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Abstract. Accurate assessment of anthropogenic carbon dioxide (CO;) emissions and their redistribution
among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand
the global carbon cycle, support the development of climate policies, and project future climate change. Here
we describe and synthesize data sets and methodologies to quantify the five major components of the global
carbon budget and their uncertainties. Fossil CO; emissions (Epog) are based on energy statistics and cement
production data, while emissions from land-use change (Epyc), mainly deforestation, are based on land use and
land-use change data and bookkeeping models. Atmospheric CO, concentration is measured directly, and its
growth rate (G arm) is computed from the annual changes in concentration. The ocean CO; sink (SocgaN) is
estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO;
sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (Byv),
the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and
terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All
uncertainties are reported as 1o

For the year 2021, Epos increased by 5.1 % relative to 2020, with fossil emissions at 10.1 4 0.5 GtC yr~!
(9.9+0.5GtC yr’1 when the cement carbonation sink is included), and Epyc was 1.1 £0.7GtC yr’l,
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for a total anthropogenic CO, emission (including the cement carbonation sink) of 10.9 +0.8 GtC yr~!

(40.0 £ 2.9 GtCO,). Also, for 2021, Gatm was 5.240.2GtC ylr_1 (2.5£0.1 ppm yr_l), SOoCEAN Was 2.9
+ 0.4 GtC yr_1 , and Sy anp was 3.5 £0.9 GtC yr_l, with a By of —0.6 GtC yr_l (i.e. the total estimated sources
were too low or sinks were too high). The global atmospheric CO, concentration averaged over 2021 reached
414.71 £ 0.1 ppm. Preliminary data for 2022 suggest an increase in Eros relative to 2021 of +1.0 % (0.1 % to
1.9 %) globally and atmospheric CO, concentration reaching 417.2 ppm, more than 50 % above pre-industrial
levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consis-
tently estimated over the period 1959—2021, but discrepancies of up to 1 GtC yr~! persist for the representation
of annual to semi-decadal variability in CO; fluxes. Comparison of estimates from multiple approaches and
observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low
agreement between the different methods on the magnitude of the land CO; flux in the northern extratropics,
and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This
living data update documents changes in the methods and data sets used in this new global carbon budget and the
progress in understanding of the global carbon cycle compared with previous publications of this data set. The
data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).

Executive summary. Global fossil CO; emissions (including ce-
ment carbonation) further increased in 2022, being now slightly
above their pre-COVID-19 pandemic 2019 level. The 2021 emis-
sion increase was 0.46 GtC yrfl (1.7GtCO, yrf1 ), bringing 2021
emissions to 9.9 + 0.5 GtC yr_1 (36.3+ 1.8 GtCO, yr_l), same as
the 2019 emissions level. Preliminary estimates based on data avail-
able suggest fossil CO, emissions continued to increase by 1.0 %
in 2022 relative to 2021 (0.1 % to 1.9 %), bringing emissions of
10.0 GtC yr_1 (36.6 GtCO, yr_l), slightly above the 2019 level.

Emissions from coal, oil, and gas in 2022 are expected to be
above their 2021 levels (by 1.0 %, 2.2 % and —0.2 % respectively).
Regionally, emissions in 2022 are expected to have decreased by
0.9 % in China (3.1 GtC, 11.4 GtCO,) and 0.8 % in the European
Union (0.8 GtC, 2.8 GtCO,) but increased by 1.5 % in the United
States (1.4 GtC, 5.1 GtCO3), 6 % in India (0.8 GtC, 2.9 GtCO,), and
1.7 % in the rest of the world (4.2 GtC, 15.4 GtCO,).

Fossil CO, emissions decreased in 24 countries during the
decade 2012-2021. Altogether, these 24 countries contributed about
2.4 GtC yrf1 (8.8 GtCO») fossil fuel CO, emissions over the last
decade, about a quarter of global CO; fossil emissions.

Global CO; emissions from land use, land-use change,
and forestry (LUC) averaged at 1.240.7GtC yrf1
(4.5+2.6GtCOyyr~!) for the 20122021 period with
a preliminary projection for 2022 of 1.1£0.7GtC yr_1
(3.9+2.6 GtCO, yr71 ). A small decrease over the past 2
decades is not robust given the large model uncertainty. Emissions
from deforestation, the main driver of global gross sources, remain
high at 1.8 + 0.4 GtC yrf1 over the 2012-2021 period, highlighting
the strong potential for emissions reductions when halting defor-
estation. Sequestration of 0.9 + 0.3 GtC ylr_1 through afforestation
or reafforestation and forestry offsets half of the deforestation
emissions. Emissions from other land-use transitions and from
peat drainage and peat fire add further small contributions. The
highest emitters during 2012-2021 in descending order were
Brazil, Indonesia, and the Democratic Republic of the Congo, with
these three countries contributing more than half of the global total
land-use emissions.

The remaining carbon budget for a 50 % likelihood to limit global
warming to 1.5, 1.7, and 2 °C has, respectively, reduced to 105 GtC
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(380 GtCO3), 200GtC (730 GtCO,), and 335 GtC (1230 GtCOy)
from the beginning of 2023, equivalent to 9, 18, and 30 years, as-
suming 2022 emissions levels. Total anthropogenic emissions were
11.0GtCyr~! (40.2GtCO, yr—1) in 2021, with a preliminary esti-
mate of 11.1 GtC yr—! (40.5 GtCO, yr—1) for 2022. The remaining
carbon budget to keep global temperatures below these climate tar-
gets has shrunk by 32 GtC (121 GtCO;) since the IPCC AR6 Work-
ing Group 1 assessment based on data up to 2019. Reaching zero
CO, emissions by 2050 entails a total anthropogenic CO; emis-
sions linear decrease by about 0.4 GtC (1.4 GtCO,) each year, com-
parable to the decrease during 2020, highlighting the scale of the
action needed.

The concentration of CO, in the atmosphere is set to reach
417.2ppm in 2022, 51 % above pre-industrial levels. The atmo-
spheric CO, growth was 5.2+ 0.02GtCyr—! during the decade
2012-2021 (48 % of total CO, emissions) with a preliminary 2022
growth rate estimate of around 5.3 GtC yr_l (2.5 ppm).

The ocean CO; sink resumed a more rapid growth in the past 2
decades after low or no growth during the 1991-2002 period. How-
ever, the growth of the ocean CO; sink in the past decade has an
uncertainty of a factor of 3, with estimates based on data prod-
ucts and estimates based on models showing an ocean sink trend
of +0.7 GtC yr_1 per decade and +0.2 GtC yr_1 per decade since
2010, respectively. The discrepancy in the trend originates from
all latitudes but is largest in the Southern Ocean. The ocean CO,
sink was 2.9+ 0.4 GtC yr_1 during the decade 2012-2021 (26 %
of total CO; emissions), with a similar preliminary estimate of
2.9 GtCyr~! for 2022.

The land CO; sink continued to increase during the 2012-2021
period primarily in response to increased atmospheric CO,, al-
beit with large interannual variability. The land CO, sink was
3.1+0.6GtC yr_l during the decade 2012-2021 (29% of to-
tal COy emissions), 0.4 GtC yr_1 larger than during the previous
decade (2000-2009), with a preliminary 2022 estimate of around
34 GtC yr_l. Year-to-year variability in the land sink is about
1GtC yr_1 and dominates the year-to-year changes in the global at-
mospheric CO; concentration, implying that small annual changes
in anthropogenic emissions (such as the fossil fuel emission de-

https://doi.org/10.5194/essd-14-4811-2022


https://doi.org/10.18160/GCP-2022

P. Friedlingstein et al.: Global Carbon Budget 2022

Atmospheric CO, Concentration

420
NOAA/ESRL (Dlugokencky and Tans, 2022)
__ 4004 — Scripps Institution of Oceanography (Keeling et al., 1976)
§
=
= 380
Ke]
8
£ 360
[0}
o
c
8 340
N
8 /
320
300 T T r
1960 1980 2000 2020

Year

Figure 1. Surface average atmospheric CO, concentration (ppm).
Since 1980, monthly data are from NOAA/GML (Dlugokencky and
Tans, 2022) and are based on an average of direct atmospheric CO»
measurements from multiple stations in the marine boundary layer
(Masarie and Tans, 1995). The 1958-1979 monthly data are from
the Scripps Institution of Oceanography, based on an average of
direct atmospheric CO, measurements from the Mauna Loa and
South Pole stations (Keeling et al., 1976). To account for the differ-
ence in mean CO; and seasonality between the NOAA/GML and
the Scripps station networks used here, the Scripps surface aver-
age (from two stations) was de-seasonalized and adjusted to match
the NOAA/GML surface average (from multiple stations) by adding
the mean difference of 0.667 ppm, calculated here from overlapping
data during 1980-2012.

crease in 2020) are hard to detect in the atmospheric CO; obser-
vations.

1 Introduction

The concentration of carbon dioxide (CO;) in the atmo-
sphere has increased from approximately 278 parts per mil-
lion (ppm) in 1750 (Gulev et al., 2021), the beginning of
the Industrial Era, to 414.7 £ 0.1 ppm in 2021 (Dlugokencky
and Tans, 2022; Fig. 1). The atmospheric CO; increase
above pre-industrial levels was, initially, primarily caused by
the release of carbon to the atmosphere from deforestation
and other land-use change activities (Canadell et al., 2021).
While emissions from fossil fuels started before the Indus-
trial Era, they became the dominant source of anthropogenic
emissions to the atmosphere from around 1950, and their rel-
ative share has continued to increase until present. Anthro-
pogenic emissions occur on top of an active natural carbon
cycle that circulates carbon between the reservoirs of the
atmosphere, ocean, and terrestrial biosphere on timescales
from sub-daily to millennia, while exchanges with geologic
reservoirs occur at longer timescales (Archer et al., 2009).
The global carbon budget (GCB) presented here refers to
the mean, variations, and trends in the perturbation of CO,
in the environment, referenced to the beginning of the In-
dustrial Era (defined here as 1750). This paper describes

https://doi.org/10.5194/essd-14-4811-2022
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the components of the global carbon cycle over the histor-
ical period with a stronger focus on the recent period (since
1958, the onset of atmospheric CO, measurements), the last
decade (2012-2021), the last year (2021), and the current
year (2022). Finally, it provides cumulative emissions from
fossil fuels and land-use change since the year 1750 (the pre-
industrial period) and since the year 1850 (the reference year
for historical simulations in [IPCC AR6) (Eyring et al., 2016).

We quantify the input of CO; to the atmosphere by emis-
sions from human activities; the growth rate of atmospheric
CO; concentration; and the resulting changes in the storage
of carbon in the land and ocean reservoirs in response to in-
creasing atmospheric CO» levels, climate change and vari-
ability, and other anthropogenic and natural changes (Fig. 2).
An understanding of this perturbation budget over time and
the underlying variability and trends of the natural carbon cy-
cle is necessary to understand the response of natural sinks
to changes in climate, CO;, and land-use change drivers and
to quantify emissions compatible with a given climate stabi-
lization target.

The components of the CO, budget that are reported annu-
ally in this paper include separate and independent estimates
for the CO; emissions from (1) fossil fuel combustion and
oxidation from all energy and industrial processes, including
cement production and carbonation (Egps; GtC yr‘l), and
(2) the emissions resulting from deliberate human activities
on land, including those leading to land-use change (Eruc;
GtCyr~!) and their partitioning among (3) the growth rate
of atmospheric CO» concentration (G atm; GtC yr’l) and the
uptake of CO; (the “CO» sinks”) in (4) the ocean (SocgaN;
GtCyr~!) and (5) on land (Spanp; GtCyr—!). The CO,
sinks as defined here conceptually include the response of
the land (including inland waters and estuaries) and ocean
(including coastal and marginal seas) to elevated CO, and
changes in climate and other environmental conditions, al-
though in practice not all processes are fully accounted
for (see Sect. 2.7). Global emissions and their partitioning
among the atmosphere, ocean, and land are in balance in
the real world. Due to the combination of imperfect spatial
and/or temporal data coverage, errors in each estimate, and
smaller terms not included in our budget estimate (discussed
in Sect. 2.7), the independent estimates (1) to (5) above do
not necessarily add up to zero. We therefore (i) additionally
assess a set of global atmospheric inversion system results
that by design close the global carbon balance (see Sect. 2.6)
and (i) estimate a budget imbalance (Bpv), which is a mea-
sure of the mismatch between the estimated emissions and
the estimated changes in the atmosphere, land, and ocean, as
follows:

Bim = Eros + ELuc — (G AT™ + SOCEAN + SLAND). (D

G atMm is usually reported in ppmyr~!, which we convert
to units of carbon mass per year, GtC yr~!, using 1 ppm =
2.124 GtC (Ballantyne et al., 2012; Table 1). All quantities
are presented in units of gigatonnes of carbon (GtC, 10'3 gC),

Earth Syst. Sci. Data, 14, 4811-4900, 2022
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Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities averaged globally
for the decade 2012-2021. See legends for the corresponding arrows and units. The uncertainty in the atmospheric CO, growth rate is very
small (£0.02 GtC yrfl) and is neglected for the figure. The anthropogenic perturbation occurs on top of an active carbon cycle, with fluxes
and stocks represented in the background and taken from Canadell et al. (2021) for all numbers, except for the carbon stocks in coasts, which
are from a literature review of coastal marine sediments (Price and Warren, 2016).

which is the same as petagrams of carbon (PgC; Table 1).
Units of gigatonnes of CO» (or billion tonnes of CO;) used
in policy are equal to 3.664 multiplied by the value in units
of GtC.

We also quantify Erps and Epyc by country, including
both territorial and consumption-based accounting for Eros
(see Sect. 2), and discuss missing terms from sources other
than the combustion of fossil fuels (see Sect. 2.7 and Ap-
pendix D1 and D2).

The global CO, budget has been assessed by the Inter-
governmental Panel on Climate Change (IPCC) in all assess-
ment reports (Prentice et al., 2001; Schimel et al., 1995; Wat-
son et al., 1990; Denman et al., 2007; Ciais et al., 2013;
Canadell et al., 2021) and by others (e.g. Ballantyne et
al., 2012). The Global Carbon Project (GCP, https://www.
globalcarbonproject.org, last access: 25 September 2022) has
coordinated this cooperative community effort for the an-
nual publication of global carbon budgets for the year 2005
(Raupach et al., 2007; including fossil emissions only), year
2006 (Canadell et al., 2007), year 2007 (GCP, 2007), year
2008 (Le Quéré et al., 2009), year 2009 (Friedlingstein et al.,
2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré
et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al.,
2014), year 2014 (Le Quéré et al., 2015a; Friedlingstein et
al., 2014), year 2015 (Jackson et al., 2016; Le Quéré et al.,
2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le

Earth Syst. Sci. Data, 14, 4811-4900, 2022

Quéré et al., 2018a; Peters et al., 2017), year 2018 (Le Quéré
et al., 2018b; Jackson et al., 2018), year 2019 (Friedling-
stein et al., 2019; Jackson et al., 2019; Peters et al., 2020),
year 2020 (Friedlingstein et al., 2020; Le Quéré et al., 2021),
and more recently the year 2021 (Friedlingstein et al., 2022a;
Jackson et al., 2022). Each of these papers updated previous
estimates with the latest available information for the entire
time series.

We adopt a range of £1 standard deviation (o) to report
the uncertainties in our estimates, representing a likelihood
of 68 % that the true value will be within the provided range
if the errors have a Gaussian distribution and no bias is as-
sumed. This choice reflects the difficulty of characterizing
the uncertainty in the CO, fluxes between the atmosphere
and the ocean and land reservoirs individually, particularly
on an annual basis, as well as the difficulty of updating the
CO; emissions from land-use change. A likelihood of 68 %
provides an indication of our current capability to quantify
each term and its uncertainty given the available informa-
tion. The uncertainties reported here combine statistical anal-
ysis of the underlying data, assessments of uncertainties in
the generation of the data sets, and expert judgement of the
likelihood of results lying outside this range. The limitations
of current information are discussed in the paper and have
been examined in detail elsewhere (Ballantyne et al., 2015;
Zscheischler et al., 2017). We also use a qualitative assess-
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Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 x conversion).

Unit 1 Unit 2 Conversion ~ Source

GtC (gigatonnes of carbon) ppm (parts per million)? 2.1240 Ballantyne et al. (2012)

GtC (gigatonnes of carbon) PgC (petagrams of carbon) 1 SI unit conversion

GtCO, (gigatonnes of carbon dioxide)  GtC (gigatonnes of carbon) 3.664 44.01/12.011 in mass equivalent
GtC (gigatonnes of carbon) MtC (megatonnes of carbon) 1000  SI unit conversion

2 Measurements of atmospheric CO; concentration have units of dry-air mole fraction. “ppm” is an abbreviation for pmol mol~! dry air. YThe use of a factor of
2.124 assumes that all of the atmosphere is well mixed within 1 year. In reality, only the troposphere is well mixed, and the growth rate of CO, concentration in
the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the growth rate of CO,

concentration in the stratosphere equals that of the troposphere on a yearly basis.

ment of confidence level to characterize the annual estimates
from each term based on the type, amount, quality, and con-
sistency of the evidence as defined by the IPCC (Stocker et
al., 2013).

This paper provides a detailed description of the data sets
and methodology used to compute the global carbon bud-
get estimates for the industrial period (from 1750 to 2022)
and in more detail for the period since 1959. This paper
is updated every year using the format of “living data” to
keep a record of budget versions and the changes in new
data, revisions of data, and changes in methodology that
lead to changes in estimates of the carbon budget. Addi-
tional materials associated with the release of each new ver-
sion will be posted at the Global Carbon Project (GCP)
website (http://www.globalcarbonproject.org/carbonbudget,
last access: 25 September 2022), with fossil fuel emissions
also available through the Global Carbon Atlas (http://www.
globalcarbonatlas.org, last access: 25 September 2022). All
underlying data used to produce the budget can also be found
at https://globalcarbonbudget.org/ (last access: 25 September
2022). With this approach, we aim to provide the highest
transparency and traceability in the reporting of CO,, the key
driver of climate change.

2 Methods

Multiple organizations and research groups around the world
generated the original measurements and data used to com-
plete the global carbon budget. The effort presented here is
thus mainly one of synthesis, where results from individ-
ual groups are collated, analysed, and evaluated for consis-
tency. We facilitate access to original data with the under-
standing that primary data sets will be referenced in future
work (see Table 2 for how to cite the data sets). Descrip-
tions of the measurements, models, and methodologies fol-
low below, and detailed descriptions of each component are
provided elsewhere.

This is the 17th version of the global carbon budget and the
11th revised version in the format of a living data update in
Earth System Science Data. It builds on the latest published
global carbon budget of Friedlingstein et al. (2022a). The
main changes are the inclusion of (1) data to year 2021 and
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a projection for the global carbon budget for the year 2022,
(2) the inclusion of country-level estimates of Epyc, and(3) a
process-based decomposition of Eyyc into its main compo-
nents (deforestation; afforestation, reafforestation, and wood
harvest; emissions from organic soils; and net flux from other
transitions).

The main methodological differences between recent an-
nual carbon budgets (2018-2022) are summarized in Table 3,
and previous changes since 2006 are provided in Table A7.

2.1 Fossil CO2 emissions (Egps)
2.1.1 Historical period 1850—2021

The estimates of global and national fossil CO, emissions
(Eros) include the oxidation of fossil fuels through both
combustion (e.g. transport, heating) and chemical oxidation
(e.g. carbon anode decomposition in aluminium refining) ac-
tivities, and the decomposition of carbonates in industrial
processes (e.g. the production of cement). We also include
CO; uptake from the cement carbonation process. Several
emission sources are not estimated or not fully covered: cov-
erage of emissions from lime production is not global, and
decomposition of carbonates in glass and ceramic production
are included only for the “Annex 1” countries of the United
Nations Framework Convention on Climate Change (UN-
FCCC) for lack of activity data. These omissions are con-
sidered to be minor. Short-cycle carbon emissions — for ex-
ample from combustion of biomass — are not included here
but are accounted for in the CO; emissions from land use
(see Sect. 2.2).

Our estimates of fossil CO;, emissions are derived using
the standard approach of activity data and emission factors,
relying on data collection by many other parties. Our goal
is to produce the best estimate of this flux, and we there-
fore use a prioritization framework to combine data from
different sources that have used different methods, while be-
ing careful to avoid double counting and undercounting of
emissions sources. The CDIAC-FF emissions data set, de-
rived largely from UN energy data, forms the foundation, and
we extend emissions to year Y-1 using energy growth rates
reported by the BP energy company. We then proceed to re-
place estimates using data from what we consider to be supe-
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Table 2. How to cite the individual components of the global carbon budget presented here.

Component

Primary reference

Global fossil CO; emissions (ERQs), total and by fuel type

Updated from Andrew and Peters (2021)

National territorial fossil CO, emissions (Ergs)

Gilfillan and Marland (2021), UNFCCC (2022)

National consumption-based fossil CO, emissions (Eggs) by
country (consumption)

Peters et al. (2011b), updated as described in this paper

Net land-use change flux (Epyc)

This paper (see Table 4 for individual model references)

Growth rate in atmospheric CO, concentration (G ATmM)

Dlugokencky and Tans (2022)

Ocean and land CO; sinks (Socgan and Sp AND)

This paper (see Table 4 for individual model and data product
references)

rior sources, for example Annex 1 countries’ official submis-
sions to the UNFCCC. All data points are potentially subject
to revision, not just the latest year. For the full details, see
Andrew and Peters (2021).

Other estimates of global fossil CO; emissions exist, and
these are compared by Andrew (2020a). The most common
reason for differences in estimates of global fossil CO; emis-
sions is a difference in which emissions sources are included
in the data sets. Data sets such as those published by the
energy company BP, the US Energy Information Adminis-
tration, and the International Energy Agency’s “CO, emis-
sions from fuel combustion” are all generally limited to emis-
sions from combustion of fossil fuels. In contrast, data sets
such as PRIMAP-hist, CEDS, EDGAR, and GCP’s data set
aim to include all sources of fossil CO, emissions. See An-
drew (2020a) for detailed comparisons and discussion.

Cement absorbs CO, from the atmosphere over its life-
time, a process known as “cement carbonation”. We esti-
mate this CO, sink from 1931 onwards as the average of
two studies in the literature (Cao et al., 2020; Guo et al.,
2021). Both studies use the same model, developed by Xi
et al. (2016), with different parameterizations and input data,
with the estimate of Guo and colleagues being a revision of
Xi et al. (2016). The trends of the two studies are very sim-
ilar. Since carbonation is a function of both current and pre-
vious cement production, we extend these estimates to 2022
by using the growth rate derived from the smoothed cement
emissions (10-year smoothing) fitted to the carbonation data.
In the present budget, we always include the cement car-
bonation carbon sink in the fossil CO, emission component
(EFos)-

We use the Kaya Identity for a simple decomposition of
CO; emissions into the key drivers (Raupach et al., 2007).
While there are variations (Peters et al., 2017), we focus here
on a decomposition of CO; emissions into population, GDP
per person, energy use per GDP, and CO; emissions per en-
ergy. Multiplying these individual components together re-
turns the CO, emissions. Using the decomposition, it is pos-
sible to attribute the change in CO; emissions to the change
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in each of the drivers. This method gives a first-order under-
standing of what causes CO; emissions to change each year.

2.1.2 The 2022 projection

We provide a projection of global CO; emissions in 2022 by
combining separate projections for China, USA, EU, India,
and for all other countries combined. The methods are dif-
ferent for each of these. For China we combine monthly fos-
sil fuel production data from the National Bureau of Statis-
tics, import and export data from the Customs Administra-
tion, and monthly coal consumption estimates from SX Coal
(2022), giving us partial data for the growth rates to date
of natural gas, petroleum, and cement, and of the consump-
tion itself for raw coal. We then use a regression model
to project full-year emissions based on historical observa-
tions. For the USA our projection is taken directly from the
Energy Information Administration’s (EIA) Short-Term En-
ergy Outlook (EIA, 2022), combined with the year-to-date
growth rate of cement clinker production. For the EU we
use monthly energy data from Eurostat to derive estimates
of monthly CO» emissions through July, with coal emissions
extended through August using a statistical relationship with
reported electricity generation from coal and other factors.
Given the very high uncertainty in European energy mar-
kets in 2022, we forego our usual history-based projection
techniques and instead use the year-to-date growth rate as
the full-year growth rate for both coal and natural gas. EU
emissions from oil are derived using the EIA’s projection of
oil consumption for Europe. EU cement emissions are based
on available year-to-date data from three of the largest pro-
ducers, Germany, Poland, and Spain. India’s projected emis-
sions are derived from estimates through July (August for
oil) using the methods of Andrew (2020b) and extrapolated
assuming normal seasonal patterns. Emissions for the rest of
the world are derived using projected growth in economic
production from the IMF (2022) combined with extrapo-
lated changes in emissions intensity of economic production.
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More details on the Erpos methodology and its 2022 projec-
tion can be found in Appendix C1.

2.2 CO» emissions from land use, land-use change,
and forestry (E_yc)

2.2.1 Historical period 1850—2021

The net CO, flux from land use, land-use change, and
forestry (ELuc, called land-use change emissions in the rest
of the text) includes CO; fluxes from deforestation, afforesta-
tion, logging and forest degradation (including harvest activ-
ity), shifting cultivation (cycle of cutting forest for agricul-
ture, then abandoning), and regrowth of forests (following
wood harvest or agriculture abandonment). Emissions from
peat burning and drainage are added from external data sets,
with peat drainage being averaged from three spatially ex-
plicit independent data sets (see Appendix C2.1).

Three bookkeeping approaches, updated estimates each of
BLUE (Hansis et al., 2015), OSCAR (Gasser et al., 2020),
and H&N2017 (Houghton and Nassikas, 2017), were used to
quantify gross sources and sinks and the resulting net Ep yc.
Uncertainty estimates were derived from the dynamic global
vegetation models (DGVMs) ensemble for the time period
prior to 1960, using for the recent decades an uncertainty
range of +0.7 GtC yr~!, which is a semi-quantitative mea-
sure for annual and decadal emissions and reflects our best
value judgement that there is at least 68 % chance (£10) that
the true land-use change emission lies within the given range
for the range of processes considered here. This uncertainty
range had been increased from 0.5 GtC yr—! after new book-
keeping models were included that indicated a larger spread
than assumed before (Le Quéré et al., 2018a). Projections for
2021 are based on fire activity from tropical deforestation
and degradation and emissions from peat fires and drainage.

Our Epyc estimates follow the definition of global carbon
cycle models of CO; fluxes related to land-use and land man-
agement and differ from IPCC definitions adopted in national
greenhouse gas (GHG) inventories (NGHGI) for reporting
under the UNFCCC, which additionally generally include,
through adoption of the IPCC so-called managed land proxy
approach, the terrestrial fluxes occurring on land defined by
countries as managed. This partly includes fluxes due to en-
vironmental change (e.g. atmospheric CO; increase), which
are part of SLANp in our definition. This causes the global
emission estimates to be smaller for NGHGI than for the
global carbon budget definition (Grassi et al., 2018). The
same is the case for the Food Agriculture Organization (FAO)
estimates of carbon fluxes on forest land, which include
both anthropogenic and natural sources on managed land
(Tubiello et al., 2021). We map the two definitions to each
other, to provide a comparison of the anthropogenic carbon
budget to the official country reporting to the climate con-
vention.

Earth Syst. Sci. Data, 14, 4811-4900, 2022
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2.2.2 The 2022 projection

We project the 2022 land-use emissions for BLUE, the up-
dated H&N2017, and OSCAR, starting from their estimates
for 2021 assuming unaltered peat drainage, which has low
interannual variability but adjusting the highly variable emis-
sions from peat fires, tropical deforestation, and degradation
as estimated using active fire data (MCD14ML; Giglio et al.,
2016). More details on the Epyc methodology can be found
in Appendix C2.

2.3 Growth rate in atmospheric CO» concentration
(Gatm)

2.3.1 Historical period 1850—2021

The rate of growth of the atmospheric CO; concentration is
provided for years 1959-2021 by the US National Oceanic
and Atmospheric Administration Global Monitoring Labo-
ratory (NOAA/GML; Dlugokencky and Tans, 2022), which
is updated from Ballantyne et al. (2012) and includes recent
revisions to the calibration scale of atmospheric CO, mea-
surements (Hall et al., 2021). For the 1959-1979 period, the
global growth rate is based on measurements of atmospheric
CO» concentration averaged from the Mauna Loa and South
Pole stations, as observed by the CO, Program at Scripps
Institution of Oceanography (Keeling et al., 1976). For the
1980-2020 time period, the global growth rate is based on
the average of multiple stations selected from the marine
boundary layer sites with well-mixed background air (Bal-
lantyne et al., 2012), after fitting a smooth curve through
the data for each station as a function of time and averag-
ing by latitude band (Masarie and Tans, 1995). The annual
growth rate is estimated by Dlugokencky and Tans (2022)
from atmospheric CO, concentration by taking the average
of the most recent December—January months corrected for
the average seasonal cycle and subtracting this same aver-
age one year earlier. The growth rate (in units of ppmyr—')
is converted to units of GtC yr~! by multiplying by a factor
of 2.124 GtC ppm™~!, assuming instantaneous mixing of CO,
throughout the atmosphere (Ballantyne et al., 2012; Table 1).

Since 2020, NOAA/GML provides estimates of atmo-
spheric CO, concentrations with respect to a new calibra-
tion scale, referred to as WMO-C0O,-X2019, in line with the
recommendation of the World Meteorological Organization
(WMO) Global Atmosphere Watch (GAW) community (Hall
et al., 2021). The “X” in the scale name indicates that it is a
mole fraction scale, how many micro-moles of CO; in a sin-
gle mole of (dry) air. The word “concentration” only loosely
reflects this. The WMO-CO,-X2019 scale improves upon the
earlier WMO-CO;,-X2007 scale by including a broader set
of standards, which contain CO; in a wider range of concen-
trations that span the range 250-800 ppm (vs. 250-520 ppm
for WMO-CO,-X2007). In addition, NOAA/GML made two
minor corrections to the analytical procedure used to quantify
CO; concentrations, fixing an error in the second virial coef-
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ficient of CO, and accounting for loss of a small amount of
CO; to materials in the manometer during the measurement
process. The difference in concentrations measured using
WMO-CO0,-X2019 vs. WMO-CO0,-X2007 is ~+0.18 ppm
at 400 ppm and the observational record of atmospheric CO,
concentrations have been revised accordingly. The revisions
have been applied retrospectively in all cases where the cal-
ibrations were performed by NOAA/GML, thus affecting
measurements made by members of the WMO-GAW pro-
gramme and other regionally coordinated programmes (e.g.
Integrated Carbon Observing System, ICOS). Changes to the
CO; concentrations measured across these networks propa-
gate to the global mean CO; concentrations. The recalibrated
data were first used to estimate Garm in the 2021 edition
of the global carbon budget (Friedlingstein et al., 2022a).
Friedlingstein et al. (2022a) verified that the change of scales
from WMO-CO,-X2007 to WMO-CO,-X2019 made a neg-
ligible difference to the value of G arm (—0.06 GtC yr’] dur-
ing 2010-2019 and —0.01 GtC yr~! during 1959-2019, well
within the uncertainty range reported below).

The uncertainty around the atmospheric growth rate is due
to four main factors. First, the long-term reproducibility of
reference gas standards (around 0.03 ppm for 1o from the
1980s; Dlugokencky and Tans, 2022). Second, small unex-
plained systematic analytical errors that may have a duration
of several months to 2 years come and go. They have been
simulated by randomizing both the duration and the mag-
nitude (determined from the existing evidence) in a Monte
Carlo procedure. Third, the network composition of the ma-
rine boundary layer with some sites coming or going, gaps in
the time series at each site, and so on (Dlugokencky and Tans,
2022). The latter uncertainty was estimated by NOAA/GML
with a Monte Carlo method by constructing 100 “alternative”
networks (Masarie and Tans, 1995; NOAA/GML, 2019).
The second and third uncertainties, summed in quadrature,
add up to 0.085 ppm on average (Dlugokencky and Tans,
2022). Fourth, the uncertainty associated with using the av-
erage CO, concentration from a surface network to approxi-
mate the true atmospheric average CO, concentration (mass-
weighted, in three dimensions) as needed to assess the to-
tal atmospheric CO; burden. In reality, CO, variations mea-
sured at the stations will not exactly track changes in total
atmospheric burden, with offsets in magnitude and phasing
due to vertical and horizontal mixing. This effect must be
very small on decadal and longer timescales, when the atmo-
sphere can be considered well mixed. The CO, increase in
the stratosphere lags the increase (meaning lower concentra-
tions) that we observe in the marine boundary layer, while
the continental boundary layer (where most of the emissions
take place) leads the marine boundary layer with higher con-
centrations. These effects nearly cancel each other. In ad-
dition, the growth rate is nearly the same everywhere (Bal-
lantyne et al., 2012). We therefore maintain an uncertainty
around the annual growth rate based on the multiple sta-
tions dataset ranges between 0.11 and 0.72 GtCyr~!, with
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a mean of 0.61 GtCyr~! for 1959-1979 and 0.17 GtC yr—!
for 1980-2020, when a larger set of stations were avail-
able as provided by Dlugokencky and Tans (2022). We es-
timate the uncertainty of the decadal averaged growth rate
after 1980 at 0.02 GtC yr~! based on the calibration and the
annual growth rate uncertainty but stretched over a 10-year
interval. For years prior to 1980, we estimate the decadal
averaged uncertainty to be 0.07 GtC yr~! based on a factor
proportional to the annual uncertainty prior and after 1980
(0.02 x [0.61/0.17] GtC yr~1).

We assign a high confidence to the annual estimates of
G atm because they are based on direct measurements from
multiple and consistent instruments and stations distributed
around the world (Ballantyne et al., 2012; Hall et al., 2021).

To estimate the total carbon accumulated in the atmo-
sphere since 1750 or 1850, we use an atmospheric CO; con-
centration of 278.3 &3 ppm or 285.1 & 3 ppm, respectively
(Gulev et al., 2021). For the construction of the cumulative
budget shown in Fig. 3, we use the fitted estimates of CO;
concentration from Joos and Spahni (2008) to estimate the
annual atmospheric growth rate using the conversion fac-
tors shown in Table 1. The uncertainty of +3 ppm (converted
to +10) is taken directly from the IPCC’s ARS assessment
(Ciais et al., 2013). Typical uncertainties in the growth rate
in atmospheric CO, concentration from ice core data are
equivalent to +-0.1-0.15 GtC yr~! as evaluated from the Law
Dome data (Etheridge et al., 1996) for individual 20-year in-
tervals over the period from 1850 to 1960 (Bruno and Joos,
1997).

2.3.2 The 2022 projection

We provide an assessment of Garm for 2022 based on
the monthly calculated global atmospheric CO, concentra-
tion (GLO) through August (Dlugokencky and Tans, 2022),
and bias-adjusted Holt—Winters exponential smoothing with
additive seasonality (Chatfield, 1978) to project to Jan-
uary 2023. Additional analysis suggests that the first half of
the year (the boreal winter—spring—summer transition) shows
more interannual variability than the second half of the year
(the boreal summer—autumn—winter transition), so that the
exact projection method applied to the second half of the
year has a relatively smaller impact on the projection of the
full year. Uncertainty is estimated from past variability using
the standard deviation of the last 5 years of monthly growth
rates.

2.4 Ocean COs> sink

2.4.1 Historical period 1850-2021

The reported estimate of the global ocean anthropogenic CO;
sink Socgan is derived as the average of two estimates. The
first estimate is derived as the mean over an ensemble of
10 global ocean biogeochemistry models (GOBMs, Tables 4
and A2). The second estimate is obtained as the mean over
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Table 4. References for the process models, bookkeeping models, ocean data products, and atmospheric inversions. All models and prod-
ucts are updated with new data to the end of year 2021, and the atmospheric forcing for the DGVMs has been updated as described in

Appendix C2.2.

Model or data name

Reference

Change from Global Carbon Budget 2021 (Friedlingstein et al., 2022a)

Bookkeeping models for land-use change emissions

BLUE

Updated H&N2017

OSCAR

Hansis et al. (2015)

Houghton and Nassikas (2017)

Gasser et al. (2020)

No change to model, but simulations are performed with updated LUH2
forcing. Update in added peat drainage emissions (based on three spa-
tially explicit data sets).

Minor bug fix in the fuel harvest estimates that was causing an overesti-
mation of fuel sink. Update in added peat drainage emissions (based on
three spatially explicit data sets).

No change to model, but land-use forcing is changed to LUH2-
GCB2022 and FRA2020 (as used by H&N and extrapolated to 2021),
with both prescribed at higher spatial resolution (210 instead of 96
regions/countries). Constraining based on last year’s budget data for
SLaND over 1960-2021. Update in added peat drainage emissions
(based on three spatially explicit data sets).

Dynamic global vegetation models

CABLE-POP

Haverd et al. (2018)

Changes in parameterization. Diffuse fraction of incoming radiation
read in as forcing.

CLASSIC Melton et al. (2020)2 Minor bug fixes.

CLM5.0 Lawrence et al. (2019) No change.

DLEM Tian et al. (2015)b No change.

IBIS Yuan et al. (2014)°¢ No change.

ISAM Meiyappan et al. (2015)4 No change.

JSBACH Reick et al. (2021)° No change.

JULES-ES Wiltshire et al. (2021)f Minor bug fixes (using JULES v6.3, suite u-co002).

LPJ-GUESS Smith et al. (2014)8 No change.

LPJ Poulter et al. (201 l)h No change.

LPX-Bern Lienert and Joos (2018) Following the results of Joos et al. (2020), we use modified parameter
values that yield a more reasonable (lower) biological nitrogen fixation
(BNF), termed LPX v1.5. This parameter version has increased N im-
mobilization and a stronger N limitation than the previous version.
The N,O emissions were adjusted accordingly. The parameters were
obtained by running an ensemble simulation and imposing various ob-
servational constraints and subsequently adjusting N immobilization.
For the methodology, see Joos et al. (2020).

OCN Zaehle and Friend (2010)i No change (uses 1294).

ORCHIDEEvV3 Vuichard et al. (2019)i No change (ORCHIDEE — V3; revision 7267).

SDGVM Walker et al. (2017)k No change.

VISIT Kato et al. (201 3)1 No change.

YIBs Yue and Unger (2015) No change.

Global ocean biogeochemistry models

NEMO-PlankTOM 12 Wright et al. (2021) Minor bug fixes.

MICOM-HAMOCC (NorESM-OCv1.2)  Schwinger et al. (2016) No change.

MPIOM-HAMOCC6 Lacroix et al. (2021) No change.

NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019)™ No change.

FESOM-2.1-REcoM2 Hauck et al. (2020)" Extended spin-up, minor bug fixes.

MOMG6-COBALT (Princeton) Liao et al. (2020) No change.

CESM-ETHZ

NEMO-PISCES (IPSL)
MRI-ESM2-1
CESM2

Doney et al. (2009)

Aumont et al. (2015)

Nakano et al. (2011), Urakawa et al. (2020)

Long et al. (2021)°

Changed salinity restoring in the surface ocean from 700 to 300d,
except for the Southern Ocean south of 45°S, where the restoring
timescale was set to 60d.

No change.

New this year.

New this year.
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Table 4. Continued.

Model or data name Reference

Change from Global Carbon Budget 2021 (Friedlingstein et al., 2022a)

Ocean data products

MPI-SOMFFN Landschiitzer et al. (2016)

Jena-MLS Rodenbeck et al. (2022)

CMEMS-LSCE-FFNNv2 Chau et al. (2022)

LDEO-HPD Gloege et al. (2022)P
UOEXx-Watson Watson et al. (2020)
NIES-NN Zeng et al. (2014)
JMA-MLR Iida et al. (2021)

OS-ETHZ-GRaCER Gregor and Gruber (2021)

Update to SOCATv2022 measurements and time period 1982-2021.
The estimate now covers the full ocean domain and the Arctic Ocean
extension described in Landschiitzer et al. (2020).

Update to SOCATV2022 measurements, time period extended to 1957—
2021.

Update to SOCATv2022 measurements and time period 1985-2021.
The CMEMS-LSCE-FFNNv2 product now covers both the open-ocean
and coastal regions.

New this year.

Updated to SOCAT v2022 and OISSTv2.1.

Updated to SOCAT v2022. Small changes in method (gas exchange
coefficient a = 0.271; trend calculation 1990-2020, predictors include
long and lat).

Updated to SOCATVv2022,

sea surface temperature (SST) fields (MGDSST) updated.

No change

Atmospheric inversions

CAMS Chevallier et al. (2005)4

CarbonTracker Europe (CTE)  van der Laan-Luijkx et al. (2017)

Jena CarboScope Roédenbeck et al. (2018)°

UOE in situ Feng et al. (2016)"
NISMON-CO» Niwa et al. (2022)"
CMS-Flux Liu et al. (2021)
GONGGA Jin et al. (2022)"
THU Kong et al. (2022)

CAMS-Satellite Chevallier et al. (2005)4

Updated to WMOX2019 scale. Extension to year 2021, revision of the
station list, update of the prior fluxes

Updated to WMOX?2019 scale. Biosphere prior fluxes from the SiB4
model instead of SiBCASA model. Extension to 2021.

Updated to WMOX2019 scale. Extension to 2021.

Updated to WMOX2019 scale. Updated station list and refined land—
ocean map. Extension to 2021.

Updated to WMOX2019 scale. Positive definite flux parameters and up-
dated station list. Extension to 2021.

Updated to WMOX2019 scale. Extension to 2021.

New this year.

New this year.

New this year.

2 See also Asaadi et al. (2018). b See also Tian et al. (2011). © The dynamic carbon allocation scheme was presented by Xia et al. (2015). d See also Jain et al. (2013). Soil
biogeochemistry is updated based on Shu et al. (2020). ¢ See also Mauritsen et al. (2019). f See also Sellar et al. (2019) and Burton et al. (2019). JULES-ES is the Earth System
configuration of the Joint UK Land Environment Simulator as used in the UK Earth System Model (UKESM). € To account for the differences between the derivation of short-wave
radiation from CRU cloudiness and DSWRF from CRUJRA, the photosynthesis scaling parameter o was modified (—15 %) to yield similar results. h Compared to published version,
decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased
so that 100 % of harvested grass enters the litter pool. I See also Zaehle et al. (201 I).j See also Zaehle and Friend (2010) and Krinner et al. (2005) K See also Woodward and Lomas
(2004). ! See also Ito and Inatomi (2012). ™ See also Séférian et al. (2019). M See also Schourup-Kristensen et al. (2014). © See also Yeager et al. (2022). P See also Bennington et

al. (2022). 9 See also Remaud (2018). ' See also Rodenbeck et al. (2003). 3 See also Feng et al. (2009) and Palmer et al. (2019)! See also Niwa et al. (2020)" See also Tian et al. (2014).

an ensemble of seven observation-based data products (Ta-
bles 4 and A3). An eighth product (Watson et al., 2020) is
shown but is not included in the ensemble average as it differs
from the other products by adjusting the flux to a cool, salty
ocean surface skin (see Appendix C3.1 for a discussion of the
Watson product). The GOBMs simulate both the natural and
anthropogenic CO; cycles in the ocean. They constrain the
anthropogenic air—sea CO; flux (the dominant component of
SoceaNn) by the transport of carbon into the ocean interior,
which is also the controlling factor of present-day ocean car-
bon uptake in the real world. They cover the full globe and
all seasons and were recently evaluated against surface ocean
carbon observations, suggesting they are suitable to estimate
the annual ocean carbon sink (Hauck et al., 2020). The data
products are tightly linked to observations of fCO; (fugacity
of CO,, which equals pCO; corrected for the non-ideal be-
haviour of the gas; Pfeil et al., 2013), which carry imprints of
temporal and spatial variability, but are also sensitive to un-
certainties in gas exchange parameterizations and data spar-
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sity. Their asset is the assessment of interannual and spatial
variability (Hauck et al., 2020). We use two further diagnos-
tic ocean models to estimate Socgan over the industrial era
(1781-1958).

The global fCO;-based flux estimates were adjusted to
remove the pre-industrial ocean source of CO; to the atmo-
sphere of 0.65GtCyr~! from river input to the ocean (Reg-
nier et al., 2022) to satisfy our definition of Socean (Hauck et
al., 2020). The river flux adjustment was distributed over the
latitudinal bands using the regional distribution of Aumont
et al. (2001; north: 0.17 GtC yr‘l; tropics: 0.16 GtC yr_l;
south: 0.32 GtC yr—!), acknowledging that the boundaries of
Aumont et al. (2001; namely 20° S and 20° N) are not con-
sistent with the boundaries otherwise used in the GCB (30° S
and 30° N). A recent study based on one ocean biogeochem-
ical model (Lacroix et al., 2020) suggests that more of the
riverine outgassing is located in the tropics than in the South-
ern Ocean, and hence this regional distribution is associ-
ated with a major uncertainty. Anthropogenic perturbations
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of river carbon and nutrient transport to the ocean are not
considered (see Sect. 2.7 and Appendix D3).

We derive Socean from GOBMs by using a simulation
(sim A) with historical forcing of climate and atmospheric
CO3,, accounting for model biases and drift from a con-
trol simulation (sim B) with constant atmospheric CO, and
normal-year climate forcing. A third simulation (sim C) with
historical atmospheric CO, increase and normal-year climate
forcing is used to attribute the ocean sink to CO; (sim C mi-
nus sim B) and climate (sim A minus sim C) effects. A fourth
simulation (sim D; historical climate forcing and constant at-
mospheric CO,) is used to compare the change in anthro-
pogenic carbon inventory in the interior ocean (sim A minus
sim D) to the observational estimate of Gruber et al. (2019)
with the same flux components (steady state and non-steady
state anthropogenic carbon flux). Data products are adjusted
to represent the full ice-free ocean area by a simple scaling
approach when coverage is below 99 %. GOBMs and data
products fall within the observational constraints over the
1990s (2.2 +0.7 GtCyr~!, Ciais et al., 2013) after applying
adjustments.

SoceaN is calculated as the average of the GOBM ensem-
ble mean and data product ensemble mean from 1990 on-
wards. Prior to 1990, it is calculated as the GOBM ensemble
mean plus half of the offset between GOBMs and data prod-
uct ensemble means over 1990-2001.

We assign an uncertainty of + 0.4 GtCyr~! to the ocean
sink based on a combination of random (ensemble standard
deviation) and systematic uncertainties (GOBM bias in an-
thropogenic carbon accumulation, previously reported uncer-
tainties in fCO,-based data products; see Appendix C3.3).
We assess a medium confidence level to the annual ocean
CO; sink and its uncertainty because it is based on multi-
ple lines of evidence, it is consistent with ocean interior car-
bon estimates (Gruber et al., 2019, see Sect. 3.5.5) and the
interannual variability in the GOBMs, and data-based esti-
mates are largely consistent and can be explained by climate
variability. We refrain from assigning a high confidence be-
cause of the systematic deviation between the GOBM and
data product trends since around 2002. More details on the
SoceaN methodology can be found in Appendix C3.

2.4.2 The 2022 projection

The ocean CO; sink forecast for the year 2022 is based on
the annual historical and estimated 2022 atmospheric CO,
concentration (Dlugokencky and Tans, 2022), the historical
and estimated 2022 annual global fossil fuel emissions from
this year’s carbon budget, and the spring (March, April, May)
Oceanic Nifio Index (ONI) (NCEP, 2022). Using a non-linear
regression approach, i.e. a feed-forward neural network, at-
mospheric CO,, ONI, and fossil fuel emissions are used as
training data to best match the annual ocean CO; sink (i.e.
combined Socean estimate from GOBMs and data products)
from 1959 through 2021 from this year’s carbon budget. Us-
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ing this relationship, the 2022 Socgan can then be estimated
from the projected 2021 input data using the non-linear re-
lationship established during the network training. To avoid
overfitting, the neural network was trained with a variable
number of hidden neurons (varying between 2-5), and 20 %
of the randomly selected training data were withheld for in-
dependent internal testing. Based on the best output perfor-
mance (tested using the 20 % withheld input data), the best
performing number of neurons was selected. In a second
step, we trained the network 10 times using the best number
of neurons identified in step 1 and different sets of randomly
selected training data. The mean of the 10 training sequences
is considered our best forecast, whereas the standard devia-
tion of the 10 ensembles provides a first-order estimate of the
forecast uncertainty. This uncertainty is then combined with
the Socgan uncertainty (0.4 GtC yr— 1) to estimate the overall
uncertainty of the 2022 projection.

2.5 Land COs sink
2.5.1 Historical period

The terrestrial land sink (Spanp) is thought to be due to the
combined effects of fertilization by rising atmospheric CO,
and N inputs on plant growth, as well as the effects of cli-
mate change such as the lengthening of the growing season
in northern temperate and boreal areas. S anp does not in-
clude land sinks directly resulting from land use and land-
use change (e.g. regrowth of vegetation) as these are part of
the land-use flux (ELyc), although system boundaries make
it difficult to exactly attribute CO; fluxes on land between
Sranp and Eyyc (Erb et al., 2013).

Stanp is estimated from the multi-model mean of 16
DGVMs (Table Al). As described in Appendix C.4, DGVM
simulations include all climate variability and CO, effects
over land. In addition to the carbon cycle represented in all
DGVMs, 11 models also account for the nitrogen cycle and
hence can include the effect of N inputs on Spanp. The
DGVM estimate of Sy anp does not include the export of car-
bon to aquatic systems or its historical perturbation, which
is discussed in Appendix D3. See Appendix C4 for DGVM
evaluation and uncertainty assessment for Sy anp using the
International Land Model Benchmarking system (ILAMB;
Collier et al., 2018). More details on the S; osnp methodol-
ogy can be found in Appendix C4.

2.5.2 The 2022 projection

Like for the ocean forecast, the land CO; sink (Spanp) fore-
cast is based on the annual historical and estimated 2022
atmospheric CO; concentration (Dlugokencky and Tans,
2021), historical and estimated 2022 annual global fossil fuel
emissions from this year’s carbon budget, and the summer
(June, July, August) ONI (NCEP, 2022). All training data are
again used to best match Spanp from 1959 through 2021
from this year’s carbon budget using a feed-forward neural
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network. To avoid overfitting, the neural network was trained
with a variable number of hidden neurons (varying between
2-15), larger than for Socgan prediction due to the stronger
land carbon interannual variability. As done for Socgan, a
pre-training selects the optimal number of hidden neurons
based on 20 % withheld input data, and in a second step, an
ensemble of 10 forecasts is produced to provide the mean
forecast plus uncertainty. This uncertainty is then combined
with the Spanp uncertainty for 2021 (0.9 GtC yr‘l) to esti-
mate the overall uncertainty of the 2022 projection.

2.6 The atmospheric perspective

The world-wide network of in situ atmospheric measure-
ments and satellite-derived atmospheric CO, column (xCO»)
observations put a strong constraint on changes in the atmo-
spheric abundance of CO,. This is true globally (hence our
large confidence in G aTM) but also regionally in regions with
sufficient observational density found mostly in the extrat-
ropics. This allows atmospheric inversion methods to con-
strain the magnitude and location of the combined total sur-
face CO, fluxes from all sources, including fossil and land-
use change emissions and land and ocean CO, fluxes. The
inversions assume Efrpg to be well known, and they solve for
the spatial and temporal distribution of land and ocean fluxes
from the residual gradients of CO; between stations that are
not explained by fossil fuel emissions. By design, such sys-
tems thus close the carbon balance (Bpy = 0) and thus pro-
vide an additional perspective on the independent estimates
of the ocean and land fluxes.

This year’s release includes nine inversion systems that are
described in Table A4. Each system is rooted in Bayesian in-
version principles but uses different methodologies. These
differences concern the selection of atmospheric CO, data
or XCO», and the choice of a priori fluxes to refine. They
also differ in spatial and temporal resolution, assumed corre-
lation structures, and mathematical approach of the models
(see references in Table A4 for details). Importantly, the sys-
tems use a variety of transport models, which was demon-
strated to be a driving factor behind differences in atmo-
spheric inversion-based flux estimates and specifically their
distribution across latitudinal bands (Gaubert et al., 2019;
Schuh et al., 2019). Four inversion systems (CAMS-FT21r2,
CMS-flux, GONGGA, THU) used satellite xCO; retrievals
from GOSAT and/or OCO-2, scaled to the WMO 2019 cali-
bration scale. One inversion this year (CMS-Flux) used these
xCQO, data sets in addition to the in situ observational CO,
mole fraction records.

The original products delivered by the inverse modellers
were modified to facilitate the comparison to the other ele-
ments of the budget, specifically on two accounts: (1) global
total fossil fuel emissions, including cement carbonation
CO; uptake, and (2) riverine CO; transport. Details are given
below. We note that with these adjustments the inverse results
no longer represent the net atmosphere—surface exchange
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over land and ocean areas as sensed by atmospheric observa-
tions. Instead, for land, they become the net uptake of CO; by
vegetation and soils that is not exported by fluvial systems,
similar to the DGVM estimates. For oceans, they become the
net uptake of anthropogenic CO;, similar to the GOBM esti-
mates.

The inversion systems prescribe global fossil fuel emis-
sions based on the GCP’s Gridded Fossil Emissions Dataset
versions 2022.1 or 2022.2 (GCP-GridFED; Jones et al.,
2022), which are updates to GCP-GridFEDv2021 presented
by Jones et al. (2021). GCP-GridFEDv2022 scales gridded
estimates of CO; emissions from EDGARv4.3.2 (Janssens-
Maenhout et al., 2019) within national territories to match
national emissions estimates provided by the GCB for
the years 1959-2021, which were compiled following the
methodology described in Sect. 2.1. Small differences be-
tween the systems due to, for instance, regridding to the
transport model resolution or use of different GridFED ver-
sions with different cement carbonation sinks (which were
only present starting with GridFEDv2022.1) are adjusted in
the latitudinal partitioning we present to ensure agreement
with the estimate of Efps in this budget. We also note that
the ocean fluxes used as prior by six out of the nine inversions
are part of the suite of the ocean process models or fCO;
data products listed in Sect. 2.4. Although these fluxes are
further adjusted by the atmospheric inversions, it makes the
inversion estimates of the ocean fluxes not completely inde-
pendent of Socean assessed here.

To facilitate comparisons to the independent Socgan and
SLAND, We used the same corrections for transport and out-
gassing of carbon transported from land to ocean, as has been
done for the observation-based estimates of Socgan (see Ap-
pendix C3).

The atmospheric inversions are evaluated using vertical
profiles of atmospheric CO» concentrations (Fig. B4). More
than 30 aircraft programmes over the globe, either regular
programmes or repeated surveys over at least 9 months (ex-
cept for Southern Hemisphere, SH, programmes), have been
used to assess system performance (with space—time obser-
vational coverage sparse in the SH and tropics, and denser
in Northern Hemisphere, NH, mid-latitudes; Table A6). The
nine systems are compared to the independent aircraft CO,
measurements between 2 and 7 km above sea level between
2001 and 2021. Results are shown in Fig. B4 and discussed
in Appendix C5.2

With a relatively small ensemble (N = 9) of systems that
moreover share some a priori fluxes used with one another,
or with the process-based models, it is difficult to justify us-
ing their mean and standard deviation as a metric for un-
certainty across the ensemble. We therefore report their full
range (min—-max) without their mean. More details on the
atmospheric inversions methodology can be found in Ap-
pendix C5.
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2.7 Processes not included in the global carbon budget

The contribution of anthropogenic CO and CHy4 to the global
carbon budget is not fully accounted for in Eq. (1) and is
described in Appendix D1. The contributions to CO; emis-
sions of decomposition of carbonates not accounted for is de-
scribed in Appendix D2. The contribution of anthropogenic
changes in river fluxes is conceptually included in Eq. (1) in
SoceaN and in SpAND, but it is not represented in the process
models used to quantify these fluxes. This effect is discussed
in Appendix D3. Similarly, the loss of additional sink capac-
ity from reduced forest cover is missing in the combination
of approaches used here to estimate both land fluxes (ELyc
and Spanp) and its potential effect is discussed and quanti-
fied in Appendix D4.

3 Results

For each component of the global carbon budget, we present
results for three different time periods: the full historical pe-
riod, from 1850 to 2021, the 6 decades in which we have
atmospheric concentration records from Mauna Loa (1960-
2021); a specific focus on the last year (2021); and the pro-
jection for the current year (2022). Subsequently, we assess
the combined constraints from the budget components (often
referred to as a bottom-up budget) against the top-down con-
straints from inverse modelling of atmospheric observations.
We do this for the global balance of the last decade, as well
as for a regional breakdown of land and ocean sinks by broad
latitude bands.

3.1 Fossil CO» emissions
3.1.1 Historical period 1850-2021

Cumulative fossil CO; emissions for 1850-2021 were
465 +£ 25 GtC, including the cement carbonation sink (Fig. 3,
Table 8, all cumulative numbers are rounded to the nearest
5 GtC).

In this period, 46 % of fossil CO, emissions came from
coal, 35 % from oil, 15 % from natural gas, 3 % from decom-
position of carbonates, and 1 % from flaring.

In 1850, the UK contributed 62 % of global fossil CO,
emissions. In 1891 the combined cumulative emissions of the
current members of the European Union reached and subse-
quently surpassed the level of the UK. Since 1917, US cumu-
lative emissions have been the largest. Over the entire period
1850-2021, US cumulative emissions amounted to 115 GtC
(24 % of world total), the EU’s to 80 GtC (17 %), and China’s
to 70 GtC (14 %).

In addition to the estimates of fossil CO;, emissions that
we provide here (see Sect. 2), there are three additional
global data sets with long time series that include all sources
of fossil CO, emissions: CDIAC-FF (Gilfillan and Mar-
land, 2021), CEDS version v_2021_04_21 (Hoesly et al.,
2018; O’Rourke et al., 2021), and PRIMAP-hist version
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2.3.1 (Giitschow et al., 2016, 2021), although these data
sets are not entirely independent of each other (Andrew,
2020a). CDIAC-FF has the lowest cumulative emissions over
1750-2018 at 437 GtC, GCP has 443 GtC, CEDS 445 GtC,
PRIMAP-hist TP 453 GtC, and PRIMAP-hist CR 455 GtC.
CDIAC-FF excludes emissions from lime production, while
neither CDIAC-FF nor GCP explicitly include emissions
from international bunker fuels prior to 1950. CEDS has
higher emissions from international shipping in recent years,
while PRIMAP-hist has higher fugitive emissions than the
other data sets. However, in general these four data sets are
in relative agreement as to total historical global emissions
of fossil COs.

3.1.2 Recent period 1960—2021

Global fossil CO; emissions, Eros (including the cement
carbonation sink), have increased every decade from an av-
erage of 3.0£0.2GtCyr~! for the decade of the 1960s
to an average of 9.6+ 0.5 GtC yr~! during 2012-2021 (Ta-
ble 6, Figs. 2 and 5). The growth rate in these emissions
decreased between the 1960s and the 1990s, from 4.3 %
per year in the 1960s (1960-1969), 3.2 % per year in the
1970s (1970-1979), 1.6 % per year in the 1980s (1980-
1989), and 0.9 % per year in the 1990s (1990-1999). Af-
ter this period, the growth rate began increasing again in
the 2000s at an average growth rate of 3.0 % per year, de-
creasing to 0.5 % per year for the last decade (2012-2021).
China’s emissions increased by +1.5 % per year on average
over the last 10 years, dominating the global trend, and In-
dia’s emissions increased by 43.8 % per year, while emis-
sions decreased in EU27 by —1.8 % per year and in the USA
by —1.1 % per year. Figure 6 illustrates the spatial distribu-
tion of fossil fuel emissions for the 2012-2021 period.

Eros includes the uptake of CO, by cement via carbon-
ation, which has increased with increasing stocks of cement
products from an average of 20 MtC yr—! (0.02 GtC yr~!) in
the 1960s to an average of 200 MtC yr~! (0.2 GtC yr—!) dur-
ing 2012-2021 (Fig. 5).

3.1.3 Final year 2021

Global fossil CO, emissions were 5.1 % higher in 2021 than
in 2020 because of the global rebound from the worst of
the COVID-19 pandemic, with an increase of 0.5 GtC to
reach 9.9 4 0.5 GtC (including the cement carbonation sink)
in 2021 (Fig. 5), distributed among coal (41 %), oil (32 %),
natural gas (22 %), cement (5 %), and others (1 %). Com-
pared to the previous year, 2021 emissions from coal, oil,
and gas increased by 5.7 %, 5.8 %, and 4.8 %, respectively,
while emissions from cement increased by 2.1 %. All growth
rates presented are adjusted for the leap year unless stated
otherwise.

In 2021, the largest absolute contributions to global fos-
sil CO, emissions were from China (31 %), the USA (14 %),
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Figure 3. Combined components of the global carbon budget illustrated in Fig. 2 as a function of time for fossil CO, emissions (EfQs.,
including a small sink from cement carbonation; grey) and emissions from land-use change (Ey yc; brown), as well as their partitioning
among the atmosphere (G aTm; cyan), ocean (Socgan; blue), and land (Sp anD; green). Panel (a) shows annual estimates of each flux, and
panel (b) shows the cumulative flux (the sum of all prior annual fluxes) since the year 1850. The partitioning is based on nearly independent
estimates from observations (for G aTy) and from process model ensembles constrained by data (for Socpan and Sp Anp) and does not
exactly add up to the sum of the emissions, resulting in a budget imbalance (BIp1), which is represented by the difference between the bottom
red line (mirroring total emissions) and the sum of carbon fluxes in the ocean, land, and atmosphere reservoirs. All data are in GtC yr_1 (a)
and GtC (b). The ERpg estimate is based on a mosaic of different data sets, and has an uncertainty of £5 % (£10). The Ey yc estimate is from
three bookkeeping models (Table 4) with uncertainty of 0.7 GtC yr_l. The Garm estimates prior to 1959 are from Joos and Spahni (2008)
with uncertainties equivalent to about +0.1-0.15 GtC yr_1 and from Dlugokencky and Tans (2022) since 1959 with uncertainties of about
+-0.07 GtC yr_1 during 1959-1979 and + 0.02 GtC yr_1 since 1980. The SocpaN estimate is the average from Khatiwala et al. (2013) and
DeVries (2014) with uncertainty of about +30 % prior to 1959, and the average of an ensemble of models and an ensemble of fCO, data

products (Table 4) with uncertainties of about £0.4 GtC yr_1

since 1959. The Sp Anp estimate is the average of an ensemble of models

(Table 4) with uncertainties of about +1 GtC yr_l. See the text for more details of each component and their uncertainties.

the EU27 (8 %), and India (7 %). These four regions account
for 59 % of global CO; emissions, while the rest of the world
contributed 41 %, including international aviation and marine
bunker fuels (2.8 % of the total). Growth rates for these coun-
tries from 2020 to 2021 were 3.5 % (China), 6.2 % (USA),
6.8 % (EU27), and 11.1 % (India), with +4.5 % for the rest
of the world. The per capita fossil CO, emissions in 2021
were 1.3 tC per person per year for the globe and were 4.0
(USA), 2.2 (China), 1.7 (EU27), and 0.5 (India) tC per per-
son per year for the four highest-emitting countries (Fig. 5).

The post-COVID-19 rebound in emissions of 5.1 % in
2021 is close to the projected increase of 4.8 % published
in Friedlingstein et al. (2022a) (Table 7). Of the regions, the
projection for the “rest of world” region was least accurate
(off by —1.3 %), largely because of poorly projected emis-
sions from international transport (bunker fuels), which were
subject to very large changes during this period.

https://doi.org/10.5194/essd-14-4811-2022

3.1.4 Year 2022 projection

Globally, we estimate that global fossil CO; emissions (in-
cluding cement carbonation) will grow by 1.0 % in 2022
(0.1% to 1.9 %) to 10.0 GtC (36.6 GtCO,), exceeding their
2019 emission levels of 9.9 GtC (36.3 GtCO,). Global in-
crease in 2022 emissions per fuel types are projected to be
+1% (range 0.2 % to 1.8 %) for coal, +2.2 % (range 1.1 %
to 3.3 %) for oil, —0.2 % (range —1.1 % to 0.7 %) for natural
gas, and —1.6 % (range —3.7 % to —0.5 %) for cement.

For China, projected fossil emissions in 2022 are expected
to decline by 0.9 % (range —2.3 % to +0.4 %) compared
with 2021 emissions, bringing 2022 emissions for China
to around 3.1 GtC yr~—! (11.4 GtCO, yr—!). Changes in fuel-
specific projections for China are +0.1 % for coal, —2.8 %
for oil, —1.1 % for natural gas, and —7.0 % for cement.

For the USA, the Energy Information Administration
(EIA) emissions projection for 2022 combined with cement
clinker data from USGS gives an increase of 1.5 % (range
—1 % to +4 %) compared to 2021, bringing 2022 USA emis-

Earth Syst. Sci. Data, 14, 4811-4900, 2022
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Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented individually for (a) fossil CO,
and cement carbonation emissions (Eggs), (b) growth rate in atmospheric CO; concentration (G aTMm), (€) emissions from land-use change
(ELuc), (d) the land CO, sink (S AND) (€) the ocean CO; sink (SocgaN), and (f) the budget imbalance that is not accounted for by the

other terms. Positive values of Sp aAnp and SocgaN represent a flux from the atmosphere to land or the ocean. All data are in GtCyr™

1

with the uncertainty bounds representing 1 standard deviation in shaded colour. Data sources are as in Fig. 3. The red dots indicate our
projections for the year 2022, and the red error bars the uncertainty in the projections (see Sect. 2).

sions to around 1.4 GtC yr~! (5.1 GtCO, yr~!). This is based
on separate projections for coal of —4.6 %, oil of 42 %, nat-
ural gas of +4.7 %, and cement of +1.2 %.

For the European Union, our projection for 2022 is for a
decline of 0.8 % (range —2.8 % to +1.2 %) over 2021, with
2022 emissions around 0.8 GtC yr~! (2.8 GtCO; yr~!). This
is based on separate projections for coal of 6.7 %, oil of
+0.9 %, and natural gas of —10.0 %, while cement remains
unchanged.

Earth Syst. Sci. Data, 14, 4811-4900, 2022

For India, our projection for 2022 is an increase of 6 %
(range of 3.9% to 8 %) over 2021, with 2022 emissions
around 0.8 GtCyr~! (2.9 GtCO, yr~1). This is based on sep-
arate projections for coal of +5.0 %, oil of +10.0 %, natural
gas of —4.0 %, and cement of +10.0 %.

For the rest of the world, the expected growth rate for 2022
is 1.7 % (range 0.1 % to 3.3 %). The fuel-specific projected
2022 growth rates for the rest of the world are: +1.6 % for

https://doi.org/10.5194/essd-14-4811-2022



P. Friedlingstein et al.: Global Carbon Budget 2022 4829

(a) (b)
10.01 4
7 z
> ] >
g 75 2)
5} )
w (]
g g
S 501 S
R2) @0
£ £
1T} w
o o
S 251 S
(&) o
0.0
1960 1980 2000 2020
Year
(c) (d)
41 o
s
Eal =
I 8
> 4 peq
g ° y S
] Q
g / ° g
[} 4
IS Gas =
'-'(-L )
S 11 s
o =1
[
(&)
kg
0 0
1960 1980 2000 2020 1960 1980 2000 2020
Year Year

Figure 5. Fossil CO; emissions for (a) the globe, including an uncertainty of &5 % (grey shading) and a projection through the year 2022
(red dot and uncertainty range); (b) territorial (solid lines) and consumption (dashed lines) emissions for the top three country emitters
(USA, China, India) and for the European Union (EU27); (c) global emissions by fuel type, including coal, oil, gas, cement, and cement
minus cement carbonation (dashed); and (d) per capita emissions for the world and for the large emitters, as in panel (b). Territorial emissions
are primarily from a draft update of Gilfillan and Marland (2021), with the exception of the national data for Annex I countries for 1990-2020,
which are reported to the UNFCCC as detailed in the text, as well as some improvements in individual countries, and are extrapolated forward
to 2021 using BP Energy Statistics. Consumption-based emissions are updated from Peters et al. (2011b). See Sect. 2.1 and Appendix C1 for
details about the calculations and data sources.

coal, +3.1 % for oil, —0.1 % for natural gas, 43 % for ce- 1901-2012 period (Li et al., 2017). However, given the large
ment. spread, a best estimate is difficult to ascertain.

3.2.2 Recent period 1960—2021

3.2 Emissions from land-use changes In contrast to growing fossil emissions, CO, emissions from
land use, land-use change, and forestry have remained rela-
tively constant over the 1960-1999 period but show a slight
decrease of about 0.1 GtC per decade since the 1990s, reach-
ing 1.240.7GtCyr~! for the 2012-2021 period (Table 6)
but with large spread across estimates (Table 5, Fig. 7). Dif-
ferent from the bookkeeping average, the DGVM model av-
erage grows slightly larger over the 1970-2021 period and
shows no sign of decreasing emissions in the recent decades
(Table 5, Fig. 7). This is, however, expected as DGVM-based
estimates include the loss of additional sink capacity, which
grows with time, while the bookkeeping estimates do not
(Appendix D4).

3.2.1 Historical period 1850-2021

Cumulative CO; emissions from land-use changes (Epyc)
for 1850-2021 were 205 &= 60 GtC (Table 8; Fig. 3; Fig. 14).
The cumulative emissions from Epyc show a large spread
among individual estimates of 140 GtC (updated H&N2017),
280 GtC (BLUE), and 190 GtC (OSCAR) for the three book-
keeping models and a similar wide estimate of 185 &+ 60 GtC
for the DGVMs (all cumulative numbers are rounded to
the nearest 5 GtC). These estimates are broadly consistent
with indirect constraints from vegetation biomass observa-
tions, giving a cumulative source of 155 £ 50 GtC over the

https://doi.org/10.5194/essd-14-4811-2022 Earth Syst. Sci. Data, 14, 4811-4900, 2022
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for
different periods, the last decade, and the last year available. All values are in GtCyr~!. See Fig. 7 for an explanation of the bookkeeping
component fluxes. The DGVM uncertainties represent =10 of the decadal or annual (for 2021) estimates from the individual DGVMs;
for the inverse systems the range of available results is given. All values are rounded to the nearest 0.1 GtC and therefore columns do not

necessarily add to zero.

Mean (GtC yr_l)

1960s 1970s 1980s 1990s 20005 2012-2021 2021
Bookkeeping (BK) Net flux ~ 1.5+£0.7 12407 13407  15+07 14407 12407  1.1£07
(la)
Land-use change emis- —py opoecration 16404 15404  16+04 18+03 19404  18+04 18+04
sions (ELyc)
BK — organic soils 01401  01£01  02+01 02401 02401  02+01  02£0.1
BK - re/afforestation and —0.6£0.1 —06+0.1 —06+02 —07£01 —08+02 —09+03 —1.0+03
wood harvest
BK — other transitions 04401 02401 02401 01401 01401 02401  0.1402
DGVM net flux (1b) 14405 13405  15+05 15406 16406  1.6+05 16405
Terrestrial sink Residual sink from global ~ 1.74£08  1.8+08 16409  26+09  28+09  28+09 2841
(SLAND) budget (EFos + ELuc (12)
— GAT™M — SOCEAN) (22)
DGVMs (2b) 12404 22405 19407 25+04 27405 31406  3.5+09
GCB2022 budget 2b-1a)  —0.2+0.8 1£09 05+1 1+£08  14+09 19409  24=+11
Total land fluxes Budget constraint (2a—1a) 02404  06+05 03+05 1.1£05 15+£06 15+06 1.7+07
(SLAND — ELuC)
DGVMs net (2b—1b) —0.1£04  09+05 04405 09404 12403 15+£05 1.9+07
Inversions™ - - 03-0612) 07-1.13) 12-163) 1.1-1.7(7) 152109

* Estimates are adjusted for the pre-industrial influence of river fluxes and the cement carbonation sink and are also adjusted to common Eggg (Sect. 2.6). The ranges given include varying numbers (in

parentheses) of inversions in each decade (Table A4).

Epyc is a net term of various gross fluxes, which com-
prise emissions and removals. Gross emissions on average
over the 1850-2021 period are 2 (BLUE, OSCAR) to 3 (up-
dated H&N2017) times larger than the net Epyc emissions.
Gross emissions show a moderate increase from an average
of 3.240.9GtCyr~! for the decade of the 1960s to an av-
erage of 3.8 +£0.7GtCyr~! during 2012-2021 (Fig. 7). In-
creases in gross removals, from 1.8 4 0.4 GtCyr~! for the
1960s to 2.64 0.4 GtCyr~! for 2012-2021, were slightly
larger than the increase in gross emissions. Since the pro-
cesses behind gross removals, foremost forest regrowth and
soil recovery, are all slow, while gross emissions include a
large instantaneous component, short-term changes in land-
use dynamics, such as a temporary decrease in deforesta-
tion, influences gross emissions dynamics more than gross
removal dynamics. It is these relative changes to each other
that explain the small decrease in net Epyc emissions over
the last 2 decades and the last few years. Gross fluxes often
differ more across the three bookkeeping estimates than net
fluxes, which is expected due to different process represen-
tation; in particular, treatment of shifting cultivation, which
increases both gross emissions and removals, differs across
models.

There is a smaller decrease in net CO, emissions from
land-use change in the last few years (Fig. 7) than in last
year’s estimate (Friedlingstein et al., 2021), which places our

Earth Syst. Sci. Data, 14, 4811-4900, 2022

updated estimates between last year’s estimate and the esti-
mate from the GCB2020 (Friedlingstein et al., 2020). This
change is principally attributable to changes in Epyc esti-
mates from BLUE and OSCAR, which relate to improve-
ments in the underlying land-use forcing (see Appendix C2.2
for details). These changes address issues identified with last
year’s land-use forcing (see Friedlingstein et al., 2022a) and
remove or attenuate several emission peaks in Brazil and
the Democratic Republic of the Congo and lead to higher
net emissions in Brazil in the last decades compared to
last year’s global carbon budget (the emissions averaged
over the three bookkeeping models for Brazil for the 2011-
2020 period were 168 MtCyr~! in GCB2021 as compared
to 289 MtCyr—! in GCB2022). A remaining caveat is that
global land-use change data for model input does not cap-
ture forest degradation, which often occurs on small scale or
without forest cover changes easily detectable from remote
sensing and poses a growing threat to forest area and carbon
stocks that may surpass deforestation effects (e.g. Matricardi
etal., 2020; Qin et al., 2021). While independent pan-tropical
or global estimates of vegetation cover dynamics or carbon
stock changes based on satellite remote sensing have become
available in recent years, a direct comparison to our estimates
is not possible, most importantly because satellite-based es-
timates usually do not distinguish between anthropogenic

https://doi.org/10.5194/essd-14-4811-2022
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Figure 6. The 2012-2021 decadal mean components of the global carbon budget, presented for (a) fossil CO, emissions (Erpg), (b) land-
use change emissions (Ep yc), (¢) the ocean CO, sink (SgcgaN), and (d) the land CO; sink (Sp anp)- Positive values for Ergg and Ef yc
represent a flux to the atmosphere, whereas positive values of Socgan and Sy anD represent a flux from the atmosphere to the ocean or the
land. In all panels, yellow and red (green and blue) colours represent a flux from (into) the land and ocean to (from) the atmosphere. All
units are in kgC m~2 yr_l. Note the different scales in each panel. Epgg data shown is from GCP-GridFEDv2022.2. Ej yyc data shown are
only from BLUE as the updated H&N2017 and OSCAR do not resolve gridded fluxes. Socgan data shown are the average of GOBMs and
data product means using GOBM simulation A with no adjustment for bias or drift applied to the gridded fields (see Sect. 2.4). S; Anp data
shown are the average of DGVMs for simulation S2 (see Sect. 2.5).

drivers and natural forest cover losses (e.g. from drought or gross emission estimate above (3.8 £0.7GtCyr~!) is ex-

natural wildfires) (Pongratz et al., 2021). plained by the fact that emissions associated with wood har-
We additionally separate the net Epyc into four compo- vesting do not count as deforestation as they do not change
nent fluxes to gain further insight into the drivers of emis- the land cover. This split into component fluxes clarifies
sions: deforestation, afforestation, reafforestation, and wood the potential for emission reduction and carbon dioxide re-
harvest (i.e. all fluxes on forest lands); emissions from or- moval: the emissions from deforestation could be halted
ganic soils (i.e. peat drainage and peat fires); and fluxes (largely) without compromising carbon uptake by forests and
associated with all other transitions (Fig. 7; Sect. C2.1). would contribute to emissions reduction. By contrast, reduc-
On average over the 2012-2021 period and over the three ing wood harvesting would have limited potential to reduce
bookkeeping estimates, fluxes from deforestation amount to emissions as it would be associated with less forest regrowth;
1.8 £0.4GtC yr_l, and from afforestation, reafforestation, sinks and sources cannot be decoupled here. Carbon dioxide
and wood harvest fluxes amount to —0.9 + 0.3 GtC yr—! (Ta- removal in forests could instead be increased by afforestation
ble 5). Emissions from organic soils (0.2 £ 0.1 GtC yr~!) and and reafforestation.
the net flux from other transitions (0.24 0.1 GtCyr~!) are Overall, the highest land-use emissions occur in the trop-
substantially less important globally. Deforestation is thus ical regions of all three continents. The top three emitters
the main driver of global gross sources. The relatively small (both cumulatively 1959-2021 and on average over 2012—

deforestation flux (1.8 0.4 GtC yr‘l) in comparison to the 2021) are Brazil (in particular the Amazon Arc of Deforesta-

https://doi.org/10.5194/essd-14-4811-2022 Earth Syst. Sci. Data, 14, 4811-4900, 2022
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Figure 7. Net CO, exchanges between the atmosphere and the terrestrial biosphere related to land-use change. (a) Net CO, emissions
from land-use change (Ep yc) with estimates from the three bookkeeping models (yellow lines) and the budget estimate (black with +1o
uncertainty), which is the average of the three bookkeeping models. Estimates from individual DGVMs (narrow green lines) and the DGVM
ensemble mean (thick green line) are also shown. (b) Net CO, emissions from land-use change from the four countries with largest cumula-
tive emissions since 1959. Values shown are the average of the three bookkeeping models, with shaded regions as 1o uncertainty. (¢) CO;
gross sinks (negative, from regrowth after agricultural abandonment and wood harvesting) and gross sources (positive, from decaying ma-
terial left dead on site, products after clearing of natural vegetation for agricultural purposes, wood harvesting, and, for BLUE, degradation
from primary to secondary land through usage of natural vegetation as rangeland and from emissions from peat drainage and peat burning).
Values are shown for the three bookkeeping models (yellow lines) and for their average (black with 10 uncertainty). The sum of the gross
sinks and sources is Ey yc shown in panel (a). (d) Sources and sinks aggregated into four components that contribute to the net fluxes of
COg, including (i) gross sources from deforestation; (ii) afforestation, reafforestation, and wood harvest (i.e. the net flux on forest lands
comprising slash and product decay following wood harvest and sinks due to regrowth after wood harvest or after abandonment, including
reforestation and abandonment as parts of shifting cultivation cycles); (iii) emissions from organic soils (peat drainage and peat fire); and
(iv) sources and sinks related to other land-use transitions. The scale of the fluxes shown is smaller than in panel (c) because the substantial
gross sources and sinks from wood harvesting are accounted for as net flux under (ii). The sum of the component fluxes is £y yc shown in
panel (a).

tion), Indonesia, and the Democratic Republic of the Congo,
with these three countries contributing 0.7 GtC yr~! or 58 %
of the global total land-use emissions (average over 2012—
2021) (Fig. 6b). This is related to massive expansion of crop-
land, particularly in the last few decades in Latin America,
Southeast Asia, and sub-Saharan Africa (Hong et al., 2021),
a substantial part of which has been for export of agricultural
products (Pendrill et al., 2019). Emission intensity is high in
many tropical countries, particularly in Southeast Asia, due

Earth Syst. Sci. Data, 14, 4811-4900, 2022

to high rates of land conversion in regions of carbon-dense
and often still pristine undegraded natural forests (Hong et
al., 2021). Emissions are further increased by peat fires in
equatorial Asia (GFED4s, van der Werf et al., 2017). Uptake
due to land-use change occurs partly due to expanding forest
area as a consequence of the forest transition in the 19th and
20th centuries and the subsequent regrowth of forest, par-
ticularly in Europe (Fig. 6b) (Mather, 2001; McGrath et al.,
2015).

https://doi.org/10.5194/essd-14-4811-2022
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While the mentioned patterns are supported by indepen-
dent literature and robust, we acknowledge that model spread
is substantially larger at regional rather than global levels, as
has been shown for bookkeeping models (Bastos et al., 2021)
and DGVMs (Obermeier et al., 2021). Assessments for indi-
vidual regions will be performed as part of REgional Carbon
Cycle Assessment and Processes (RECCAP2; Ciais et al.,
2022) or already exist for selected regions (e.g. for Europe
by Petrescu et al., 2020; for Brazil by Rosan et al., 2021;
and for eight selected countries and regions in comparison to
inventory data by Schwingshackl et al., 2022).

National GHG inventory data (NGHGI) under the LU-
LUCEF sector or data submitted by countries to FAOSTAT dif-
fer from the global models’ definition of Ep yc that we adopt
here in that the natural fluxes (Spanp) are counted towards
Eruc when they occur on managed land in the NGHGTI re-
porting (Grassi et al., 2018). In order to compare our results
to the NGHGI approach, we perform a re-mapping of our
Epyc estimates by adding Spanp in managed forest from
the DGVM simulations (following Grassi et al., 2021) to the
bookkeeping Epyc estimate (see Appendix C2.3). For the
2012-2021 period, we estimate that 1.8 GtC yr_1 of SL.AND
occurred in managed forests and is then reallocated to E1yc
here, as has been done in the NGHGI method. By doing
so, our mean estimate of Ejyc is reduced from a source
of 1.2GtC to a sink of 0.6 GtC, which is very similar to
the NGHGI estimate of a 0.5 GtC sink (Table 9). The re-
mapping approach has been shown to also be generally appli-
cable for country-level data (Grassi et al., 2022b; Schwing-
shackl et al., 2022). Country-level analysis suggests, e.g.
that the bookkeeping mean estimates higher deforestation
emissions than the national report in Indonesia but estimates
less CO, removal by afforestation than the national report
in China. The fraction of the natural CO; sinks that the
NGHGI estimates include differs substantially across coun-
tries, related to varying proportions of managed vs. all for-
est areas (Schwingshackl et al., 2022). Comparing Epyc and
NGHGTI on the basis of the four component fluxes (Grassi
et al., 2022b), we find that NGHGI deforestation emissions
are reported to be smaller than the bookkeeping estimate
(1.1 GtC yr~! averaged over 2012-2021). A reason for this
lies in the fact that country reports do not (fully) capture
the carbon flux consequences of shifting cultivation. Con-
versely, carbon uptake in forests (afforestation, reafforesta-
tion, and forestry) is substantially larger than the bookkeep-
ing estimate (1.75 GtC yr~! averaged over 2012-2021), ow-
ing to the inclusion of natural CO, fluxes on managed land
in the NGHGI. Emissions from organic soils and the net flux
from other transitions are similar to the estimates based on
the bookkeeping approach and the external peat drainage
and burning data sets. Though estimates between NGHGI,
FAOSTAT, individual process-based models, and the mapped
budget still differ in value and need further analysis, the ap-
proach taken here provides a possibility to relate the global
models’ and NGHGI approach to each other routinely and
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thus link the anthropogenic carbon budget estimates of land
CO» fluxes directly to the Global Stocktake as part of UN-
FCCC Paris Agreement.

3.2.3 Final year 2021

The global CO; emissions from land-use change are esti-
mated as 1.1 & 0.7 GtC in 2021, similar to the 2020 estimate.
However, confidence in the annual change remains low.

Land-use change and related emissions may have been af-
fected by the COVID-19 pandemic (e.g. Poulter et al., 2021).
During the period of the pandemic, environmental protection
policies and their implementation may have been weakened
in Brazil (Vale et al., 2021). In other countries monitoring
capacities and legal enforcement of measures to reduce trop-
ical deforestation have also been reduced due to budget re-
strictions of environmental agencies or the impairments of
ground-based monitoring intended to prevent land grabs and
tenure conflicts (Brancalion et al., 2020; Amador-Jiménez et
al., 2020). Effects of the pandemic on trends in fire activity
or forest cover changes are hard to separate from those of
general political developments and environmental changes,
and the long-term consequences of disruptions in agricultural
and forestry economic activities (e.g. Gruere and Brooks,
2021; Golar et al., 2020; Beckman and Countryman, 2021)
remain to be seen. Overall, there is limited evidence so far
that COVID-19 was a key driver of changes in LULUCF
emissions at a global scale. Impacts vary across countries
and deforestation-curbing and enhancing factors may partly
compensate each other (Wunder et al., 2021).

3.2.4 Year 2022 projection

In Indonesia, peat fire emissions are very low, potentially re-
lated to a relatively wet dry season (GFED4.1s, van der Werf
et al., 2017). In South America, the trajectory of tropical
deforestation and degradation fires resembles the long-term
average; global emissions from tropical deforestation and
degradation fires were estimated to be 206 TgC by 14 Octo-
ber 2020. (GFEDA4.1s, van der Werf et al., 2017). Our prelim-
inary estimate of Epyc for 2022 is substantially lower than
the 2012-2021 average, which saw years of anomalously
dry conditions in Indonesia and high deforestation fires in
South America (Friedlingstein et al., 2022a). Based on the
fire emissions until 14 October, we expect EyLyc emissions
of around 1.1 GtC in 2022. Note that although our extrapola-
tion is based on tropical deforestation and degradation fires,
degradation attributable to selective logging, edge effects,
or fragmentation will not be captured. Further, deforestation
and fires in deforestation zones may become more discon-
nected, partly due changes in legislation in some regions. For
example, Van Wees et al. (2021) found that the contribution
from fires to forest loss decreased in the Amazon and in In-
donesia over the period of 2003-2018. More recent years,
however, saw an uptick in the Amazon again (Tyukavina et
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al., 2022 with update), and more work is needed to under-
stand fire—deforestation relations.

The fires in Mediterranean Europe in summer 2022 and in
the US in spring 2022, though above average for those re-
gions, only contribute a small amount to global emissions.
However, they were unrelated to land-use change and are
thus not attributed to Epyc but would be part of the natural
land sink.

Land-use dynamics may be influenced by the disruption to
the global food market associated with the war in Ukraine,
but scientific evidence so far is very limited. High food
prices, which preceded (but were exacerbated by) the war
(Torero and FAQO, 2022), are generally linked to higher defor-
estation (Angelsen and Kaimowitz, 1999), while high prices
on agricultural inputs such as fertilizers and fuel, which are
also under pressure from embargoes, may impair yields.

3.3 Total anthropogenic emissions

Cumulative anthropogenic CO, emissions for 1850-2021
totalled 670 £ 65 GtC (2455 £+ 240 GtCO,), of which 70 %
(470 GtC) occurred since 1960 and 33% (220 GtC)
since 2000 (Tables 6 and 8). Total anthropogenic emis-
sions more than doubled over the last 60 years, from
4.540.7GtCyr~! for the decade of the 1960s to an aver-
age of 10.84+0.8 GtCyr~! during 2012-2021, and reach-
ing 10.9£0.9GtC (40.0£3.3GtCO3) in 2021. For 2022,
we project global total anthropogenic CO, emissions from
fossil and land-use changes to be also around 11.1 GtC
(40.5 GtCO»). All values here include the cement carbona-
tion sink (currently about 0.2 GtC yr—!).

During the historical period 1850-2021, 30 % of histor-
ical emissions were from land-use change and 70 % from
fossil emissions. However, fossil emissions have grown sig-
nificantly since 1960 while land-use changes have not, and
consequently the contributions of land-use change to total
anthropogenic emissions were smaller during recent periods
(18 % during the period 1960-2021 and 11 % during 2012—
2021).

3.4 Atmospheric CO2
3.4.1 Historical period 1850—2021

Atmospheric CO, concentration was approximately 278 ppm
in 1750, 300 ppm in the 1910s, 350 ppm in the late 1980s, and
414.71 £0.1 ppm in 2021 (Dlugokencky and Tans, 2022);
Fig. 1). The mass of carbon in the atmosphere increased by
48 % from 590 GtC in 1750 to 879 GtC in 2021. Current CO;
concentrations in the atmosphere are unprecedented in the
last 2 million years, and the current rate of atmospheric CO,
increase is at least 10 times faster than at any other time dur-
ing the last 800 000 years (Canadell et al., 2021).
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3.4.2 Recent period 1960—2021

The growth rate in atmospheric CO; level increased from
1.7£0.07 GtC yr~! in the 1960s to 5.2 £ 0.02 GtC yr~! dur-
ing 2012-2022 with important decadal variations (Table 6,
Figs. 3 and 4). During the last decade (2012-2021), the
growth rate in atmospheric CO; concentration continued to
increase, albeit with large interannual variability (Fig. 4).

The airborne fraction (AF), defined as the ratio of atmo-
spheric CO, growth rate to total anthropogenic emissions,
ie.

AF = Gatm/(Eros + ELuc), ()

provides a diagnostic of the relative strength of the land and
ocean carbon sinks in removing part of the anthropogenic
CO, perturbation. The evolution of AF over the last 60 years
shows no significant trend, remaining at around 44 %, albeit
showing a large interannual and decadal variability driven by
the year-to-year variability in Garm (Fig. 9). The observed
stability of the airborne fraction over the 1960-2020 period
indicates that the ocean and land CO» sinks have on average
been removing about 55 % of the anthropogenic emissions
(see Sect. 3.5 and 3.6).

3.4.3 Final year 2021

The growth rate in atmospheric CO; concentration was
52+£0.2GtC (2.46+0.08ppm) in 2021 (Fig. 4; Dlugo-
kencky and Tans, 2022), slightly above the 2020 growth rate
(5.0 GtC) but similar to the 2011-2020 average (5.2 GtC).

3.4.4 Year 2022 projection

The 2022 growth in atmospheric CO; concentration (G arm)
is projected to be about 5.3 GtC (2.5 ppm) based on global
observations until October 2022, bringing the atmospheric
CO; concentration to an expected level of 417.2 ppm aver-
aged over the year, 51 % over the preindustrial level.

3.5 Ocean sink
3.5.1 Historical period 1850—2021

Cumulated since 1850, the ocean sink adds up to
175 £35 GtC, with more than two-thirds of this amount
(120 GtC) being taken up by the global ocean since 1960.
Over the historical period, the ocean sink increased in
pace with the exponential anthropogenic emissions increase
(Fig. 3b). Since 1850, the ocean has removed 26 % of total
anthropogenic emissions.

3.5.2 Recent period 1960-2021

The ocean CO; sink increased from 1.140.4GtCyr~! in
the 1960s to 2.9 + 0.4 GtC yr~! during 2012-2021 (Table 6),
with interannual variations of the order of a few tenths of a
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Table 6. Decadal mean in the five components of the anthropogenic CO; budget for different periods and the last year available. All values
are in GtC yr_l, and uncertainties are reported as £1o. Fossil CO, emissions include cement carbonation. The budget imbalance (Bm)
is also shown, which provides a measure of the discrepancies among the nearly independent estimates. A positive imbalance means the
emissions are overestimated and/or the sinks are too small. All values are rounded to the nearest 0.1 GtC, and therefore columns do not

necessarily add to zero.

Mean (GtC yr_l)

1960s 1970s 1980s 1990s 2000s  2012-2021 2021 2022
(Projection)
. Fossil CO, emissions 3+02 47+£02 55+03 63+03 7.7+04 9.6+0.5 9.9+0.5 10+0.5
Total emissions (Epos (Eros)*
+ Eruc) Fos
Land-use change emis- 1.5+£0.7 1.2+0.7 1.3+£0.7 1.5+£0.7 14407 1.2+£0.7 1.1+£0.7 1.1£0.7
sions (EpLyc)
Total emissions 45+£07 59+0.7 68+08 7.8+0.8 9.1+0.8 10.84+0.8 10.9+£09 11.1+£0.9
Growth rate in atmos 1.7+0.07 2.8+0.07 3.44+0.02 3.1£002 4+0.02 52£002 52+02 53+£04
Partitioning COz (GaTM)
Ocean sink (SOCEAN) 1.1+04 1.4+04 1.8+04 214+04 23+04 29+04 29404 29+04
Terrestrial sink 12404 22405 1.9+0.7 25+04 27405 31+£06 35409 34409
(SLAND)
Budget imbalance BIM = Erps + ELuc 0.4 —-0.4 -0.3 0.1 0.1 -0.3 -0.6 -0.5
— (GAT™M + SOCEAN
+ SLAND)

* Fossil emissions excluding the cement carbonation sink amount to 3.1 +0.2,4.7+0.2,5.5+0.3,6.4+0.3, 7.9+ 0.4, and 9.8 + 0.5 GtC yr_] for the decades of the 1960s to 2010s, respectively, 10.1 + 0.5 GtC yr_l
for 2021, and 10.2 +0.5 GtC yr_l for 2022.

(a) Land Sink (SLAND) (b) Total Land Flux (SLAND - ELUC)
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Figure 8. (a) The land CO; sink (SpaAND) estimated by individual DGVM estimates (green), as well as the budget estimate (black with
410 uncertainty), which is the average of all DGVMs. (b) Total atmosphere—land CO, fluxes (S AND — E1.uc)- The budget estimate of
the total land flux (black with & 1o uncertainty) combines the DGVM estimate of S; oNp from panel (a) with the bookkeeping estimate of
Ejyc from Fig. 7a. Uncertainties are similarly propagated in quadrature from the budget estimates of S oNp from panel (a) and Ej yc from
Fig. 7a. DGVMs also provide estimates of Ep ¢ (see Fig. 7a), which can be combined with their own estimates of the land sink. Hence,
panel (b) also includes an estimate for the total land flux for individual DGVMs (thin green lines) and their multi-model mean (thick green

line).

tration, with the strongest CO,-induced signal in the North
Atlantic Ocean and the Southern Ocean (Fig. 11a). The effect

gigatonne of carbon per year (Fig. 10). The ocean-borne frac-
tion (SoceaN/(Eros + ELuc) has been remarkably constant

at around 25 % on average (Fig. 9). Variations around this
mean illustrate decadal variability of the ocean carbon sink.
So far there is no indication of a decrease in the ocean-borne
fraction from 1960 to 2021. The increase in the ocean sink is
primarily driven by the increased atmospheric CO; concen-
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of climate change is much weaker, reducing the ocean sink
globally by 0.1140.09GtCyr~' (—4.2%) during 2012-
2021 (nine models simulate a weakening of the ocean sink
by climate change with a range of —3.2 to —8.9 %, and only
one model simulates a strengthening by 4.8 %), and it does
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Table 7. Comparison of the projection with realized fossil CO, emissions (Erpg). The “actual” values are the first estimate available using actual data, and the “projected” values refer
to estimates made before the end of the year for each publication. Projections based on a different method from that described here during 2008-2014 are available in Le Quéré et

al. (2016). All values are adjusted for leap years.

World 7 China 7 USA 7 EU28/EU27! 7 India 7 Rest of world

Projected  Actual 7 Projected  Actual 7 Projected Actual 7 Projected Actual 7 Projected  Actual 7 Projected  Actual

20152 —06%  0.06% -39% —0.7% -15% -25% - - - - 12%  12%
(—1.6100.5) (—4.6t0—1.1) (-5.5100.3) (0210 2.6)

2016° —02% 020% —05% —03% -17%  —21% - - - - 0%  13%
(—1.0t0 +1.8) (3810 +1.3) (—4.0to +0.6) (04 t0 +2.5)

2017° 20%  1.6% 35%  15% —04%  —05% - - 200%  39% 16%  19%
(+0.8 to +3.0) (+0.7 to +5.4) (—2.7 to +1.0) (+02t0 +3.8) 0.0t0+3.2)

2018¢ 27%  21% 47%  23% 25%  28% -07% -21% 63%  8.0% 18%  17%
(+1.810 4+3.7) (+2.0t0 +7.4) (+0.5 to +4.5) (2610 +1.3) (+4.3 10 +8.3) (+0.5 to +3.0)

2019° 05%  01% 26%  22% —24%  —2.6% —-17%  —43% 18%  1.0% 05%  05%
(0310 +1.4) (+0.7 to +4.4) (4710 —0.1) (=5.1%t0 +1.8%) (—0.7 to +3.7) (0.8 t0 +1.8)

2020f —67% —54% | -17%  14% | —-122% -106% | —11.3%(EU27) —109% | -9.1% —713% | ~74% ~1.0%

20218 48%  51% 43%  35% 68%  62% 63%  68% 12% 11.1% 32%  45%
(42%1054%) (B.0%105.4%) (6.6% 10 7.0 %) (4.3%108.3%) (10.7 % to 11.7 %) (2.0% 10 4.3 %)
20220 1.0% -0.9% 1.5% —0.8% 6% 1.7%

(0.1% to 1.9 %)

(=2.3% t0 0.4 %)

(=1% to 4 %)

(=2.8% to 1.2 %)

(3.9% to 8 %)

(0.1% to 3.3 %)

4 Jackson et al. (2016) and Le Quéré et al. (2015a). bLe Quéré et al. (2016). ¢ Le Quéré et al. (2018a). dpe Quéré et al. (2018b). © Friedlingstein et al. (2019), f Friedlingstein et al. (2020), & Friedlingstein et al. (2022a), h Thig study. 1 EU28 up to 2019 and
EU27 from 2020.
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Table 8. Cumulative CO, for different time periods in gigatonnes of carbon (GtC). Fossil CO, emissions include cement carbonation.
The budget imbalance (Bpy) provides a measure of the discrepancies among the nearly independent estimates. All values are rounded to
the nearest 5 GtC, and therefore columns do not necessarily add to zero. Uncertainties are reported as follows: Eggg is 5 % of cumulative

emissions, E1 yc prior to 1959 is 1o spread from the DGVMs, Ej yc post-1959 is 0.7 times the number of years (where 0.7 GtC yr

~1is the

uncertainty on the annual Ey yyc flux estimate), G oy uncertainty is held constant at 5 GtC for all time periods, Socgan uncertainty is 20 %

of the cumulative sink (20 % relates to the annual uncertainty of 0.4 GtC yr—

1o spread from the DGVM estimates.

1. which is ~ 20 % of the current ocean sink), and SLAND is the

1750-2021  1850-2014  1850-2021 1960-2021  1850-2022

Emissions Fossil CO, emissions (ErQpg) 47025 40020 465 £25 390+20 475425
Land-use change emissions (E yc) 235+70 195+ 60 205+ 60 85145 205+ 60

Total emissions 700 £ 75 595 £ 60 670 £ 65 470 £ 50 680 £ 65

Partitioning Growth rate in atmos CO» (G ATMm) 29545 23545 27545 2105 280+5
Ocean sink (SocEAN) 185+35 155+30 175+35 120+25 180+ 35

Terrestrial sink (S_AND) 230450 185440 210£45 145430 210£45

Budget imbalance  BIM = Eggs + Eryc — (Gat™m + SOCEAN + SLAND) -5 15 15 -5 15

not show clear spatial patterns across the GOBM ensemble
(Fig. 11b). This is the combined effect of change and vari-
ability in all atmospheric forcing fields, previously attributed
to wind and temperature changes in one model (Le Quéré et
al., 2010).

The global net air—sea CO; flux is a residual of large nat-
ural and anthropogenic CO; fluxes into and out of the ocean
with distinct regional and seasonal variations (Figs. 6 and
B1). Natural fluxes dominate on regional scales but largely
cancel out when integrated globally (Gruber et al., 2009).
Mid-latitudes in all basins and the high-latitude North At-
lantic dominate the ocean CO; uptake where low tempera-
tures and high wind speeds facilitate CO, uptake at the sur-
face (Takahashi et al., 2009). In these regions, formation of
mode, intermediate, and deep-water masses transport anthro-
pogenic carbon into the ocean interior, thus allowing for con-
tinued CO; uptake at the surface. Outgassing of natural CO,
occurs mostly in the tropics, especially in the equatorial up-
welling region, and to a lesser extent in the North Pacific and
polar Southern Ocean, mirroring a well-established under-
standing of regional patterns of air—sea CO; exchange (e.g.
Takahashi et al., 2009; Gruber et al., 2009). These patterns
are also noticeable in the Surface Ocean CO, Atlas (SOCAT)
data set, where an ocean fCO, value above the atmospheric
level indicates outgassing (Fig. B1). This map further illus-
trates the data sparsity in the Indian Ocean and the Southern
Hemisphere in general.

Interannual variability of the ocean carbon sink is driven
by climate variability with a first-order effect from a stronger
ocean sink during large El Nifio events (e.g. 1997-1998)
(Fig. 10; Rodenbeck et al., 2014; Hauck et al., 2020). The
GOBMs show the same patterns of decadal variability as
the mean of the fCO,-based data products, with a stag-
nation of the ocean sink in the 1990s and a strengthening
since the early 2000s (Fig. 10, Le Quéré et al., 2007; Land-
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schiitzer et al., 2015, 2016; DeVries et al., 2017; Hauck et
al., 2020; McKinley et al., 2020). Different explanations have
been proposed for this decadal variability, ranging from the
ocean’s response to changes in atmospheric wind and pres-
sure systems (e.g. Le Quéré et al., 2007; Keppler and Land-
schiitzer, 2019), including variations in upper-ocean over-
turning circulation (DeVries et al., 2017), to the eruption
of Mount Pinatubo and its effects on sea surface tempera-
ture and slowed atmospheric CO, growth rate in the 1990s
(McKinley et al., 2020). The main origin of the decadal vari-
ability is a matter of debate, with a number of studies ini-
tially pointing to the Southern Ocean (see review in Canadell
et al., 2021), but contributions from the North Atlantic and
North Pacific oceans (Landschiitzer et al., 2016; DeVries et
al., 2019) or a global signal (McKinley et al., 2020) were also
proposed.

Although all individual GOBMs and data products fall
within the observational constraint, the ensemble means
of GOBMs and data products adjusted for the riverine
flux diverge over time with a mean offset increasing
from 0.28 GtCyr~! in the 1990s to 0.61 GtCyr~—! in the
decade 2012-2021 and reaching 0.79 GtC yr—! in 2021. The
SoceaN positive trend over time has diverged by a fac-
tor of 2 since 2002 (GOBMs: 0.284+0.07 GtCyr~! per
decade; data products: 0.61+£0.17GtCyr~! per decade;
Socean: 0.45GtCyr~! per decade) and by a factor of
3 since 2010 (GOBMs: 0.21+£0.14 GtCyr~! per decade;
data products: 0.66 +0.38 GtC yr’1 per decade; SoceaN:
0.44 GtCyr—! per decade). The GOBM estimate is slightly
higher (< 0.1 GtCyr~!) than in the previous global carbon
budget (Friedlingstein et al., 2022a) because two new mod-
els are included (CESM2, MRI) and four models revised
their estimates upwards (CESM-ETHZ, CNRM, FESOM2-
REcoM, PlankTOM). The data product estimate is higher by
about 0.1 GtC yr~! compared to Friedlingstein et al. (2022a)
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Table 9. Mapping of global carbon cycle model land flux definitions to the definition of the LULUCF net flux used in national Greenhouse
Gas Inventories reported to UNFCCC. See Sect. C2.3 and Table A8 for details on the methodology and a comparison to other data sets.

2002-2011  2012-2021
E1 yc from bookkeeping estimates (from Table 5) 1.4 1.2
SL.AND on non-intact forest from DGVMs —1.7 —1.8
E7 yc plus S_AND on non-intact forests -0.3 —0.6
National Greenhouse Gas Inventories —-04 —-0.5

as a result of an upward correction in three products (Jena-
MLS, MPI-SOMFEN, OS-ETHZ-Gracer), the submission of
LDEO-HPD (which is above average), the non-availability
of the CSIR product, and the small upward correction of the
river flux adjustment.

The discrepancy between the two types of estimates stems
mostly from a larger Southern Ocean sink in the data prod-
ucts prior to 2001 and from a larger Socgan trend in the
northern and southern extratropics since then (Fig. 13). Note
that the location of the mean offset (but not its trend) depends
strongly on the choice of regional river flux adjustment and
would occur in the tropics rather than in the Southern Ocean
when using the data set of Lacroix et al. (2020) instead of
Aumont et al. (2001). Other possible explanations for the
discrepancy in the Southern Ocean could be missing winter
observations and data sparsity in general (Bushinsky et al.,
2019, Gloege et al., 2021) or model biases (as indicated by
the large model spread in the Southern Hemisphere, as shown
in Fig. 13, and the larger model-data mismatch, as shown in
Fig. B2).

In GCB releases until 2021, the ocean sink 1959-1989
was only estimated by GOBMs due to the absence of fCO;
observations. Now, the first data-based estimates extending
back to 1957/58 are becoming available (Jena-MLS, Ro6-
denbeck et al., 2022, LDEO-HPD, Bennington et al., 2022;
Gloege et al., 2022). These are based on a multi-linear re-
gression of pCO, with environmental predictors (Rodenbeck
et al., 2022, included here) or on model-data pCO; misfits
and their relation to environmental predictors (Bennington
et al., 2022). The Jena-MLS estimate falls well within the
range of GOBM estimates and has a correlation of 0.98 with
SoceaN (1959-2021 and 1959-1989). It agrees well on the
mean SoceaN estimate since 1977 with a slightly higher am-
plitude of variability (Fig. 10). Until 1976, Jena-MLS is 0.2—
0.3 GtC yr_1 below the central Socgan estimate. The agree-
ment, especially on phasing of variability, is impressive, and
the discrepancies in the mean flux 1959-1976 could be ex-
plained by an overestimated trend of Jena-MLS (Rodenbeck
et al., 2022). Bennington et al. (2022) report a larger flux into
the pre-1990 ocean than in Jena-MLS.

The reported Socpan estimate from GOBMs and data
products is 2.1 £ 0.4 GtC yr—! over the period 1994 to 2007,
which is in agreement with the ocean interior estimate of
22+04GtC yr’l, which accounts for the climate effect on
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the natural CO; flux of —0.4 £+ 0.24 GtC yr’] (Gruber et al.,
2019) to match the definition of Socgan used here (Hauck
et al., 2020). This comparison depends critically on the es-
timate of the climate effect on the natural CO, flux, which
is smaller from the GOBMs (—0.1 GtC yr~!) than in Gruber
et al. (2019). Uncertainties in these two estimates would also
overlap when using the GOBM estimate of the climate effect
on the natural CO; flux.

During 2010-2016, the ocean CO; sink appears to have in-
tensified in line with the expected increase from atmospheric
CO;, (McKinley et al., 2020). This effect is stronger in the
fCOs-based data products (Fig. 10, ocean sink 2016 mi-
nus 2010, GOBMs: +0.42 +0.09 GtC yr‘l; data products:
+0.5240.22GtCyr~!). The reduction of —0.09 GtCyr~!
(range: —0.39 to 4+0.01 GtCyr~!) in the ocean CO, sink
in 2017 is consistent with the return to normal condi-
tions after the El Nifio in 2015/16, which caused an en-
hanced sink in previous years. After 2017, the GOBM en-
semble mean suggests the ocean sink levelling off at about
2.6 GtCyr~!, whereas the data product estimate increases by
0.24 £0.17 GtC yr~! over the same period.

3.5.3 Final year 2021

The estimated ocean CO, sink was 2.9 + 0.4 GtC in 2021.
This is a decrease of 0.12 GtC compared to 2020, in line with
the expected sink weakening from persistent La Nifia con-
ditions. GOBM and data product estimates consistently re-
sult in a stagnation of Socgan (GOBMs: —0.09 £ 0.15 GtC;
data products: —0.15 £ 0.24 GtC). Seven models and six data
products show a decrease in Socean (GOBMs down to
—0.31 GtC, data products down to —0.58 GtC), while three
models and two data products show an increase in SocgaN
(GOBMs up to 0.15GtC, data products up to 0.12 GtC;
Fig. 10). The data products have a larger uncertainty at the
tails of the reconstructed time series (e.g. Watson et al.,
2020). Specifically, the data products’ estimate of the last
year is regularly adjusted in the following release owing to
the tail effect and an incrementally increasing data availabil-
ity with a 1-5-year lag (Fig. 10 inset).

https://doi.org/10.5194/essd-14-4811-2022



P. Friedlingstein et al.: Global Carbon Budget 2022

3.5.4 Year 2022 projection

Using a feed-forward neural network method (see Sect. 2.4)
we project an ocean sink of 2.9 GtC for 2022. This is similar
to the year 2021 as the La Nifia conditions persist in 2022.

3.5.5 Model evaluation

The additional simulation D allows us to separate the an-
thropogenic carbon component (steady state and non-steady
state, sim D — sim A) and compare the model flux and dis-
solved inorganic carbon (DIC) inventory change directly to
the interior ocean estimate of Gruber et al. (2019) without
further assumptions. The GOBM ensemble average of an-
thropogenic carbon inventory changes 1994-2007 amounts
to 2.2 GtC yr~! and is thus lower than the 2.6 4- 0.3 GtC yr~!
estimated by Gruber et al. (2019). Only four models with the
highest sink estimate fall within the range reported by Gruber
et al. (2019). This suggests that the majority of the GOBMs
underestimate anthropogenic carbon uptake by 10 %—-20 %.
Analysis of Earth system models indicate that an underes-
timation by about 10 % may be due to biases in ocean car-
bon transport and mixing from the surface mixed layer to the
ocean interior (Goris et al., 2018; Terhaar et al., 2021; Bour-
geois et al., 2022; Terhaar et al., 2022), biases in the chemical
buffer capacity (Revelle factor) of the ocean (Vaittinada Ayar
et al., 2022; Terhaar et al., 2022), and partly due to the late
starting date of the simulations (mirrored in atmospheric CO;
chosen for the pre-industrial control simulation, Table A2,
Bronselaer et al., 2017; Terhaar et al., 2022). Interestingly,
and in contrast to the uncertainties in the surface CO; flux,
we find the largest mismatch in interior ocean carbon accu-
mulation in the tropics (93 % of the mismatch), with minor
contribution from the north (1 %) and the south (6 %). This
highlights the role of interior ocean carbon redistribution for
those inventories (Khatiwala et al., 2009).

The evaluation of the ocean estimates (Fig. B2) shows a
root-mean-squared error (RMSE) from annually detrended
data of 0.4 to 2.6 patm for the seven fCO;-based data prod-
ucts over the globe, relative to the fCO; observations from
the SOCAT v2022 data set for the period 1990-2021. The
GOBM RMSEs are larger and range from 3.0 to 4.8 patm.
The RMSEs are generally larger at high latitudes compared
to the tropics, for both the data products and the GOBMs.
The data products have RMSEs of 0.4 to 3.2 patm in the trop-
ics, 0.8 to 2.8 yatm in the northern extratropics (> 30° N),
and 0.8 to 3.6 patm in the southern extratropics (< 30°S).
Note that the data products are based on the SOCAT v2022
database; hence, the SOCAT is not an independent data set
for the evaluation of the data products. The GOBM RM-
SEs are more spread across regions, ranging from 2.5 to
3.9 patm in the tropics, 3.1 to 6.5 patm in the north, and 5.4
to 7.9 patm in the south. The higher RMSEs occur in regions
with stronger climate variability, such as the northern and
southern high latitudes (poleward of the subtropical gyres).
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Figure 9. The partitioning of total anthropogenic CO;, emis-
sions (Erps + ELyc) across (a) the atmosphere (airborne fraction),
(b) land (land-borne fraction), and (c) ocean (ocean-borne fraction).
Black lines represent the central estimate, and the coloured shad-
ing represents the uncertainty. The dashed grey lines represent the
long-term average of the airborne (44 %), land-borne (30 %), and
ocean-borne (25 %) fractions during 1960-2021.
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Figure 10. Comparison of the anthropogenic atmosphere—ocean
CO, flux showing the budget values of Sgcpan (black; with the
uncertainty in grey shading), individual ocean models (royal blue),
and the ocean fCO;-based data products (cyan; with Watson et al. ,
2020, shown as a dashed line as it is not used for the ensemble
mean). Only one data product (Jena-MLS) extends back to 1959
(Rodenbeck et al., 2022). The fCO,-based data products were ad-
justed for the pre-industrial ocean source of CO, from river input
to the ocean by subtracting a source of 0.65 GtC yr71 to make them
comparable to Socpan (see Sect. 2.4). The bar plot in the lower
right illustrates the number of fCO, observations in the SOCAT
v2022 database (Bakker et al., 2022). Grey bars indicate the num-
ber of data points in SOCAT v2021, and coloured bars show the
newly added observations in v2022.

The upper ranges of the model RMSEs have decreased some-
what relative to Friedlingstein et al. (2022a).

3.6 Land sink
3.6.1 Historical period 1850—2021

Cumulated since 1850, the terrestrial CO; sink amounts to
210£45 GtC, 31 % of total anthropogenic emissions. Over
the historical period, the sink increased in pace with the ex-
ponential anthropogenic emissions increase (Fig. 3b).

3.6.2 Recent period 1960—2021

The terrestrial CO, sink increased from 1.2 4 0.4 GtC yr~!
in the 1960s to 3.1+ 0.6 GtC yr~! during 2012-2021, with
important interannual variations of up to 2 GtCyr~! gener-
ally showing a decreased land sink during El Nifio events
(Fig. 8), responsible for the corresponding enhanced growth
rate in atmospheric CO, concentration. The larger land CO,
sink during 2012-2021 compared to the 1960s is reproduced
by all the DGVMs in response to the increase in both atmo-
spheric CO; and nitrogen deposition and the changes in cli-
mate and is consistent with constraints from the other budget
terms (Table 5).
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Over the period 1960 to present the increase in the global
terrestrial CO, sink is largely attributed to the CO, fertil-
ization effect (Prentice et al., 2001; Piao et al., 2009), di-
rectly stimulating plant photosynthesis and increased plant
water use in water-limited systems, with a small negative
contribution of climate change (Fig. 11). There is a range
of evidence to support a positive terrestrial carbon sink in
response to increasing atmospheric CO;, albeit with uncer-
tain magnitude (Walker et al., 2021). As expected from the-
ory, the greatest CO, effect is simulated in the tropical forest
regions, associated with warm temperatures and long grow-
ing seasons (Hickler et al., 2008) (Fig. 11a). However, ev-
idence from tropical intact forest plots indicate an overall
decline in the land sink across Amazonia (1985-2011), at-
tributed to enhanced mortality offsetting productivity gains
(Brienen et al., 2005, Hubau et al., 2020). During 2012-
2021 the land sink is positive in all regions (Fig. 6) with
the exception of eastern Brazil, the southwestern US, south-
eastern Europe, central Asia, northern and southern Africa,
and eastern Australia, where the negative effects of climate
variability and change (i.e. reduced rainfall) counterbalance
CO, effects. This is clearly visible in Fig. 11 where the ef-
fects of CO, (Fig. 11a) and climate (Fig. 11b) as simulated
by the DGVMs are isolated. The negative effect of climate
is the strongest in most of South America, Central America,
the southwestern US, central Europe, western Sahel, south-
ern Africa, Southeast Asia and southern China, and eastern
Australia (Fig. 11b). Globally, climate change reduces the
land sink by 0.63 + 0.52 GtC yr’1 or 17 % (2012-2021).

Since 2020 the globe has experienced La Nifia conditions,
which would be expected to lead to an increased land car-
bon sink. A clear peak in the global land sink is not evi-
dent in Sp aND, and we find that a La Nifla-driven increase in
tropical land sink is offset by a reduced high latitude extrat-
ropical land sink, which may be linked to the land response
to recent climate extremes. In the past years several regions
experienced record-setting fire events. While global burned
area has declined over the past decades, mostly due to de-
clining fire activity in savannas (Andela et al., 2017), forest
fire emissions are rising and have the potential to counter the
negative fire trend in savannas (Zheng et al., 2021). Notewor-
thy events include the Black Summer event in Australia in
2019-2020 (emissions of roughly 0.2 GtC; van der Velde et
al., 2021) and events in Siberia in 2021 where emissions ap-
proached 0.4 GtC or 3 times the 1997-2020 average accord-
ing to GFED4s. While other regions, including the western
US and Mediterranean Europe, also experienced intense fire
seasons in 2021, their emissions are substantially lower.

Despite these regional negative effects of climate change
on SpaND, the efficiency of land to remove anthropogenic
CO» emissions has remained broadly constant over the last 6
decades, with a land-borne fraction (Spanp/(Eros + ELuc))
of ~30 % (Fig. 9).
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Figure 11. Attribution of the atmosphere—ocean (Socpan) and atmosphere—land (Sp anp) CO; fluxes to (a) increasing atmospheric CO,
concentrations and (b) changes in climate, averaged over the previous decade 2012-2021. All data shown are from the processed-based
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based data products. See Appendices C3.2 and C4.1 for attribution methodology. Units are in kgC m—2 yr71 (note the non-linear colour

scale).

3.6.3 Final year 2021

The terrestrial CO; sink from the DGVMs ensemble was
3.5£0.9GtC in 2021, slightly above the decadal average of
3.1+£0.6 GtCyr~! (Fig. 4, Table 6). We note that the DGVM
estimate for 2021 is larger than, but within the uncertainty of,
the 2.8 £ 0.9 GtC yr—! estimate from the residual sink from
the global budget (Eros+ ELuc—G atm —Socean) (Table 5).

3.6.4 Year 2022 projection

Using a feed-forward neural network method we project a
land sink of 3.4 GtC for 2022, very similar to the 2021 esti-
mate. As for the ocean sink, we attribute this to the persis-
tence of La Nifia conditions in 2022.

https://doi.org/10.5194/essd-14-4811-2022

3.6.5 Model evaluation

The evaluation of the DGVMs (Fig. B3) shows generally
high skill scores across models for runoff and to a lesser
extent for vegetation biomass, gross primary production (or
productivity; GPP), and ecosystem respiration (Fig. B3, left
panel). Skill score was lowest for leaf area index and net
ecosystem exchange, with the widest disparity among mod-
els for soil carbon. These conclusions are supported by
a more comprehensive analysis of DGVM performance in
comparison with benchmark data (Seiler et al., 2022). Fur-
thermore, results show how DGVM differences are often of
similar magnitude compared with the range across observa-
tional data sets.

Earth Syst. Sci. Data, 14, 4811-4900, 2022
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Figure 12. The 2012-2021 decadal mean net atmosphere—ocean
and atmosphere—land fluxes derived from the ocean models and
fCO, products (y axis, right- and left-pointing blue triangles, re-
spectively) and from the DGVMs (x axis, green symbols) and the
same fluxes estimated from the inversions (purple symbols on sec-
ondary x and y axes). The grey central point is the mean (£1o)
of Socean and (Sp.aND — ELuc) as assessed in this budget. The
shaded distributions show the density of the ensemble of individ-
ual estimates. The grey diagonal band represents the fossil fuel
emissions minus the atmospheric growth rate from this budget
(EFOS—G apy )+ Note that positive values are CO sinks.

3.7 Partitioning the carbon sinks

3.7.1 Gilobal sinks and spread of estimates

In the period 2012-2021, the bottom-up view of total global
carbon sinks provided by the GCB, Socgan for the ocean
and Spanp—ELuc for the land (to be comparable to inver-
sions), agrees closely with the top-down global carbon sinks
delivered by the atmospheric inversions. Figure 12 shows
both total sink estimates of the last decade split by ocean
and land (including Epyc), which match the difference be-
tween G arm and Eros to within 0.01-0.12 GtC yr~! for in-
verse systems, and to 0.34 GtC yr~! for the GCB mean. The
latter represents the By discussed in Sect. 3.8, which by de-
sign is minimal for the inverse systems.

The distributions based on the individual models and data
products reveal substantial spread but converge near the
decadal means quoted in Tables 5 and 6. Sink estimates for
SoceaN and from inverse systems are mostly non-Gaussian,
while the ensemble of DGVMs appears more normally dis-
tributed, justifying the use of a multi-model mean and stan-
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dard deviation for their errors in the budget. Noteworthy is
that the tails of the distributions provided by the land and
ocean bottom-up estimates would not agree with the global
constraint provided by the fossil fuel emissions and the ob-
served atmospheric CO; growth rate (Eros — G atm)- This
illustrates the power of the atmospheric joint constraint from
Garm and the global CO; observation network it derives
from.

3.7.2 Total atmosphere-to-land fluxes

The total atmosphere-to-land fluxes (Spanp — Eruc), cal-
culated here as the difference between Spanp from the
DGVMs and Epyc from the bookkeeping models, amounts
toa 1.94 0.9 GtC yr~! sink during 2012-2021 (Table 5). Es-
timates of total atmosphere-to-land fluxes (Spanp — ELuc)
from the DGVMs alone (1.5 £ 0.5 GtC yr_l) are consistent
with this estimate and also with the global carbon budget
constraint (Eros — G atm — Socean, 1.5 0.6 GtC yl"_1 Ta-
ble 5). For the last decade (2012-2021), the inversions esti-
mate the net atmosphere-to-land uptake to lie within a range
of 1.1 to 1.7 GtC yr_l, consistent with the GCB and DGVM
estimates of S_anp — ELuc (Fig. 13 top row).

3.7.3 Total atmosphere-to-ocean fluxes

For the 2012-2021 period, the GOBMs (2.6 0.5 GtC yr~')
produce a lower estimate for the ocean sink than the fCO;-
based data products (3.2 0.6 GtCyr~!), which shows up
in Fig. 12 as a separate peak in the distribution from
the GOBMs (triangle symbols pointing right) and from
the fCO,-based products (triangle symbols pointing left).
Atmospheric inversions (2.7 to 3.3GtCyr~!) also suggest
higher ocean uptake in the last decade (Fig. 13 top row).
In interpreting these differences, we caution that the riverine
transport of carbon taken up on land and outgassing from the
ocean is a substantial (0.65 GtC yr™ 1) and uncertain term that
separates the various methods. A recent estimate of decadal
ocean uptake from observed O; /N, ratios (Tohjima et al.,
2019) also points towards a larger ocean sink, albeit with
large uncertainty (2012-2016: 3.1+ 1.5GtCyr—1).

3.7.4 Regional breakdown and interannual variability

Figure 13 also shows the latitudinal partitioning of the total
atmosphere-to-surface fluxes excluding fossil CO, emissions
(SoceaN + SLanD — ELuc) according to the multi-model av-
erage estimates from GOBMs and ocean fCO,-based prod-
ucts (Socean) and DGVMs (Sp.anp — ELuc) and from atmo-
spheric inversions (Socgan and SLanD — ELuC)-

North

Despite being one of the most densely observed and stud-
ied regions of our globe, annual mean carbon sink esti-
mates in the northern extratropics (north of 30°N) con-
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global Socgan; hence, the sum of the regions is slightly different from the global estimate (< 0.05 GtC yr_l).
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tinue to differ. The atmospheric inversions suggest an
atmosphere-to-surface sink (Socgan + SLanp — ErLuc) for
20122021 of 2.0 to 3.2 GtC yr_l, which is higher than the
process models’ estimate of 2.240.4GtCyr~—! (Fig. 13).
The GOBMs (1.2+0.2GtCyr~!), fCO,-based data prod-
ucts (1.440.1GtCyr~!), and inversion systems (0.9 to
1.4 GtC yr~!) produce consistent estimates of the ocean sink.
Thus, the difference mainly arises from the total land flux
(SLanD — ELuc) estimate, which is 1.0 £ 0.4 GtC yr—! in the
DGVMs compared to 0.6 to 2.0 GtC yr~! in the atmospheric
inversions (Fig. 13, second row).

Discrepancies in the northern land fluxes conform with
persistent issues surrounding the quantification of the drivers
of the global net land CO, flux (Arneth et al., 2017,
Huntzinger et al., 2017; O’Sullivan et al., 2022) and the dis-
tribution of atmosphere-to-land fluxes between the tropics
and high northern latitudes (Baccini et al., 2017; Schimel et
al., 2015; Stephens et al., 2007; Ciais et al., 2019; Gaubert et
al., 2019).

In the northern extratropics, the process models, inver-
sions, and fCO,-based data products consistently sug-
gest that most of the variability stems from the land
(Fig. 13). Inversions generally estimate similar interannual
variations (IAVs) over land to DGVMs (0.30-0.37 vs. 0.17—
0.69 GtCyr~!, averaged over 1990-2021), and they have
higher TAV in ocean fluxes (0.05-0.09 GtCyr~!) relative
to GOBMs (0.02-0.06 GtCyr~!, Fig. B2) and fCO,-based
data products (0.03-0.09 GtC yr—1).

Tropics

In the tropics (30° S-30°N), both the atmospheric inver-
sions and process models estimate a total carbon balance
(SoceaN + Stanp — ErLuc) that is close to neutral over the
past decade. The GOBMs (0.06 +0.34 GtCyr~!), fCO»-
based data products (0.0040.06 GtCyr~!), and inversion
systems (—0.2 to 0.5 GtC yr~!) all indicate an approximately
neutral tropical ocean flux (see Fig. Bl for spatial pat-
terns). DGVMs indicate a net land sink (Spanp — Eruc) of
0.5+ 0.3 GtCyr~!, whereas the inversion systems indicate a
net land flux between —0.9 and 0.7 GtC yr™—!, albeit with high
uncertainty (Fig. 13, third row).

The tropical lands are the origin of most of the atmo-
spheric CO» interannual variability (Ahlstrom et al., 2015),
and this is consistent among the process models and inver-
sions (Fig. 13). The interannual variability in the tropics is
similar among the ocean data products (0.07-0.16 GtC yr—1)
and the GOBMs (0.07-0.16 GtC yr~!, Fig. B2), which is the
highest ocean sink variability of all regions. The DGVMs and
inversions indicate that atmosphere-to-land CO; fluxes are
more variable than atmosphere-to-ocean CO; fluxes in the
tropics, with interannual variability of 0.5 to 1.1 and 0.8 to
1.0GtC yr~! for DGVMs and inversions, respectively.
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South

In the southern extratropics (south of 30°S), the atmo-
spheric inversions suggest a total atmosphere-to-surface
sink (SOCEAN+SLAND — ELUC) for 2012-2021 of 1.6 to
1.9GtC yr~!, slightly higher than the process models’ esti-
mate of 1.4 +0.3 GtC yr—! (Fig. 13). An approximately neu-
tral total land flux (SLanp — ELuc) for the southern extratrop-
ics is estimated by both the DGVMs (0.02 4 0.06 GtC yr—!)
and the inversion systems (sink of —0.2 to 0.2GtCyr™!).
This means nearly all carbon uptake is due to oceanic sinks
south of 30°S. The Southern Ocean flux in the fCO;-
based data products (1.8 £0.1 GtCyr~!) and inversion es-
timates (1.6 to 1.9 GtC yr~!) is higher than in the GOBMs
(1.440.3 GtCyr~!) (Fig. 13, bottom row). This discrepancy
in the mean flux is likely explained by the uncertainty in the
regional distribution of the river flux adjustment (Aumont et
al., 2001; Lacroix et al., 2020) applied to fCO;,-based data
products and inverse systems to isolate the anthropogenic
Socean flux. Other possibly contributing factors are that the
data products potentially underestimate the winter CO; out-
gassing south of the Polar Front (Bushinsky et al., 2019) and
potential model biases. CO; fluxes from this region are more
sparsely sampled by all methods, especially in wintertime
(Fig. B1). Dominant biases in Earth system models are re-
lated to mode water formation, stratification, and the chem-
ical buffer capacity (Terhaar et al., 2021; Bourgeois et al.,
2022; Terhaar et al., 2022).

The interannual variability in the southern extratropics
is low because of the dominance of ocean areas with low
variability compared to land areas. The split between land
(SLanD — Eruc) and ocean (Socean) shows a substantial
contribution to variability in the south coming from the land,
with no consistency between the DGVMs and the inversions
or among inversions. This is expected due to the difficulty of
exactly separating the land and oceanic fluxes when viewed
from atmospheric observations alone. The Socgan interan-
nual variability was found to be higher in the fCO;-based
data products (0.09 to 0.19 GtC yr~') compared to GOBMs
(0.03 to 0.06 GtC yr—!) in 1990-2021 (Fig. B2). Model sub-
sampling experiments recently illustrated that observation-
based products may overestimate decadal variability in the
Southern Ocean carbon sink by 30 % due to data sparsity,
based on one data product with the highest decadal variabil-
ity (Gloege et al., 2021).

Tropical vs. northern land uptake

A continuing conundrum is the partitioning of the global
atmosphere—land flux between the Northern Hemisphere
land and the tropical land (Stephens et al., 2017; Pan et
al., 2011; Gaubert et al., 2019). It is of importance because
each region has its own history of land-use change, climate
drivers, and the impact of increasing atmospheric CO; and
nitrogen deposition. Quantifying the magnitude of each sink
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P. Friedlingstein et al.: Global Carbon Budget 2022

is a prerequisite to understanding how each individual driver
impacts the tropical and mid- and high-latitude carbon bal-
ance.

We define the north—south (N-S) difference as net
atmosphere—land flux north of 30°N minus the net
atmosphere—land flux south of 30° N. For the inversions, the
N-S difference ranges from 0.1 to 2.9 GtC yr~! across this
year’s inversion ensemble with a preference across models
for either a smaller northern land sink with a near-neutral
tropical land flux (medium N-S difference) or a large north-
ern land sink and a tropical land source (large N-S differ-
ence).

In the ensemble of DGVMs the N-S difference is
0.6 £0.5GtC yr‘l, a much narrower range than the one from
inversions. Only two DGVMs have a N-S difference larger
than 1.0 GtC yr—!. The larger agreement across DGVMs than
across inversions is to be expected as there is no correlation
between northern and tropical land sinks in the DGVMs, as
opposed to the inversions where the sum of the two regions
being well-constrained leads to an anti-correlation between
these two regions. The much smaller spread in the N-S dif-
ference between the DGVMs could help to scrutinize the
inverse systems further. For example, a large northern land
sink and a tropical land source in an inversion would suggest
a large sensitivity to CO, fertilization (the dominant factor
driving the land sinks) for northern ecosystems, which would
be not mirrored by tropical ecosystems. Such a combination
could be hard to reconcile with the process understanding
gained from the DGVM ensembles and independent mea-
surements (e.g. free-air CO, enrichment experiments). Such
investigations will be further pursued in the upcoming as-
sessment from REgional Carbon Cycle Assessment and Pro-
cesses (RECCAP2; Ciais et al., 2022).

3.8 Closing the global carbon cycle

3.8.1 Partitioning of cumulative emissions and sink
fluxes

The global carbon budget over the historical period (1850—
2021) is shown in Fig. 3.

Emissions during the period 1850-2021 amounted to
670 & 65 GtC and were partitioned among the atmosphere
(275 £ 5 GtC; 41 %), ocean (175 + 35 GtC; 26 %), and land
(210 £ 45 GtC; 31 %). The cumulative land sink is almost
equal to the cumulative land-use emissions (200 £ 60 GtC),
making the global land nearly neutral over the whole 1850-
2021 period.

The use of nearly independent estimates for the individual
terms of the global carbon budget shows a cumulative budget
imbalance of 15 GtC (2 % of total emissions) during 1850-
2021 (Fig. 3, Table 8), which, if correct, suggests that emis-
sions could be slightly too high by the same proportion (2 %)
or that the combined land and ocean sinks are slightly under-
estimated (by about 3 %), although these are well within the
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uncertainty range of each component of the budget. Never-
theless, part of the imbalance could originate from the esti-
mation of significant increase in Eros and Epyc between the
mid-1920s and the mid-1960s that is unmatched by a sim-
ilar growth in atmospheric CO> concentration as recorded
in ice cores (Fig. 3). However, the known loss of additional
sink capacity of 30-40 GtC (over the 1850-2020 period) due
to reduced forest cover has not been accounted for in our
method and would exacerbate the budget imbalance (see Ap-
pendix D4).

For the more recent 1960-2021 period where direct at-
mospheric CO, measurements are available, total emis-
sions (Eros + Eruc) amounted to 470 £ 50 GtC, of which
390 £20GtC (82%) were caused by fossil CO; emis-
sions and 85+45GtC (18 %) by land-use change (Ta-
ble 8). The total emissions were partitioned among the at-
mosphere (210 £ 5 GtC; 45 %), ocean (120 £ 25 GtC; 26 %),
and land (145 30 GtC; 30 %), with a near-zero (—5 GtC)
unattributed budget imbalance. All components except land-
use change emissions have significantly grown since 1960,
with important interannual variability in the growth rate in
atmospheric CO, concentration and in the land CO, sink
(Fig. 4) and some decadal variability in all terms (Table 6).
Differences with previous budget releases are documented in
Fig. BS.

The global carbon budget averaged over the last decade
(2012-2021) is shown in Figs. 2 and 14 (right panel) and Ta-
ble 6. For this period, 89 % of the total emissions (Efos +
Eruc) were from fossil CO; emissions (Epps), and 11 %
were from land-use change (Epyc). The total emissions were
partitioned among the atmosphere (48 %), ocean (26 %), and
land (29 %), with a near-zero unattributed budget imbalance
(~3 %). For single years, the budget imbalance can be larger
(Fig. 4). For 2021, the combination of our estimated sources
(10.9+£0.9GtCyr!) and sinks (11.6 £ 1.0GtC yr!) leads
to a Byy of —0.6 GtC, suggesting a slight underestimation
of the anthropogenic sources and/or an overestimation of the
combined land and ocean sinks.

3.8.2 Carbon budget imbalance trend and variability

The carbon budget imbalance (Bv; Eq. 1, Fig. 4) quantifies
the mismatch between the estimated total emissions and the
estimated changes in the atmosphere, land, and ocean reser-
voirs. The mean budget imbalance from 1960 to 2021 is very
small (4.6 GtC over the period, i.e. average of 0.07 GtCyr—!)
and shows no trend over the full time series (Fig. 4). The
process models (GOBMs and DGVMs) and data products
have been selected to match observational constraints in the
1990s, but no further constraints have been applied to their
representation of trend and variability. Therefore, the near-
zero mean and trend in the budget imbalance is seen as evi-
dence of a coherent community understanding of the emis-
sions and their partitioning on those timescales (Fig. 4).
However, the budget imbalance shows substantial variability
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Figure 14. Cumulative changes over the 1850-2021 period (left)
and average fluxes over the 2012-2021 period (right) for the anthro-
pogenic perturbation of the global carbon cycle. See the caption of
Fig. 3 for key information and Sect. 2 for full details.

on the order of 1 GtC yr~!, particularly over semi-decadal
timescales, although most of the variability is within the un-
certainty of the estimates. The positive carbon imbalance
during the 1960s and early 1990s indicates that either the
emissions were overestimated or the sinks were underesti-
mated during these periods. The reverse is true for the 1970s
and to a lesser extent for the 1980s and the 2012-2021 period
(Fig. 4, Table 6).

We cannot attribute the cause of the variability in the bud-
get imbalance with our analysis, we only note that the budget
imbalance is unlikely to be explained by errors or biases in
the emissions alone because of its large semi-decadal vari-
ability component, a variability that is untypical of emissions
and which has not changed in the past 60 years despite a near
tripling of emissions (Fig. 4). Errors in Spanp and Socgan
are more likely to be the main cause for the budget imbal-
ance, especially on interannual to semi-decadal timescales.
For example, underestimation of the S aAnp by DGVMs has
been reported following the eruption of Mount Pinatubo in
1991, possibly due to missing responses to changes in diffuse
radiation (Mercado et al., 2009). Although since GCB2021
we accounted for aerosol effects on solar radiation quan-
tity and quality (diffuse vs. direct), most DGVMs only used
the former as input (i.e. total solar radiation) (Table Al).
Thus, the ensemble mean may not capture the full effects of
volcanic eruptions, i.e. associated with high light-scattering
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sulfate aerosols, on the land carbon sink (O’Sullivan et al.,
2021). DGVMs are suspected to overestimate the land sink
in response to the wet decade of the 1970s (Sitch et al., 2008).
Quasi-decadal variability in the ocean sink has also been re-
ported, with all methods agreeing on a smaller than expected
ocean CO3 sink in the 1990s and a larger than expected sink
in the 2000s (Fig. 10; Landschiitzer et al., 2016; DeVries et
al., 2019; Hauck et al., 2020; McKinley et al., 2020). Errors
in sink estimates could also be driven by errors in the cli-
matic forcing data, particularly precipitation for Spanp and
wind for Socean- Also, the Bny shows substantial departure
from zero on yearly timescales (Fig. 4e), highlighting unre-
solved variability of the carbon cycle, likely in the land sink
(SLAND), given its large year-to-year variability (Figs. 4d and
8).

Both the budget imbalance (B, Table 6) and the residual
land sink from the global budget (Eros + ErLuc — GaTM —
SocEAN, Table 5) include an error term due to the inconsis-
tencies that arise from using Ey yc from bookkeeping models
and Spanp from DGVMs, most notably the loss of additional
sink capacity (see Sect. 2.7 and Appendix D4). Other differ-
ences include a better accounting of land-use change prac-
tices and processes in bookkeeping models than in DGVMs
or the error in bookkeeping models of having present-day
observed carbon densities fixed in the past. That the budget
imbalance shows no clear trend towards larger values over
time is an indication that these inconsistencies probably play
a minor role compared to other errors in S_AND Or SOCEAN-

Although the budget imbalance is near zero for the re-
cent decades, it could be due to compensation of errors. We
cannot exclude an overestimation of CO;, emissions, partic-
ularly from land-use change, given their large uncertainty,
as has been suggested elsewhere (Piao et al., 2018), com-
bined with an underestimate of the sinks. A larger DGVM
(SLanp — ELuc) over the extratropics would reconcile model
results with inversion estimates for fluxes in the total land
during the past decade (Fig. 13; Table 5). Likewise, a larger
SocEaN 1s also possible given the higher estimates from the
data products (see Sect. 3.1.2, Figs. 10 and 13), the underesti-
mation of interior ocean anthropogenic carbon accumulation
in the GOBMs (Sect. 3.5.5), and the recently suggested up-
ward adjustments of the ocean carbon sink in Earth system
models (Terhaar et al., 2022) and in data products, here re-
lated to a potential temperature bias and skin effects (Watson
etal., 2020; Dong et al., 2022, Fig. 10). If Socean were to be
based on data products alone, with all data products includ-
ing this adjustment, this would result in a 2012-2021 Socgan
of 3.8 GtCyr~! (Dong et al., 2022) or > 4 GtC yr~! (Watson
et al., 2020), i.e. outside of the range supported by the atmo-
spheric inversions and with an implied negative By of more
than —1 GtCyr~!, indicating that a closure of the budget
could only be achieved with either anthropogenic emissions
being significantly larger and/or the net land sink being sub-
stantially smaller than estimated here. More integrated use of
observations in the global carbon budget, either on their own
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or for further constraining model results, should help resolve
some of the budget imbalance (Peters et al., 2017).

4 Tracking progress towards mitigation targets

The average growth in global fossil CO; emissions peaked
at +3 % per year during the 2000s, driven by the rapid
growth in emissions in China. In the last decade, however,
the global growth rate has slowly declined, reaching a low
+0.5 % per year over 2012-2021 (including the 2020 global
decline and the 2021 emissions rebound). While this slow-
down in global fossil CO; emissions growth is welcome, it is
far from the emission decrease needed to be consistent with
the temperature goals of the Paris Agreement.

Since the 1990s, the average growth rate of fossil CO;
emissions has continuously declined across the group of de-
veloped countries of the Organization for Economic Co-
operation and Development (OECD), with emissions peak-
ing in around 2005 and now declining at around 1 % per year
(Le Quéré et al., 2021). In the decade 2012-2021, territo-
rial fossil CO, emissions decreased significantly (at the 95 %
confidence level) in 24 countries whose economies grew sig-
nificantly (also at the 95 % confidence level): Belgium, Croa-
tia, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Hong Kong, Israel, Italy, Japan, Luxembourg,
Malta, Mexico, Netherlands, Norway, Singapore, Slovenia,
Sweden, Switzerland, the United Kingdom, the USA, and
Uruguay (updated from Le Quéré et al., 2019). Altogether,
these 24 countries emitted 2.4 GtC yr_1 (8.8 GtCO, yr_l) on
average over the last decade, about a quarter of world fos-
sil CO, emissions. Consumption-based emissions also fell
significantly during the final decade for which estimates are
available (2011-2020) in 15 of these countries: Belgium,
Denmark, Estonia, Finland, France, Germany, Hong Kong,
Israel, Japan, Luxembourg, Mexico, Netherlands, Singapore,
Sweden, the United Kingdom, and Uruguay. Figure 15 shows
that the emission declines in the USA and the EU27 are pri-
marily driven by increased decarbonization (CO, emissions
per unit energy) in the last decade compared to the previous,
with smaller contributions in the EU27 from slightly weaker
economic growth and slightly larger declines in energy per
GDP. These countries have stable or declining energy use
and thus decarbonization policies replace existing fossil fuel
infrastructure (Le Quéré et al., 2019).

In contrast, fossil CO, emissions continue to grow in
non-OECD countries, although the growth rate has slowed
from almost 6 % per year during the 2000s to less than
2 % per year in the last decade. Representing 47 % of non-
OECD emissions in 2021, a large part of this slowdown is
due to China, which has seen emissions growth decline from
nearly 10 % per year in the 2000s to 1.5 % per year in the
last decade. Excluding China, non-OECD emissions grew at
3.3 % per year in the 2000s compared to 1.6 % per year in the
last decade. Figure 15 shows that, compared to the previous
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decade, China has had weaker economic growth in the last
decade and a higher decarbonization rate, with more rapid
declines in energy per GDP that are now back to levels seen
during the 1990s. India and the rest of the world have strong
economic growth that is not offset by decarbonization or de-
clines in energy per GDP, driving up fossil CO, emissions.
Despite the high deployment of renewables in some countries
(e.g. India), fossil energy sources continue to grow to meet
growing energy demand (Le Quéré et al., 2019).

Globally, fossil CO, emissions growth is slowing, and this
is due to the emergence of climate policy (Eskander and
Fankhauser, 2020; Le Quere et al., 2019) and technological
change, which is leading to a shift from coal to gas, growth
in renewable energies, and reduced expansion of coal capac-
ity. At the aggregated global level, decarbonization shows a
strong and growing signal in the last decade, with smaller
contributions from lower economic growth and declines in
energy per GDP. Despite the slowing growth in global fos-
sil CO, emissions, emissions are still growing, but these are
far from the reductions needed to meet the ambitious climate
goals of the UNFCCC Paris Agreement.

We update the remaining carbon budget assessed by the
IPCC ARG6 (Canadell et al., 2021), accounting for the esti-
mated 2020 to 2022 emissions from fossil fuel combustion
(Eros) and land-use changes (Epyc). From January 2023,
the remaining carbon (50 % likelihood) for limiting global
warming to 1.5, 1.7, and 2 °C is estimated to amount to 105,
200, and 335 GtC (380, 730, 1230 GtCO;). These numbers
include an uncertainty based on model spread (as in IPCC
ARG6), which is reflected through the percent likelihood of
exceeding the given temperature threshold. These remaining
amounts correspond respectively to about 9, 18, and 30 years
from the beginning of 2023 at the 2022 level of total CO,
emissions. Reaching net zero CO; emissions by 2050 entails
cutting total anthropogenic CO; emissions by about 0.4 GtC
(1.4 GtCOy) each year on average, comparable to the de-
crease observed in 2020 during the COVID-19 pandemic.

5 Discussion

Each year when the global carbon budget is published, each
flux component is updated for all previous years to consider
corrections that are the result of further scrutiny and verifi-
cation of the underlying data in the primary input data sets.
Annual estimates may be updated with improvements in data
quality and timeliness (e.g. to eliminate the need for extrap-
olation of forcing data such as land use). Of all terms in the
global budget, only the fossil CO; emissions and the growth
rate in atmospheric CO, concentrations are based primarily
on empirical inputs supporting annual estimates in this car-
bon budget. The carbon budget imbalance, while an imper-
fect measure, provides a strong indication of the limitations
in observations in understanding and representing processes
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Figure 15. Kaya decomposition of the main drivers of fossil CO, emissions, considering population, GDP per person, energy per GDP, and
CO, emissions per energy, for China (a), the USA (b), the EU27 (c), India (d), the rest of the world (e), and the world (f). Black dots are the
annual fossil CO, emissions growth rate, coloured bars are the contributions from the different drivers. A general trend is that population and
GDP growth put upward pressure on emissions, while energy per GDP and more recently CO, emissions per energy put downward pressure
on emissions. Both the COVID-19-induced changes during 2020 and the recovery in 2021 led to a stark contrast to previous years, with

different drivers in each region.

in models and/or in the integration of the carbon budget com-
ponents.

The persistent unexplained variability in the carbon budget
imbalance limits our ability to verify reported emissions (Pe-
ters et al., 2017) and suggests we do not yet have a complete
understanding of the underlying carbon cycle dynamics on
annual to decadal timescales. Resolving most of this unex-
plained variability should be possible through different and
complementary approaches. First, as intended with our an-
nual updates, the imbalance as an error term is reduced by
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improvements of individual components of the global car-
bon budget that follow from improving the underlying data
and statistics and by improving the models through the reso-
Iution of some of the key uncertainties detailed in Table 10.
Second, additional clues to the origin and processes respon-
sible for the variability in the budget imbalance could be ob-
tained through a closer scrutiny of carbon variability in light
of other Earth system data (e.g. heat balance, water balance)
and the use of a wider range of biogeochemical observations
to better understand the land—ocean partitioning of the carbon
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Table 10. Major known sources of uncertainties in each component of the global carbon budget, defined as input data or processes that have
a demonstrated effect of at least £0.3 GtC yr_l.

Source of uncertainty Timescale (years) Location Status Evidence
Fossil CO; emissions (Eggs; Sect. 2.1)
Energy statistics annual to decadal global, but mainly Chinaand  see Sect. 2.1 Korsbakken et al. (2016), Guan et
major developing countries al. (2012)
Carbon content of coal annual to decadal global, but mainly Chinaand  see Sect. 2.1 Liu et al. (2015)
major developing countries
System boundary annual to decadal all countries see Sect. 2.1 Andrew (2020b)
Net land-use change flux (E yc; Sect. 2.2)
Land cover and land-use continuous global, in particular the trop-  see Sect. 2.4 Houghton et al. (2012), Gasser
change statistics ics et al. (2020), Ganzenmiiller et
al. (2022), Yu et al. (2022)
Sub-grid-scale transitions annual to decadal global see Sect. 2.4, Wilkenskjeld et al. (2014)
Table Al
Vegetation biomass annual to decadal see Sect. 2.4 Houghton et al. (2012), Bastos et

Forest degradation (fire,
selective logging)
Wood and crop harvest

Peat burning?
Loss of additional sink capacity

annual to decadal

annual to decadal

multi-decadal trend
multi-decadal trend

global, in particular the trop-
ics
tropics

global, particularly SE Asia

global
global

see Sect. 3.2.2,
Table Al
see Table A1

see Table Al
not included;
see Appendix D4

al. (2021)

Aragio et al. (2018),

Qin et al. (2021)

Arneth et al. (2017),

Erb et al. (2018)

van der Werf et al. (2010, 2017)
Pongratz et al. (2014), Gasser et
al. (2020); Obermeier et al. (2021)

Atmospheric growth rate (G arn; Sect. 2.3): no demonstrated uncertainties larger than 0.3 GtC yr—

1b

Ocean sink (SocgaN; Sect. 2.4)

Sparsity in surface fCO, ob-
servations

Riverine carbon outgassing and
its anthropogenic perturbation

Underestimation of interior
ocean anthropogenic carbon
storage

mean, decadal variability
and trend

annual to decadal

annual to decadal

global, in particular South-
ern Hemisphere

global, in particular parti-
tioning between the tropics
and southern extratropics
global

see Sect. 3.5.2

see Sect. 2.4 (anthro-
pogenic  perturbations
not included)
see Sect. 3.5.5

Gloege et al. (2021),
Denvil-Sommer et al. (2021),
Bushinsky et al. (2019)

Aumont et al. (2001), Resplandy et
al. (2018), Lacroix et al. (2020)

Friedlingstein et al. (2021),
this study, see also Terhaar et
al. (2022)

Near-surface temperature and mean on all timescales global see Sect. 3.8.2 Watson et al. (2020),

salinity gradients Dong et al. (2022)

Land sink (S aND; Sect. 2.5)

Strength of CO, fertilization multi-decadal trend global see Sect. 2.5 Wenzel et al. (2016), Walker et

al. (2021)

Response to variability in tem-  annual to decadal global, in particular the trop-  see Sect. 2.5 Cox etal. (2013); Jung et al. (2017);

perature and rainfall ics Humphrey et al. (2018, 2021)

Nutrient limitation and supply annual to decadal global Zaehle et al. (2014)

Carbon allocation and tissue annual to decadal global De Kauwe et al. (2014),

turnover rates O’Sullivan et al. (2022)

Tree mortality annual global, in particular the trop-  see Sect. 2.5 Hubau et al. (2020); Brienen et
ics al. (2020)

Response to diffuse radiation annual global see Sect. 2.5 Mercado et al. (2009); O’ Sullivan et

al. (2021)

4 As a result of interactions between land use and climate. ® The uncertainties in G aTm have been estimated as +0.2 GtC yr—!, although the conversion of the growth rate into a global annual flux assuming
instantaneous mixing throughout the atmosphere introduces additional errors that have not yet been quantified.

imbalance (e.g. oxygen, carbon isotopes). Finally, additional
information could also be obtained through higher resolution
and process knowledge at the regional level and through the
introduction of inferred fluxes such as those based on satellite
COg, retrievals. The limit of the resolution of the carbon bud-
get imbalance is yet unclear, but has most certainly not yet
been reached given the possibilities for improvements that

lie ahead.
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Estimates of global fossil CO, emissions from different
data sets are in relatively good agreement when the differ-
ent system boundaries of these data sets are considered (An-
drew, 2020a). But while estimates of Erogs are derived from
reported activity data requiring much fewer complex trans-
formations than some other components of the budget, uncer-
tainties remain, and one reason for the apparently low vari-

ation between data sets is precisely the reliance on the same
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underlying reported energy data. The budget excludes some
sources of fossil CO, emissions, which available evidence
suggests are relatively small (< 1 %). We have added emis-
sions from lime production in China and the US, but these are
still absent in most other non-Annex I countries and before
1990 in other Annex I countries.

Estimates of Epyc suffer from a range of intertwined
issues, including the poor quality of historical land cover
and land-use change maps, the rudimentary representation
of management processes in most models, and the confusion
in methodologies and boundary conditions used across meth-
ods (e.g. Arneth et al., 2017; Pongratz et al., 2014; Bastos et
al., 2021; see also Appendix D4 on the loss of sink capacity).
Uncertainties in current and historical carbon stocks in soils
and vegetation also add uncertainty in the Epyc estimates.
Unless a major effort to resolve these issues is made, little
progress is expected in the resolution of Epyc. This is par-
ticularly concerning given the growing importance of E yc
for climate mitigation strategies and the large issues in the
quantification of the cumulative emissions over the historical
period that arise from large uncertainties in Eyyc.

By adding the DGVM estimates of CO, fluxes due to envi-
ronmental change from countries’ managed forest areas (part
of SLAND in this budget) to the budget Epyc estimate, we
successfully reconciled the large gap between our Ep yc esti-
mate and the land-use flux from NGHGTIs using the approach
described in Grassi et al. (2021) for a future scenario and
in Grassi et al. (2022b) using data from the Global Carbon
Budget 2021. The updated data presented here can be used
as potential adjustment in the policy context, e.g. to help as-
sessing the collective countries’ progress towards the goal
of the Paris Agreement and avoiding double accounting of
the sink in managed forests. In the absence of this adjust-
ment, collective progress would hence appear better than it is
(Grassi et al., 2021). The need of such adjustment whenever
a comparison between LULUCEF fluxes reported by countries
and the global emission estimates of the IPCC is attempted is
recommended also in the recent UNFCCC Synthesis report
for the first Global Stocktake (UNFCCC, 2022). However,
this adjustment should be seen as a short-term and pragmatic
fix based on existing data, rather than a definitive solution
to bridge the differences between global models and national
inventories. Additional steps are needed to understand and
reconcile the remaining differences, some of which are rele-
vant at the country level (Grassi et al., 2022b; Schwingshackl
et al., 2022).

The comparison of GOBMs, data products, and inversions
highlights a substantial discrepancy in the Southern Ocean
(Fig. 13, Hauck et al., 2020). A large part of the uncertainty
in the mean fluxes stems from the regional distribution of
the river flux adjustment term. The current distribution (Au-
mont et al., 2001) is based on one model study yielding the
largest riverine outgassing flux south of 20° S, whereas a re-
cent study, also based on one model, simulates the largest
share of the outgassing to occur in the tropics (Lacroix et
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al., 2020). The long-standing sparse data coverage of fCO;
observations in the Southern Hemisphere compared to the
Northern Hemisphere (e.g. Takahashi et al., 2009) contin-
ues to exist (Bakker et al., 2016, 2022, Fig. B1) and to lead
to substantially higher uncertainty in the Socpan estimate
for the Southern Hemisphere (Watson et al., 2020; Gloege
et al., 2021). This discrepancy, which also hampers model
improvement, points to the need for increased high-quality
fCO, observations, especially in the Southern Ocean. At
the same time, model uncertainty is illustrated by the large
spread of individual GOBM estimates (indicated by shading
in Fig. 13) and highlights the need for model improvement.
The diverging trends in Socgan from different methods is a
matter of concern, which is unresolved. The assessment of
the net land—atmosphere exchange from DGVMs and atmo-
spheric inversions also shows substantial discrepancy, partic-
ularly for the estimate of the total land flux over the north-
ern extratropics. This discrepancy highlights the difficulty to
quantify complex processes (CO; fertilization, nitrogen de-
position and fertilizers, climate change and variability, land
management, etc.) that collectively determine the net land
CO; flux. Resolving the differences in the Northern Hemi-
sphere land sink will require the consideration and inclusion
of larger volumes of observations.

We provide metrics for the evaluation of the ocean and
land models and the atmospheric inversions (Figs. B2 to B4).
These metrics expand the use of observations in the global
carbon budget, helping (1) to support improvements in the
ocean and land carbon models that produce the sink estimates
and (2) to constrain the representation of key underlying pro-
cesses in the models and allocate the regional partitioning of
the CO, fluxes. However, GOBMs skills have changed lit-
tle since the introduction of the ocean model evaluation. The
additional simulation allows for direct comparison with inte-
rior ocean anthropogenic carbon estimates and suggests that
the models underestimate anthropogenic carbon uptake and
storage. This is an initial step towards the introduction of a
broader range of observations that we hope will support con-
tinued improvements in the annual estimates of the global
carbon budget.

We assessed before that a sustained decrease of —1 % in
global emissions could be detected at the 66 % likelihood
level after a decade only (Peters et al., 2017). Similarly, a
change in behaviour of the land and/or ocean carbon sink
would take as long to detect and much longer if it emerges
more slowly. Continuing with reducing the carbon imbal-
ance on annual to decadal timescales, regionalizing the car-
bon budget, and integrating multiple variables are powerful
ways to shorten the detection limit and ensure the research
community can rapidly identify issues of concern in the evo-
lution of the global carbon cycle under the current rapid and
unprecedented changing environmental conditions.
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6 Conclusions

The estimation of global CO; emissions and sinks is a major
effort by the carbon cycle research community that requires
a careful compilation and synthesis of measurements, statis-
tical estimates, and model results. The delivery of an annual
carbon budget serves two purposes. First, there is a large de-
mand for up-to-date information on the state of the anthro-
pogenic perturbation of the climate system and its underpin-
ning causes. A broad stakeholder community relies on the
data sets associated with the annual carbon budget including
scientists, policy makers, businesses, journalists, and non-
governmental organizations engaged in adapting to and mit-
igating human-driven climate change. Second, over the last
decades we have seen unprecedented changes in the human
and biophysical environments (e.g. changes in the growth of
fossil fuel emissions, impacts of the COVID-19 pandemic,
Earth’s warming, and strength of the carbon sinks), which
call for frequent assessments of the state of the planet, a bet-
ter quantification of the causes of changes in the contempo-
rary global carbon cycle, and an improved capacity to an-
ticipate its evolution in the future. Building this scientific
understanding to meet the extraordinary climate mitigation
challenge requires frequent, robust, transparent, and trace-
able data sets and methods that can be scrutinized and repli-
cated. This paper, via “living data”, helps to keep track of
new budget updates.

7 Data availability

The data presented here are made available in the belief that
their wide dissemination will lead to greater understanding
and new scientific insights of how the carbon cycle works,
how humans are altering it, and how we can mitigate the
resulting human-driven climate change. Full contact details
and information on how to cite the data shown here are given
at the top of each page in the accompanying database and
summarized in Table 2.

The accompanying database includes three Excel files or-
ganized into the following spreadsheets.

The file Global_Carbon_Budget_2022v(.1.xIsx includes
the following items:

1. summary;

2. the global carbon budget (1959-2021);

3. the historical global carbon budget (1750-2021);

4. global CO, emissions from fossil fuels and cement pro-
duction by fuel type and the per capita emissions (1850—

2021);

5. CO; emissions from land-use change from the individ-
ual bookkeeping models (1959-2021);

https://doi.org/10.5194/essd-14-4811-2022
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6. ocean CO; sink from the individual ocean models and
fCO;,-based products (1959-2021);

7. terrestrial CO; sink from the individual DGVMs (1959—
2021);

8. cement carbonation CO; sink (1959-2021).

The file National_Fossil_Carbon_Emissions_2022v0.1.x1sx
includes the following items:

1. summary;

2. territorial country CO; emissions from fossil fuels and
cement production (1850-2021);

3. consumption country CO, emissions from fossil fuels
and cement production and emissions transfer from the
international trade of goods and services (1990-2020)
using CDIAC/UNFCCC data as reference;

4. emissions transfers (consumption minus territorial
emissions; 1990-2020);

5. country definitions.

The file National_LandUseChange_Carbon_Emissions
_2022v0.1xlsx includes the following items:

1. summary

2. territorial country CO, emissions from land-use change
(1850-2021) from three bookkeeping models;

All three spreadsheets are published by the Integrated Car-
bon Observation System (ICOS) Carbon Portal and are avail-
able at https://doi.org/10.18160/GCP-2022 (Friedlingstein et
al., 2022b). National emissions data are also available from
the Global Carbon Atlas (http://www.globalcarbonatlas.org/,
last access: 25 September 2022) and from Our World in
Data (https://ourworldindata.org/co2-emissions, last access:
25 September 2022).

Earth Syst. Sci. Data, 14, 4811-4900, 2022
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Supplementary tables

Appendix A

Table A1. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of Ey yc and Sp anp- See Table 4 for model references. All
models include deforestation and forest regrowth after abandonment of agriculture (or from afforestation activities on agricultural land). Processes relevant for Ep yc are
only described for the DGVMs used with land-cover change in this study. Here we use the term “DGVM?” in the broadest sense in terms of global vegetation models which
are able to dynamically adjust to imposed land use and land-use change (LULCC).

Bookkeeping models i DGVMs

H&N BLUE  OSCAR i CABLE-POP CLASSIC CLM5.0 DLEM IBIS ISAM JSBACH JULES-ES LPJ-GUESS LPJ LPX-Bern OCNv2 ORCHIDEEv3 SDGVM VISIT  YIBs

Processes  relevant

for ErLuc

Wood harvest and yes yes yes yes no yes yes yes yes yes no yes yes no? yes yes no yes no
forest degradation®

Shifting cultivation/  yes® yes yes yes no yes no yes no yes no yes yes no! no no no yes no
subgrid scale

transitions

Cropland harvest (re-  yes (R yes (R} yes (R) | yes (R) yes (L) yes (R)  yes yes (R) yes yes (R+L) yes (R) yes (R) yes (L) yes(R) yes (R+L) yes (R) yes (R) yes (R) yes (L)
moved, R, or added

to litter, L)

Peat fires yes yes yes no no yes no no no no no no no no no no no no no
Fire as a yes! yes! yesh no no no no no no no no no no no no no no no no
management tool

N fertilization yes! yes! yes" no no yes yes no yes no yest yes no yes yes yes no no no
Tillage yesi yesi yesh no yesg no no no no no no yes no no no yes® no no no
Irrigation yes! yes! yes" no no yes yes no yes no no yes no no no no no no no
Wetland drainage yes! yes! yes! no no no no no yes no no no no no no no no no no
Erosion yes! yes! yesh no no no yes no no no no no no no no no no yes no
Peat drainage yes yes yes no no no no no no no no no no no no no no no no
Grazing and mowing  yes (xy yes () yes (r) yes (r) no no no no yes (r,1) yes(l) no yes (r) yes(l) no yes (r+1) no no no no
Harvest (removed, r,

or added to litter, 1)

Processes also relevant for Spanp (in addition to CO, fertilization and climate)

Fire simulation n/a n/a n/a no yes yes no yes no yes yes yes yes yes no no yes yes no
and/or suppression

Carbon—nitrogen in- n/a n/a n/a yes no' yes yes no yes yes yes yes no yes yes yes yes® no no'
teractions, including

N deposition

Separate treatment of  n/a n/a n/a yes no yes no no no no yes no no no no no no no yes
direct and diffuse so-

lar radiation

https://doi.org/10.5194/essd-14-4811-2022
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Table A3. Description of ocean data products used for assessment of Socgan. See Table 4 for references.

Jena-MLS MPI-SOMFFN CMEMS-LSCE-FFNN Watson et al NIES-NN JIMA-MLR OS-ETHZ-GRaCER LDEO HPD

Method Spatio-temporal in- A feed-forward neural An ensemble of neural Modified MPI-SOMFFN A feed-forward neural Fields of total alkalinity Geospatial random clus- Based on fCO, misfit
terpolation (version network (FFN) deter- network models trained with SOCATv2022 pCO; network model trained (TA) were estimated by ter ensemble regression between observed fCO,
oc_v2022). Spatio- mines the non-linear on 100  subsampled database. Corrected to the on SOCAT 2021 fCO, wusing a multiple lin- is a two-step cluster- and eight of the ocean bio-
temporal field of ocean- relationship between  datasets from SOCAT and ~ sub-skin temperature of and environmental pre- ear regression (MLR) regression approach,  geochemical models used

Gas exchange pa-
rameterization

‘Wind product

Spatial resolution

Temporal
resolution
Atmospheric COp

Total ocean area
on native grid
(km?)

method to extend
product to full
global ocean
coverage

internal carbon sources
and sinks is fit to the
SOCATv2022  pCO,
data. Includes a multi-
linear regression against
environmental drivers to

bridge data gaps.
‘Wanninkhof (1992);
transfer ~ coefficient &
scaled to match a global
mean transfer rate of
165cmh™' by Nae-
gler (2009)

JMAS55-do reanalysis

2.5° longitude x 2°
latitude
daily

Spatially and temporally
varying field based on at-
mospheric CO, data from
169 stations (Jena Carbo-
Scope atmospheric inver-
sion SEXTALL_v2021).

3.63E+08

SOCAT pCO, measure-
ments and environmental
predictor data for 16
biogeochemical provinces
(defined through a self-
organizing map, SOM)
and is used to fill the
existing data gaps.

‘Wanninkhof (1992);
transfer ~ coefficient &
scaled to match a global
mean transfer rate of
16.5cmh™!

ERA 5

1x1°

monthly

Spatially varying 1 x 1°
atmospheric  pCO,_wet
calculated  from  the
NOAA GMD  marine
boundary layer xCOjp
and NCEP sea-level pres-
sure with the moisture
correction by Dickson et
al. (2007).

3.63E4+08

Arctic and marginal seas
added following Land-
schiitzer et al. (2020). No
coastal cut.

environmental predictors.
The models are used to
reconstruct sea surface
fugacity of CO, and
convert to air-sea COjp
fluxes.

‘Wanninkhof (2014);
transfer ~ coefficient &
scaled to match a global
mean transfer rate of
16.5cmh~! (Naegler,
2009)

ERAS

1x1°

monthly

Spatially and monthly

varying fields of atmo-
spheric pCO, computed
from CO; mole fraction
(CO, atmospheric inver-
sion from the Copernicus
Atmosphere  Monitoring
Service) and atmospheric
dry-air pressure, which
is derived from monthly
surface pressure (ERAS)
and water-vapour pres-
sure fitted by Weiss and
Price (1980).

3.50E+08

the ocean as measured
by satellite (Goddijn-
Murphy et al., 2015).
Flux calculation corrected
for the cool and salty
surface skin. Monthly
climatology  for  skin
temperature  correction
derived from ESA CCI
product for the period
2003 to 2011 (Merchant
etal., 2019).

Nightingale et al. (2000)

Mean and mean

square wind monthly at
1 x 1° from CCMP, 0.25 x
0.25° x 6-hourly data,
1x1°

monthly

Atmospheric pCO; (wet)
calculated from NOAA
marine boundary layer
XCO, and NCEP sea-
level pressure, with pHyO
calculated from Cooper
et al. (1998). The 2021
XCO; marine boundary
values were not available
at submission so we used
preliminary values, esti-
mated from 2020 values
and the increase at Mauna
Loa.

3.52E+08

dictor data. The fCO,
was normalized to the
reference year 2000 by a
global fCO;, trend. We
fitted the dependence of
fCO, on year by linear
regression. We subtracted
the trend from fCO, and
used the neural network
to model the non-linear
dependence of the resid-
ual on predictors. The
trend was added to model
predictions to reconstruct

fCO;.

‘Wanninkhof (2014);
transfer ~ coefficient &
scaled to match a global
mean transfer rate of
16.5cmh~! (Naegler,
2009)

ERAS

1x1°

monthly

NOAA Greenhouse
Gas  Marine  Bound-
ary Layer Reference,

which can be accessed
at  https://gml.noaa.gov/
ccgg/mbl/mblhtml  (last

access: 25 September
2022).
3.49E+08

method based on GLO-
DAPv2.2021 and satellite
observation data.

SOCATv2022 fCO, data
were converted to dis-
solved inorganic carbon
(DIC) with the TA. Fields
of DIC were estimated
by using a MLR method
based on the DIC and
satellite observation data.

‘Wanninkhof (2014);
transfer ~ coefficient &
scaled to match a global
mean transfer rate of
16.5cmh~! (Naegler,
2009).

JRASS5

Ix1°
monthly

Atmospheric XCO, fields
of the IMA-GSAM inver-
sion model (Maki et al.,
2010; Nakamura et al.,
2015) were used. They
were converted to pCOy
by using JRASS sea-level
pressure. The 2021 xCO,
fields were not available
at this stage, and we used
global xCO, increments
from 2020 to 2021.

3.10E+08

(2.98E+08 to 3.16E+08,
depending on ice cover)
Fay et al. (2021)

where multiple clustering
instances with slight vari-
ations are run to create
an ensemble of estimates.
‘We use K-means cluster-
ing and a combination
of gradient-boosted trees
and feed-forward neural
networks to  estimate
SOCAT v2022 fCO,.

Wanninkhof (1992);

averaged and scaled for
three reanalysis wind data
sets to a global mean

16.5cmh™! (after Nae-
gler, 2009; Fay et al.,
2021)

JRASS, ERAS, NCEP1

Ix1°
monthly

NOAA’s marine boundary
layer product for xCO; is
linearly interpolated onto
a 1x1° grid and re-
sampled from weekly to
monthly. xCOp is mul-
tiplied by ERAS5 mean
sea-level pressure, where
the latter corrected for
water-vapour pressure us-
ing Dickson et al. (2007).
This results are given in
monthly 1 x 1° pCO,atm.

3.55E+08

Method has near-full cov-
erage.

in this assessment. The
extreme gradient boost-
ing method links this mis-
fit to environmental ob-
servations to reconstruct
the model misfit across
all space and time, which
is then added back to
model-based fCO, esti-
mate. The final recon-
struction of surface fCO»
is the average across the
eight reconstructions.

‘Wanninkhof (1992);
averaged and scaled for
three reanalysis wind data
sets to a global mean
16.5cmh~! (after Nae-
gler, 2009; Fay et al.,
2021)

JRASS, ERAS, CCMP2

1x1°
monthly

NOAA’s marine boundary
layer product for xCO; is
linearly interpolated onto
a 1x1° grid and re-
sampled from weekly to
monthly. xCO;, is mul-
tiplied by ERAS mean
sea-level pressure, where
the latter corrected for
water-vapour pressure us-
ing Dickson et al. (2007).
This results are given in
monthly 1 x 1° pCOjatm.

3.61E+08

Fay etal. (2021) was used,
and gaps were filled with
monthly climatology. In-
terannual variability was
added to the climatology
based on the temporal
evolution of five products
for the years 1985 through
2020 and then only using
this product for the year
2021.
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Table A5. Attribution of fCO, measurements for the year 2021 included in SOCATv2022 (Bakker et al., 2016, 2022) to inform ocean

fCO,-based data products.

Platform name Regions No. of Principal investigators No. of  Platform
measurements datasets  type
1 degree North Atlantic, coastal 71863 Tanhua, T. 1 Ship
Alawai_I158W_2IN Tropical Pacific 387 Sutton, A.; De Carlo, E. H.; 1 Mooring
Sabine, C.
Atlantic Explorer North Atlantic, tropical Atlantic, coastal 34399 Bates, N.R. 16  Ship
Atlantic Sail North Atlantic, coastal 27496  Steinhoff, T.; Kortzinger, A. 7  Ship
BlueFin Tropical Pacific 60606  Alin, S. R.; Feely, R. A. 11 Ship
Cap San Lorenzo North Atlantic, tropical Atlantic, coastal 44281  Lefevre, N. 7  Ship
CCE2_121W_34N Coastal 1333 Sutton, A.; Send, U.; Ohman, M. 1 Mooring
Celtic Explorer North Atlantic, coastal 61118  Cronin, M. 10 Ship
F.G. Walton Smith Coastal 38375 Rodriguez, C.; Millero, F. J.; 14 Ship
Pierrot, D.; Wanninkhof, R.
Finnmaid Coastal 223438 Rehder, G.; Bittig, H. C.; 1 Ship
Glockzin, M.
FRA56 Coastal 5652  Tanhua, T. 1 Ship
G.O. Sars Arctic, North Atlantic, coastal 82607  Skjelvan, 1. 9  Ship
GAKOA_149W_60N Coastal 402  Monacci, N.; Cross, J.; 1 Mooring
Musielewicz, S.; Sutton, A.
Gordon Gunter North Atlantic, coastal 36058 Wanninkhof, R.; Pierrot, D. 6  Ship
Gulf Challenger Coastal 6375  Salisbury, J.; Vandemark, D.; 6  Ship
Hunt, C. W.
Healy Arctic, North Atlantic, coastal 28998 Sweeney, C.; Newberger, T.; 5 Ship
Sutherland, S. C.; Munro, D. R.
Henry B. Bigelow North Atlantic, coastal 67399  Wanninkhof, R.; Pierrot, D. 8  Ship
Heron Island Coastal 989  Tilbrook, B.; Neill, C.; van Oo- 1 Mooring
jen, E.; Passmore, A.; Black, J.
Investigator Southern Ocean, coastal, tropical Pacific, In- 120782  Tilbrook, B.; Akl, J.; Neill, C. 6  Ship
dian Ocean
KC_BUOY Coastal 2860  Evans, W.; Pocock, K. 1 Mooring
Keifu Maru Il North Pacific, tropical Pacific, coastal 10053 Kadono, K. 8  Ship
Laurence M. Gould Southern Ocean 2604 Sweeney, C.; Newberger, T.; 1 Ship
Sutherland, S. C.; Munro, D. R.
Marion Dufresne Indian Ocean, Southern Ocean, coastal 9911 Lo Monaco, C.; Metzl, N. 1 Ship
Nathaniel B. Palmer Southern Ocean 2376  Sweeney, C.; Newberger, T.; 1 Ship
Sutherland, S. C.; Munro, D. R.
New Century 2 North Pacific, tropical Pacific, North Atlantic, 198293  Nakaoka, S.-I.; Takao, S. 10 Ship
coastal
Newrest — Art and Fenetres North Atlantic, tropical Atlantic, South At- 17699 Tanhua, T. 2 Ship
lantic, coastal
Quadra Island Field Station Coastal 81201 Evans, W.; Pocock, K. 1 Mooring
Ronald H. Brown North Atlantic, coastal 31661 Wanninkhof, R.; Pierrot, D. 3 Ship
Ryofu Maru 111 North Pacific, tropical Pacific, coastal 10464  Kadono, K. 8  Ship
Sea Explorer Southern Ocean, North Atlantic, coastal, trop- 37027 Landshiitzer, P.; Tanhua, T. 2 Ship
ical Atlantic
Sikuliaq Arctic, North Pacific, coastal 60549 Sweeney, C.; Newberger, T.; 13 Ship
Sutherland, S. C.; Munro, D. R.
Simon Stevin Coastal 57055  Gkritzalis, T.; Theetaert, H.; Cat- 11 Ship
trijsse, A.; T'Jampens, M.
Sitka Tribe of Alaska Environmental — Coastal 19086  Whitehead, C.; Evans, W.; Lan- 1 Mooring
Research Laboratory phier, K.; Peterson, W.; Kennedy,
E.; Hales, B.
SOFS_142E_46S Southern Ocean 894  Sutton, A.; Trull, T.; Shadwick, 1 Mooring
E.
Soyo Maru Tropical Pacific, coastal 33234  Ono, T. 3 Ship
Station M North Atlantic 447  Skjelvan, 1. 1 Mooring
Statsraad Lehmkuhl North Atlantic, tropical Atlantic, coastal 47,881 Becker, M.; Olsen, A. 3 Ship
TAO125W_ON Tropical Pacific 241  Sutton, A. 1 Mooring
Tavastland Coastal 48421 Willstrand Wranne, A.; Stein- 17 Ship
hoff, T.
Thomas G. Thompson North Atlantic, tropical Atlantic, North Pa- 47073  Alin, S. R.; Feely, R. A. 5 Ship
cific, tropical Pacific, coastal
Trans Future 5 Southern Ocean, North Pacific, tropical Pa- 257424  Nakaoka, S.-I.; Takao, S. 22 Ship
cific, coastal
Tukuma Arctica North Atlantic, coastal 70033  Becker, M.; Olsen, A. 23 Ship
Wakataka Maru North Pacific, coastal 13392 Tadokoro, K. 2 Ship
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Table A6. Aircraft measurement programmes archived by Cooperative Global Atmospheric Data Integration Project (CGADIP; Schuldt et
al., 2021, 2022) that contribute to the evaluation of the atmospheric inversions (Fig. B4).

Site code Measurement programme name in Obspack Specific DOI Data providers
AAO Airborne Aerosol Observatory, Bondville, Illi- Sweeney, C.; Dlugokencky, E. J.
nois
ABOVE Carbon in Arctic Reservoirs Vulnerability Ex-  https://doi.org/10.3334/ORNLDAAC/1404 Sweeney, C., J. B. Miller, A. Kar-
periment (CARVE) ion, S. J. Dinardo,
and C. E. Miller. 2016. CARVE:
L2 Atmospheric Gas Concentra-
tions, Airborne Flasks, Alaska,
2012-2
015. ORNL DAAC, Oak Ridge,
Tennessee, USA.
ACG Alaska Coast Guard Sweeney, C.; McKain, K.; Karion,
A.; Dlugokencky, E. J.
ACT Atmospheric Carbon and Transport — America Sweeney, C.; Dlugokencky, E. J.;
Baier, B; Montzka, S.; Davis, K.
AIRCORENOAA  NOAA AirCore Colm Sweeney (NOAA) AND
Bianca Baier (NOAA)
ALF Alta Floresta Gatti, L. V.; Gloor, E.; Miller, J. B.;
AOA Aircraft Observation of Atmospheric trace ghg_obs@met.kishou.go.jp
gases by JMA
BGI Bradgate, Iowa Sweeney, C.; Dlugokencky, E. J.
BNE Beaver Crossing, Nebraska Sweeney, C.; Dlugokencky, E. J.
BRZ Berezorechka, Russia Sasakama, N.; Machida, T.
CAR Briggsdale, Colorado Sweeney, C.; Dlugokencky, E. J.
CMA Cape May, New Jersey Sweeney, C.; Dlugokencky, E. J.
CON CONTRAIL (Comprehensive Observation  https://doi.org/10.17595/20180208.001 Machida, T.; Matsueda, H.; Sawa,
Network for TRace gases by AlrLiner) Y.; Niwa, Y.
CRV Carbon in Arctic Reservoirs Vulnerability Ex- Sweeney, C.; Karion, A.; Miller,
periment (CARVE) J. B.; Miller, C. E.; Dlugokencky,
E.J.
DND Dahlen, North Dakota Sweeney, C.; Dlugokencky, E. J.
ECO East Coast Outflow Sweeney, C.; McKain, K.
ESP Estevan Point, British Columbia Sweeney, C.; Dlugokencky, E. J.
ETL East Trout Lake, Saskatchewan Sweeney, C.; Dlugokencky, E. J.
FWI Fairchild, Wisconsin Sweeney, C.; Dlugokencky, E. J.
GSFC NASA Goddard Space Flight Center Aircraft Kawa, S. R.; Abshire, J. B.; Riris,
Campaign H.
HAA Molokai Island, Hawaii Sweeney, C.; Dlugokencky, E. J.
HFM Harvard University Aircraft Campaign Wofsy, S. C.
HIL Homer, Illinois Sweeney, C.; Dlugokencky, E. J.
HIP HIPPO (HIAPER Pole-to-Pole Observations)  https://doi.org/10.3334/CDIAC/HIPPO_010  Wofsy, S. C.; Stephens, B. B.;

TAGOS-CARIBIC

INX

LEF
NHA

OIL
ORC

PFA
RBA-B
RTA
SCA
SGP

TAB
TGC
THD
WBI

In-service Aircraft for a Global Observing
System
INFLUX (Indianapolis Flux Experiment)

Park Falls, Wisconsin

Offshore Portsmouth, New Hampshire (Isles
of Shoals)

Oglesby, Illinois

ORCAS (0,/N, Ratio and CO, Airborne
Southern Ocean Study)

Poker Flat, Alaska

Rio Branco

Rarotonga

Charleston, South Carolina

Southern Great Plains, Oklahoma

Tabatinga

Offshore Corpus Christi, Texas
Trinidad Head, California
‘West Branch, Iowa

https://doi.org/10.5065/D6SB445X

Elkins, J. W.; Hintsa, E. J.; Moore,
F.

Obersteiner, F.; Boenisch, H;
Gehrlein, T.; Zahn, A.; Schuck, T.
Sweeney, C.; Dlugokencky, E. J.;
Shepson, P. B.; Turnbull, J.
Sweeney, C.; Dlugokencky, E. J.
Sweeney, C.; Dlugokencky, E. J.

Sweeney, C.; Dlugokencky, E. J.
Stephens, B. B, Sweeney, C.,
McKain, K., Kort, E.

Sweeney, C.; Dlugokencky, E. J.
Gatti, L. V.; Gloor, E.; Miller, J. B.
Sweeney, C.; Dlugokencky, E. J.
Sweeney, C.; Dlugokencky, E. J.
Sweeney, C.; Dlugokencky, E. J.;
Biraud, S.

Gatti, L. V.; Gloor, E.; Miller, J. B.
Sweeney, C.; Dlugokencky, E. J.
Sweeney, C.; Dlugokencky, E. J.
Sweeney, C.; Dlugokencky, E. J.
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Table A7. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are kept for the following years unless

noted. Empty cells mean there were no methodological changes introduced that year.

Publication year

Fossil fuel emissions

Global

Country (territorial)

Country (consumption)

LUC emissions

Reservoirs

Atmosphere

Ocean

Land

Uncertainty & other
changes

2006°
2007°

2008¢

20094

2010¢

2011F

20128

20130

20141

2015

2016%

2017

Projection for current
year based on GDP

3 years of BP data

Projection for current-

year-based ~ January—
August data
2 years of BP data

Projection includes
India-specific data

Split in regions

Split between Annex B
and non-Annex B

Emissions for top emit-
ters

129 countries from 1959

250 countries

3 years of BP data

National emissions from
UNFCCC extended to
2014 also provided

Added three small coun-
tries and China’s emis-
sions from 1990 from BP
data (this release only)

Results from an
independent study
discussed

Split between Annex B
and non-Annex B

129 countries and re-
gions from 1990-2010
based on GTAP8.0

134 countries  and
regions 1990-2011
based on GTAPS.1,
with detailed estimates
for years 1997, 2001,
2004, and 2007
Extended to 2012 with
updated GDP data

Detailed estimates
introduced for 2011
based on GTAP9

Eyyc based on FAO-
FRA 2005 and con-
stant Ep yc for 2006

Constant Epyc for
2007

Fire-based emission
anomalies used for
20062008

Eryc updated with
FAO-FRA 2010

Eyyc for 1997-2011
includes interan-
nual anomalies from
fire-based emissions
Epryc for 2012 es-
timated from 2001-
2010 average

Eypyc for 1997-2013
includes interan-
nual anomalies from
fire-based emissions

Preliminary Ey yc us-
ing FRA-2015 shown
for comparison and
use of five DGVMs
Average of two book-
keeping models and
use of 12 DGVMs

1959-1979 data from
Mauna Loa, data af-
ter 1980 are from the
global average

All years from global
average

Based on one ocean
model tuned to repro-
duced observed 1990s
sink

Based on four ocean
models normalized to
observations with con-
stant delta

Based on five ocean
models normalized to
observations with ratio

Based on six models

compared with two data
products to year 2011

Based on seven models

Based on eight models

Based on seven models

Based on eight models
that match the observed
sink for the 1990s and
is no longer normalized

First use of five DGVMs
to compare with budget
residual

10 DGVMs available for
SLAND. First use of four
models to compare with
Eruc

Coordinated DGVM ex-
periments for Sp oNp and
Eruc

Based on 10 models

Based on 10 models with
assessment of minimum
realism

Based on 14 models

Based on 15 models that
meet observation-based
criteria (see Sect. 2.5)

+10 provided for all
components

Confidence levels, cumu-
lative emissions, and bud-
get from 1750

Inclusion of breakdown
of the sinks in three lat-
itude bands and com-
parison with three atmo-
spheric inversions

The decadal uncertainty
for the DGVM ensemble
mean now uses *+lo of
the decadal spread across
models

Discussion of projection
for full budget for current
year

Land multi-model aver-
age now used in main car-
bon budget, with the car-
bon imbalance presented
separately and a new table
of key uncertainties

A Raupach et al. (2007). b Canadell et al. (2007). © GCP (2007). die Quéré et al. (2009). © Friedlingstein et al. (2010). f Peters et al. (2012b). & Le Quéré et al. (2013); Peters et al. (2013). hie Quéré et al. (2014). ile Quéré et al. ANQ_MNVL Le Quéré et al. (2015b). KLe Quéré et al. (2016). Iie Quéré et

al. (2018a).
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Table A8. Mapping of global carbon cycle models land flux definitions to the definition of the LULUCEF net flux used in national reporting
to UNFCCC. Non-intact lands are used here as proxy for “managed lands” in the country reporting; national greenhouse gas inventories
(NGHG]I) are gap filled (see Sect. C2.3 for details). Where available, we provide independent estimates of certain fluxes for comparison
(values are in GtC yr_l).

2002-2011  2012-2021

E7 yc from bookkeeping 1.36 1.24
estimates (from Table 5)

total (from Table 5) from DGVMs —2.85 -3.10

in non-forest lands from DGVMs —-0.74 —0.83
SLAND

in non-intact forest from DGVMs —1.67 —1.81

in intact forests from DGVMs —0.44 —-0.47

in intact land from ORCHIDEE-MICT —1.34 —1.38
Eruyc plus Spanp on non-  considering non-intact forests from bookkeeping Epyc and —0.31 —0.56
intact lands only DGVMs

considering all non-intact land ~ from ORCHIDEE-MICT 0.90 0.60
National greenhouse gas —0.37 —0.54
inventories (LULUCEF)
FAOSTAT (LULUCF) 0.39 0.24
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Table A9. Funding supporting the production of the various components of the global carbon budget in addition to the authors’ supporting
institutions (see the Acknowledgements for further details).

Funder and grant number (where relevant) Author initials
Australia, Integrated Marine Observing System (IMOS) BT

Australian National Environment Science Program (NESP) JGC

Belgium, FWO (Flanders Research Foundation, contract grant no. I001821N) ThaG

BNP Paribas Foundation through Climate & Biodiversity initiative, philanthropic grant for developments of the =~ PC
Global Carbon Atlas

Canada, Tula Foundation WE, KP
China, National Natural Science Foundation (grant no. 41975155) XY
China, National Natural Science Foundation (grant no. 42141020) WY
China, National Natural Science Foundation of China (grant no. 41921005) BZ

China, Scientific Research Start-up Funds (grant no. QD2021024C) from Tsinghua Shenzhen International BZ
Graduate School

China, Second Tibetan Plateau Scientific Expedition and Research Program (2022QZKK0101) X

China, Young Elite Scientists Sponsorship Program by CAST (grant no. YESS20200135) BZ

EC Copernicus Atmosphere Monitoring Service implemented by ECMWF FC

EC Copernicus Marine Environment Monitoring Service implemented by Mercator Ocean MG

EC H2020 (4C; grant no. 821003) PF, MOS, RMA, SS, GPP, PC,
JIK, TI, LB, AJ, PL, LukG, NG,
NMa, SZ

EC H2020 (CoCO2: grant no. 958927) RMA, GPP, JIK

EC H2020 (COMFORT: grant no. 820989) LukG, MG, NG

EC H2020 (CONSTRAIN: grant no. 820829) RS, ThoG

EC H2020 (ESM2025 — Earth System Models for the Future; grant agreement no. 101003536). RS, ThoG, TI, LB, BD

EC H2020 (JERICO-S3: grant no. 871153) HCB

EC H2020 (VERIFY: grant no. 776810) MWIJ, RMA, GPP, PC, JIK,
MIM

Efg International TT, MG

European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 655 SS, PC

(ESRIN/4000123002/18/I-NB)

European Space Agency OceanSODA project (grant no. 4000137603/22/1-DT) LukG, NG

France, French Oceanographic Fleet (FOF) NMe

France, ICOS (Integrated Carbon Observation System) France NL

France, Institut National des Sciences de 1’Univers (INSU) NMe

France, Institut polaire frangais Paul-Emile Victor(IPEV) NMe

France, Institut de recherche francais sur les ressources marines (IFREMER) NMe

France, Institut de Recherche pour le Développement (IRD) NL

France, Observatoire des sciences de 1’univers Ecce-Terra (OSU at Sorbonne Université) NMe

Germany, Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy — EXC 2037 TI

“Climate, Climatic Change, and Society” — project no. 390683824

Germany, Federal Ministry for Education and Research (BMBF) HCB

Germany, Federal Ministry for Education and Research (BMBF) under project “CDRSynTra” (01LS2101A) JP

Germany, German Federal Ministry of Education and Research under project "DArgo2025” (03F0857C) TS

Germany, Helmholtz Association ATMO program AA

Germany, Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System  JH, OG
(MarESys), grant no. VH-NG-1301

Germany, ICOS (Integrated Carbon Observation System) Germany HCB
Hapag-Lloyd TT, MG
Ireland, Marine Institute MC
Japan, Environment Research and Technology Development Fund of the Ministry of the Environment YN
(JPMEERF21S520810)

Japan, Global Environmental Research Coordination System, Ministry of the Environment (grant no. E1751) SN, ST, TO
Japan, Environment Research and Technology Development Fund of the Ministry of the Environment HT
(JPMEERF21S20800)

Japan, Japan Meteorological Agency KK
Kuehne + Nagel International AG TT, MG
Mediterranean Shipping Company (MSc) TT, MG
Monaco, Fondation Prince Albert II de Monaco TT, MG
Monaco, Yacht Club de Monaco TT, MG
Netherlands, ICOS (Integrated Carbon Observation System) WP
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Table A9. Continued.

Funder and grant number (where relevant)

Author initials

Norway, Research Council of Norway (N-ICOS-2, grant no. 296012) AO, MB, IS
Norway, Norwegian Research Council (grant no. 270061) JS
Sweden, ICOS (Integrated Carbon Observation System) AW
Sweden, Swedish Meteorological and Hydrological Institute AW
Sweden, The Swedish Research Council AW

Swiss National Science Foundation (grant no. 200020-200511) QS

Tibet, Second Tibetan Plateau Scientific Expedition and Research Program (SQ2022QZKK0101) X

UK Royal Society (grant no. RP\R1\191063) CLQ
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Appendix B: Supplementary figures
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Figure B1. Ensemble mean air—sea CO5 flux from (a) global ocean biogeochemistry models and (b) fCO,-based data products, averaged
over the 2012-2021 period (kgC m—2 yr_l). Positive numbers indicate a flux into the ocean. (¢) Gridded SOCAT v2022 fCO, measure-
ments, averaged over the 2012-2021 period (uatm). In (a), model simulation A is shown. The data products represent the contemporary flux,
i.e. including outgassing of riverine carbon, which is estimated to amount to 0.65 GtC yr71 globally.
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Figure B2. Evaluation of the GOBMs and data products using the root-mean-squared error (RMSE) for the period 1990 to 2021 between
the individual surface ocean fCO, mapping schemes and the SOCAT v2022 database. The y axis shows the amplitude of the interannual
variability of the air—sea CO; flux (A-IAV), taken as the standard deviation of the detrended annual time series. Results are presented for the
globe, northern extratropics (> 30° N), tropics (30° S-30° N), and southern extratropics (< 30° S) for the GOBMs (see legend, circles) and
for the fCO,-based data products (star symbols). The fCO,-based data products use the SOCAT database and are therefore not independent

of the data (see Sect. 2.4.1).
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Figure B3. Evaluation of the DGVM:s using the International Land Model Benchmarking system (ILAMB; Collier et al., 2018) (left) absolute
skill scores and (right) skill scores relative to other models. The benchmarking is done with observations for vegetation biomass (Saatchi
et al., 2011; and global carbon unpublished data; Avitabile et al., 2016), GPP (Jung et al., 2010; Lasslop et al., 2010), leaf area index (De
Kauwe et al., 2011; Myneni et al., 1997), ecosystem respiration (Jung et al., 2010; Lasslop et al., 2010), soil carbon (Hugelius et al., 2013;
Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al., 2011), and runoff (Dai and Trenberth, 2002). For each model-observation
comparison a series of error metrics are calculated. Scores are then calculated as an exponential function of each error metric. Finally, for
each variable the multiple scores from different metrics and observational data sets are combined to give the overall variable scores shown in
the left panel. Overall variable scores increase from 0 to 1 with improvements in model performance. The set of error metrics vary with data
set and can include metrics based on the period mean, bias, root-mean-squared error, spatial distribution, interannual variability and seasonal
cycle. The relative skill score shown in the right panel is a Z score, which indicates in units of standard deviation the model scores relative
to the multi-model mean score for a given variable. Grey boxes represent missing model data.
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Figure B4. Evaluation of the atmospheric inversion products. The mean of the model minus observations is shown for four latitude bands in
four periods: (first panel) 2001-2021, (second panel) 2001-2010, (third panel) 2011-2021, and (fourth panel) 2015-2021. The nine systems
are compared to independent CO» measurements made aboard aircraft over many areas of the world between 2 and 7 km above sea level.
Aircraft measurements archived in the Cooperative Global Atmospheric Data Integration Project (Schuldt et al., 2021, 2022) from sites,
campaigns, or programmes that have not been assimilated and cover at least 9 months (except for SH programmes) between 2001 and 2021
have been used to compute the biases of the differences in four 45° latitude bins. Land and ocean data are used without distinction, and
observation density varies strongly with latitude and time, as seen in the lower panels.
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Figure B5. Comparison of the estimates of each component of the global carbon budget in this study (black line) with the estimates released
annually by the GCP since 2006. Grey shading shows the uncertainty bounds representing £1 standard deviation of the current global carbon
budget based on the uncertainty assessments described in Appendix C. CO, emissions from (a) fossil CO, emissions (Ergs) and (b) land-
use change (E1 yc) and their partitioning among (c) the atmosphere (G oTm), (d) land (Sp anD), and (e) ocean (Socgan)- See the legend for
the corresponding years and Tables 3 and A7 for references. The budget year corresponds to the year when the budget was first released (all

values are in GtC yr_1 ).
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Figure B6. Differences in the HYDE/LUH2 land-use forcing used for the global carbon budgets GCB2020 (Friedlingstein et al., 2021),
GCB2021 (Friedlingstein et al., 2022a), and GCB2022 (Friedlingstein et al., 2022b). Shown are year-to-year changes in cropland area (b)
and pasture area (c). To illustrate the relevance of the update in the land-use forcing to the recent trends in £ yc, the top panel shows the
land-use emission estimate from the bookkeeping model BLUE (original model output, i.e. excluding peat fire and drainage emissions).
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Appendix C: Extended methodology

C1 Methodology: fossil fuel COo emissions (Egos)
C1.1  Cement carbonation

From the moment it is created, cement begins to absorb CO,
from the atmosphere, a process known as “cement carbona-
tion”. We estimate this CO; sink, from 1931 onwards as the
average of two studies in the literature (Cao et al., 2020; Guo
et al., 2021). The Global Cement and Concrete Association
reports a much lower carbonation rate, but this is based on
the highly conservative assumption of 0 % mortar (GCCA,
2021). Modelling cement carbonation requires estimation of
a large number of parameters, including the different types
of cement material in different countries, the lifetime of the
structures before demolition, the lifetime of cement waste
after demolition, and the volumetric properties of structures
(Xi et al., 2016). Lifetime is an important parameter because
demolition results in the exposure of new surfaces to the car-
bonation process. The main reasons for differences between
the two studies appear to be the assumed lifetimes of cement
structures and the geographic resolution, but the uncertainty
bounds of the two studies overlap.

C1.2 Emissions embodied in goods and services

CDIAC, UNFCCC, and BP national emission statistics “in-
clude greenhouse gas emissions and removals taking place
within national territory and offshore areas over which the
country has jurisdiction” (Rypdal et al., 2006) and are called
territorial emission inventories. Consumption-based emis-
sion inventories allocate emissions to products that are con-
sumed within a country and are conceptually calculated
as the territorial emissions minus the “embodied” territo-
rial emissions to produce exported products plus the emis-
sions in other countries to produce imported products (con-
sumption is equal to territorial minus exports plus im-
ports). Consumption-based emission attribution results (e.g.
Davis and Caldeira, 2010) provide additional information to
territorial-based emissions that can be used to understand
emission drivers (Hertwich and Peters, 2009) and quantify
emission transfers by the trade of products between coun-
tries (Peters et al., 2011b). The consumption-based emissions
have the same global total but reflect the trade-driven move-
ment of emissions across the Earth’s surface in response to
human activities. We estimate consumption-based emissions
from 1990-2020 by enumerating the global supply chain us-
ing a global model of the economic relationships between
economic sectors within and between every country (An-
drew and Peters, 2013; Peters et al., 2011a). Our analysis
is based on the economic and trade data from the Global
Trade and Analysis Project (GTAP; Narayanan et al., 2015),
and we make detailed estimates for the years 1997 (GTAP
version 5); 2001 (GTAP6); and 2004, 2007, 2011, and 2014
(GTAP10.0a), covering 57 sectors and 141 countries and re-
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gions. The detailed results are then extended into an annual
time series from 1990 to the latest year of the gross domes-
tic product (GDP) data (2020 in this budget) using GDP data
by expenditure in current exchange rate of US dollars (USD;
from the UN National Accounts main aggregates database;
UN, 2021) and time series of trade data from GTAP (based
on the methodology in Peters et al., 2011a). We estimate
the sector-level CO;, emissions using the GTAP data and
methodology, add the flaring and cement emissions from our
fossil CO, dataset, and then scale the national totals (exclud-
ing bunker fuels) to match the emission estimates from the
carbon budget. We do not provide a separate uncertainty es-
timate for the consumption-based emissions; however, based
on model comparisons and sensitivity analysis, they are un-
likely to be significantly different than for the territorial emis-
sion estimates (Peters et al., 2012a).

C1.3 Uncertainty assessment for Erpg

We estimate the uncertainty of the global fossil CO; emis-
sions at £5 % (scaled down from the published £10 % at
420 to the use of & 1o bounds reported here; Andres et
al., 2012). This is consistent with a more detailed analy-
sis of uncertainty of 8.4 % at £20 (Andres et al., 2014)
and at the high end of the range of £5%-10% at 20
reported by (Ballantyne et al., 2015). This includes an as-
sessment of uncertainties in the amounts of fuel consumed,
the carbon and heat contents of fuels, and the combustion
efficiency. While we consider a fixed uncertainty of +5 %
for all years, the uncertainty as a percentage of emissions
is growing with time because of the larger share of global
emissions from emerging economies and developing coun-
tries (Marland et al., 2009). Generally, emissions from ma-
ture economies with good statistical processes have an uncer-
tainty of only a few percent (Marland, 2008), while emissions
from strongly developing economies such as China have un-
certainties of around +10 % (for +10; Gregg et al., 2008;
Andres et al., 2014). Uncertainties in emissions are likely to
be mainly systematic errors related to underlying biases of
energy statistics and to the accounting method used by each
country.

C1.4 Growth rate in emissions

We report the annual growth rate in emissions for adjacent
years (in percent per year) by calculating the difference be-
tween the 2 years and then normalizing to the emissions in
the first year: (Eros(t0+ 1) — Eros(20))/ Eros(0) x 100 %.
We apply a leap-year adjustment where relevant to ensure
valid interpretations of annual growth rates. This affects the
growth rate by about 0.3 % per year (1/366) and causes cal-
culated growth rates to go up approximately 0.3 % if the first
year is a leap year and down 0.3 % if the second year is a leap
year.
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The relative growth rate of Eppg over time periods of
greater than 1 year can be rewritten using its logarithm equiv-
alent as follows:

1 dEpos _ d(InEros)
Eros dt dt ’

(CDH

Here we calculate relative growth rates in emissions for
multi-year periods (e.g. a decade) by fitting a linear trend to
In(Eros) in Eq. (2), reported in percent per year.

C1.5 Emissions projection for 2022

To gain insight into emission trends for 2022, we provide an
assessment of global fossil CO; emissions, Ergs, by com-
bining individual assessments of emissions for China, USA,
the EU, and India (the four countries/regions with the largest
emissions) and the rest of the world.

The methods are specific to each country or region, as de-
scribed in detail below.

China

We use a regression between monthly data for each fossil fuel
and cement and annual data for consumption of fossil fuels
or production of cement to project full-year growth in fossil
fuel consumption and cement production. The monthly data
for each product consists of the following elements.

— Coal. This product uses a proprietary estimate for
monthly consumption of main coal types from SX Coal.

— Oil. The product uses production data from the National
Bureau of Statistics (NBS), plus net imports from the
China Customs Administration (i.e. gross supply of oil,
not including inventory changes).

— Natural gas. This product uses the same source as for
oil.

— Cement. This product uses production data from NBS.

For oil, we use data for production and net imports of refined
oil products rather than crude oil. This choice is made be-
cause refined products are one step closer to actual consump-
tion and because crude oil can be subject to large market-
driven and strategic inventory changes that are not captured
by available monthly data.

For each fuel and cement, we make a Bayesian linear re-
gression between year-on-year cumulative growth in supply
(production for cement) and full-year growth in consumption
(production for cement) from annual consumption data. In
the regression model, the growth rate in annual consumption
(production for cement) is modelled as a regression param-
eter multiplied by the cumulative year-on-year growth rate
from the monthly data through July of each year for past
years (through 2021). We use broad Gaussian distributions
centred around 1 as priors for the ratios between annual and
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through-July growth rates. We then use the posteriors for the
growth rates together with cumulative monthly supply or pro-
duction data through July of 2022 to produce a posterior pre-
dictive distribution for the full-year growth rate for fossil fuel
consumption and cement production in 2022.

If the growth in supply or production through July were
an unbiased estimate of the full-year growth in consump-
tion or production, the posterior distribution for the ratio be-
tween the monthly and annual growth rates would be cen-
tred around 1. However, in practice the ratios are different
from 1 (in most cases below 1). This is a result of various
biassing factors such as uneven evolution in the first and sec-
ond half of each year, inventory changes that are somewhat
anti-correlated with production and net imports, differences
in statistical coverage, and other factors that are not captured
in the monthly data.

For fossil fuels, the mean of the posterior distribution is
used as the central estimate for the growth rate in 2022, while
the edges of a 68 % credible interval (analogous to a 1o con-
fidence interval) are used for the upper and lower bounds.

For cement, the evolution from January to July has been
highly atypical owing to the ongoing turmoil in the con-
struction sector, and the results of the regression analysis are
heavily biased by equally atypical but different dynamics in
2021. For this reason, we use an average of the results of the
regression analysis and the plain growth in cement produc-
tion through July 2022, since this results in a growth rate that
seems more plausible and in line with where the cumulative
cement production appears to be headed at the time of writ-
ing.

USA

We use emissions estimated by the U.S. Energy Informa-
tion Administration (EIA) in their Short-Term Energy Out-
look (STEO) for emissions from fossil fuels to get both year-
to-date (YTD) information and a full-year projection (EIA,
2022). The STEO also includes a near-term forecast based
on an energy forecasting model that is updated monthly (last
update with preliminary data through August 2022) and takes
into account expected temperatures, household expenditures
by fuel type, energy markets, policies, and other effects. We
combine this with our estimate of emissions from cement
production using the monthly US cement clinker production
data from USGS for January—June 2022, assuming changes
in cement production over the first part of the year apply
throughout the year.

India

We use monthly emissions estimates for India updated from
Andrew (2020b) through July 2022. These estimates are de-
rived from many official monthly energy and other activ-
ity data sources to produce direct estimates of national CO,
emissions without the use of proxies. Emissions from coal
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are then extended to August using a regression relationship
based on power generated from coal, coal dispatches by Coal
India Ltd., the composite Purchasing Managers’ Index, time,
and days per month. For the last 3—-5 months of the year, each
series is extrapolated assuming typical trends.

EU

We use a refinement to the methods presented by Andrew
(2021), deriving emissions from monthly energy data re-
ported by Eurostat. Some data gaps are filled using data from
the Joint Organizations Data Initiative (JODI, 2022). Sub-
annual cement production data are limited, but data for Ger-
many and Poland, the two largest producers, suggest a small
decline. For fossil fuels this provides estimates through July.
We extend coal emissions through August using a regression
model built from generation of power from hard coal, power
from brown coal, total power generation, and the number of
working days in Germany and Poland, the two biggest coal
consumers in the EU. These are then extended through the
end of the year assuming typical trends. We extend oil emis-
sions by building a regression model between our monthly
CO; estimates and oil consumption reported by the EIA for
Europe in its Short-Term Energy Outlook (September edi-
tion) and then using this model with EIA’s monthly fore-
casts. For natural gas, the strong seasonal signal allows the
use of the bias-adjusted Holt—Winters exponential smooth-
ing method (Chatfield, 1978).

Rest of the world

We use the close relationship between the growth in GDP
and the growth in emissions (Raupach et al., 2007) to project
emissions for the current year. This is based on a simplified
Kaya Identity, whereby Epos (GtCyr~') is decomposed by
the product of GDP (USDyr~!) and the fossil fuel carbon
intensity of the economy (/ros; GtC USD™!) as follows:

Eros = GDP x Iros. (C2)

Taking a time derivative of Eq. (3) and rearranging gives

1 dEFros _ 1 dGDP+ 1 drlros
Eros dt ~ GDP dt  Ipos dt '

(C3)

where the left-hand term is the relative growth rate of Ergs,
and the right-hand terms are the relative growth rates of GDP
and Iros, respectively, which can simply be added linearly to
give the overall growth rate.

The Iros is based on GDP in constant PPP (purchasing
power parity) from the International Energy Agency (IEA)
up to 2017 (IEA/OECD, 2019) and extended using the Inter-
national Monetary Fund (IMF) growth rates through 2021
(IMF, 2022). Interannual variability in Iros is the largest
source of uncertainty in the GDP-based emissions projec-
tions. We thus use the standard deviation of the annual Irog
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for the period 2012-2021 as a measure of uncertainty, re-
flecting a =10 as in the rest of the carbon budget. For rest-
of-world oil emissions growth, we use the global oil demand
forecast published by the EIA less our projections for the
other four regions and estimate uncertainty as the maximum
absolute difference over the period available for such fore-
casts using the specific monthly edition (e.g. August) com-
pared to the first estimate based on more solid data in the
following year (April).

World

The global total is the sum of each of the countries and re-
gions.

C2 Methodology: CO» emissions from land-use,
land-use change, and forestry (Eyc)

The net CO, flux from land-use, land-use change, and
forestry (ELyc, called land-use change emissions in the rest
of the text) includes CO; fluxes from deforestation, afforesta-
tion, logging, and forest degradation (including harvest ac-
tivity); shifting cultivation (cycle of cutting forest for agri-
culture, then abandoning); and regrowth of forests following
wood harvest or abandonment of agriculture. Emissions from
peat burning and drainage are added from external datasets
(see Appendix C2.1 below). Only some land-management
activities are included in our land-use change emissions es-
timates (Table Al). Some of these activities lead to emis-
sions of CO» to the atmosphere, while others lead to CO;
sinks. Epyc is the net sum of emissions and removals due
to all anthropogenic activities considered. Our annual esti-
mate for 1960-2021 is provided as the average of results
from three bookkeeping approaches (Appendix C2.1 below):
an estimate using the Bookkeeping of Land Use Emissions
model (Hansis et al., 2015; hereafter BLUE), one using the
compact Earth system model OSCAR (Gasser et al., 2020),
with both BLUE and OSCAR being updated here to new
land-use forcing covering the time period until 2021, and
an updated version of the estimate published by Houghton
and Nassikas (2017) (hereafter updated H&N2017). All three
data sets are then extrapolated to provide a projection for
2022 (Appendix C2.5 below). In addition, we use results
from dynamic global vegetation models (DGVMs; see Ap-
pendix C2.2 and Table 4) to help quantify the uncertainty
in Epyc (Appendix C2.4) and thus better characterize our
understanding. Note that in this budget, we use the scien-
tific E1 yc definition, which counts fluxes due to environmen-
tal changes on managed land towards SpanD. as opposed to
the national greenhouse gas inventories under the UNFCCC,
which include them in Epyc and thus often report smaller
land-use emissions (Grassi et al., 2018; Petrescu et al., 2020).
However, we provide a methodology of mapping of the two
approaches to each other further below (Appendix C2.3).
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C2.1 Bookkeeping models

Land-use change CO, emissions and uptake fluxes are cal-
culated by three bookkeeping models. These are based on
the original bookkeeping approach of Houghton (2003) that
keeps track of the carbon stored in vegetation and soils be-
fore and after a land-use change (transitions between various
natural vegetation types, croplands, and pastures). Literature-
based response curves describe decay of vegetation and soil
carbon, including transfer to product pools of different life-
times, as well as carbon uptake due to regrowth. In addition,
the bookkeeping models represent long-term degradation of
primary forest as lowered standing vegetation and soil carbon
stocks in secondary forests and include forest management
practices such as wood harvests.

BLUE and the updated H&N2017 exclude land ecosys-
tems’ transient response to changes in climate, atmospheric
CO,, and other environmental factors and base the carbon
densities on contemporary data from literature and inven-
tory data. Since carbon densities thus remain fixed over time,
the additional sink capacity that ecosystems provide in re-
sponse to CO» fertilization and some other environmental
changes is not captured by these models (Pongratz et al.,
2014). On the contrary, OSCAR includes this transient re-
sponse, and it follows a theoretical framework (Gasser and
Ciais, 2013) that allows separating bookkeeping land-use
emissions and the loss of additional sink capacity. Only the
former is included here, while the latter is discussed in Ap-
pendix D4. The bookkeeping models differ in (1) computa-
tional units (spatially explicit treatment of land-use change
for BLUE, country-level for the updated H&N2017 and OS-
CAR), (2) processes represented (see Table A1), and (3) car-
bon densities assigned to vegetation and soil of each vege-
tation type (based on literature for BLUE and the updated
H&N2017, calibrated to DGVMs for OSCAR). A notable
difference between models exists with respect to the treat-
ment of shifting cultivation. The update of H&N2017, in-
troduced for the GCB2021 (Friedlingstein et al., 2022a),
changed the approach over the earlier H&N2017 version:
H&N2017 had assumed the “excess loss” of tropical forests,
i.e. when the Global Forest Resources Assessment (FRA;
FAO 2020) indicated that a forest loss larger than the in-
crease in agricultural areas from FAO (FAOSTAT 2021) re-
sulted from converting forests to croplands at the same time
older croplands were abandoned. Those abandoned crop-
lands began to recover to forests after 15 years. The updated
H&N2017 now assumes that forest loss in excess of increases
in cropland and pastures represented an increase in shifting
cultivation. When the excess loss of forests was negative, it
was assumed that shifting cultivation was returned to forest.
Historical areas in shifting cultivation were extrapolated tak-
ing into account country-based estimates of areas in fallow
in 1980 (FAO/UNEDP, 1981) and expert opinion (from Heini-
mann et al., 2017). In contrast, the BLUE and OSCAR mod-
els include sub-grid-scale transitions between all vegetation
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types. Furthermore, the updated H&N2017 assumes conver-
sion of natural grasslands to pasture, while BLUE and OS-
CAR allocate pasture transitions proportionally on all nat-
ural vegetation that exists in a grid cell. This is one rea-
son for generally higher emissions in BLUE and OSCAR.
Bookkeeping models do not directly capture carbon emis-
sions from peat fires, which can create large emissions and
interannual variability due to synergies of land-use and cli-
mate variability in Southeast Asia, particularly during El-
Nifio events, nor do they capture emissions from the organic
layers of drained peat soils. To correct for this, we add peat
fire emissions based on the Global Fire Emission Database
(GFED4s; van der Werf et al., 2017) to the bookkeeping
models’ output. Emissions are calculated by multiplying the
mass of dry matter emitted by peat fires with the C emission
factor for peat fires indicated in the GFED4s database. Emis-
sions from deforestation fires used to derive Eryc projec-
tions for 2022 are calculated analogously. As these satellite-
derived estimates of peat fire emissions start in 1997 only,
we follow the approach by Houghton and Nassikas (2017)
for earlier years, which ramps up from zero emissions in
1980 to 0.04 PgCyr~! in 1996, reflecting the onset of ma-
jor clearing of peatlands in equatorial Southeast Asia in the
1980s. Similarly, we add estimates of peat drainage emis-
sions. In recent years, more peat drainage estimates that pro-
vide spatially explicit data have become available, and we
thus extended the number of peat drainage datasets consid-
ered. We employ FAO peat drainage emissions 1990-2019
from croplands and grasslands (Conchedda and Tubiello,
2020), peat drainage emissions 1700-2010 from simulations
with the DGVM ORCHIDEE-PEAT (Qiu et al., 2021), and
peat drainage emissions 1701-2021 from simulations with
the DGVM LPX-Bern (Lienert and Joos, 2018; Miiller and
Joos, 2021), applying the updated LUH2 forcing as also
used by BLUE, OSCAR, and the DGVMs. We extrapolate
the FAO data to 1850-2021 by keeping the post-2019 emis-
sions constant at 2019 levels, by linearly increasing tropi-
cal drainage emissions between 1980 and 1990 starting from
0GtCyr~! in 1980, consistent with H&N2017’s assumption
(Houghton and Nassikas, 2017), and by keeping pre-1990
emissions from the often old drained areas of the extratropics
constant at 1990 emission levels. ORCHIDEE-PEAT data are
extrapolated to 2011-2021 by replicating the average emis-
sions in 2000-2010 (Chunjing Qiu,, personal communica-
tion, 2022). Further, ORCHIDEE-PEAT only provides peat
drainage emissions north of 30° N, and thus we fill the re-
gions south of 30° N using the average peat drainage emis-
sions from FAO and LPX-Bern. The average of the car-
bon emission estimates by the three different peat drainage
datasets is added to the bookkeeping models to obtain net
E1 uc and gross sources.

The three bookkeeping estimates used in this study differ
with respect to the land-use change data used to drive the
models. The updated H&N2017 bases its estimates directly
on the Forest Resource Assessment of the FAO, which pro-
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vides statistics on forest area change and management at in-
tervals of 5 years and is currently updated until 2020 (FAO,
2020). The data are based on country reporting to FAO and
may include remote-sensing information in more recent as-
sessments. Changes in land-use other than forests are based
on annual, national changes in cropland and pasture areas re-
ported by FAO (FAOSTAT, 2021). On the other hand, BLUE
uses the harmonized land-use change data LUH2-GCB2022
covering the entire 850-2021 period (an update to the pre-
viously released LUH2 v2h dataset; Hurtt et al., 2017; Hurtt
et al., 2020), which was also used as input to the DGVMs
(Appendix C2.2). It describes land-use change, also based
on the FAO data as described in Appendix C2.2 and the
HYDE3.3 dataset (Klein Goldewijk et al., 2017a, b), but pro-
vided at a quarter-degree spatial resolution, considering sub-
grid-scale transitions between primary forest, secondary for-
est, primary non-forest, secondary non-forest, cropland, pas-
ture, rangeland, and urban land (Hurtt et al., 2020; Chini et
al., 2021). LUH2-GCB2022 provides a distinction between
rangelands and pasture, based on inputs from HYDE. To
constrain the models’ interpretation on whether rangeland
implies the original natural vegetation to be transformed to
grassland or not (e.g. browsing on shrubland), a forest mask
was provided with LUH2-GCB2021; forest is assumed to
be transformed to grasslands, while other natural vegetation
remains (in case of secondary vegetation) or is degraded
from primary to secondary vegetation (Ma et al., 2020).
This is implemented in BLUE. OSCAR was run with both
LUH2-GCB2022 and FAO/FRA (as used with the updated
H&N2017), where the drivers of the latter were linearly ex-
trapolated to 2021 using their 2015-2020 trends. The best-
guess OSCAR estimate used in our study is a combination of
results for LUH2-GCB2022 and FAO/FRA land-use data and
a large number of perturbed parameter simulations weighted
against a constraint (the cumulative S anp over 1960-2020
of last year’s GCB). As the record of the updated H&N2017
ends in 2020, we extend it to 2021 by adding the difference
of the emissions from tropical deforestation and degradation,
peat drainage, and peat fire between 2020 and 2021 to the
model’s estimate for 2020 (i.e. considering the yearly anoma-
lies of the emissions from tropical deforestation and degra-
dation, peat drainage, and peat fire). The same method is ap-
plied to all three bookkeeping estimates to provide a projec-
tion for 2022.

For Epyc from 1850 onwards we average the estimates
from BLUE, the updated H&N2017, and OSCAR. For the
cumulative numbers starting 1750, an average of four earlier
publications is added (30 +20PgC 1750-1850, rounded to
the nearest 5; Le Quéré et al., 2016).

We provide estimates of the gross land-use change fluxes
from which the reported net land-use change flux, Epyc,
is derived as a sum. Gross fluxes are derived internally by
the three bookkeeping models. Gross emissions stem from
decaying material left dead on site and from products af-
ter clearing of natural vegetation for agricultural purposes
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or wood harvesting, emissions from peat drainage and peat
burning, and, for BLUE, additionally from degradation from
primary to secondary land through usage of natural vegeta-
tion as rangeland. Gross removals stem from regrowth after
agricultural abandonment and wood harvesting. Gross fluxes
for the updated H&N2017 for 2020 and for the 2022 pro-
jection of all three models were calculated by the change in
emissions from tropical deforestation and degradation and
peat burning and drainage as described for the net Epyc
above. As tropical deforestation and degradation and peat
burning and drainage all only lead to gross emissions to the
atmosphere, only gross (and net) emissions are adjusted this
way, while gross sinks are assumed to remain constant over
the previous year..

This year, we provide an additional split of the net E1yc
into component fluxes to better identify reasons for diver-
gence between bookkeeping estimates and to give more in-
sight into the drivers of sources and sinks. This split dis-
tinguishes between fluxes from deforestation (including due
to shifting cultivation); fluxes from organic soils (i.e. peat
drainage and fires); afforestation, reafforestation, and wood
harvest (i.e. fluxes in forests from slash and product decay
following wood harvesting, regrowth associated with wood
harvesting or after abandonment, including reforestation and
in shifting cultivation cycles, and afforestation); and fluxes
associated with all other transitions.

C2.2 Dynamic global vegetation models (DGVMs)

Land-use change CO, emissions have also been estimated
using an ensemble of 16 DGVM simulations. The DGVMs
account for deforestation and regrowth, the most important
components of Eyyc, but they do not represent all processes
resulting directly from human activities on land (Table Al).
All DGVMs represent processes of vegetation growth and
mortality, as well as decomposition of dead organic matter
associated with natural cycles, and include the vegetation and
soil carbon response to increasing atmospheric CO, concen-
tration and to climate variability and change. Most models
explicitly simulate the coupling of carbon and nitrogen cy-
cles and account for atmospheric N deposition and N fertil-
izers (Table Al). The DGVMs are independent of the other
budget terms except for their use of atmospheric CO, con-
centration to calculate the fertilization effect of CO; on plant
photosynthesis.

All DGVMs use the LUH2-GCB2022 dataset as input,
which includes the HYDE cropland/grazing land dataset
(Klein Goldewijk et al., 2017a, b), and additional information
on land-cover transitions and wood harvest. DGVMs use an-
nual, half-degree (regridded from 5 min resolution) fractional
data on cropland and pasture from HYDE3.3.

DGVMs that do not simulate subgrid-scale transitions (i.e.
net land-use emissions; see Table A1) used the HYDE infor-
mation on agricultural area change. For all countries, with
the exception of Brazil and the Democratic Republic of the
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Congo, these data are based on the available annual FAO
statistics of change in agricultural land area available from
1961 up to and including 2017. The FAO retrospectively
revised their reporting for the Democratic Republic of the
Congo, which was newly available until 2020. In addition
to FAO country-level statistics, the HYDE3.3 cropland/graz-
ing land dataset is constrained spatially based on multi-year
satellite land cover maps from ESA CCI LC (see below). Af-
ter the year 2017, LUH2 extrapolates, on a grid cell basis, the
cropland, pasture, and urban data linearly based on the trend
over the previous 5 years to generate data until the year 2021.
This extrapolation methodology is not appropriate for coun-
tries that have experienced recent rapid changes in the rate of
land-use change, e.g. Brazil, which has experienced a recent
upturn in deforestation. Hence, for Brazil we replace FAO
state-level data for cropland and grazing land in HYDE by
those from in-country land cover dataset MapBiomas (col-
lection 6) for 1985-2020 (Souza et al., 2020). ESA-CCI is
used to spatially disaggregate as described below. Similarly,
an estimate for the year 2021 is based on the MapBiomas
trend 2015-2020. The pre-1985 period is scaled with the per
capita numbers from 1985 from MapBiomas, and thus this
transition is smooth.

HYDE uses satellite imagery from ESA-CCI from 1992—
2018 for more detailed yearly allocation of cropland and
grazing land, with the ESA area data scaled to match the
FAO annual totals at country level. The original 300 m spatial
resolution data from ESA were aggregated to a 5 arcmin res-
olution according to the classification scheme as described in
Klein Goldewijk et al. (2017a).

DGVMs that simulate subgrid scale transitions (i.e. gross
land-use emissions; see Table A1) use more detailed land-
use transition and wood harvest information from the LUH2-
GCB2022 data set. LUH2-GCB2022 is an update of the more
comprehensive harmonized land-use data set (Hurtt et al.,
2020) that further includes fractional data on primary and
secondary forest vegetation, as well as all underlying transi-
tions between land-use states (850-2020; Hurtt et al., 2011,
2017, 2020; Chini et al., 2021; Table A1l). This data set is
of quarter-degree fractional areas of land-use states and all
transitions between those states, including a new wood har-
vest reconstruction, new representation of shifting cultiva-
tion, crop rotations, and management information, including
irrigation and fertilizer application. The land-use states in-
clude five different crop types in addition to splitting grazing
land into managed pasture and rangeland. Wood harvest pat-
terns are constrained with Landsat-based tree cover loss data
(Hansen et al., 2013). Updates of LUH2-GCB2022 over last
year’s version (LUH2-GCB2021) are using the most recent
HYDE release (covering the time period up to 2017, revi-
sion to Brazil and the Democratic Republic of the Congo
as described above). We use the same FAO wood harvest
data as last year for all dataset years from 1961 to 2019
and extrapolate to the year 2022. The HYDE3.3 popula-
tion data are also used to extend the wood harvest time se-
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ries back in time. Other wood harvest inputs (for years prior
to 1961) remain the same in LUH2. These updates in the
land-use forcing are shown in comparison to the more pro-
nounced version change from the GCB2020 (Friedlingstein
et al., 2020) to GCB2021, which was discussed in Friedling-
stein et al. (2022a) in Fig. B6, and their relevance for land-
use emissions is discussed in Sect. 3.2.2. DGVMs implement
land-use change differently (e.g. an increased cropland frac-
tion in a grid cell can either be at the expense of grassland,
shrubs, or forest, the latter resulting in deforestation; land
cover fractions of the non-agricultural land differ between
models). Similarly, model-specific assumptions are applied
to convert deforested biomass or deforested area and other
forest product pools into carbon, and different choices are
made regarding the allocation of rangelands as natural vege-
tation or pastures.

The difference between two DGVM simulations (see Ap-
pendix C4.1 below), one forced with historical changes in
land use and a second with time-invariant pre-industrial land
cover and pre-industrial wood harvest rates, allows quan-
tification of the dynamic evolution of vegetation biomass
and soil carbon pools in response to land-use change in
each model (Eryc). Using the difference between these two
DGVMs simulations to diagnose Epyc means the DGVMs
account for the loss of additional sink capacity (around
0.4 £0.3GtCyr~!; see Sect. 2.7 and Appendix D4), whereas
the bookkeeping models do not.

As a criterion for inclusion in this carbon budget, we only
retain models that simulate a positive E1 yc during the 1990s,
as assessed in the IPCC AR4 (Denman et al., 2007) and
AR5 (Ciais et al., 2013). All DGVMs met this criterion, al-
though one model was not included in the Epyc estimate
from DGVMs as it exhibited a spurious response to the tran-
sient land cover change forcing after its initial spin-up.

C2.3 Mapping of national GHG inventory data to £| ¢

An approach was implemented to reconcile the large gap be-
tween land-use emissions estimates from bookkeeping mod-
els and from national GHG inventories (NGHGI) (see Ta-
ble AS). This gap is due to different approaches to calculat-
ing “anthropogenic” CO; fluxes related to land-use change
and land management (Grassi et al., 2018). In particular, the
land sinks due to environmental change on managed lands
are treated as non-anthropogenic in the global carbon bud-
get, while they are generally considered anthropogenic in
NGHGIs (“indirect anthropogenic fluxes”; Eggleston et al.,
2006). Building on previous studies (Grassi et al., 2021),
the approach implemented here adds the DGVM estimates
of CO, fluxes due to environmental change from countries’
managed forest area (part of Spanp) to the Epyc flux. This
sum is expected to be conceptually more comparable to LU-
LUCF than Eyyc.

Eruc data are taken from bookkeeping models, in line
with the global carbon budget approach. To determine Sp AND
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on managed forest, the following steps were taken: spa-
tially gridded data of “natural” forest net biome productiv-
ity (NBP) (SLAND, i.e. due to environmental change and ex-
cluding land-use change fluxes) were obtained with S2 runs
from DGVMs up to 2021 from the TRENDY vl1 dataset.
Results were first masked with a forest map that is based on
Hansen (Hansen et al., 2013) tree cover data. To do this con-
version (“tree” cover to “forest” cover), we exclude grid cells
with less than 20 % tree cover and isolated pixels with maxi-
mum connectivity less than 0.5 ha following the FAO defini-
tion of forest. Forest NBPs are then further masked with the
“intact” forest map for the year 2013, i.e. forest areas char-
acterized by no remotely detected signs of human activity
(Potapov et al., 2017). This way, we obtained the Spanp in
“intact” and “non-intact” forest area, which previous studies
(Grassi et al., 2021) indicated to be a good proxy, respec-
tively, for “unmanaged” and “managed” forest area in the
NGHGI. Note that only four models (CABLE-POP, CLAS-
SIC, JSBACH and YIBs) had forest NBP at grid-cell level.
For the other DGVMs, when a grid cell had forest, all the
NBP was allocated to forest. However, since S2 simulations
use pre-industrial forest cover masks that are at least 20 %
larger than today’s forest (Hurtt et al., 2020), we corrected
this NBP using a ratio between observed (based on Hansen et
al., 2013) and prescribed (from DGVMs) forest cover. This
ratio is calculated for each individual DGVM that provides
information on prescribed forest cover (LPX-Bern, OCN,
JULES, VISIT, VISIT-NIES, SDGVM). For the others (IBIS,
CLM5.0, ORCHIDEE, ISAM, DLEM, LPJ-GUESS), a com-
mon ratio (median ratio of all the 10 models that provide in-
formation on prescribed forest cover) is used. The details of
the method used are explained in Alkama (2022).

LULUCF data from NGHGIs are from Grassi et
al. (2022a). While Annex I countries report a complete time
series 1990-2020, for non-Annex I countries gap-filling mea-
sures were applied through linear interpolation between two
points and/or through extrapolation backward (till 1990) and
forward (till 2020) using the single closest available data
point. For all countries, the estimates of the year 2021 are
assumed to be equal to those of 2020. These data include all
CO; fluxes from land considered managed, which in princi-
ple encompasses all land uses (forest land, cropland, grass-
land, wetlands, settlements, and other land), changes among
them, and emissions from organic soils and fires. In prac-
tice, although almost all Annex I countries report all land
uses, many non-Annex I countries report only on deforesta-
tion and forest land, and only few countries report on other
land uses. In most cases, NGHGIs include most of the nat-
ural response to recent environmental change because they
use direct observations (e.g. national forest inventories) that
do not allow for separating direct and indirect anthropogenic
effects (Eggleston et al., 2006).

To provide additional, largely independent assessments
of fluxes on unmanaged vs. managed lands, we include a
DGVM that allows diagnosing fluxes from unmanaged vs.
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managed lands by tracking vegetation cohorts of different
ages separately. This model, ORCHIDEE-MICT (Yue et al.,
2018), was run using the same LUH?2 forcing as the DGVMs
used in this budget (Sect. 2.5) and the bookkeeping models
BLUE and OSCAR (Sect. 2.2). Old-aged forest was classi-
fied as primary forest after a certain threshold of carbon den-
sity was reached again, and the model-internal distinction be-
tween primary and secondary forest was used a proxy for un-
managed vs. managed forests; agricultural lands are added to
the latter to arrive at total managed land.

Table A8 shows the resulting mapping of global carbon
cycle models’ land flux definitions to that of the NGHGI
(discussed in Sect. 3.2.2). ORCHIDEE-MICT estimates for
SLAND on intact forests are expected to be higher than based
on DGVMs in combination with the NGHGI managed and
unmanaged forest data because the unmanaged forest area,
with about 27 x 10° km?, is estimated to be substantially
larger by ORCHIDEE-MICT than by the NGHGI (less than
10 x 10° km?), while managed forest area is estimated to
be smaller (22 compared to 32 x 10° km?). Related to this,
Eruc plus SLaND on non-intact lands is a larger source esti-
mated by ORCHIDEE-MICT compared to NGHGI. We also
show FAOSTAT emissions totals (FAO, 2021) as a compari-
son, which include emissions from net forest conversion and
fluxes on forest land (Tubiello et al., 2021) and CO; emis-
sions from peat drainage and peat fires. The 2021 data were
estimated by including actual 2021 estimates for peatland
drainage and fire and a carry forward from 2020 to 2021
for the forest land stock change. The FAO data shows a
global source of 0.24 GtCyr~—! averaged over 2012-2021,
in contrast to the sink of —0.54 GtCyr~! of the gap-filled
NGHGTI data. Most of this difference is attributable to dif-
ferent scopes: a focus on carbon fluxes for the NGHGI and a
focus on area and biomass for FAO. In particular, the NGHGI
data includes a larger forest sink for non-Annex 1 countries
resulting from a more complete coverage of non-biomass
carbon pools and non-forest land uses. NGHGI and FAO data
also differ in terms of underlying data on forest land (Grassi
et al., 2022a).

C2.4 Uncertainty assessment for £| ¢

Differences between the bookkeeping models and DGVMs
models originate from three main sources: the different
methodologies, which among others lead to inclusion of
the loss of additional sink capacity in DGVMs (see Ap-
pendix D1.4), the underlying land-use or land-cover data set,
and the different processes represented (Table Al). We ex-
amine the results from the DGVMs models and of the book-
keeping method and use the resulting variations as a way to
characterize the uncertainty in Epyc.

Despite these differences, the Epyc estimate from the
DGVMs multi-model mean is consistent with the average of
the emissions from the bookkeeping models (Table 5). How-
ever, there are large differences among individual DGVMs
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(standard deviation at around 0.5 GtC yr’l; Table 5), be-
tween the bookkeeping estimates (average difference 1850—
2020 BLUE-updated H&N2017 of 0.8 GtCyr~!, BLUE-
OSCAR of 0.4GtCyr~!, OSCAR-updated H&N2017 of
0.3GtCyr~!), and between the updated estimate of
H&N2017 and its previous model version (Houghton et al.,
2012). A factorial analysis of differences between BLUE and
H&N2017 attributed them particularly to differences in car-
bon densities between natural and managed vegetation or pri-
mary and secondary vegetation (Bastos et al., 2021). Ear-
lier studies additionally showed the relevance of the differ-
ent land-use forcing as applied (in updated versions) also
in the current study (Gasser et al., 2020). Ganzenmiiller et
al. (2022) recently showed that Epyc estimates with BLUE
are substantially smaller when the model is driven by a new
high-resolution land-use dataset (HILDA+). They identified
shifting cultivation and the way it is implemented in LUH2
as a main reason for this divergence. They further showed
that a higher spatial resolution reduces the estimates of both
sources and sinks because successive transitions are not ade-
quately represented at coarser resolution, which has the effect
that — despite capturing the same extent of transition areas —
overall less area remains pristine at the coarser compared to
the higher resolution.

The uncertainty in Epyc of £0.7 GtC ylr_1 reflects our
best value judgement that there is at least 68 % chance (£10)
that the true land-use change emission lies within the given
range for the range of processes considered here. Prior to the
year 1959, the uncertainty in Epyc was taken from the stan-
dard deviation of the DGVMs. We assign low confidence to
the annual estimates of Eyyc because of the inconsistencies
among estimates and of the difficulties in quantifying some
of the processes in DGVMs.

C2.5 Emissions projections for £| ¢

We project the 2022 land-use emissions for BLUE, the up-
dated H&N2017, and OSCAR, starting from their estimates
for 2021 assuming unaltered peat drainage, which has low in-
terannual variability, and the highly variable emissions from
peat fires, tropical deforestation and degradation as estimated
using active fire data (MCD14ML; Giglio et al., 2016). These
latter variables scale almost linearly with GFED over large
areas (van der Werf et al., 2017), and thus they allow for
tracking fire emissions in deforestation and tropical peat
zones in near-real time.

C3 Methodology: ocean CO» sink

C3.1 Observation-based estimates

We primarily use the observational constraints assessed by
IPCC of a mean ocean CO, sink of 2.2 +0.7GtCyr~! for
the 1990s (90 % confidence interval; Ciais et al., 2013) to
verify that the GOBMs provide a realistic assessment of
Socean. This is based on indirect observations with seven
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different methodologies and their uncertainties and further
use of the three of these methods that are deemed most re-
liable for the assessment of this quantity (Denman et al.,
2007; Ciais et al., 2013). The observation-based estimates
use the ocean—land CO; sink partitioning from observed
atmospheric CO, and O»/N; concentration trends (Man-
ning and Keeling, 2006; Keeling and Manning, 2014), an
oceanic inversion method constrained by ocean biogeochem-
istry data (Mikaloff Fletcher et al., 2006), and a method
based on penetration timescale for chlorofluorocarbons (Mc-
Neil, 2003). The IPCC estimate of 2.2 GtC yr_1 for the
1990s is consistent with a range of methods (Wanninkhof
et al., 2013). We refrain from using the IPCC estimates for
the 2000s (2.3 £0.7 GtC yr‘l) and the period 2002-2011
(2.4+£0.7GtC yr_l, Ciais et al., 2013), as these are based
on trends derived mainly from models and one data prod-
uct (Ciais et al., 2013). Additional constraints summarized
in AR6 (Canadell et al., 2021) are the interior ocean anthro-
pogenic carbon change (Gruber et al., 2019) and ocean sink
estimates from atmospheric CO; and O, /N; (Tohjima et al.,
2019), which are used for model evaluation and discussion,
respectively.

We also use eight estimates of the ocean CO; sink and its
variability based on surface ocean fCO; maps obtained by
the interpolation of surface ocean fCO, measurements from
1990 onwards due to severe restrictions on data availability
prior to 1990 (Fig. 10). These estimates differ in many re-
spects: they use different maps of surface fCO,, atmospheric
CO; concentrations, wind products, and gas exchange for-
mulations as specified in Table A3. We refer to them as
fCOx-based flux estimates. The measurements underlying
the surface fCO, maps are from the Surface Ocean CO, At-
las version 2022 (SOCATv2022; Bakker et al., 2022), which
is an update of version 3 (Bakker et al., 2016) and contains
quality-controlled data through 2021 (see data attribution Ta-
ble AS5). Each of the estimates uses a different method to
then map the SOCAT v2022 data to the global ocean. The
methods include a data-driven diagnostic method combined
with a multi-linear regression approach to extend back to
1957 (Rodenbeck et al., 2022; referred to here as Jena-MLYS),
three neural network models (Landschiitzer et al., 2014; re-
ferred to as MPI-SOMFFN; Chau et al., 2022; Copernicus
Marine Environment Monitoring Service, referred to here as
CMEMS-LSCE-FFNN; and Zeng et al., 2014; referred to as
NIES-NN), a cluster regression approach (Gregor and Gru-
ber, 2021, referred to as OS-ETHZ-GRaCER), a multi-linear
regression method (Iida et al., 2021; referred to as JMA-
MLR), and a method that relates the fCO, misfit between
GOBMs and SOCAT to environmental predictors using the
extreme gradient-boosting method (Gloege et al., 2022). The
ensemble mean of the fCO;-based flux estimates is calcu-
lated from these seven mapping methods. Further, we show
the flux estimate of Watson et al. (2020), who also use the
MPI-SOMFFN method to map the adjusted fCO, data to
the globe, resulting in a substantially larger ocean sink esti-
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mate owing to a number of adjustments they applied to the
surface ocean fCO; data. Concretely, these authors adjusted
the SOCAT fCO; downward to account for differences in
temperature between the depth of the ship intake and the rel-
evant depth right near the surface, and they included a further
adjustment to account for the cool surface skin temperature
effect. The Watson et al. (2020) flux estimate hence differs
from the others by their choice of adjusting the flux to a cool,
salty ocean surface skin. Watson et al. (2020) showed that
this temperature adjustment leads to an upward correction of
the ocean carbon sink, up to 0.9 GtC yr_l, that, if correct,
should be applied to all fCO;-based flux estimates. A re-
duction of this adjustment to 0.6 GtC yr—!' was proposed by
Dong et al. (2022). The impact of the cool skin effect on
air-sea CO, flux is based on established understanding of
temperature gradients (as discussed by Goddijn-Murphy et
al 2015) and laboratory observations (Jihne and HauBecker,
1998; Jahne, 2019), but in situ field observational evidence
is lacking (Dong et al., 2022). The Watson et al. (2020) flux
estimate presented here is therefore not included in the en-
semble mean of the fCO,-based flux estimates. This choice
will be re-evaluated in upcoming budgets based on further
lines of evidence.

Typically, data products do not cover the entire ocean due
to missing coastal oceans and sea ice cover. The CO; flux
from each fCOj-based product is already at or above 99 %
coverage of the ice-free ocean surface area in two prod-
ucts (Jena-MLS, OS-ETHZ-GRaCER) and filled by the data
provider in three products (using the Fay et al., 2021, method
for JMA-MLR and LDEO-HPD and the Landschiitzer et
al., 2020, methodology for MPI-SOMFFN). The products
that remained below 99 % coverage of the ice-free ocean
(CMEMS-LSCE-FFNN, MPI-SOMFFN, NIES-NN, UOx-
Watson) were scaled by the following procedure.

In previous versions of the GCB, the missing areas were
accounted for by scaling the globally integrated fluxes by the
fraction of the global ocean coverage (361.9 x 10° km? based
on ETOPO1, Amante and Eakins, 2009; Eakins and Shar-
man, 2010) with the area covered by the CO; flux predic-
tions. This approach may lead to unnecessary scaling when
the majority of the missing data are in the ice-covered region
(as is often the case), where flux is already assumed to be
zero. To avoid this unnecessary scaling, we now scale fluxes
regionally (north, tropics, south) to match the ice-free area
(using NOAA’s OISSTv2; Reynolds et al., 2002):

region
(1—ice)
region
FCO,

FCOrzeg—scaled _ . FCO;egion. (C4)

In Eq. (C4), A represents area, (1—ice) represents the ice-free

ocean, A;%’g: represents the coverage of the data product for

a region, and FCOrzeglon is the integrated flux for a region.

We further use results from two diagnostic ocean mod-
els, Khatiwala et al. (2013) and DeVries (2014), to estimate
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the anthropogenic carbon accumulated in the ocean prior to
1959. The two approaches assume constant ocean circula-
tion and biological fluxes, with Socgan estimated as a re-
sponse in the change in atmospheric CO; concentration cali-
brated to observations. The uncertainty in cumulative uptake
of £20GtC (converted to +10) is taken directly from the
IPCC’s review of the literature (Rhein et al., 2013) or about
430 % for the annual values (Khatiwala et al., 2009).

C3.2 Global ocean biogeochemistry models (GOBMs)

The ocean CO; sink for 1959-20121 is estimated using 10
GOBMs (Table A2). The GOBMs represent the physical,
chemical, and biological processes that influence the sur-
face ocean concentration of CO, and thus the air—sea CO,
flux. The GOBMs are forced by meteorological reanalysis
and atmospheric CO; concentration data available for the en-
tire time period. They mostly differ in the source of the at-
mospheric forcing data (meteorological reanalysis), spin-up
strategies, and horizontal and vertical resolutions (Table A2).
All GOBMs except two (CESM-ETHZ, CESM2) do not in-
clude the effects of anthropogenic changes in nutrient supply
(Duce et al., 2008). They also do not include the perturba-
tion associated with changes in riverine organic carbon (see
Sect. 2.7 and Appendix D3).

Four sets of simulations were performed with each of the
GOBMs. Simulation A applied historical changes in climate
and atmospheric CO; concentration. Simulation B is a con-
trol simulation with constant atmospheric forcing (normal-
year or repeated-year forcing) and constant pre-industrial at-
mospheric COy concentration. Simulation C is forced with
historical changes in atmospheric CO; concentration but
repeated-year or normal-year atmospheric climate forcing.
Simulation D is forced by historical changes in climate and
constant pre-industrial atmospheric CO; concentration. To
derive Socgan from the model simulations, we subtracted
the slope of a linear fit to the annual time series of the control
simulation B from the annual time series of simulation A. As-
suming that drift and bias are the same in simulations A and
B, we thereby correct for any model drift. Further, this differ-
ence also removes the natural steady-state flux (assumed to
be 0 GtC yr~! globally without rivers), which is often a major
source of biases. This approach works for all model set-ups,
including IPSL, where simulation B was forced with constant
atmospheric CO; but observed historical changes in climate
(equivalent to simulation D). This approach assures that the
interannual variability is not removed from IPSL simulation
A.

The absolute correction for bias and drift per model in
the 1990s varied between < 0.01 and 0.41 GtCyr~!, with
seven models having positive biases, two having negative
biases, and one having essentially no bias (NorESM). The
MPI model uses riverine input and therefore simulates out-
gassing in simulation B. By subtracting simulation B, the
ocean carbon sink of the MPI model also follows the defi-
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nition of Socgan. This correction reduces the model mean
ocean carbon sink by 0.04 GtC yr—! in the 1990s. The ocean
models cover 99 % to 101 % of the total ocean area so that
area scaling is not necessary.

C3.3 GOBM evaluation and uncertainty assessment for
SOCEAN

The ocean CO; sink for all GOBMs and the ensemble
mean falls within 90 % confidence of the observed range,
or 1.5 to 2.9 GtCyr_l, for the 1990s (Ciais et al., 2013)
before and after applying adjustments. An exception is the
MPI model, which simulates a low ocean carbon sink of
1.38 GtC yr~! for the 1990s in simulation A owing to the in-
clusion of riverine carbon flux. After adjusting to the GCB’s
definition of Socean by subtracting simulation B, the MPI
model falls into the observed range with an estimated sink of
1.69GtCyr—!.

The GOBMs and data products have been further eval-
uated using the fugacity of sea surface CO, (fCO,) from
the SOCAT v2022 database (Bakker et al., 2016, 2022).
We focused this evaluation on the root-mean-squared error
(RMSE) between observed and modelled fCO; and on a
measure of the amplitude of the interannual variability of the
flux (modified after Rodenbeck et al., 2015). The RMSE is
calculated from detrended, annually and regionally averaged
time series calculated from GOBMs and data product fCO;
subsampled to SOCAT sampling points to measure the misfit
between large-scale signals (Hauck et al., 2020). To this end,
we apply the following steps: (i) subsample data points for
which there are observations (GOBMs or data products and
SOCAT), (ii) average spatially, (iii) calculate annual mean,
(iv) detrend both time series (GOBMs or data products and
SOCAT), and (v) calculate RMSE. This year, we do not ap-
ply an open-ocean mask of 400 m but instead a mask based
on the minimum area coverage of the dat -products. This en-
sures a fair comparison over equal areas. The amplitude of
the Socean interannual variability (A-IAV) is calculated as
the temporal standard deviation of the detrended annual CO,
flux time series after area scaling (Rodenbeck et al., 2015;
Hauck et al., 2020). These metrics are chosen because RMSE
is the most direct measure of data—model mismatch, and the
A-TAV is a direct measure of the variability of Socgan on in-
terannual timescales. We apply these metrics globally and by
latitude bands. Results are shown in Fig. B2 and discussed in
Sect. 3.5.5.

We quantify the 1o uncertainty around the mean ocean
sink of anthropogenic CO, by assessing random and sys-
tematic uncertainties for the GOBMs and data-products.
The random uncertainties are taken from the ensemble stan-
dard deviation (0.3 GtC yr~! for GOBMs, 0.3GtCyr~! for
data-products). We derive the GOBMs systematic uncer-
tainty by the deviation of the DIC inventory change 1994—
2007 from the Gruber et al. (2019) estimate (0.4 GtCyr—1)
and suggest these are related to physical transport (mix-
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ing, advection) into the ocean interior. For the data prod-
ucts, we consider systematic uncertainties stemming from
uncertainty in fCO» observations (0.2 GtC yr~!, Takahashi
et al,, 2009; Wanninkhof et al., 2013), gas transfer ve-
locity (0.2 GtC yr_l, Ho et al., 2011; Wanninkhof et al.,
2013; Roobaert et al., 2018), wind product (0.1 GtC yr_l,
Fay et al., 2021), river flux adjustment (0.3 GtCyr~!, Reg-
nier et al., 2022, formally 20 uncertainty), and fCO, map-
ping (0.2GtCyr~!, Landschiitzer et al., 2014). Combin-
ing these uncertainties as their squared sums, we assign
an uncertainty of +£0.5GtCyr~! to the GOBM ensemble
mean and an uncertainty of 0.6 GtC yr~! to the data prod-
uct ensemble mean. These uncertainties are propagated as
o (Socean) = (1/2%x0.5%+1/22x0.6%)!/2 GtC yr—! and re-
sult in an £0.4 GtC yr~! uncertainty around the best estimate
of SoceaN.

We examine the consistency between the variability of
the model-based and the fCO,-based data products to as-
sess confidence in Socgan. The interannual variability of the
ocean fluxes (quantified as A-TIAV, the standard deviation af-
ter detrending, Fig. B2) of the seven fCO,-based data prod-
ucts plus the Watson et al. (2020) product for 1990-2021
ranges from 0.12 to 0.32 GtC yr~!, with the lower estimates
coming from the two ensemble methods (CMEMS-LSCE-
FFNN, OS-ETHZ-GRaCER). The interannual variability in
the GOBMs ranges between 0.09 and 0.20 GtC yr~!; hence,
there is overlap with the lower A-IAV estimates of two data
products.

Individual estimates (both GOBMs and data products)
generally produce a higher ocean CO; sink during strong El
Nifio events. There is emerging agreement between GOBMs
and data products on the patterns of decadal variability of
SoceaN, with a global stagnation in the 1990s and an extra-
tropical strengthening in the 2000s (McKinley et al., 2020;
Hauck et al., 2020). The central estimates of the annual flux
from the GOBMs and the fCO;-based data products have a
correlation r of 0.94 (1990-2021). The agreement between
the models and the data products reflects some consistency
in their representation of underlying variability since there is
little overlap in their methodology or use of observations.

C4 Methodology: land CO2 sink
C4.1 DGVM simulations

The DGVMs model runs were forced by either the
merged monthly Climate Research Unit (CRU) and 6-hourly
Japanese 55-year Reanalysis (JRA-55) data set or by the
monthly CRU data set, with both providing observation-
based temperature, precipitation, and incoming surface ra-
diation data on a 0.5° x 0.5° grid updated to 2021 (Harris et
al., 2014, 2020). The combination of CRU monthly data with
6-hourly forcing from JRA-55 (Kobayashi et al., 2015) is
performed with methodology used in previous years (Viovy,
2016) adapted to the specifics of the JRA-55 data.
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Introduced in GCB2021 (Friedlingstein et al., 2022a), in-
coming short-wave radiation fields are used to take into ac-
count aerosol impacts and the division of total radiation into
direct and diffuse components as summarized below.

The diffuse fraction dataset offers 6-hourly distributions
of the diffuse fraction of surface short-wave fluxes over the
period 1901-2021. Radiative transfer calculations are based
on monthly averaged distributions of tropospheric and strato-
spheric aerosol optical depth and 6-hourly distributions of
cloud fraction. Methods follow those described in the Meth-
ods section of Mercado et al. (2009) but with updated input
datasets.

The time series of speciated tropospheric aerosol optical
depth is taken from the historical and RCP8.5 simulations
by the HadGEM2-ES climate model (Bellouin et al., 2011).
To correct for biases in HadGEM2-ES, tropospheric aerosol
optical depths are scaled over the whole period to match the
global and monthly averages obtained over the period 2003—
2020 by the CAMS reanalysis of atmospheric composition
(Inness et al., 2019), which assimilates satellite retrievals of
aerosol optical depth.

The time series of stratospheric aerosol optical depth is
taken from the climatology of Sato et al. (1993), which has
been updated to 2012. The years 2013-2020 are assumed to
be background years and thus replicate the background year
2010. That assumption is supported by the Global Space-
based Stratospheric Aerosol Climatology time series (1979—
2016; Thomason et al., 2018). The time series of cloud frac-
tion is obtained by scaling the 6-hourly distributions sim-
ulated in the Japanese Reanalysis (Kobayashi et al., 2015)
to match the monthly averaged cloud cover in the CRU TS
v4.06 dataset (Harris et al., 2020). Surface radiative fluxes
account for aerosol-radiation interactions from both tropo-
spheric and stratospheric aerosols and for aerosol—cloud in-
teractions from tropospheric aerosols (except mineral dust).
Tropospheric aerosols are also assumed to exert interactions
with clouds.

The radiative effects of those aerosol-cloud interactions
are assumed to scale with the radiative effects of aerosol-
radiation interactions of tropospheric aerosols using regional
scaling factors derived from HadGEM2-ES. Diffuse fraction
is assumed to be 1 in cloudy sky. Atmospheric constituents
other than aerosols and clouds are set to a constant standard
mid-latitude summer atmosphere, but their variations do not
affect the diffuse fraction of surface short-wave fluxes.

In summary, the DGVMs forcing data include time-
dependent gridded climate forcing, global atmospheric CO,
(Dlugokencky and Tans, 2022), gridded land cover changes
(see Appendix C2.2), and gridded nitrogen deposition and
fertilizers (see Table A1 for specific models details).

Four simulations were performed with each of the
DGVMs. Simulation 0 (SO) is a control simulation that
uses fixed pre-industrial (year 1700) atmospheric CO; con-
centrations, cycles early 20th century (1901-1920) climate,
and applies a time-invariant pre-industrial land cover distri-
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bution and pre-industrial wood harvest rates. Simulation 1
(S1) differs from SO by applying historical changes in at-
mospheric CO» concentration and N inputs. Simulation 2
(S2) applies historical changes in atmospheric CO; concen-
tration, N inputs, and climate, while applying time-invariant
pre-industrial land cover distribution and pre-industrial wood
harvest rates. Simulation 3 (S3) applies historical changes
in atmospheric CO; concentration, N inputs, climate, land
cover distribution, and wood harvest rates.

S2 is used to estimate the land sink component of the
global carbon budget (SLanp). S3 is used to estimate the total
land flux but is not used in the global carbon budget. We fur-
ther separate Sp Anp into contributions from CO, (= S1-S0)
and climate (=S2 — S1 + S0).

C4.2 DGVM evaluation and uncertainty assessment for
SLanD

We apply three criteria for minimum DGVM realism by
including only those DGVMs with (1) steady state after
spin up, (2) global net land flux (SLanDp — ELucC), i.€. an
atmosphere-to-land carbon flux over the 1990s ranging be-
tween —0.3 and 2.3GtCyr~! within 90% confidence of
constraints by global atmospheric and oceanic observations
(Keeling and Manning, 2014; Wanninkhof et al., 2013), and
(3) global Epyc that is a carbon source to the atmosphere
over the 1990s, as already mentioned in Appendix C2.2. All
DGVMs meet these three criteria.

In addition, the DGVMs results are also evaluated us-
ing the International Land Model Benchmarking system (IL-
AMB; Collier et al., 2018). This evaluation is provided
here to document, encourage, and support model improve-
ments through time. ILAMB variables cover key processes
that are relevant for the quantification of Spanp and result-
ing aggregated outcomes. The selected variables are vege-
tation biomass, gross primary productivity, leaf area index,
net ecosystem exchange, ecosystem respiration, evapotran-
spiration, soil carbon, and runoff (see Fig. B3 for the results
and for the list of observed databases). Results are shown in
Fig. B3 and discussed in Sect. 3.6.5.

For the uncertainty for S Anp, we use the standard devia-
tion of the annual CO, sink across the DGVMs, averaging to
about +0.6 GtC yr~! for the period 1959 to 2021. We attach
a medium confidence level to the annual land CO; sink and
its uncertainty because the estimates from the residual bud-
get and averaged DGVMs match well within their respective
uncertainties (Table 5).

C5 Methodology: atmospheric inversions
C5.1 Inversion system simulations

Nine atmospheric inversions (details of each are given in Ta-
ble A4) were used to infer the spatio-temporal distribution
of the CO; flux exchanged between the atmosphere and the
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land or oceans. These inversions are based on Bayesian in-
version principles with prior information on fluxes and their
uncertainties. They use very similar sets of surface measure-
ments of CO; time series (or subsets thereof) from various
flask and in situ networks. One inversion system also used
satellite XCO; retrievals from GOSAT and OCO-2.

Each inversion system uses different methodologies and
input data but is rooted in Bayesian inversion principles.
These differences mainly concern the selection of the atmo-
spheric CO, data, prior fluxes, spatial resolution, assumed
correlation structures, and mathematical approaches of the
models. Each system uses a different transport model, which
was demonstrated to be a driving factor behind differences
in atmospheric inversion-based flux estimates and specifi-
cally their distribution across latitudinal bands (Gaubert et
al., 2019; Schuh et al., 2019).

The inversion systems all prescribe similar global fos-
sil fuel emissions for FEgpg; specifically, the GCP’s
Gridded Fossil Emissions Dataset version 2022 (GCP-
GridFEDv2022.2; Jones et al., 2022), which is an update
through 2021 of the first version of GCP-GridFED pre-
sented by Jones et al. (2021), or another recent version of
GCP-GridFED (Table A4). All GCP-GridFED versions scale
gridded estimates of CO, emissions from EDGARv4.3.2
(Janssens-Maenhout et al., 2019) within national territo-
ries to match national emissions estimates provided by the
GCP for the years 1959-2021, which are compiled fol-
lowing the methodology described in Appendix C1. GCP-
GridFEDv2022.2 adopts the seasonality of emissions (the
monthly distribution of annual emissions) from the Carbon
Monitor (Liu et al., 2020a, b; Dou et al., 2022) for Brazil,
China, all EU27 countries, the United Kingdom, the USA,
and shipping and aviation bunker emissions. The seasonality
present in Carbon Monitor is used directly for years 2019—
2021, while for years 1959-2018 the average seasonality of
2019 and 2021 are applied (avoiding the year 2020 during
which emissions were most impacted by the COVID-19 pan-
demic). For all other countries, seasonality of emissions is
taken from EDGAR (Janssens-Maenhout et al., 2019; Jones
et al., 2022), with a small annual correction to the seasonality
present in year 2010 based on heating or cooling degree days
to account for the effects of interannual climate variability
on the seasonality of emissions (Jones et al., 2021). Earlier
versions of GridFED used Carbon Monitor-based seasonal-
ity only from 2019 onwards. In addition, we note that GCP-
GridFEDv2022.1 and v2022.2 include emissions from ce-
ment production and the cement carbonation CO; sink (Ap-
pendix C1.1), whereas earlier versions of GCP-GridFED did
not include the cement carbonation CO; sink.

The consistent use of recent versions of GCP-GridFED for
Eros ensures a close alignment with the estimate of Eros
used in this budget assessment, enhancing the comparability
of the inversion-based estimate with the flux estimates de-
riving from DGVMs, GOBMs, and fCO;-based methods.
To ensure that the estimated uptake of atmospheric CO;, by
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the land and oceans was fully consistent with the sum of the
fossil emissions flux from GCP-GridFEDv2022.2 and the at-
mospheric growth rate of CO,, small corrections to the fossil
fuel emissions flux were applied to inversions systems using
other versions of GCP-GridFED.

The land and ocean CO; fluxes from atmospheric inver-
sions contain anthropogenic perturbation and natural pre-
industrial CO, fluxes. On annual timescales, natural pre-
industrial fluxes are primarily land CO; sinks and ocean CO,
sources corresponding to carbon taken up on land, trans-
ported by rivers from land to ocean, and outgassed by the
ocean. These pre-industrial land CO; sinks are thus compen-
sated over the globe by ocean CO, sources corresponding to
the outgassing of riverine carbon inputs to the ocean, using
the exact same numbers and distributions as described for the
oceans in Sect. 2.4. To facilitate the comparison, we adjusted
the inverse estimates of the land and ocean fluxes per latitude
band with these numbers to produce historical perturbation
CO; fluxes from inversions.

C5.2 Inversion system evaluation

All participating atmospheric inversions are checked for con-
sistency with the annual global growth rate, as both are de-
rived from the global surface network of atmospheric CO,
observations. In this exercise, we use the conversion factor
of 2.086 GtC ppm~! to convert the inverted carbon fluxes to
mole fractions, as suggested by Prather (2012). This number
is specifically suited for the comparison to surface observa-
tions that do not respond uniformly (or immediately) to each
year’s summed sources and sinks. This factor is therefore
slightly smaller than the GCB conversion factor in Table 1
(2.142 GtC ppm_l, Ballantyne et al., 2012). Overall, the in-
versions agree with the growth rate, with biases between 0.03
and 0.08 ppm (0.06-0.17 GtC yr—!) on the decadal average.

The atmospheric inversions are also evaluated using ver-
tical profiles of atmospheric CO, concentrations (Fig. B4).
More than 30 aircraft programmes over the globe, either reg-
ular programmes or repeated surveys over at least 9 months,
have been used in order to draw a robust picture of the sys-
tem performance (with space—time data coverage that is ir-
regular and denser in the 0-45° N latitude band; Table A6).
The nine systems are compared to the independent aircraft
CO, measurements between 2 and 7 km above sea level be-
tween 2001 and 2021. Results are shown in Fig. B4, where
the inversions generally match the atmospheric mole frac-
tions to within 0.7 ppm at all latitudes, except for CT Eu-
rope in 2011-2021 over the more sparsely sampled Southern
Hemisphere.
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Appendix D: Processes not included in the global
carbon budget

D1 Contribution of anthropogenic CO and CHy4 to the
global carbon budget

Equation (1) only partly includes the net input of CO; to the
atmosphere from the chemical oxidation of reactive carbon-
containing gases from sources other than the combustion of
fossil fuels, such as (1) cement process emissions, since these
do not come from combustion of fossil fuels, (2) the oxi-
dation of fossil fuels, and (3) the assumption of immediate
oxidation of vented methane in oil production. However, it
omits any other anthropogenic carbon-containing gases that
are eventually oxidized in the atmosphere, forming a diffuse
source of CO», such as anthropogenic emissions of CO and
CH4. An attempt is made here to estimate their magnitude
and identify the sources of uncertainty. Anthropogenic CO
emissions are from incomplete fossil fuel and biofuel burning
and deforestation fires. The main anthropogenic emissions of
fossil CHy that matter for the global (anthropogenic) carbon
budget are the fugitive emissions of coal, oil, and gas sectors
(see below). These emissions of CO and CH4 contribute a net
addition of fossil carbon to the atmosphere.

In our estimate of Epps, we assumed (Sect. 2.1.1) that
all the fuel burned is emitted as CO,, and thus CO an-
thropogenic emissions associated with incomplete fossil fuel
combustion and its atmospheric oxidation into CO, within
a few months are already counted implicitly in Erps and
should not be counted twice (same for Eyyc and anthro-
pogenic CO emissions by deforestation fires). The diffuse at-
mospheric source of CO; deriving from anthropogenic emis-
sions of fossil CHy is not included in Erps. In reality, the
diffuse source of CO, from CH4 oxidation contributes to the
annual CO, growth. Emissions of fossil CHy represent 30 %
of total anthropogenic CH4 emissions (Saunois et al., 2020;
their top-down estimate is used because it is consistent with
the observed CHy growth rate), i.e. 0.083 GtC yr~! for the
decade 2008-2017. Assuming steady state, an amount equal
to this fossil CH4 emission is all converted to CO, by OH
oxidation, and this therefore explains 0.083 GtC yr~! of the
global CO, growth rate, with an uncertainty range of 0.061
to 0.098 GtC yr~! taken from the min—max of top-down es-
timates in Saunois et al. (2020). If this min—max range is
assumed to be 20 because Saunois et al. (2020) did not ac-
count for the internal uncertainty of their minimum and max-
imum top-down estimates, it translates into a 1o uncertainty
of 0.019GtC yr~!.

Other anthropogenic changes in the sources of CO and
CH4 from wildfires, vegetation biomass, wetlands, rumi-
nants, or permafrost changes are similarly assumed to have
a small effect on the CO, growth rate. The CH4 and CO
emissions and sinks are published and analysed separately
in the global methane budget and global carbon monoxide
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budget publications, which follow a similar approach to that
presented here (Saunois et al., 2020; Zheng et al., 2019).

D2 Contribution of other carbonates to CO» emissions

Although we do account for cement carbonation (a carbon
sink), the contribution of emissions of fossil carbonates (car-
bon sources) other than cement production is not system-
atically included in estimates of Eppg, except for Annex I
countries and lime production in China (Andrew and Peters,
2021). The missing processes include CO; emissions asso-
ciated with the calcination of lime and limestone outside of
cement production. Carbonates are also used in various in-
dustries, including in iron and steel manufacture and in agri-
culture. They are found naturally in some coals. CO, emis-
sions from fossil carbonates other than cement not included
in our dataset are estimated to amount to about 0.3 % of Eros
(estimated based on Crippa et al., 2019).

D3 Anthropogenic carbon fluxes in the land-to-ocean
aquatic continuum

The approach used to determine the global carbon budget
refers to the mean, variations, and trends in the perturbation
of CO; in the atmosphere, referenced to the pre-industrial
era. Carbon is continuously displaced from the land to the
ocean through the land—ocean aquatic continuum (LOAC)
comprising freshwaters, estuaries, and coastal areas (Bauer et
al., 2013; Regnier et al., 2013). A substantial fraction of this
lateral carbon flux is entirely “natural” and is thus a steady-
state component of the pre-industrial carbon cycle. We ac-
count for this pre-industrial flux where appropriate in our
study (see Appendix C3). However, changes in environmen-
tal conditions and land-use change have caused an increase
in the lateral transport of carbon into the LOAC — a pertur-
bation that is relevant for the global carbon budget presented
here.

The results of the analysis of Regnier et al. (2013) can
be summarized in two points of relevance for the anthro-
pogenic CO; budget. First, the anthropogenic perturbation
of the LOAC has increased the organic carbon export from
terrestrial ecosystems to the hydrosphere by as much as
1.0£0.5GtCyr~! since pre-industrial times, mainly ow-
ing to enhanced carbon export from soils. Second, this ex-
ported anthropogenic carbon is partly respired through the
LOAC, partly sequestered in sediments along the LOAC,
and to a lesser extent transferred to the open ocean where
it may accumulate or be outgassed. The increase in storage
of land-derived organic carbon in the LOAC carbon reser-
voirs (burial) and in the open ocean combined is estimated
by Regnier et al. (2013) at 0.65 4 0.35 GtC yr—!. The inclu-
sion of LOAC-related anthropogenic CO; fluxes should af-
fect estimates of Spanp and Socean in Eq. (1) but does not
affect the other terms. Representation of the anthropogenic
perturbation of LOAC CO, fluxes is, however, not included
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in the GOBMs and DGVMs used in our global carbon budget
analysis presented here.

D4 Loss of additional land sink capacity

Historical land-cover change was dominated by transitions
from vegetation types that can provide a large carbon sink
per area unit (typically, forests) to others less efficient in
removing CO; from the atmosphere (typically, croplands).
The resultant decrease in land sink, called the “loss of ad-
ditional sink capacity”, can be calculated as the difference
between the actual land sink under changing land cover and
the counterfactual land sink under pre-industrial land cover.
This term is not accounted for in our global carbon budget es-
timate. Here, we provide a quantitative estimate of this term
to be used in the discussion. Seven of the DGVMs used in
Friedlingstein et al. (2019) performed additional simulations
with and without land-use change under cycled pre-industrial
environmental conditions. The resulting loss of additional
sink capacity amounts to 0.9 4 0.3 GtC yr~! on average over
2009-2018 and 42 + 16 GtC accumulated between 1850 and
2018 (Obermeier et al., 2021). OSCAR, emulating the be-
haviour of 11 DGVMs, finds values of the loss of additional
sink capacity of 0.7 £0.6 GtCyr—! and 31 & 23 GtC for the
same time period (Gasser et al., 2020). Since the DGVM-
based Epyc estimates are only used to quantify the uncer-
tainty around the bookkeeping models’ Ep yc, we do not add
the loss of additional sink capacity to the bookkeeping esti-
mate.
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