a theoretical analysis this question, we put some assumptions.

(1) We assume that the function f : [0, 2π] → C is of the type

0 6= f(t) =

n∑

k=1

ake
imkt ak ∈ C,mk ∈ N, 0 < m1 < m2 < · · · < mn.

In particular, this function will have fundamental frequency gcd(m1, . . . ,mn).
(2) We assume that the function g(t) = |f(t)| assumes its global maximum in

finitely many points {t1, . . . , tm} ⊂ [0, 2π] and
(3) that these maxima are non-degenerate: g′′(ti) < 0 for all 1 ≤ i ≤ m.

We can now state our result which shows that, as ε → 0, the method will indeed
recover the fundamental frequency (which we expect to be 1 in the generic setting).

Theorem. We have, as ε → 0,
∫ 2π

0

hε

(
f(t)

‖f‖L∞

)
eitdt =

1√
ε

m∑

j=1

π · eitj√
− g′′(tj)

2‖g‖L∞

+O
(

1

ε1/4

)
.

Remarks.

(1) We note that for ‘generic’ signals (say, random signals picked from a suitable
probability distribution), we expect that there is a unique maximum t1: in
that case, the leading order expansion is always guaranteed to be of order

ĥε(1) =
1√
ε

π · eit1√
− g′′(t1)

2‖g‖L∞

+O
(

1

ε1/4

)

and we are guaranteed that the fundamental frequency is recovered.
(2) If there is more than one maximum, then we only fail at recovering the

fundamental frequency if

m∑

j=1

eitj√
−g′′(tj)

= 0.

This is something that we do not expect to happen for generic signal (it
corresponds to a precise algebraic identity).
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(3) If the frequencies share a nontrivial greatest common divisor

G = gcd(m1, . . . ,mn) > 1,

then the maxima of g(t) will be G−periodic on the unit circle and the sum
will vanish. The Theorem can then be applied to the function g(t) = f(t/G)
to conclude that the fundamental frequency G will be recovered.

2.2. General Activation Functions. The purpose of this section is to give some
perspective on the problem from the point of view of classical Fourier analysis. We
note that the intrinsically nonlinear nature of the problem does pose an interesting
challenge, nonetheless, there are some natural considerations partially inspired by
a classical paper of Rudin [8] that seem like they might be relevant. We recall that
our goal is, given a function f of the type

0 6= f(t) =

n∑

k=1

ake
imkt ak ∈ C,mk ∈ N, 0 < m1 < m2 < · · · < mn

to come with a nonlinear function g : R → R such that g(f(t)) has a clear frequency
contribution at gcd (m1, . . . ,mn). The main difficulty in practice is, of course, that
we do not actually know the precise formula of f when only f is given, and have
no real idea what the actual frequencies m1, . . . ,mn might be. We simplify things
by assuming that the nonlinearity g can be expanded into a Taylor series

g(x) = b0 + b1x+ b2x
2 + b3x

3 + . . . .

Then each individual power applied to f can be properly analyzed: note that

(
n∑

k=1

ake
imkt

)k

=
∑

ℓ∈Z


 ∑

mi1
+···+mir=ℓ

ai1ai2 . . . air


 eiℓt.

This shows that large powers naturally lead to a function whose frequencies is
comprised of sums of the individual frequencies. If we replace powers by powers of
the absolute value, then at least for even powers the identity |x|2k = xkxk leads to
a way of writing

X =

∣∣∣∣∣
n∑

k=1

ake
imkt

∣∣∣∣∣

2k

as

X =
∑

ℓ1,ℓ2∈Z


 ∑

mi1+···+mir=ℓ1

ai1 . . . air




 ∑

mi1+···+mir=ℓ2

ai1 . . . air


 ei(ℓ1−ℓ2)t.

There is a nontrivial contribution coming from the coefficients (ak)k∈Z, however, if
we only consider the support of the frequencies, then a rather clear picture emerges:
denoting the set of frequencies that make up f by

M = {m1, . . . ,mn} ,
we expect that

supp F|f |2k = (M +M + · · ·+M)︸ ︷︷ ︸
k times

− (M +M + · · ·+M)︸ ︷︷ ︸
k times

.



6

However, we also expect, for k sufficiently large, that the numbers that can be
appropriately written as sums and differences of elements in Mn have a nice limiting
behavior and (for a suitabye lenient definition of lim)

lim
k→∞

(M +M + · · ·+M)︸ ︷︷ ︸
k times

− (M +M + · · ·+M)︸ ︷︷ ︸
k times

= gcd(m1, . . . ,mn) · Z.

These heuristic considerations suggest the following rough guidelines:

(1) The Fourier transform of g(f(t)) depends on the Taylor expansion of g.
(2) If the function g is smooth, then the Taylor expansion will have rapidly

decaying coefficients and sum sets of the type

(M +M + · · ·+M)︸ ︷︷ ︸
k times

only contribute for small k.

A choice like g(x) = cos (x) will not lead to a good detection function.
(3) This suggests functions g for which the Taylor expansion decays slowly:

functions that are discontinuous or have discontinuous first derivative.
(4) Moreover, introducing the absolute value g(|x|) leads to sum-difference sets

which might generally lead to better results.

These principles naturally suggest functions like g(x) = |x| or g(x) = ReLu(x).
However, we note that both of these functions are actually continuous which leads
to a decay of coefficients in the Taylor expansion. Indeed, considering all these
principles, we should focus our attention on functions of the form

g(x) = b0 + b1|x|+ b2|x|2 + b3|x|3 + . . .

for which the (bj)
∞
j=0 decay slowly. A particularly natural candidate is

1

1− |x| = 1 + |x|+ |x|2 + . . .

and this is how we arrive at our proposed construction. As we will show in Section
3, this construction is not only well motivated by the aforementioned arguments
but also naturally incorporates a second approach which is related to asymptotic
analysis and encapsulated by Theorem 1.

3. Proof of the Theorem

Proof. We now give a proof of the result. It follows from the assumptions that each
local maximum of g behaves locally around the maximum like a parabola (since
g′′ does not vanish and is negative). This allows us to treat all the points where
f assumes a maximum in isolation. We start by considering a point t0 such that
g(t0) 6= ‖g‖L∞ . In that case, we observe that

hε(t0) =
1

1− 1−ε
‖f‖L∞

|f(t0)|
≤ 1

1− |f(t0)|
‖f‖L∞

≤ ‖f‖L∞

‖f‖L∞ − |f(t0)|
.

This quantity is uniformly bounded as ε → 0. Since our main result is about the
asymptotic growth of an integral over a bounded region as ε → 0 and since we are
only interested in terms at scale ∼ ε−1/2 or larger, we may disregard points where
hε(t) remains bounded as ε → 0. We can now proceed as follows: since there are
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only finitely many points t1, t2, . . . , tm that achieve the global maxima of g and
since all of them are non-degenerate, there exists δ > 0 such that the preimage

g−1 [‖f‖L∞ − δ, ‖f‖L∞ ] =
m⋃

j=1

Ij

can be written as the union of m disjoint intervals. By making δ sufficiently small,
we can also ensure that each of the intervals contains a point in which |f(t)| assumes
its global maximum. Moreover, we can also infer that, as δ → 0, these intervals
scale asymptotically like |Ij | ∼ δ−1/2, where the implicit constant depends on the
value of the second derivative in tj .

‖f‖L∞

‖f‖L∞ − δ
I1 I2 I3

Figure 4. A sketch of the decomposition.

Then, uniformly as ε → 0, we have
∫ 2π

0

hε(t)1{|f |<‖f‖L∞−δ}(t)dt ≤
∫ 2π

0

‖f‖L∞

‖f‖L∞ − g(t)
1{|f |<‖f‖L∞−δ}(t)dt

≤
∫ 2π

0

‖f‖L∞

δ
1{|f |<‖f‖L∞−δ}(t)dt ≤

2π‖f‖L∞

δ
.

Note that 2π‖f‖L∞/δ is independent of ǫ. This shows that contributions at scale
ε−1/2 can only come from I1, I2, . . . , Im. Let us now assume that g assumes a global
maximum in t1 ∈ I1. Then, locally around t1, we have the expansion

g(t) = ‖g‖L∞ +
g′′(t1)

2
(t− t1)

2 +O((t− t1)
3).

Therefore, we have, locally around t1,

hε(t) =
1

1− (1− ε)
(
1 + g′′(t1)

2‖g‖L∞
(t− t1)2 +O((t− t1)3)

)

=
1

ε− (1− ε) g′′(t1)
2‖g‖L∞

(t− t1)2 +O((t− t1)3)
.(2)

Note that g′′ < 0. Thus, the denominator is, up to second order, growing away
from t1. Our next ingredient will be the identity

∀ A,B,C > 0

∫

|t|>C

1

A+Bt2
dt =

π − 2 arctan
(√

B√
A
C
)

√
AB

(3)

In particular, letting C → 0, we recover

∀ A,B > 0

∫

R

1

A+Bt2
dt =

π√
AB

.
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In our case, we have A = ε > 0, while

B = −(1− ε)
g′′(t1)

2‖g‖L∞

> 0

converges to a fixed constant as ε gets small (and is, in particular, bounded away
from 0). This implies

∫ ε1/4

−ε1/4

1

ε+Bt2
dt =

∫ ∞

−∞

1

ε+Bt2
dt−

∫

|t|≥ε1/4

1

ε+Bt2
dt

=
π√
εB

+O(B−1/2ε−1/4)

when ε is sufficiently small. The second equality comes from (3). Indeed, by

choosing C = ε1/4, we see that the term
√
B/

√
AC is of order ε−1/4, and hence

π − 2 arctan

(√
B√
A
C

)
.

√
A√
B
C−1

whenever ε is sufficiently small. Combined with the numerator, we obtain the
desired control of

∫
|t|≥ε1/4

1/(ε+Bt2)dt. From this control, we deduce

∫

I1

hε(t)dt =
π√
ε

1√
− g′′(t1)

2‖g‖L∞

+O
(

1

ε1/4

)

when ε is sufficiently small. Indeed, since B ∼ 1, the error, g′′(t1)/(2‖g‖L∞) +
O(t − t1) in (2), is controlled when ε is sufficiently small. Using continuity of eit

and summing over the m intervals, we arrive our conclusion
∫ 2π

0

hε(t)e
itdt =

π√
ε

m∑

j=1

eitj√
− g′′(tj)

2‖g‖L∞

+O
(

1

ε1/4

)
.

�

4. Numerical results

All Matlab codes are available in for the reproducibility purposes.

4.1. Synthetic data. We generate synthetic data to investigate how different ac-
tivation functions enhance the fundamental component. Fix the sampling rate to
be 512 Hz. First, randomly select an integer K between 5 and 100 according to
a uniform distribution. Then, randomly select K integers between 2 and 250 fol-

lowing the probability density function Ce−(l/100)2 , where C is the normalization
constant, so that the chosen integers have 1 as the greatest common divisor. Denote
the selected integers as {jk}Kk=1. Then, set the function f(t) as

f(t) =

K∑

k=1

ak cos(2πjkt+ φk) ,

where ak, k = 1, . . . ,K, are identically and independently (i.i.d.) sampled from
(0, 1], and φk, k = 1, . . . ,K, are i.i.d. sampled from (0, 2π]. Note that by con-

struction, f(t) is a toy example as that shown in (1) with f̂(1) = 0 but 1 as the
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fundamental frequency. For a given activation function g(t), we evaluate the result-
ing fundamental component enhancement by evaluating the fundamental component

energy ratio, defined as

(4)
|ĝ ◦ f(1)|2

∑256
l=1 |ĝ ◦ f(l)|2

.

Then, repeat the above procedure for 105 times. The results of different activation
functions are shown in Figure 5 as histograms of fundamental component energy ra-
tios. Quantitatively, the median and median absolute deviation of the fundamental
component energy ratio over 105 times are 0.28% and 0.46% for the rectification,
0.07% and 0.12% for the RELU, 0.29% and 0.46% for h0.2, 0.31% and 0.42% for
h0.1, and 0.33% and 0.33% for h0.05.

Figure 5. Effect of different activation functions on fundamental
component enhancement. The histograms of the fundamental com-
ponent enhancement by 5 different activation functions, including
| · |, RELU, h0.2, h0.1 and h0.05, are shown from left to right.

4.2. Semi-real Medical Example. We generate a semi-real dataset and com-
pare the proposed activation function with ǫ = 0.2, ǫ = 0.1 and ǫ = 0.05 with
the usually applied rectification and RELU activation function. We consider two
databases. The first one is the noninvasive trans-abdominal ECG database from
the PhysioNet Computing in Cardiology Challenge 2013 (CinC2013)1. There are
in total 75 recording, each recording contains 4 channels, and each record lasts
for 1 minute. The second one is the Taiwan Integrated Database for Intelligent
Sleep (TIDIS)2. There are in total 20 whole night polysomnogram recordings, each
recording contains 2 channels, and each record lasts for about 6 hours. For each
recording in CinC2013, we detect the maternal R peaks by applying the standard R
peak detection algorithm to the mean of 4 channels; for each recording in TIDIS, we
apply the same standard R peak detection algorithm to the mean of two channels.
For the k-th channel in the i-th recording, we randomly generate an 1-periodic func-

tion, denoted as s
(0)
ik (t), by averaging 10 randomly selected cardiac cycles. Then we

intentionally remove the fundamental component via the Fourier transform, and
denote the resulting 1-periodic function as sik(t) that is sampled at 512 Hz. Next,
we apply the j-th activation function to sik(t), and denote the resulting signal as

g
(j)
ik (t). To evaluate how much the fundamental is activated, we record the energy

ratio of the fundamental component defined in (4), denoted as r
(j)
ik . For the k-th

channel in the i-th recording, the above procedure is repeated 100 times. The his-
tograms of all collected energy ratios for different activation functions are shown

1https://physionet.org/content/challenge-2013/1.0.0/
2https://tidis.org
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in Figure 6. We see that the proposed activation function gives a delta-like signal
with the peak centered at the maximal value. Hence, the power spectrum is flat-
ter compared with both rectification and RELU. This explains why the median of
the energy ratio is smaller if we apply the proposed activation function since the
proposed activation function tends to flatten the spectrum, particularly when ǫ is
small. We shall mention that the main difference between these two databases is
that the cardiac cycle is recorded from the abdomen in the CinC2013 database,
and from the chest in the TIDIS database. Thus the cardiac cycles are of differ-
ent morphology, and hence different energy ratio of the fundamental component.
Note that after the averaging, the fetal ECG impact is reduced, and we obtain a
reasonably clean maternal ECG cycles. See Figure 7 for more details.

Figure 6. Illustration of the effect of different activation functions
on the fundamental component enhancement. The first row shows
one cardiac cycle (left two subplots) and the simulated cardiac cy-
cle without the fundamental component (right two subplots) from
the CinC2013 database. The second row shows the resulting signal
after applying 5 different activation functions, including |·|, RELU,
h0.2, h0.1 and h0.05 from left to right. The third row shows the as-
sociated power spectra (PS) of those 1-periodic functions shown
on the second row. The fourth row shows the histograms of energy
ratio of the fundamental component after applying different acti-
vation functions, where the x-axis is the log of the energy ratio.
The (medians, median absolute deviation) of the energy ratios are
(11.7%, 7%), (2.9%, 5.2%), (4.4%, 3.9%), (2.2%, 3.3%) and (9.8%,
10.8%) respectively. a.u. means arbitrary unit.

To have a complete picture of the fundamental enhancement, we repeat the same
data preparation procedure above, except removing the fundamental component;
that is, we simulate the practical situation that the fundamental component may or
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may not exist, and its strength may or may not be weak. In addition to record the

energy ratio, also denoted as r
(j)
ik by a bit abuse of notation, after applying the acti-

vation function, we also record the energy ratio before, denoted as r
(0)
ik . In Figure ??,

we plot the 2-dim histogram of the distribution of {(log(r(0)ik ), log(r
(j)
ik )/ log(r

(0)
ik ))}.

By definition, when log(r
(j)
ik )/ log(r

(0)
ik )) > 1, we obtain an enhancement of the en-

ergy ratio of the fundamental component. The portion of cardiac cycles that the
fundamental component strength is enhanced is recorded in the title. It is clear
that all activation functions enhance the energy ratio of the fundamental component
when it is weak.
Note that at the first glance, our proposed activation function seems to provide a
worse result due to the smaller portion of enhanced cardiac cycles. However, we
should emphasize that due to the “flattening” nature of our activation function,
the energy ratio of the fundamental component is smaller.

Figure 7. Top: energy ratio of the fundamental component, r
(0)
ik

of all cardiac cycles. The first part marked by the red box comes
from the TIDIS database, and the second part marked by the blue
box comes from the CinC2013 database. Bottom: two-dimensional
histograms of energy ratio of the fundamental component after
applying different activation functions, | · |, RELU, h0.2, h0.1 and

h0.05 from left to right, where the x-axis is log(r
(0)
ik ), and the y-

axis is log(r
(j)
ik )/ log(r

(0)
ik )). The portion of cardiac cycles that are

enhanced by the nonlinear activation function is listed in the title.

4.3. Medical Example. Next, we consider the PCG signal as a real example. In
Figure 8, we show the spectrogram of the PCG signal shown in shown in Figure
??(a) composed with RELU (left) and h0.1. We could see that both RELU and
h0.1 provide the fundamental component information; that is, there is an identifiable
curve around 2Hz. To have a quantification of this finding, we analyze the maternal
PCG signals in the Shiraz University Fetal Heart Sounds Database3. There are
in total 92 recordings. See Figure 9(a) for a PCG signal different from that in
Figure 2(a). It is clear that the spectrogram provides limited information about
the heart rate. See Figure 9(b) and recall Figure 2(b) for an illustration. To

3https://physionet.org/content/sufhsdb/1.0.1/
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quantify the fundamental component enhancement performance, we carry out the
following steps. First, run the de-shape algorithm [5] to determine the instantaneous
frequency (IF) of the PCG. See Figure 9(c-d) for the de-shape spectrogram and the
detected IF. Denote the estimated IF as φ′(t). The detected heart rate is confirmed
by reading and hearing the signal. Second, determine the energy ratio around the
band [φ′(t)− 0.2, φ′(t) + 0.2] Hz; that is,

R :=

∫ T

0

∫ φ′(t)+0.2

φ′(t)−0.2
|V (t, ξ)|2dξ

∫ T

0

∫ U

1/T
|V (t, ξ)|2dξ

,

where |V |2 is the spectrogram of the signal of length T with the sampling rate
1/U . Here, since our focus is the heart rate, we downsample the signal to U = 100
Hz. Over the 92 recordings, the mean and standard deviation of R determined
from the original signal, the rectified signal, the RELU activated signal and h0.1

are 0.03%± 0.01%, 2.33%± 0.56%, 1.64%± 0.41%, and 1.25%± 0.28%. See Figure
9 for an example of the overall procedure.

Figure 8. The spectrogram of the PCG signal composed with
RELU (left) and h0.01, where we use the same window and the
same dynamic range as those shown in Figure 2(b).
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