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Abstract—Standard deep learning models have been mainly
designed for balanced data mining tasks and use accuracy to
evaluate the classifier. However, in many real-world applications,
the distribution of data is skewed. If the standard models,
which are designed to optimize the accuracy, are applied to
the imbalanced data, the prediction performance could be poor
because the model bias towards the majority class. To address
the imbalanced data mining problem, areas under precision-
recall curves (AUPRC) was proposed as a good measure to
evaluate the performance of prediction models on imbalanced
data sets, and shows excellent capability in identifying the models
with high predictive power. To improve the performance of
models, researchers recently design methods to directly optimize
AUPRC for imbalanced data mining. However, these approaches
suffer from a high iteration complexity and efficient methods are
desired. In this paper, we propose a faster stochastic method (i.e.,
ROAP) for maximizing the AURPC based on the momentum-
based variance reduced technique. Our new method is based
on the maximization of non-parametric averaged precision (AP),
which is a popular unbiased point estimator of AUPRC, and the
optimization objective in this paper can be converted into a sum of
dependent compositional functions, where the inner functions rely
on random variables of both inner and outer levels. Compared
to previous methods, our ROAP algorithm can achieve a lower
iteration complexity of O (6_3) for finding an e-stationary solution.
Furthermore, we extend our method to an adaptive version (i.e.,
AROAP) with the same iteration complexity of O (¢~*). To the
best of our knowledge, this paper is the first work showing that the
variance reduction method can be incorporated into maximizing
the AURPC for efficient data mining on imbalanced datasets.
Finally, we conduct extensive experiments on various imbalanced
data sets with different models to demonstrate the efficiency of
our new algorithms.

Index Terms—AUPRC, imbalanced classification tasks, stochas-
tic compositional optimization

I. INTRODUCTION

Deep Neural Networks (DNN) have achieved remarkable
success in various real-world applications, such as computer
vision [1], [2] and speech recognition [3]. Although there are
many ground-breaking studies to propose different optimization
methods [4], [5] to improve the performance of DNN in data
mining, most works focus on balanced data classification tasks.
The objective function optimized in most of these studies is
the error rate. However, in many practical applications, such as
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activity recognition [6] and healthcare applications [7], [8], the
distribution of data is skewed. As an example, for most diseases,
the number of patients is far lower than the number of healthy
people. In these cases, maximizing training data accuracy does
not necessarily lead to an optimal model in the imbalanced
data mining as shown in [9]. Instead, areas under the curve
(AUC), including ROC (AUROC) and precision-recall curves
(AUPRC) attracts wide attention to be used as the metrics to
measure the quality of a classification models.

For AUROC, recent works have achieved remarkable
progress in maximizing AUROC. Yuan et al. [10] proposed
a new deep AUROC maximization method with provable
convergence. However, AUROC is not suitable for data with
a much larger number of negative examples than positive
examples, and AUPRC can address this issue because it doesn’t
use true negatives. For AUPRC, although there is also a long
list of studies [11] which illustrate the superiority of AUPRC
for evaluating imbalanced classifiers, how to utilize AUPRC to
facilitate algorithm design has not yet been studied thoroughly.
More specifically, existing imbalanced data mining algorithms
via directly maximizing AUPRC are still computationally
expensive and have high iteration complexity. Therefore,
it is imperative to develop efficient stochastic optimization
algorithms for the maximization of AUPRC in deep learning
to meet the challenge of data mining on large-scale high-
dimensional imbalanced data sets.

Compared with maximizing AUROC, it is a more challenging
question to optimize the AUPRC. The first difficulty lies in
the complicated integral definition. Some point estimators of
AUPRC have been proposed to address the continuous integral
issue [12], [13]. Existing methods include the non-parametric
average precision (AP) estimator, parametric binomial estimator,
trapezoidal estimators, and interpolation estimators of empirical
curves [14]. Among them, non-parametric average precision
(AP) is one of the most commonly used estimators. AP can be
directly calculated based on the prediction scores of samples
and does not suffer from sampling bias at the infinite sample
limit. These merits make it very suitable to be applied to
optimization problems. Therefore, in this work, we use AP
as an optimization objective for AUPRC maximization. For a
finite training set D consists of n number of samples (x;,y;),



AP is given by [14]

1 T (x4)
AP=— 3 , (1)

x;,Yi=1

where m denotes the number of positive data points (x;,y; =
1), r" denotes the point’s prediction score rank among all
positive data points (i.e., the number of positive data points
with no less prediction score than that of z; including itself)
and r denotes its prediction score rank among all data points
(i.e., the number of data points with no less prediction score
than that of z; including itself). It can be shown that AP is an
unbiased estimator in the limit n — oo [14].

The second difficulty of AUPRC maximization is due
to the non-differential ranking functions and the non-linear
relationship between the AP and sample scores. With the
original definition of AP, traditional gradient-based gradient
descent methods cannot be directly applied. Most existing
works for maximizing AP-like functions are heuristic-driven
without provable convergence [15]-[17]. Recently, Qi et al.
[18] use a surrogate loss in place of the indicator function in the
AP function and shows a provable convergence guarantee for a
stochastic method. A critical technique in [18] is to create and
update biased estimators of the surrogate ranking functions for
each positive data and SOAP reaches the iteration complexity
of O (e7°). More recently, Wang et al. [19] proposed MOAP
and ADAP methods to improve the iteration complexity to
O (e™*). The biased estimators for tracking individual ranking
scores are updated in a randomized coordinate-wise manner
and the momentum update is used on both the top and the
inner estimator.

Despite the recent advances, it is still not clear whether there
exists a provably more efficient way to maximize AUPRC
with an imbalanced dataset. We note that in the conventional
optimization problem, variance reduction techniques have been
shown to reduce the complexity of gradient descent methods,
and can greatly reduce the computational cost. Consequently, a
natural question is whether one can leverage variance reduction
to achieve a faster convergence rate in AUPRC maximization. In
this paper, we give an affirmative answer to the above question
by proposing new stochastic algorithms for imbalanced data
mining by AUPRC maximization. We summarize the main
contributions of this paper as follows:

o We propose faster stochastic methods (i.e., ROAP and
AROAP which extends ROAP with adaptive step size)
based on the momentum-based variance reduced technique
to improve the convergence for maximizing AP in the
finite-sum stochastic compositional optimization. The
methods reach iteration complexity of O (e~%). The key
idea is to track the stochastic gradient estimator of the
objective function, individual ranking scores, and its
gradients, respectively.

« We conduct extensive experiments on various datasets
compared with previous stochastic algorithms for
AUPRC/AP optimization as the benchmark to verify the
effectiveness of our methods.

II. RELATED WORK
A. AUROC Optimization

Some studies have investigated the imbalanced data mining
with the AUC metric. These studies [10], [20] show the
importance of large-scale stochastic optimization algorithms
with AUC metric and the necessity of accurate surrogate
function. Earlier works about AUROC [7], [16] focused on
linear models with pairwise surrogate losses. The issue of
these works is their high overheads, which have at most
quadratic dependence on the training data size. To mitigate this
issue, online and stochastic optimization methods have been
proposed [11], [21] for the non-convex strongly-concave min-
max optimization and federated learning problems. Recently,
Yuan et al. [10] proposed a new deep AUROC maximization
method for large-scale medical image classification tasks, e.g.,
breast cancer screening classification based on the mammogram
and microscopic image classification for tumor tissue.

However, an algorithm that maximizes AUROC does not
always maximize AUPRC [8]. Furthermore, AUROC is inca-
pable of accurately valuing the performance of models based
on data that contains far more negative examples than positive
examples. Many real-world data sets fit this case. For example,
there are many more healthy people than diseased people
(“positive for sickness.”). In these cases, a big improvement in
the number of false positives only leads to a small change in
the false positive rate. Assume model 1 has a lower number
of false positives than model 2 (i.e. model 1 is better). If the
data contains numerous true negatives, the false positive rates
of models 1 and 2 will be similar, and their AUROCs may not
be that different. Thus, it may be difficult to use AUROC to
distinguish the performance of models, which necessitates the
development of efficient algorithms for deep learning (DL) by
maximizing AUPRC.

B. AUPRC Optimization

Previous work about AUPRC optimization mainly uses
traditional optimization techniques, such as hill-climbing search
[22], cutting-plane method [23], [24], dynamic programming
[25] as well as acceleration techniques in the framework of
SVM [26]. They do not have good performance when the
dataset is large in DL. In addition, many studies in information
retrieval [15] and computer vision [12] focus on algorithm
design to maximize the AP score and how to approximate the
gradient of the AP function. However, these works provide
no convergence guarantee for stochastic optimization and are
sensitive to the mini-batch size when applied to DL.

Recently, Qi et al. [18] first proposed a method to directly
optimize a surrogate function of AP and provides a theoretical
convergence guarantee for the proposed stochastic algorithm
with iteration complexity of O (¢~°). Wang et al. [19] develops
new stochastic momentum methods. The momentum update is
used on the stochastic gradient estimator of the objective and
the biased estimators for tracking positive data point ranking
scores are updated in a randomized coordinate-wise manner.
It has a better iteration complexity of O (¢~*) for finding an
e-stationary solution.



AUPRC is used for binary classification tasks and it is easy
to extend this metric to a multi-class setting. For multiple
classes tasks, we can suppose that the work is made up of a
variety of binary classification tasks and calculate the average
precision for each class individually, namely Class A vs. Not
Class A, Class B vs. Not Class B, Class C vs. Not Class C,
and so on.

C. Stochastic Compositional Optimization

The optimization objective we study resembles a two-
level stochastic compositional optimization problem (SCO).
It has been studied extensively in the literature [27]-[33].
In these works, the objective function is of the form
Ee[f(Eclg(w;¢)];€)], where £ and ¢ are independent. How-
ever, in our work, the inner function in the formulated
compositional function depends on both the random variable of
the inner level and that of the outer level. This key difference
will make the algorithm design and the theoretical analysis
more complicated.

D. Variance-Reduction Methods

Stochastic gradient descent has a slow convergence rate due
to the inherent variance. Many variance-reduction techniques
are proposed to reduce the complexity of finding a stationary
point, such as SVRG [34], SAGA [35] and SARAH [36]. Re-
cently, SPIDER [37] and SpiderBoost [38] are proposed to have
better converge rate. However, these variance reduction-based
methods require a very large mini-batch size at checkpoints,
which has a detrimental influence in the large-scale data mining.
To address this problem, [39] proposed a new technique called
STORM that integrates momentum and the recursive variance
reduction technique for solving stochastic smooth non-convex
optimization. Most importantly, this algorithm does not need a
large mini-batch size and also enjoys the same converge rate
for finding an e-stationary point.

TABLE I: Complexity comparison of the representative meth-
ods for finding an e-stationary point of AP maximizition

Methods Provable Convergence ~ Complexity
SOAP [18] Yes @) 51/55;
SOAP (AMSGrad-style) [18] Yes O (1/é
SOAP (Adam-style) [18] No -
MOAP [19] Yes O (1/e*
ADAP [19] Yes o Ewg
ROAP Yes o (1/e
AROAP Yes O E1 /633

III. THE PROPOSED METHOD

Notation: In this work, we consider binary classification
tasks. (x,y) denotes data points, where x € R%, y € {1, —1}.
Let h,(x) denote the score function of a classifier with a pa-
rameter vector w € R%. Let Dy = {(x1,¥1)," " » (Xm, Ym)}
denotes the set of all positive training data points and D =
{(x1,%1), -, (Xn,yn)} denotes the set of all training data
points. Let m = |D| denote the number of positive data points
and n = |D| denote the number of data points. ||z|| denotes the
Euclidean norm of vector z. Let Il [u] = argmin,cq||u—v||?

be the Euclidean projection onto a convex set 2. In addition,
Gi;(w) and Vg;(w) denote independent unbiased stochastic
estimators of g;(w) and Vg;(w), respectively. Specifically, we
first sample two sets of data points from D denoted by S; and
Ss. Then we calculate g;(w) = s ij es, 9 (Wix;,%;) and
V3i(w) = 1557 2ox,es, VI (WiX;,X;), respectively.

A. Preliminaries

As discussed above, we consider using AP to ap-
proximate AUPRC. For a finite set of data set D =
{(x4,9:),i=1,...,n}, it is given by

21 b (%) > hao(x7)) - T(y; = 1)
Z Z?:l I(huw(x5) = hu(x:))

Ap-= L

2

x;€ED4

where h,,(x) is prediction score function.

Then, to address the issue arise from the non-continuous
ranking functions in both numerator and denominator in (2),
the loss function ¢ (w;x;,x;) is used as a surrogate function
of indicator function I(h,,(x;) > hy(%;)). In the previous
work, [12], [13], various surrogate losses are considered, such
as hinge loss, squared hinge loss, smoothed hinge loss, and
exponential loss. In this paper, we use a squared hinge loss
0(w;xj,%x;) = (max{s — (hy(x;) — hy(x;)),0})?, where
s is a margin parameter. Then, our optimization objective is
given by:

—~ 1
AP:E Z

X ED+

i1 b(wixy, %) I(y; = 1)
Do L(wixj, %)

3)

For convenience, we define the elements in g;(w) as the
surrogates of the two prediction score ranking function r* (x;)
and r (x;) respectively. Define the following equation:

91 (WQXjaXi)} _ [5 (W x5, %) I(y; = 1)]

9 (W3xj,xi) = {92 (wi %, %,) 0 (wix;, %)

Vg (Wix;,x;) = [Vgl (W;Xj’xi)}

_ {Vﬁ (w;x;,x;) I(y; = 1)
Vg2 (W;x;,%;)

VI (w;x;,%;)

and gi(w) = Y, g(wix;,x) € R Vgi(w) =
Y1 Vg (wixjx;) € R and f(u) = =2 : R = R
for any u = [uy,us]’ € R2

Then, we could reformulate the optimization objective into
the following minimization problem:

min ®(w) = Ex,~p, [f (9:(W))] = % Z f(gi(w)) 4

w
x; €Dy

We can see that it is a finite-sum two-level dependent
compositional function. It should be mentioned that it is the
non-convex even if g;(w) is convex because the f(u) is non-
convex. Our goal in this work is to find an e-stationary solution,
such that E||V®(w)|| <e.



Algorithm 1 ROAP Algorithm

1: Input: T, tuning parameters {«, 3,~, 1, b} and initial mini-
batch size bg;

2: initialize: Initialize: w; € R%, U; € R™*2 1, € R™Xdx2,
F, € R? Draw a mini-batch i.i.d. positive samples
By = {€}},, and then compute U; = Vg (wy;By),
Vi =G (wi;Bi) and Fy = =505 [Vi]] V([U1],)

3 fort=1,2,...,7T do

Wil = Wy — g Fy;

Draw i.i.d. positive samples B; = {£!}_; from D

Set [Upy1]; as (7)

Set [Viy1]; as (8)

Frpn=0=v)Fi+3> 5 [Visa]] VF([Uigaly) - (1

7) Vil Vi (1U)]

9: end for

10: Output: w chosen uniformly random from {w;}’ ;.

® >k

B. Stochastic Recursive Momentum Optimization of AP: ROAP

In order to design the method, we first consider how to
compute the gradient of ®(w). Let

Va(w) = 3 Voi(w) V/ (g:(w))

x; €D
.
| 1 aw)
= Vgi(w T ) 12
m 2 Vo) <[gi<w>}2 <[gz-<w>12>>

&)
[18], [19] maintain U; sequence as the moving average
estimator for estimating individual ranking scores g(w), a
common technique from the literature of stochastic composi-
tional optimization. Following the [18], [19] and previous
studies of stochastic compositional optimization, we use
three estimators to track the stochastic gradient estimator
of the objective function, individual ranking scores, and its
gradients, respectively. Firstly, we consider the estimators to
track individual ranking scores and their gradients. We also
maintain a matrix [U;] = [U}, U?] € R™*? with each column
correspond to each positive example. We use U' and U? to
track the [g(w)]; and [g(w)]2, respectively. Similarly, we also
maintain the [V;] = [V,!, V/?] and use V! and V2 to track the
[Vg(w)]1 € R™*4 and [Vg(w)]2 € R™*4, respectively. We
use momentum-based variance reduced technique to update
the [U;] and [V;] and we update all coordinates of [U;] and
[V4], following the [19]. Algorithm 1 shows the algorithmic
framework of the ROAP.
Take [U;] as an example. We first construct

0
~ 1 _ T
g(we) =+ S| ma (we) (6)
€8y :
0
When we take expectation over randomness, we get

Eg, [g(wt)] = g(w¢). It means both g(w;) and g(w;) are

unbiased estimator of g(w;). Then we write the update of Uy 1
as Uppr = o, [(1 = B)Ur + g (We1) — (1 — B)g (wy)]
It is equivalent to set [Uyy1]; as:

{Hal [cogi (wii) T+ (1= B) (U, = cogs (wi) )] i € B,
o, [(1 - 8) [V

O0.W.

)

where o = 7. Similarly, we set [V;1]; as:

O0.W.

(®)

Given that updating the entire table induces a heavy com-
putational cost, we could only update the coordinate of U,
corresponding to the sampled positive data in each iteration.
Updates of U, coordinates corresponding to the unsampled
positive data points are delayed until they are sampled, since
in the current iteration these coordinates are not used to update
the model parameter.

We can see that in Step 6 of Algorithm 1, we project the
results into a convex set and clip them by a lower bound. This
operation can ensure the division in computing the stochastic
gradient estimator in (5) is always valid and is consistent
with the assumption. For the update of [V;], we use a similar
operation in Step 7 of Algorithm 1.

Finally, we maintain and update an additional stochastic
gradient estimator based on the U; and V; in steps 8 and 9
of the ROAP algorithm. Then we could update the model
parameters by

o, [coVgi(wirr) " + (1 — ) ([Vil, — coVgi(we) )] i€ By
Mo, [(1 — o) [Vi],]

€))

w1 = Wy — i Fy
C. Stochastic Adaptive Algorithms for AP Maximization:
AROAP

In this section, we extend ROAP into a stochastic adaptive
algorithm by incorporating adaptive step sizes. In previous
works, adaptive optimization methods have achieved great
success in practice and various adaptive step sizes have been
studied for standard stochastic optimization, such as AdaGrad
[40], Adam [41] and AMSGrad [17].

Adam-style:v, 1 = (1 — \) v; + \d?
¢
1
AdaGrad-style:vi 1 = —— Y d}
aGrad-style:vy 1 t—i—I; ;

AMSGrad-style:v, ; = (1 — \) v} + Ad},
VfH_l = max (vt7 V1/5+1)
AdaBound-style:v;, | = (1 — \) v, + \d}

Vit1 = H[l/cﬁ,l/cf] [Vz/t+1]

(10)

Based on existing adaptive methods, we design the stochastic
adaptive method for the AP maximization in AROAP algorithm.
Compared with ROAP, we need to add a vector v, € R? and



update vy as in (10). After we have v;, we could update the
model parameter by

(1)

Wil = Wi — LFtJrl
NAZTRE
where § > 0 is a parameter to make sure the denominator is
larger than zero. Note that based on the assumptions 1, 2 and
the operation in AROAP algorithm, ||d;|| are bounded [42].
According to (11), we could get that n; = n/ (\/Vt+ 6) is
upper bounded by c,, and lower bounded by ¢; . It is important
for convergence analysis. Algorithm 2 shows the algorithmic
framework of the AROAP.

D. Convergence Analysis

Assumption 1: [18] (i) There exist C' > 0 and D > 0
such that ¢ (w;x;;x;) > C, and ¢ (w;x;;%x;) < M for any
x; € Dy; (ii) £ (w;x4;x;) is Cp-Lipschitz continuous and L,-
smooth with respect to w for any x; € D,x; € D, where
Cy, Ly > 0 are constants.

Assumption 2: [19] There exists a positive constant o
and G, such that ||g(w;x;,x;)||> < o2, [|[Vg(w;x;,%;)[|? <
o?, lg(w; x;j,%i) — gx,(W)||> < G* and [[Vg(w;x;,%;) —
Vgx, (W)||? < G? for any x; € Dy,x; € D.

Remark 1: With a bounded smooth surrogate loss function
¢ (w;x;,x;) and prediction score function h,(z), the above
assumptions can be easily satisfied. In binary classification
problems, the output of prediction score function is in [0, 1].

Lemma 1: [18] Suppose Assumption 1 and 2 holds, then
there exist G, Cy, Ly, [g:(w)|* < G2, g:(w) is C,-Lipschitz
and Lg-smooth, and there exist C'y, Ly, Vu € Q, f(u) is C-
Lipschitz and L ;-smooth. There exist Cr, Le > 0 Vw, &(w)
is C'g-Lipschiz and Lg-smooth.

Lemma 2: [43] Consider a sequence m;y1 = (1 — a)my; +
(1= @) [f (W13 Be1) — f(wis Bea)] + af (Wey1; Beya) for
tracking f(w;), where E[f(wiy1;Biv1] = f(wep1) and
E[f(w; Biy1)] = f(wy) and f(w) is a C-Lipchitz continuous
and bounded variance o. The batch size is b. Then we have

Elmip1 — f(wee)]]* < (1 — )?Eflmy — f(wy)|?

2(1—a)*C? 20252
+%”wt+l —w|? + (12)
o 2 9 T 9
2C E _
ZE”th — flwe)|? <7 4 i1 B llwipr — wy|
t=1 boOé ab
2002T
b 13)

Theorem 1: Suppose Assumptions 1 and 2 hold. As-
sume that the sequence {w;}- ; be generated from the
algorithm 1 using ROAP algorithm. Let @ = O(1/T?%/3),
B=0(1/T%3),v=01/T??), n = O(1/T"?) and initial
batch-size by = O(T*/3). Then we have T' = O(¢~?) to ensure
that E [% ST |ve (wt)ﬁ < e

Theorem 2: Suppose Assumptions 1 and 2 hold. As-
sume that the sequence {w;}._, is generated from the al-
gorithm 2 using AROAP algorithm. Let o = O(1/T2/3),
B=0(1/T%3),v =01/T%?), n = O(1/T"?) and initial

Algorithm 2 Our AROAP Algorithm

1: Input: T, tuning parameters {«, 3,~, n, b} and initial mini-
batch size bg;
2: initialize: Initialize: w; € R?, U; € R™*2 1, € R™MXdx2,
F; € R?, v; € R% Draw a mini-batch i.i.d. positive sam-
ples By = {5}}2"’:1, and then compute U; = Vg (wy; By),
Vi =G (wi;By), and Fy = =305 [Vi]] V([U1),)
fort=1,2,...,7T do
Wil = W —

NZaziis
Draw i.i.d. positive samples B; = {¢!}Y_, from D
Set [Upy1]; as (7)
Set [Vi41]; as (8) .
Fi = (1=F+5 >Xp,[Virl, VA([Ugal,)—(1—
7) Vil V£ ([U;)]
9:  Update parameters v;i;
T

5 2, Verl; V([Uinl;)
10: end for
11: Output: w chosen uniformly random from {w;}’ ;.

® 0 AW

as in (10) and d;

TABLE II: Statistics of benchmark datasets used in the linear
model task

Dataset training data  testing data  Positive data Proportion
mushrooms 3170 1587 17.66%
aba 11,220 21,341 23.99%
a7a 16,100 16,461 23.85%
w7a 24,692 25,057 2.99%
w8a 49,749 14,951 2.97 %
covtype 238,484 119,244 20.81%

batch-size by = O(T'/3). And use any of methods in eq. (11)
to compute v;. Then we have T' = O(e™3) to ensure that

E |55 Ve (w)l?] < .

IV. EXPERIMENTS

In this section, we empirically evaluate proposed algorithms
by conducting comprehensive experiments on imbalanced
benchmark datasets. The goal of our experiments is two-fold:
(1) to illustrate that directly optimizing the AUPRC would
improve the model performance compared with traditional loss
optimization, and (2) to show the advantage of our methods
compared with four existing state-of-the-art methods in table I,
including SOAP (SGD) [18], SOAP (Adam-style) [18], MOAP
[19] and ADAP (Adam-style) [19]. For our algorithms, we
implement ROAP and AROAP. The results illustrate that
our methods can outperform prior methods for imbalanced
classification tasks. All experiments are run over a machine
with Intel Xeon E5-2683 CPU and 4 Nvidia Tesla P40 GPU.
The code is available online !.

A. Linear Models

We first consider experiments on the linear model to illustrate
that direct optimization of AP would improve the model
performance compared with the traditional optimization method
based on the AUPRC metric. In addition to the methods

Uhttps://github.com/Wxdlele/auprc



TABLE III: Final averaged AP scores on the testing data in
the linear model task

Method mushrooms aba a7a

SOAP 0.9703 0.5695 0.6203
SOAP (Adam) 0.9980 0.5981 0.6215
MOAP 0.9606 0.6298 0.6943
ADAP 0.9971 0.6695 0.7111
ROAP 0.9845 0.6860 0.7214
AROAP 1 0.6959 0.7319
Method w7a w8a covtype
SOAP 0.4953 0.6254 0.5076
SOAP (Adam) 0.4916 0.5628 0.5215
MOAP 0.5005 0.6032 0.5334
ADAP 0.5445 0.6563 0.5490
ROAP 0.5565 0.6686 0.5421
AROAP 0.6092 0.6839 0.5611

mentioned above, we also use stochastic gradient descent (sgd)
to optimize the error rate. In this section, we use the sigmoid
function 1/ (exp (—w 'x) + 1) as prediction scores function
to compute AP. As mentioned in section III-A, it is a non-
convex task because the f(u) is non-convex.

Datasets: We conduct experiments on six imbalanced
benchmark data sets from LIBSVM data > and the sizes of
data sets range from 3,170 to 238,484. Table II summarizes the
statistics of datasets. For all datasets, we scale features to [0, 1].
Because the original distributions of datasets mushrooms and
covtype are balanced and only training data sets are provided,
we randomly eliminate 80% of positive data points and split
them into training and testing data sets with a 2:1 ratio.

Configurations: In the linear model experiments, the batch
size of positive data points is 50 and the batch size of
total data points is 350. The squared hinge loss is used
as the surrogate function following Qi, et al. [18], namely,
0(w;xj,%x;) = (max{s — [hy,(x;) — hy(x;)],0})%, where
s is a margin parameter. We tune the initial value of the
step size 7 in the set {1072,1072-5, 1073}, margin parameter
s as 0.6, 8 in the set {0.1,0.5,0.9} and ¢y in range [1,2].
For a fair comparison, we assign the same initial step size
in each experiment. Furthermore, for MOAP and ADAP, we
decrease the stepsize 7 on the order of O(1/+/t) according
to the theoretical analysis in [19]. For SOAP (SGD), SOAP
(Adam-style), we tune decrease the stepsize 1 on the order of
O(1/t%/%) [18]. Similarly, we tune our methods ROAP and
AROAP on the order of O(1/t'/?). We repeat each experiment
5 times on each data and report the averaged results in table III.
Moreover, we use Xavier initialization to initialize models.

Results: To present the advantage of optimization of AP, we
plot the Precision-Recall curves of the final models on testing
data after the same training epochs in Figure 1. Results show
that our method has a significant improvement compared with
SGD in terms of AUPRC. Then we illustrate the convergence
curve of AP on training data sets in Figure 2. From Figure 2,
we can see that our method AROAP converges faster than
other methods. These results demonstrate the superiority of

Zhttps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

TABLE IV: Final averaged AP scores on the testing data Deep
Neural Networks

Method MNIST  Fashion-MNIST  Tiny-ImageNet
SOAP 0.9178 0.9258 0.5476
SOAP (Adam)  0.9738 0.9350 0.5509
MOAP 0.9299 0.9292 0.5469
ADAP 0.9828 0.9464 0.5508
ROAP 0.9777 0.9501 0.5487
AROAP 0.9828 0.9510 0.5511

our methods, especially the adaptive method AROAP. Table III
presents the achieved AP on the test sets by all methods.

B. Deep Neural Networks

Next, we use the deep neural networks to evaluate the
different methods. A lot of architectures have been proposed
in DL. To illustrate the efficiency of our methods, in this part,
we will use various data sets and various model structures to
evaluate methods.

Datasets: We conduct experiments on three typical image
data sets: Fashion-MNIST dataset, MNIST dataset, and Tiny-
ImageNet dataset. Fashion-MNIST dataset and MNIST dataset
includes 60, 000 training images and 10,000 testing images.
Each image consists of 28 x 28 grayscale pixel and there are
total 10 classes. Tiny-ImageNet consists of 100,000 colored
images (64 x 64) of 200 classes (500 for each class) to
images. Each class has 500 training images, 50 validation
images, and 50 test images. Following [18], we convert them
into imbalanced binary-class versions, which are constructed
as follows: Firstly, the first half of the classes (0 - 4) in
the original MNIST, Fashion-MNIST, and (0 - 99) in Tiny-
ImageNet datasets are designated to be the negative class, and
the rest half of classes are considered to be a positive class.
Then, we randomly drop 98% of the positive examples in
the training set to make it imbalanced, while test sets keep
unchanged.

Configurations.: For MNIST and Fashion MNIST data sets,
we choose model architectures from [44] for imbalanced binary
image classification tasks. For Tiny-ImageNet, we choose
ResNet-18 [1] as the neural network.

For all models, we modify the last layer output from 10
to 1 since we consider binary classification tasks. Then, in
each of the experiments, models are trained by different AP
maximization methods, with the same initial step size as 0.001
for a fair comparison. The margin parameter s is 0.6, § is in the
set {0.1,0.5,0.9} and ¢y is in range [1,2]. We decrease the step
size following the theoretical analysis. As in the linear model
experiment, for MOAP and ADAP, we decrease the stepsize n
on the order of O(1/+/t) according to the theoretical analysis
in [19]. Similarly, we tune our methods ROAP and AROAP
on the order of O(1/t'/3). Moreover, for ROAP and AROAP,
given that in the DNN models, the large model needs large
storage, we set the o and ~y to be 1 to reduce the storage cost.
We tune the batch size of positive data points in set {10,100}.
We use Xavier normal initialization to DL models. In addition,
we set [o regulation parameter as 0.0001.
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Results.: Figure 3 shows that AP on test datasets for different
optimizers. Results show that AROAP can outperform all
baselines in terms of AUPRC, regardless of which model
structure is used. We conduct each experiment 5 times, and
the mean of test results are summarized in Table IV.

V. CONCLUSION

In this paper, we explore data mining on imbalanced data sets.
We propose novel stochastic Recursive Momentum methods to
maximize AP, a popular unbiased point estimator of AUPRC.
Our methods improve the convergence rate to O(1/¢®). We
also design a family of stochastic adaptive methods with the
same iteration complexity of O(1/e3). The experiments to
train linear models and Deep Neural Networks demonstrate the
effectiveness of our methods. Particularly, AROAP outperforms
other related methods in all experiments. In addition, it is easy
to extend this optimization to a multi-class setting as discussed
in section II-B.
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APPENDIX
A. Proof of Theorem 1

According to the above lemma 1, the function ®(w) has
Lg-Lipschitz continuous gradient. Then we have
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Then based on assumption 2, we have
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where the last inequality is due to lemma 1 and lemma A.5
in [42]. Then according to the update step in algorithm 1, we
have
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B. Proof of Theorem 2

The main proof of Theorem 2 is similar to the Theorem 1,
and we just change the update method of model parameters.

Let n; = 1/(y/vi+ ). Based on the boundedness of
estimator [U] and [V] with project operator, the assumptions
1, 2, ||d¢|| are bounded [42]. It is clear that 7c; < [17], < ey
for all 4 € [d]. Given that (14), we have

D (wisn) = @ () = Ve (w)]

2 2

Following the proof in theorem 1, we can get
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