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Abstract. Let X,Y be two finite sets of points having #X = m and #Y = n
points with µ = (1/m)

∑m
i=1

δxi
and ν = (1/n)

∑n
j=1

δyj being the associated

uniform probability measures. A result of Birkhoff implies that if m = n,
then the Kantorovich problem has a solution which also solves the Monge
problem: optimal transport can be realized with a bijection π : X → Y . This
is impossible when m 6= n. We observe that when m 6= n, there exists a
solution of the Kantorovich problem such that the mass of each point in X is
moved to at most n/ gcd(m,n) different points in Y and that, conversely, each
point in Y receives mass from at most m/ gcd(m,n) points in X.

Let µ and ν be two (probability) measures. A classical question, due to Monge,
is to understand the optimal way of mapping µ to ν. If we denote the cost of
transporting mass from x to y by c(x, y), then the Monge problem asks for

inf
T

{
∫

X

c(x, T (x))dµ(x) : T∗(µ) = ν

}

(Monge),

where T∗(µ) denotes the push forward of µ by T . This problem may not be solvable
because such transport maps T may simply not exist. Kantorovich proposed to relax
the problem and instead try to minimize

inf
γ

∫

X×Y

c(x, y)dγ(x, y) (Kantorovich),

where γ is a probability measure on X × Y having marginals µ and ν. There is a
nice classical result linking these two problems in the discrete setting: if µ and ν
are two uniform probability measures over two sets X and Y with n elements, then
it is known that these two problems coincide.

Theorem (see e.g. [2, 4, 5]). If µ = (1/n)
∑n

i=1 δxi
and ν = (1/n)

∑n
i=1 δyi

, then

there is a solution of the Kantorovich problem which also solves the Monge problem.

The statement is independent of the transport costs c(xi, yj). The argument is as
follows: the Kantorovich problem can, in the discrete setting, be formulated as a
linear program over bistochastic matrices. A theorem of Birkhoff [1] (also attrib-
uted to König [3] and von Neumann [6]) states that the bistochastic matrices are
the convex hull of the permutation matrices. The minimum of a linear program in
a non-empty polyhedron is attained in an extremal point.
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No such statement can be true when m 6= n: the two sets have different cardinalities
and no bijection is possible. The goal of this short note is to point out that there
nonetheless exists a particularly simple solution of the Kantorovich problem.

Theorem. Let µ = (1/m)
∑m

i=1 δxi
and ν = (1/n)

∑n
i=1 δyi

. There is a solution of

the Kantorovich problem such that mass from each point in X is moved to at most

n/ gcd(m,n) different points in Y and that each point in Y receives mass from at

most m/ gcd(m,n) points in X.

Somewhat to our surprise, we were unable to find this simple but intriguing state-
ment (illustrated in Fig. 1) in the literature. Besides its intrinsic appeal, it does
seem like it could be potentially useful insofar as it guarantees the existence of
‘sparse’ solutions of the Kantorovich problem (with sparsity depending on m,n).

Figure 1. Left: m = n, the transport is a bijection. Right: m =
20 red points are sent to n = 30 blue points. Each red point is
transported to at most 30/ gcd(20, 30) = 3 blue points, each blue
points receives mass from at most 20/ gcd(20, 30) = 2 red points.

Proof. Suppose that

µ =
1

m

m
∑

i=1

δxi
and ν =

1

n

n
∑

i=1

δyi

are two given measures. We replace each point xi by n/ gcd(m,n) identical points
xi,j for 1 ≤ j ≤ n/ gcd(m,n) and, likewise, we replace each point yi bym/ gcd(m,n)
identical points yi,j where 1 ≤ j ≤ m/ gcd(m,n). This allows us to write

µ =
gcd(m,n)

mn

m
∑

i=1

n/ gcd(m,n)
∑

j=1

δx
i,j

and ν =
gcd(m,n)

mn

n
∑

i=1

m/ gcd(m,n)
∑

j=1

δy
i,j
.

The problem can now be interpreted as finding a transport map frommn/ gcd(m,n)
points of the same weight to another set ofmn/ gcd(m,n) points of the same weight.
Applying the classical result shows that there exists bijective map between the
points that realizes the optimal Kantorovich cost. This corresponds into each point
in X being split into at most n/ gcd(m,n) equal parts and each point in Y being
split into at most m/ gcd(m,n) parts. �
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We conclude by observing that the same argument also applies to linear combina-
tions of weighted Dirac measures as long as the weights are rational. Suppose

µ =

m
∑

i=1

ai
bi
δxi

where

m
∑

i=1

ai
bi

= 1

and where ai, bi ∈ N are positive rational weights. We note that it is possi-
ble to equivalently represent µ as a linear combination of a number of equally
weighted Dirac measures. This number will depend on the least common multiple
lcm(b1, . . . , bm) of the denominators. This can be seen by writing

µ =
1

lcm(b1, . . . , bm)

m
∑

i=1

ai lcm(b1, . . . , bm)

bi
δxi

and noting that ai lcm(b1, . . . , bn)/bi ∈ N. This implies the following corollary.

Corollary. Let

µ =

m
∑

i=1

ai
bi
δxi

and ν =

n
∑

i=1

ci
di
δyi

be two probability measures with positive rational weights and let

B = lcm(b1, . . . , bm) and D = lcm(d1, . . . , dn).

There exists a solution of the Kantorovich problem such that mass from each point

in X is moved to at most D/ gcd(B,D) different points in Y and each point in Y
receives mass from at most B/ gcd(B,D) different points in X.

We note that this reduces to the previous Theorem when ai = ci = 1, bi = m and
di = n. We also observe that it is quite possible that D/ gcd(B,D) ≫ n and that
B/ gcd(B,D) ≫ m (this will usually happen when the bi, di have many different
prime factors). In such a case, the statement would not say anything of interest.
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