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Abstract—There is some recent research interest in algorithmic
fairness for biased data. There are a variety of pre-, in-, and post-
processing methods designed for this problem. However, these
methods are exclusively targeting data unfairness and algorithmic
unfairness. In this paper, we propose a novel intra-processing
method to broaden the application scenario of fairness methods,
which can simultaneously address the two bias sources. Since
training modern deep models from scratch is expensive due
to the enormous training data and the complicated structures,
we propose an augmentation and fine-tuning framework. First,
we design an adversarial attack to generate weighted samples
disentangled with the protected attribute. Next, we identify the
fair sub-structure in the biased model and fine-tune the model
via weight reactivation. At last, we provide an optional joint
training scheme for the augmentation and the fine-tuning. Our
method can be combined with a variety of fairness measures. We
benchmark our method and some related baselines to show the
advantage and the scalability. Experimental results on several
standard datasets demonstrate that our approach can effectively
learn fair augmentation and achieve superior results to the state-
of-the-art baselines. Our method also generalizes well to different
types of data.

Index Terms—fairness, augmentation, fine-tuning

I. INTRODUCTION

Recently, high-stakes decision-making urges trustworthy
machine learning models. For example, data might be cor-
rupted and ML models can also be biased just as human
decision-makers [1]-[3]. Algorithmic fairness is gaining grow-
ing interest to address this problem. Many works are at-
tempting to achieve fairness commitments for classification
models [4]-[9]. Some works try to address a substantial source
of the bias, i.e., the dataset itself. Alternatively, many methods
try to rectify bias that manifests in models during training,
which can be categorized into pre-, in-, or post-processing
frameworks. Although these methods achieve great success
in many tasks, there are some scenarios preventing their
application due to the rapid growth of the size of modern
machine learning problems. For example, it is common to
adopt some pre-trained backbone models for related tasks, e.g.,
transformer models for computer vision and BERT for text
analysis. In real-world applications, the models are usually
trained with the accumulation of data, and there are potential
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data distribution may vary with time. In these cases, pre-
processing and in-processing methods are expensive since they
require retraining from scratch each time, and state-of-the-art
models may require thousands of GPU hours. Post-processing
methods sometimes cannot fully use the models since they are
viewed as black boxes.

Intra-processing algorithms have emerged to address these
problems. An intra-processing approach has access to a pre-
trained model and a dataset typically differing from the biased
training dataset. It outputs a debiased model typically by
altering the biased model, e.g., updating or augmenting the
weights. However, existing intra-processing methods usually
overlook some preference of the distribution of data repre-
sentation concerning fairness, and the fine-tuning cannot fully
make use of the network structure. This paper proposes a
novel and flexible intra-processing framework to address these
limitations. Our contributions are summarized as follows,

« We propose to adjust the biased model by a two-step frame-
work. First, we generate augmented data using adversarial
attacks from a potentially biased validation set. Then we
fine-tune the unfair model using the augmented dataset. We
have more control over the behaviors in the two stages,
which correspond to data fairness and algorithmic fairness,
respectively.

e We propose a fairness attack method. Compared to the
standard adversarial attack, our approach use a global attack
to disentangle the protected attribute from the data represen-
tations and assign some sample weights to the augmented
data, to indicate the powerful fairness attack instead of the
general robustness attack.

e« We propose identifying the fair sub-structure in the pre-
trained model and reactivating the corrupted weights in the
fine-tuning, motivated by the over-parameterization property
of deep neural networks. Moreover, we discuss a reward-
guided joint training scheme for the data augmentation and
the model fine-tuning.

« We experimentally demonstrate that our algorithm outper-
forms state-of-the-art intra-processing baselines, and our
approach generalizes well to various settings, e.g., tabular
and vision datasets. We also conduct extensive experiments
to show the difference between intra-processing and the
rest processing methods. The ablation study validates the
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Fig. 1: Comparison of pre-, in-, post-, and intra-processing.

effectiveness of our approach.

II. METHODOLOGY

1) Problem Formulation: Our task is to adjust an unfair
model using a validation dataset. Formally, D = {(X;,Y;)}
denotes a dataset, where X, is a data point containing one
binary protected attribute A, and Y; is the label. fp : RY —
[0, 1] is an unfair neural network with weights 6 (we will drop
0 when it is clear from context). Y = {f(X;)|(X;,Y;)} is the
prediction. p(), JA)) denotes the performance of f, and we use
balanced accuracy in this paper. Specifically, we assume f
is | layers feed-forward neural network, and its i*" layer is
f®. We denote f = f) o f/, so that the first [ — 1 layers
= f@Do...of(M) can be viewed as an encoder to compute
data representations. u(D,Y, A) € [0,1] is a bias measure.
One typically chooses an appropriate definition of the fairness
measure depending on the applications, which we will discuss
later.

Since there is usually some trade-off between the perfor-
mance p and the bias u, we want to decrease the bias p
without significantly sacrifices the performance p. A common
practice is to maximize the model performance subject to
some predetermined tolerance € to the bias, and we have the
objective function,

p ifp<e

D, ,(D,V,A) = { (1)

0 otherwise -

An intra-processing algorithm takes in the validation dataset
Dyai and a trained model fy and outputs a finetuned fp, with
weights ¢’ via optimizing the objective ¢, , .. Note that the
difference between intra-processing algorithms and pre-, in-,
and post- methods makes these methods useful for different
problem settings because these paradigms have different ac-
cess to the data and model, i.e., pre- methods mainly consider
the data, in- mainly consider the model training, and the post-
sometimes cannot access the model details.

Now we describe the fairness measures used in this work.
Following the above notations, we first define the true positive
and false positive rates as,

_HilYi=Yi=1a,=a}|

TPRA—.(D,)) = —
Y =Y, = 1)]
= Pix,vyep(Yi=1l]a; = a,Y; = 1), (2)
- |V =1,Y; =0,a; =
FPRA:a(D,y) — |{7’| ) 0 a a}|

{il¥; = 1,Y; = 0}
= P(XL',Yq-,)eD(Y’i = 1|a1- = (L,Y;- = 0) (3)
Next, we describe the fairness measures used in this paper.
Statistical Parity Difference (SPD),

SPD(D, Y, A) = Pix, yiyep(Yi = 1]a; = 0)

— Px,viyep(Yi = 1la; =1). (4
Equal opportunity difference (EOD) ,
EOD(D,Y,A) = TPRA=(D,Y) = TPRa=1(D,Y). (5)
Average Odds Difference (AOD),

AOD(D, Y, A) = % ((FPRA:U(DJ)) - FPRAZl(D,j)))

(TPRA:O(D>5}) —TPRy—1(D, 37))) :
(6)

2) Adversarial Data Augmentation: As an intra-processing
method, we will use the validation data and the model structure
simultaneously. Here validation data refers to a few data
points for fine-tuning without breaking the test integrity. In
this section, we start describing our method from a balanced
validation set, then discuss an extension to an biased dataset
in the end.

For balanced data, we assume D,,; is balanced concern-
ing the labels and the protected attribute. We augment the
validation data via generating adversarial perturbations for
the following reasons. First, data augmentation helps boost
model accuracy and robustness, whose trade-off is the core
problem for algorithmic fairness. Second, the idea of ad-
versarial training has been successfully employed in some
related fairness algorithms, for example, distributionally robust
optimization for individual fairness (which can be viewed as an
in-processing method). We explicitly consider the adversarial
data augmentation as a separate step in our intra-processing
approach, which allows more control on the behavior of the
adversarial training.

However, our problem is different from the standard adver-
sarial attack setting in two senses: first, fairness requirements
imply some data distribution property; second, the augmen-
tation needs to consider both classification and bias. We will
detail the two challenges and our solutions below.

Global attack to disentangle protected attribute: We observe
that algorithmic fairness has an implicit requirement for the
distribution of data representations compared to standard clas-
sification. Figure. 2 gives an example where representations
entangled with protected attribute values may lead to unfair-
ness. We propose considering a global attack instead of an
instance-wise attack to generate augmented data to address this



Fig. 2: For each data point, color blue/green denotes label
and the hue denotes the protected attribute. Solid line is the
fair classifier, and dashed line is biased. Left: data presentation
entangled with protected attribute may lead to biased classifier.
Right: mixing data representations can avoid the problem.

problem. We define a global attack as an adversarial sample
generated from an instance and some data instances with the
same labels but mixed protected attributes values, which avoid
the potential entanglement between an instance-wise attack
and the protected attributes.

In detail, for an instance of interest X;, we draw a mini-
batch Dx, = X;. Particularly, the samples in the mini-batch
have the same label as X;, and the attribute values are different
from X; with probability p;;p. prip 1S a hyper-parameter. We
consider the following objective function,

= 3 IF0C0) = £, )

X;jeDx,

here f'(X) is the second-last layer output of the unfair model
f, which can be viewed as the data representation. It is worthy
of noting that Eq. (7) is related to some deep metric learning
losses. For example, assume we have a pseudo negative X,
and a margin m, the triplet loss is,

Etriplet =K [(Hf/(Xv) - f,(XJ)H%*
F'(Xa) = F(XOIE +m)+] ®)

alternatively, we can specify two margin term mj and ms to
obtain the triplet loss,

Cmargin = E [((I1f/(X:) = f/ (X)) — ma +ma)4
(= (X3) = FXDNE +ma+ma)s ], 9

Although the loss term is different, it is easy to verify that
the gradient w.r.t. X; takes the same form. Since we will
use multi-step projected gradient descent to compute the
adversarial attack, our loss will share some property of deep
metric learning: attacking the loss will reduce the performance
of models by increasing the distance between positive pairs
because the ultimate goal of metric learning is to pull the
positive pairs together while pushing the negative pairs apart.
In other words, we obtain some augmented data as a mixup of
the data with the same labels but different protected attribute
values, which blurs the protected attribute and leads to a fair
representation.

We consider two types of perturbation: ¢ attack, which
perturbs a sample by its normalized gradient; ¢, attack,
where the sample is perturbed to its gradient direction. Some

previous works have shown the effectiveness of these random

perturbations.

Assigning weights for unfair data: The standard attack prob-

lem usually consider a single objective, e.g., the classification

accuracy. Our problem additionally involves the data bias. To
be specific, we consider three types of augmented data,

e Those augmented data contribute to the general model
robustness but less specific to fairness. In detail,
®, ,.(D,V,A) are affected while (D, ), A) are stable.

e Those augmented data contribute specific to fairness, for
example, when the false positive of augmented data is much
higher than that of the real data. In detail, u(D, 37, A) are
affected while @, , (D, ), A) are stable.

e Both model performance and bias are affected.

Since we focus on algorithmic fairness, we cannot directly
use the model objective function. Some re-arrangement is
necessary to emphasize the second and the third types of
augmented data. To address this problem, we not only generate
augmented data but also assign weights to these data. We
define the weights as,

max {1, A(i — € + € % (Yomo — Vo1 )?) + 1}, (10)
here Y,_j is the prediction of the augmented data point with
protected attribute set to 0, and }7@:1 is the vise versa. A\
and €, are hyper-parameters. i is the bias proxy computed
from the mini-batch so that the data points causing unfairness
(i.e., larger than the margin [ — €) have larger weights than
general augmented data. While fine-tuning the model, we use
stochastic gradient-based methods, and the mini-batches are
sampled w.r.t. to these weights.

At last, we discuss how to extend the above adversarial data
augmentation when a balanced validation dataset is not avail-
able. Since our approach constructs mini-batch with awareness
of the labels and protected attributes, we can still generate
the adversarial attack samples using the same procedure for
a single data point of interest. One feasible method is to
randomly sample the data points in the validation set and with
replacement. This statistical bootstrapping approach can create
a balanced augmentation dataset.

3) Fine-tuning Model via Weights Reactivation: Now we
have the augmented dataset D/ ;. Instead of training from
scratch, we adjust the unfair model via fine-tuning against
D; ;- Modern deep neural networks are over-parameterized.
Many works have shown that there are some redundant sub-
structures inside a model regarding their contribution to the
model performance, e.g., carefully removing a large number
of channels or layer shortcuts [10]-[14] usually will not affect
the model performance significantly. Moreover, deep neural
networks are known for that they can memorize samples with
random labels [15]. Motivated by these findings, we propose
a weight reactivation method instead of directly fine-tuning
the unfair network. First, we freeze the unfair network and
assign a mask network to the weights. Then we learn the mask
networks to identify those corrupted weights. Next, we keep
the valuable weights and reinitialize the corrupted weights



(which is the weights reactivation step). Finally, we fine-tune
the reactivated network for some steps.

Formally, let M be a binary mask, which has the same size
of 0. We first initialize all entries in M with 1 and construct a
masked network f(X;6 ® M), which is identical to f in the
prediction ability. We then identify the sub-networks causing
unfairness with 6 frozen via solving the following problem,

min

L X;00M
Me{0,1}N ft(f( ) O] )ay)7

st [[M[lo/N < 7. (11

here Ly, is the fine-tune loss, 7 is a threshold, and 1 — 7
of the weights are identified as makes little contribution to
algorithmic fairness. By solving the problem in Eq. (11), we
can have the optimal mask M ™ and the corresponding weights
Oy = M* ® 0, which is a fair sub-structure inside the unfair
model.

Directly solving the problem in Eq. 11 is quite hard because
of the constraint of Ly norm. To overcome this difficulty,
we reparameterize masks with continuous values using a
continuous variable m and recover it using sigmoid. To enable
gradient calculation, we can use straight through estimator
(STE) [16]. To make the optimization easier, we can change
the problem to the following form:

wmin £7,(f(zs W © M),y) + FR(IM|o/N. k), (12)
Where (§ is a coefficient parameter, R is a regularization
term to push || M||o/N to a pre-defined threshold 7. By using
this regularization term, the sparsity of all weights is counted
together. The optimization of binary masks is then more
flexible than using the same sparsity rate for all layers. We
choose R(||M|lo/N,7) = log(max(||M|o/N,7)/T). After
we obtain the mask 6, we can obtain the corresponding fy,, .
We no longer need the mask network in the finetune. Instead,
we reactivate the zero weights in fy,, and finetune fy,, using

the weighted objective function Ly, = E [wﬁp,«ed((y),y) ,
where w is the weight of the augmented data point, and L,cq
is a generic loss function, e.g., binary cross-entropy.

4) Joint Augmentation and Fine-tuning: Our data aug-
mentation and fine-tuning algorithm consider data fairness
and algorithmic fairness, respectively. A naive pipeline first
generates the augmented data using different attack types
then fine-tune the model. Alternatively, some works show that
combining the two isolated processes is sometimes beneficial.
We further introduce a reward mechanism to explore the
combinations of augmentations efficiently. Assume we have
K attack types, we define P = [p;] to be the probability
that the i'" attack type is selected, and initial p; = +.
We generate the attack for each mini-batch according to P
using and compute ¢; for different attack types. We update
P by rewarding powerful attacks, P; = min {1, (1 +~)F;},
P; = max {0, P; — Izl_)"l }, Vj # i. We alternate the augmen-
tation using updated P and the fine-tuning using the running
augmentation. In practice, we can accelerate the training by

only running the pruning part.

TABLE I: Computational results on CIFAR-10S benchmark.
Since the bias tolerance is 0.05, some approaches are not
considered fair. Our method has the best accuracy under the
fairness constraint.

| | accuracy | bias |

‘ Baseline ‘ 0.892 + 0.004 ‘ 0.080 ‘
Uni.Conf. [17] 0.842 + 0.011 0.097
Adv.Debias [18] 0.841 +£0.011 0.099
Dom.Disc. [19] 0.904 £ 0.049 0.043
Dom.Ind. [20] 0.920 + 0.009 0.005
RndPert [21] 0.913 + 0.021 0.048
LayerwiseOpt [21] 0.898 £+ 0.016 0.043
Adv.Ft [21] 0.917 £ 0.018 0.051
Proposed®™f 0.919 £ 0.010 0.018
Proposedi™d 0.914 + 0.007 0.033
Proposed 0.926 + 0.012 0.009
Proposed’ ¢t 0.935 £ 0.019 0.014

TABLE II: The performance of the baseline model and our
approach for CIFAR-10S benchmark under different bias level.

| Bias level | Method |  Accuracy |

Baseline 0.935

80 Proposed 0.946
Proposed’ ¢t 0.944

Baseline 0.917

90 Proposed 0.933
Proposed’ ¢t 0.941

Baseline 0.894

99 Proposed 0.914
Proposed’©¢mt 0.921

TABLE III: Computational results on CelebA dataset. The
results are based on five runs and the mean Bias column
indicates the unfair models.

| | accuracy | bias |

| Baseline | 053£0.00 | >005 |
ROC [22] 0.53 £0.01 < 0.05
EqOdds [23] 0.98 £ 0.00 > 0.05
CalibEqOdds [24] 0.51 +£0.01 < 0.05
RndPert 0.56 £+ 0.03 > 0.05
LayerwiseOpt 0.52 +0.02 < 0.05
Adv.Ft 0.91 £ 0.00 < 0.05
Proposed 0.93 £0.00 < 0.05
Proposed’ ©¢mt 0.96 +0.01 < 0.05

III. RESULTS

In this section, we empirically evaluate our approach. We
conduct the experiments on two representative data forms,
image, and tabular data. The results demonstrate that our
method achieves comparable or superior fairness compared
to related fair algorithms, and we also show the difference
between intra-processing methods and the rest approaches. We
also include the ablation studies and discuss some properties
of our method in the benchmark.



1) Image Data Classification: We consider two image
datasets, CIFAR-10 Skewed and CelebA. CIFAR-10 Skewed is
a synthesized dataset serving as a benchmark for comparing
intra-processing methods and the related schemes. We also
include the necessary ablation study using this benchmark.
CelebA is a real-world dataset to further verify the advantage
of our approach compared to other state-of-the-art methods.
We detail the construction of the two datasets and the experi-
mental evaluation in the following.

We use the CIFAR-10 Skewed (CIFAR-10S) bench-
mark [20] to show the effectiveness of the intra-processing
scheme compared to the rest processing schemes. CIFAR-10S
is based on CIFAR-10 [25], a dataset with 50,000 32x32 im-
ages evenly distributed between 10 object classes. In CIFAR-
10S, each of the ten original classes is subdivided into two
new domain subclasses, corresponding to color and grayscale
domains within that class. Per class, the 5,000 training images
are split 95% to 5% between the two domains; five classes
are 95% color, and five classes are 95% grayscale. The total
number of images allocated to each domain is thus balanced.
We create two copies of the standard CIFAR-10 test set for
testing: one in color (COLOR) and one in grayscale (GRAY).
These two datasets are considered separately, and only the 10-
way classification decision boundary is relevant. The CelebA
dataset [26] is a popular image dataset used in computer sci-
ence research. In this experiments we choose two models [20],
[27]. One predicts whether or not the person is young, and
the other predicts whether the person is smiling. We set the
protected attribute to Fitzpatrick skin tones in the range 4 — 6,
as in [28]. We label the attributes and use the same pre-training
setting following [21]. For both datasets we use a ResNet-
18 [29] pretrained on ImageNet from the PyTorch library as
the initial model. Table. III summarizes the results. Proposed
and Proposed’®™ are our method without and the jointly
training, respectively. Besides, we include two variants for the
ablation study. Proposed“™f omits the weighted sampling for
the augmented data. Proposed’”? omit the protected attribute
in mini-batch sampling. Table. III summarizes the results.

2) Tabular Data Classification: Besides image datasets, we
also consider three widely-used tabular binary classification
datasets from AIF360 [30] to show that our approach can
generalize to different application scenarios. Each dataset
contains at least one protected feature. For all experiments,
we follow the settings in [21]. The results are obtained by
averaging the fairness metrics on the test sets based on ten
random initialization. Table IV summarizes the results on
the Adult dataset. Table V summarizes the results on the
COMPAS dataset. Table VI summarizes the results on the
Bank dataset. For all datasets, we follow [21] and use a feed-
forward neural network with ten fully-connected layers of size
32. A BatchNorm layer follows each fully-connected layer. We
use a dropout fraction of 0.2. For more details, please refer
to [21]. The rest of the settings are similar to the image tasks.

3) Discussions: In this experiment, we have several obser-
vations. For the CIFAR-10S benchmark, a perfect unbiased
model trained on clean data has a performance of 95.4%.

Table. I shows that our method works are superior to all
the baselines significantly. Table. II further highlights the
performance evolution w.r.t. bias, and we can find that for
extremely high bias (i.e., 99%), our method still performs well.
Our approach can achieve nearly perfect fairness when the bias
is moderately high (i.e., 80%). We also notice that the model
accuracy is relatively stable w.r.t. initialization. However, the
model bias usually has a larger perturbation which can be
future work. We notice that the algorithmic design for specific
fairness criteria cannot generalize to different scenarios. These
results are consistent with the observation that many group
fairness constraints are intrinsically incompatible so that trade-
offs between them shall be considered [31]. On the contrary,
the adversarial framework is more flexible, and different fair-
ness objectives can share the same processing. Our approach
usually has better-balanced accuracy and comparable (i.e.,
no statistical significance) bias than the state-of-the-art intra-
processing baselines. This result indicates that our approach
dominates the baselines Pareto-optimally. Proposed“™/ and
Proposed™® are ablated versions. The performance gap be-
tween the ablated version and the proposed full algorithm
demonstrates the effectiveness of our design. On the other
hand, the advantage of joint training is more dependent on the
tasks. We notice that, in general, Proposedj"mt works better
than Proposed for image data. Tabular data have a different
structure compared to image data, and the model is usually
simpler, which benefits less from the joint training.

IV. CONCLUSION

In this paper, we propose a novel intra-processing fair-
ness framework. Our framework includes two steps. First,
we augment the available data to reduce the potential data
level bias. Second, we identify the fair sub-structure in the
biased model and fine-tune the reactivated model to obtain
the algorithmic fairness. We benchmark the performance of
the intra-processing method and show the effectiveness of our
design. Extensive experiments demonstrate that our approach
is suitable for various application scenarios and has a compa-
rable performance w.r.t. state-of-the-art methods.
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