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ABSTRACT

The number of occupancy and occupant behaviour models developed for building performance
simulation (BPS) has steadily increased for the past four decades. However, their use is still limited in
practice. This is partly due to the difficulty in understanding their utility and to the challenges related
to their implementation intoBPS. Bothproblems canbeattributed to the lackof a framework for their
description and communication. In this paper, we fill this gap by introducing a framework to docu-
ment occupant models, that represents the state-of-the-art of available information on the topic.
The framework consists of four blocks (description, development, evaluation, and implementation)
and can alsobe regarded as aguideline tohelp researchers communicate theirmodels transparently.
Basedon a systematic review,we verify towhichdegree existing academic papers onoccupantmod-
els meet the framework, thus providing a self-critical assessment of the state-of-the-art of occupant
models’ documentation.
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1. Introduction

1.1. Context

Occupancy and occupant behaviour have been sug-

gested to significantly contribute to the uncertainty of

Building Performance Simulation (BPS) results (O’Brien

et al. 2020; Yoshino, Hong, andNord 2017). In the last four

decades, a steadily increasing number of efforts has been

undertaken to improve occupant models with respect to

their fidelity and resolution. However, the implementa-

tion of occupant models is still limited in practice. Evi-

dence from an international survey on current occupant

modelling practices and attitudes in BPS suggests that

occupant modelling remains mostly an academic exer-

cise, and practitioners’ current occupant assumptions are

simplistic and either overly optimistic or conservative

depending on the application (O’Brien et al. 2017). Sim-

ilarly, Azar et al. (2020) and Lindner, Park, and Mitterhofer

(2017) independently observed that the application of

occupantmodels is still very limited in thebuildingdesign
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process. One reason for the limited uptake of occupant

models in real-world applications could be the difficulty

in adequately understanding their utility and robustness

and the challenges related to their implementation into

BPS (Lindner, Park, and Mitterhofer 2017). Both problems

couldbe associatedwith the lack of a standard framework

and/or guideline for occupantmodels’ description, docu-

mentation, and communication (Mahdavi and Tahmasebi

2019).

1.2. Previous relatedworks

Most of the past reviews on occupant modelling in build-

ings focused on the employedmodelling formalisms and

techniques (Jia, Srinivasan, andRaheem2017; Zhanget al.

2018; Dong et al. 2018; Gaetani, Hoes, and Hensen 2020;

Carlucci et al. 2020). Jia, Srinivasan, and Raheem (2017)

compared and analysed the advantages and limita-

tions of current occupant modelling approaches (agent-

based, statistical, stochastic, and data mining), making

© 2022 International Building Performance Simulation Association (IBPSA)
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recommendations for future research, such as the need to

collectmore empirical data and to further develop agent-

based models for integration into BPS tools. Zhang et al.

(2018) also reviewed agent-based, statistical, stochastic,

and data mining methods for occupant behaviour mod-

elling and identified major research gaps, including the

necessity of collecting data at city scale and account-

ing for the socio-economic status. Dong et al. (2018)

presented the most commonly used statistical and data

mining models and provided a modelling reference for

future researchers to select a proper method or model

for a specific research purpose. Similarly, Gaetani, Hoes,

and Hensen (2020) focused on introducing and testing a

methodology, which comprises uncertainty and sensitiv-

ity analysis, to help identify the fit-for-purpose modelling

formalism for each occupant aspect. Carlucci et al.’s more

recent review gave an exhaustive overview of methods

and techniques used for occupant behaviour modelling

(Carlucci et al. 2020).

Othermore conceptualworks dealtwith framingoccu-

pant behaviour to better understand and standardize its

semantic representation (Hong et al. 2015; Deme Belafi,

Hong, and Reith 2019; Arslan, Cruz, and Ginhac 2019). In

this respect, Hong et al. (2015) proposed the ‘Drivers –

Needs – Actions – Systems’ (DNAs) framework, which is

constituted of four key components: i) the Drivers of

behaviour, ii) the Needs of the occupants, iii) the Actions

carried out by the occupants, and iv) the building systems

acted upon by the occupants. Deme Belafi, Hong, and

Reith (2019) implemented the theoretical DNAs frame-

work into an XML (eXtensible Markup Language) schema

format and represented each occupant model in a sepa-

rate XML file to form a library of occupant models, which

can be used for co-simulation. Arslan, Cruz, and Ginhac

(2019) created a framework named ‘Occupant behaviours

in Dynamic Environments’ (OBiDE) to integrate the DNAs

ontology with a trajectory enrichment model for the

movements of the occupants.

In closer relation to the present paper, some past

works tackled specific aspects related to the process

of describing, developing, evaluating, and implement-

ing an occupant model (Lindner, Park, and Mitterhofer

2017; Gunay, O’Brien, and Beausoleil-Morrison 2013; Yan

et al. 2015; Mahdavi and Tahmasebi 2017; Mahdavi

and Tahmasebi 2016; Li et al. 2019; Wolf et al. 2015;

Abuimara et al. 2019; Abuimara, Gunay, andO’Brien 2021;

Abuimara et al. 2018). Gunay, O’Brien, and Beausoleil-

Morrison (2013) reviewed the research on adaptive occu-

pantbehaviour inoffices, highlightingexisting limitations

in observational, modelling, and simulation studies of

occupant behaviour. Yan et al. (2015) reviewed the cur-

rent state of the art and highlighted future challenges

in data collection, modelling, evaluation, and integration

within BPS programmes. Especially concerning occupant

model evaluation, Mahdavi and Tahmasebi (2017) dis-

cussed evaluation requirements and promoted a rigor-

ous process towards quality assurance. In another work,

Mahdavi and Tahmasebi (2016) dealt with the context-

dependence of occupancy-related model use in BPS.

Wolf et al. (2015) reviewed evaluation methods of occu-

pantmodels and criticized internal validationprocedures.

Lindner, Park, and Mitterhofer (2017) discussed issues

and requirements for theproper implementationof occu-

pant models in BPS tools, focusing in particular on an

office case study employing different occupant models.

Li et al. (2019) created a framework to help understand

the process of occupant model development, highlight-

ing associated challenges and establishing a set of criteria

for the rational selection from existing occupant mod-

els. Abuimara et al. (2019; Abuimara, Gunay, and O’Brien

2021; Abuimara et al. 2018) highlighted the infancy of

occupant models in terms of implementation and the

need to accommodate occupant models in an easy to

apply way to make it more convenient for practitioners

to use.

1.3. Research aims

Earlier studies have addressed specific aspects related to

the process of describing, developing, evaluating, and

implementing an occupant model (Lindner, Park, and

Mitterhofer 2017; Dong et al. 2018; Abuimara, Gunay,

and O’Brien 2021; Abuimara et al. 2018; Deme Belafi,

Hong, and Reith 2019; Gunay, O’Brien, and Beausoleil-

Morrison 2013; Yan et al. 2015; Mahdavi and Tahmasebi

2017; Mahdavi and Tahmasebi 2016; Li et al. 2019; Wolf

et al. 2015; Abuimara et al. 2019). However, they have

rather considered them individually, thusmissing consid-

ering and including all the aforementioned elements in

a more holistic perspective. A view on the whole process

of describing, developing, evaluating, and implementing

an occupant model, which is independent of the partic-

ular modelling formalism adopted, is currently missing.

Furthermore, none of the past works has reviewed exist-

ing occupant behaviour papers intending to present the

current status of occupant models’ documentation.

Thus, the first objective of this paper is to derive a

framework for the documentation of occupant models

based on past works on the topic (Lindner, Park, and Mit-

terhofer 2017; Dong et al. 2018; Abuimara et al. 2019;

Abuimara, Gunay, andO’Brien 2021; Abuimara et al. 2018;

Gunay et al. 2014; Fabi et al. 2012; Schweiker et al. 2020;

Heinze, Wallisch, and Dunkler 2018; Coleman 1974; Hong

et al. 2018; Carlucci et al. 2020; Deme Belafi, Hong, and

Reith 2019;Gunay,O’Brien, andBeausoleil-Morrison2013;

Yan et al. 2015; Mahdavi and Tahmasebi 2017; Mahdavi
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and Tahmasebi 2016; Li et al. 2019; Wolf et al. 2015).

The framework includes all the above-cited aspects:

description, development, evaluation, and implementa-

tion (section 3) and can be regarded as the state-of-

the-art of the available information on how an occupant

model should be documented. The second objective is to

verify towhich degree existing academic papers on occu-

pant models meet this framework, thus providing a self-

critical assessment of the state-of-the-art of how occu-

pant models are currently documented in reality (section

4 and 5).

The purpose of the presented framework is three-fold.

Firstly, to serve as a guideline for documentation that can

help researchers transparently communicate their mod-

els. Secondly, to facilitate the objective of the evaluation

reliability of occupant models. Thirdly, to help modellers,

practitioners and stakeholders better comprehend occu-

pant models’ utility and direct them in selecting and

adopting the most suitable model for their application.

The framework does not aim to guide the develop-

ment of occupant models. Other works have been ded-

icated to this scope, in particular focusing on the optimal

choice of the model formalism depending on the type

of behaviour, building type, and spatial and temporal

scale (Jia, Srinivasan, and Raheem2017; Zhang et al. 2018;

Dong et al. 2018; Gaetani, Hoes, and Hensen 2020; Car-

lucci et al. 2020). Furthermore, the focus of this paper is on

occupant models developed for building/district perfor-

mance simulation, that is on models that are used to pre-

dict the performance of a building/district in terms of, for

example, energy consumption, carbon emissions, and/or

thermal comfort experienced by the occupants. Occu-

pant models integrated into real-time building energy

system controls are out of the scope of this work.

2. Methodology

2.1. Framework development

The framework is based on previous works (Lindner,

Park, and Mitterhofer 2017; Dong et al. 2018; Abuimara

et al. 2019; Abuimara, Gunay, andO’Brien 2021; Abuimara

et al. 2018; Gunay et al. 2014; Fabi et al. 2012; Schweiker

et al. 2020; Heinze, Wallisch, and Dunkler 2018; Coleman

1974; Hong et al. 2018; Carlucci et al. 2020; Deme Belafi,

Hong, and Reith 2019; Gunay, O’Brien, and Beausoleil-

Morrison 2013; Yan et al. 2015; Mahdavi and Tahmasebi

2017; Mahdavi and Tahmasebi 2016; Li et al. 2019; Wolf

et al. 2015) and recent reflections and discussions among

the authors, who are all participants of Annex 79 of the

International Energy Agency’s Energy in Buildings and

Communities Programme, titled ‘Occupant-centric build-

ing design and operation’. In deriving the framework, a

‘best practice’ approach could not be followed because

there is no real best practice in the literature of occupant

behaviour models and no model could be successfully

deployed to general practice (e.g. by standards). There-

fore, as experts engaged in the work of Annex 79, we

discussed and elaborated a framework based on past

research efforts on the topic (Lindner, Park, and Mit-

terhofer 2017; Dong et al. 2018; Abuimara et al. 2019;

Abuimara, Gunay, andO’Brien 2021; Abuimara et al. 2018;

Gunay et al. 2014; Fabi et al. 2012; Schweiker et al. 2020;

Heinze, Wallisch, and Dunkler 2018; Coleman 1974; Hong

et al. 2018; Carlucci et al. 2020; Deme Belafi, Hong, and

Reith 2019;Gunay,O’Brien, andBeausoleil-Morrison2013;

Yan et al. 2015; Mahdavi and Tahmasebi 2017; Mahdavi

and Tahmasebi 2016; Li et al. 2019; Wolf et al. 2015).

Toward this aim we would like to emphasize that the

framework has been developed to be: schematic, tomake

it easier to find and extract all the information, and gen-

eral, to be adaptable to the different occupant models’

formalisms, purposes, and implementation needs.

2.2. Review of papers on occupantmodels

The bibliographic search to identify academic papers on

occupantmodels was conducted through the Scopus sci-

entific database aspart of a recentwork reviewingmodels

of occupants’ presence and actions in buildings (Carlucci

et al. 2020). As part of this search, 278 journal papers were

identified. These studiesweremanually screened to iden-

tify those papers dealing with models developed explic-

itly for building/district performance simulation; this led

to 82 papers being selected. We then added four papers

(Jin et al. 2020; Panchabikesan, Haghighat, and ElMankibi

2021; Lu et al. 2021; Zhou et al. 2021) published last

year (2020) that were not covered in the original review.

Papers that were about comparing and/or using previ-

ously published occupant models were excluded; thus,

only original papers about newly developed models for

predicting occupant behaviour in a building/district were

retained for review. A total of 86 papers (Jin et al. 2020;

Panchabikesan, Haghighat, and El Mankibi 2021; Lu et al.

2021; Zhou et al. 2021; de Santiago, Rodriguez-Villalón,

and Sicre 2017; Binini, Munda, and Dintchev 2017; Widén

et al. 2009; Yao and Steemers 2005; Bandić and Kevrić

2019;Wang, Yan, and Ren 2016; Stokes, Rylatt, and Lomas

2004; Richardson et al. 2010; Richardson et al. 2009; Zhou

et al. 2015; Hunt 1979; Gilani and O’Brien 2018; Richard-

son, Thomson, and Infield 2008; Page et al. 2008; Ander-

sen et al. 2014; D’Oca and Hong 2015; Aerts et al. 2014;

Haldi and Robinson 2010; Belazi et al. 2019; Gunay et al.

2018; Tanimoto andHagishima 2005; Ren, Yan, andWang

2014; Fabi, Andersen, andCorgnati 2013; Chen et al. 2017;

Schweiker and Shukuya 2009; Bruce-Konuah, Jones, and
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Fuertes 2019; Haldi and Robinson 2008; Deme Belafi et al.

2018; Calì, Wesseling, and Müller 2018; Yao and Zhao

2017; Tetlow et al. 2015; Jones et al. 2017; Stazi et al.

2017; Calì et al. 2016; Shi and Zhao 2016; Fabi, Ander-

sen, and Corgnati 2015; Yun and Steemers 2010; Yun,

Tuohy, and Steemers 2009; Fritsch et al. 1990; Andersen

et al. 2013; Yun and Steemers 2008; Capasso et al. 1994;

Haldi and Robinson 2009; Schweiker et al. 2012; Pan et al.

2018; Shi et al. 2018; Li et al. 2015; Wei et al. 2019; Pan

et al. 2019; Yun, Kim, and Kim 2012; Barthelmes et al.

2017; Rosemann 2017; Yilmaz, Firth, and Allinson 2017;

Causone et al. 2019; Tanimoto, Hagishima, and Sagara

2008; Fischer et al. 2016; Kashif et al. 2013; Widén, Nils-

son, and Wäckelgård 2009; Ozawa, Kudoh, and Yoshida

2018; Chang and Hong 2013; Cedeno Laurent, Samuel-

son, and Chen 2017; Herkel, Knapp, and Pfafferott 2008;

Mahdavi et al. 2008; Paatero and Lund 2006; Reinhart

2004; D’Oca et al. 2014; Langevin, Wen, and Gurian 2015;

Naspi et al. 2018; Naspi et al. 2018; Schweiker and Wag-

ner 2016; Jia et al. 2019; Widén and Wäckelgård 2010;

Gottwalt et al. 2011; Putra, Andrews, and Senick 2017;

Wilke et al. 2013; Nord et al. 2018; Lee and Malkawi

2014; Haldi et al. 2017; Baetens and Saelens 2016; Nicol,

Humphreys, and Olesen 2004; Andersen et al. 2009; Pflu-

gradt and Muntwyler 2017) were thoroughly read and

systematically reviewed by extracting the information of

interest according to the documentation framework and

collating it in a spreadsheet that is publicly accessible (see

Supplementary Materials).

The review presented in this paper addresses only

occupant models developed for predicting new or future

observations. However, the distinction between occu-

pant models developed for prediction and those built

for explanation or description is not always obvious,

especially for regression-typemodels. For example, some

papers appear to build a descriptive model, but they

concurrently state that their models should be used in

BPS (Bruce-Konuah, Jones, and Fuertes 2019; Andersen

et al. 2013; Nicol 2001; Schweiker and Shukuya 2009).

Some of them are indeed then used in BPS (D’Oca

et al. 2014). This is due to the false assumption that

models with high explanatory power (i.e. high strength

of the underlined casual relationships) also have high

predictive power (Shmueli 2010). Given that the dis-

tinction between prediction and explanation/description

is not always understood, we have decided not to

exclude models which seem explanatory or descrip-

tive. Yet, it is of fundamental importance that, in the

future, the distinction between prediction and expla-

nation or description is well understood and that the

paper clearly states whether the goal of the devel-

oped occupant model is predictive, explanatory, or

descriptive.

3. The occupant model documentation
framework

In this section, we describe the framework developed

for the documentation of occupant models used in BPS.

Figure 1 provides an overview of the framework whose

individual elements aredescribed indetail in sub-sections

3.1, 3.2, 3.3, and 3.4. As it can be noticed in Figure 1, the

framework is given in a specific order: ‘1. Model Descrip-

tion’, ‘2. Model Development’, ‘3. Model Evaluation’, and,

finally, ‘4. Model Implementation’. This is not necessarily

the logical order followed when deriving a model since

a model could be implemented before being evaluated

and the ‘Required Inputs’ in ‘1. Model Description’ can-

not be identified before doing ‘Feature Selection’ in ‘2.

Model Development’. Hence, it should be highlighted that

the framework is meant to be applied in the specified

order only when reporting and documenting an occu-

pant model and not when deriving it. The narrative logic

of this documentation framework is to provide first a con-

textual overview of themodel (‘Description’), then specify

how it hasbeendeveloped (‘Development’) andevaluated

(‘Evaluation’). Finally, technical details for its implementa-

tion should be specified.

3.1. Model Description

The description of a model (block 1) represents the first

and most crucial step that should be undertaken by the

developers of an occupant model when documenting it.

This also allows the developers to reflect on the utility of

their model and its applicability domain. The elements of

the framework related to Model Description are summa-

rized in Table 1.

The authors of an occupant model should explicitly

report a clear and concise formulation of the problem

their model deals with (Model Purpose). Indeed, a BPS can

be used for different goals and in different phases of the

life cycle of a building and/or of the building delivery pro-

cess, such as a parametric study of a building’s design or

retrofitting options, a floor’s HVAC system sizing, a room’s

overheating risk assessment, a district’s energy flexibil-

ity capacity assessment, a building’s regulatory compli-

ance, etc. The related definition of the model’s bound-

aries (Domain of Applicability) should include different

aspects:

• the spatial scale, that is the simulation’s spatial exten-

sion (e.g. room-zone, floor, building, district, urban);

• the spatial resolution, that is the zonal destination of

the model (e.g. room, household, floor, building);

• the temporal scale, that is the simulation time length

(e.g. weekly, monthly, annual);
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Figure 1. Overview of the 14 elements of the framework, which are distributed into four blocks (Description, Development, Evaluation,
and Implementation).

Table 1. The elements of the framework related to block 1.

1 – MODEL DESCRIPTION

MODEL PURPOSE
DOMAIN OF APPLICABILITY spatial scale

spatial resolution
temporal scale
temporal resolution
building type
demographic, socio-economic,
cultural, technological, and climatic
context

REQUIRED INPUTs physical
physiological
psychological
contextual

MODELLED OUTPUTs

• the temporal resolution, that is the required simulation

time-step (e.g. 1, 5, 10min, half-hour, hourly);

• the building type, that is the dominant function of

the building (e.g. residential, office, retail, educational,

dormitory);

• the demographic and socio-economic context (e.g.

social housing, nursing home);

• the cultural context (e.g. country);

• the technological context (e.g. system type and

control);

• the climatic context (e.g. Köppen climate classification,

season).

Occupant behaviour is a continuous-time process.

However, since in conventional BPS tools time advances

in fixed time-steps, it is most common to use a discrete-

time rather than an event-driven simulation approach.

This discretisation inevitably results in a loss of informa-

tion. For example, all short dynamics are ignored if they

last less than the given time-step.Moreover, the outcome

of interest is bound to occur only at the selected time-

step (e.g. every 5min, every 10min, etc.). The importance

of defining the temporal resolution has been stressed by

Gunay et al. (2014) and Lindner, Park, and Mitterhofer

(2017). Bothof themhave shown that themost oftenused

discrete-time simulation approaches require an occupant

model to have a time step that is fixed both throughout

the simulation run and between different runs or exper-

iments. A change in the size of the time-step can result

in considerable differences in the predicted outcomes

and performances of an occupant model. Consequently,

the time-step of the simulation is paramount and should

be chosen and communicated carefully. It is essential to

underline that the choice of the time-step also depends

on the granularity of the data used for constructing the

model. The work of Mahdavi and Tahmasebi (2016) fur-

ther shows that the choice of a specific level of spatial

and temporal scale and spatial and temporal resolution

depends on the purpose or deployment scenarios of the

model.
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As part of an occupant model description, the authors

should also clearly define the inputs of the model

(Required Inputs), which are not necessarily continuous

variables (e.g. the typical physical ones) but they can

also be categorical variables (e.g. arrival/departure times,

kitchen/bedroom room types). For example, the occu-

pantmodelmight havedifferent analytical forms indiffer-

ent categories. For facilitating their communication, the

required input variables can be classified in:

• physical, covering measurable physical properties of

the indoor and outdoor environment (e.g. indoor air

temperature, indoor transmitted solar radiation, out-

door relative humidity, rain),

• physiological, covering physiological characteristics of

the occupants (e.g. occupant age, gender, weight,

height, health status),

• psychological, covering psychological characteristics

of the occupants (e.g. occupant habits and attitudes,

personality traits, mental stress levels),

• contextual, that is the set of inputs related to the

context (e.g. arrival/departure times, kitchen/bedroom

room types, building and system design, time of day,

type of day, geographic location).

This classification is based on a simplification of the

occupant behaviour drivers identified in Fabi’s review

(Fabi et al. 2012). For a more complete overview of the

contextual variables, see also the work of Schweiker et al.

(2020).

The model’s output, namely the predicted occupancy

and/or occupant behaviour (Modelled Outputs), should

also be specified. This could bemore than one output; for

example, the outcome of a model could be both thermo-

stat and clothing adjustment behaviour. We identify the

following main targets:

• occupancy (including occupant counting),

• appliance use,

• thermostat adjustment,

• window operation,

• shading operation,

• lighting operation.

3.2. Model Development

The elements of the framework related to block 2 (Model

Development) are summarized in Table 2. The developers

of an occupant model should clearly describe the dataset

used to build/train their model (Empirical Basis), which

should include details on:

Table 2. The elements of the framework related to block 2.

2 – MODEL DEVELOPMENT

EMPIRICAL BASIS study type
data type
sample size
building type
demographic, socio-economic,
cultural, technological, and climatic
context

sampling frequency
length of the monitoring period

FEATURES SELECTION
MODELLING FORMALISM

• the type of study carried out for deriving the dataset,

which can be either observational (in actual buildings)

or experimental (i.e. laboratory-based in test rooms or

living labs),

• the measured variables, that can be survey-based (e.g.

Time Use Survey – TUS – activity data), sensor-based

(e.g. PIR records, lighting-switch records) or both of

them,

• the sample size in terms of number of buildings (e.g.

two buildings), independent surveyed units (e.g. 15

apartments, three open-plan offices), and occupants

(e.g. 20 occupants),

• the building type (e.g. residential, office, retail, educa-

tional, dormitory),

• the demographic and socio-economic context of the

study (e.g. social housing, nursing home),

• the cultural context (e.g. country),

• the technological context (e.g. system type and con-

trol),

• the climatic context (e.g. Köppen climate classification,

season).

• the sampling frequency of themeasurements (e.g. 1, 5,

10min, half-hour, hourly),

• the length of themonitoring period (e.g. onemonth or

two summers)

It is to be noted that the ‘building type’ and the ‘demo-

graphic, socio-economic, cultural, technological, and cli-

matic context’ characterize both the empirical basis and

the domain of applicability of the model. However, they

do not necessarily match since the model can be applied

beyond the boundaries of the empirical data. Any appli-

cation beyond the data collection domain needs to be

justified and evaluated.

The authors should also clearly define whether Inde-

pendent Variables/Features Selection was carried out to

reduce the data dimension by determining the most

relevant feature subsets and should also indicate the

method employed. Feature (or variable) selection is an

important and delicate aspect (arguably one of the most
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complex parts) in developing a model and is primar-

ily focused on removing non-informative or redundant

predictors. It depends on the modelling strategy (for

instance, tree-based models inherently perform variable

selection), which depends on the aim of the study.

Several approaches can be applied to perform feature

selection. In their review on variable selection, Heinze,

Wallisch, and Dunkler (2018) categorized the following

criteria for variable selection:

• ‘Significance criteria’ are perhaps the most popular cri-

teria for variable selection and includehypothesis tests

(e.g. Wald test’s p-value).

• ‘Change-in-estimatecriterion’ consists of examining the

relative change (%) in the parameters of the remain-

ing variables when one is removed. If the difference is

above a threshold, it is considered relevant, and the

removed variable is added back to the model. This

approach can also be used to account for confounders.

• ‘Information criteria’ focus on selecting a model from

a set of models rather than variable selection. How-

ever, these methods penalize model complexity and,

therefore, the inclusion of a new variable. Akaike Infor-

mation Criterion (AIC), Bayesian Information Criterion

(BIC), andMallows’ Cp are examples that belong to this

category.

• ‘Penalised likelihood’ is an alternative way to perform

model selection. In this case, a model that contains

all the predictors is fitted using a technique that

shrinks the coefficient estimates towards zero. When

the penalty is the �1 norm (i.e. the sum of the absolute

coefficients), some coefficient estimates are forced to

be exactly zero. Hence, a variable section is performed.

Lasso regression belongs to this category.

• ‘Background knowledge’ refers to both subject-specific

and general knowledge in the domain of application

of the model.

These criteria can be implemented in variable selec-

tion algorithms. Some popular approaches are backward

elimination, forward selection, and stepwise (forward or

backwards) selection.

Regarding the Modelling Formalism, occupant behav

iour is often modelled by assuming it is a stochastic

process. Following the definition of Coleman (1974), a

stochastic process can be defined as ‘a system which

evolves in time while undergoing chance fluctuations’,

which means that there is a certain probability of get-

ting a certain outcome for each observation at a spe-

cific time. Therefore, to implement occupant behaviour

in BPS, two fundamental aspects need to be considered:

(i) the probability of a certain outcome; and (ii) the evo-

lution of this probability over time. For modelling the

probability of a certain outcome, we can use analytical

or statistical modelling approaches, which include gen-

eralized linear models, i.e. a broad class of models where

the response Y relates to the linear predictor Xβ through

a link function (denoted by g(·)). This is not to be con-

fused with general linear models, which refers to conven-

tional linear regression models. However, if the ‘identify

link’ (g(µ) = µ = Xβ) is selected, general linear mod-

els can be viewed as a particular case of generalized

linear models. For modelling the evolution of the prob-

ability over time, we identify the following three main

approaches:

• Bernoulli process is used to model the probability of

having a certain state (or event) independently from

the previous state (or event).

• A discrete-time Markov-chain technique is used to

model the probability of changing state or event (i.e.

transitions probabilities) depending on the previous

state (i.e. the conditions just before the occupants

undertake the action).

• Survivalmodel is used tomodel the time until a certain

state or event occurs.

The Markov chain can be homogeneous or inhomo-

geneous depending on the ‘nature’ of the transition

probability matrix. If it is time-dependent, the Markov

chain is called inhomogeneous. Otherwise, it is called

homogeneous.

Apart from the analytical approaches, we can identify

two other main modelling formalisms:

• agent-based, where occupants are modelled as auto

nomous agents, which interact with each other and

the external environment (e.g. belief-desire-intention

model of agency);

• data-driven, which can be defined as ‘an approach

to modelling that focuses on using the computa-

tional intelligence and particularly machine learning

methods in building models that would complement

or replace the ‘knowledge-driven’ models describing

physical behaviour’ (Carlucci et al. 2020). Unlike ana-

lytical or statistical approaches, data-driven models

(e.g. k-means clustering) do not encapsulate scientific

understanding and knowledge in explicit mathemati-

cal equations and do not assume any prior distribution

or relation nor are hypothesis-driven (Ourmazd 2020;

Montáns et al. 2019).

3.3. Model evaluation

Ideally, any occupant model should have undergone an

evaluation process with a set of data different from the
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Table 3. The elements of the framework related to block 3.

3 – MODEL EVALUATION

EMPIRICAL BASIS data quality
study type
data type
measured variables
sample size
building type
demographic, socio-economic, cultural,
technological, and climatic context

sampling frequency
length of the monitoring period

MODEL FEEDBACK
METRIC TYPE
EVALUATION TYPE

dataset used for its development/training (Mahdavi and

Tahmasebi 2019; Wolf et al. 2015). The elements of the

framework related toModel Evaluation (block 3) are sum-

marized in Table 3.

The authors of an occupant model should openly indi-

cate whether the evaluation is done with a dataset differ-

ent from the development/training dataset (in this case

we speak of ‘external evaluation’) and specify the quality

of the external data used for assessment (‘data quality’).

In the context of model evaluation, data quality depends

on where the external data comes from, i.e. whether the

external data comes from a different building and/or a

different socio-economic, cultural, technological, and cli-

matic context. In the case of external evaluation, the

definition of the empirical basis is characterized by the

same elements found in section 3.1.

The authors should also indicate whether, in the eval-

uation process, a dynamic simulation is done and, there-

fore, the impact of occupantmodels’ output (e.g. window

states) is considered on the models’ input (e.g. indoor

air temperature). This issue is commonly referred to as

the model feedback problem (see section 4.3.2 for more

details). The idea is that occupants’ control actions can

influence indoor conditions. Changes in indoor condi-

tions can, in turn, influence future occupant actions.

The type of metric and evaluation used should be

clearly stated. The metric can be:

• direct, when the evaluation is directly done in terms

of the occupant model outputs, that is, the pre-

dicted presence and control actions (window open-

ing/closing, thermostat switch on/off, etc.);

• indirect, when the evaluation is donewith indirectmet-

rics, for example:

o energy use (e.g. heating, cooling, primary, total,

lighting),

o indoor environmental variables (e.g. air temperature,

relative humidity, CO2),

o air change rate.

Furthermore, the evaluation metrics can fall into two

additional broad categories depending on the level of

aggregation of the models’ predictions:

• interval-by-interval, when the interval-by-interval con-

gruence between predictions and measurements is

verified by comparing time series data pairs. This

includes all the metrics of type ‘machine learning’ (e.g.

precision, recall, accuracy, F-measure, RMSE,meanbias

error),

• aggregated, when the evaluation is done by compar-

ing aggregated values (e.g. comparing the simulated

and predicted annual energy consumption). The type

of aggregation differs depending on the level (e.g.

mean, median, minimum, maximum, standard devia-

tion, peak, Jensen–Shannon divergence for compar-

ing predicted and measured probability distributions)

and temporal scale (e.g. everyminute, hourly,monthly,

annual).

Examples of direct and aggregatedmetrics for window

operation models, which represent the most developed

models so far, are:

owindow opening/closing ratio

o number of opening/closing actions

o opening/closing duration

This classification of the type of metric and evaluation

is basedon thework ofMahdavi and Tahmasebi (Mahdavi

and Tahmasebi 2017).

3.4. Model Implementation

The elements of the framework related to block 4 (Model

Implementation) are summarized in Table 4. The authors

of an occupantmodel should clearly describe the compu-

tational environmentused in termsof building simulation

tools (e.g. EnergyPlus, IDA ICE, ESP-r, TRNSYS) and/or pro-

gramming languages (e.g. Python, MATLAB). Also, the

type of integration should be specified; this can be of

three types based on the classification provided by Hong

et al. (2018):

• direct input or control, where the user defines deter-

ministic or static schedules and/or rules using the

semantics of the building simulation tool, similarly to

inserting the building geometry’s inputs,

• user function or custom code, where the usermodifies

the source code (e.g. bywriting new functions) directly

inside the building simulation tool (e.g. through the

Energy Management System feature of EnergyPlus),
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Table 4. The elements of the framework related to block 4.

4 – MODEL IMPLEMENTATION

COMPUTATIONAL ENVIRONMENT building simulation tool
programming language

INTEGRATION TYPE
COMPUTATIONAL SPECIFICATIONS

• co-simulation,where theuser usesdifferent simulation

tools running simultaneously and switching informa-

tion in a combined routine (e.g. FMU, BuildingControls

Virtual Test Bed).

Finally, the authors should provide some computation

specifications (e.g. the computational time).

4. A review of existing papers on occupant
models

This section presents the results of the review of 86 aca-

demic papers on occupant models to verify to which

degree they meet the framework proposed in the pre-

vious section. The distribution of the reviewed papers

in terms of year of publication and number of modelled

occupant behaviours is shown in Figure 2. The figure

highlights the increasing volume of scholarly outputs on

the topic over the years, especially articles evaluating one

or two occupant behaviour targets.

4.1. Model Description

4.1.1. Model purpose

Only aminimal number of articles (about 13%of the total)

specifically reports the problem their model is dealing

with or is trying to address (Model Purpose). In the major-

ity of the remaining papers, the reported purpose is very

generic, such as ‘energy use prediction’, ‘integration in BPS

software’, or ‘employment in BPS applications’. Thus, the

existing trend is to develop purpose-freemodels that are,

only ideally, suitable to any deployment scenarios. As will

be discussed later, the question needs to be answered

whether such an approach ismeaningful in light of differ-

ences between models for explanation and prediction.

4.1.2. Domain of applicability

The domain of applicability refers to the definition of the

model’s boundary: the context and the extent to which

it is ‘safe’ to use the model. In this view, it is clear that

the intended use of the model must be objectively speci-

fied. However, some pieces of information are usually not

presented straightforwardly. As a result, it is not easy to

assess whether the authors provide this information as

a limit of the model’s applicability or just for descriptive

purposes.

Regarding the definition of the temporal scale and

resolution of the model among the reviewed papers, a

surprisingly high 45% do not state or clearly specify the

time-step, while the temporal scale is not mentioned in

57% of the cases. The majority of remaining papers (25

out of 86) are based on annual simulations but with dif-

ferent granularity: not stated/clear (16%), 1 min (20%),

5min (12%), 10min (28%), 15min (4%), 1 h (20%). Thus,

a time-step of 10min is the one most often adopted.

Other essential aspects concern the spatial scale and

resolution of the model. The former refers to the simu-

lation’s spatial extension (e.g. building), while the latter

refers to the zonal destination of the model (e.g. room).

In 21% of the models, the two aspects coincide and con-

cern room-zone level. For 28% of the models, the spatial

scale concerns the building level, while only three out of

86 models deal with district/urban area.

Regarding the building type, about 38% are for resi-

dential purposes, 36% for offices, 6% for others (such as

dormitory, educational), and in 20% of the papers, this

information is not stated.

The ‘cultural context’ is the most reported among the

contextual information, with 62% of the papers reporting

the city and/or country. Following there is the ‘technolog-

ical context’’ (35% of the papers), which includes informa-

tion about system type and control. The least reported

information is the ‘climatic context’ and the ‘demographic

and socio-economic context’, each mentioned in only

seven out of 86 papers. Among those mentioning the

‘climatic context’, three mention the season, while four

explicitly mention the climatic zone as Köppen classifica-

tion (indirectly, this information can be retrieved from the

city).

4.1.3. Modelled outputs

The majority of the reviewed papers cover a single out-

put category (67%), while the rest cover two (22%), three

(7%), and four (3%) target behaviours simultaneously.

As an example of the latter, Nicol modelled the impact

of outdoor temperature on four occupant behaviours,

namely thermostat adjustment, window, shading, and

lighting operation (Nicol, Humphreys, and Olesen 2004).

However, it is worth noting that all the studies covering

multiple occupant behaviours, including Nicol’s, derive

each behavioural model independently of the others,

overlookingpotential impacts of oneoccupantbehaviour

(e.g. thermostat adjustment) on another (e.g. window

operation). Figure 3 presents the percentage of articles

that modelled each target behaviour, from which we can

notice that window operation is themost covered output

category.
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Figure 2. Distribution of the reviewed papers in terms of year of publication and number of modelled behaviours.

Figure 3. Coverage of output categories in the reviewed articles.

4.1.4. Required Inputs

The inputs used to model the outputs above are cate-

gorized as (i) physical, (ii) physiological, (iii) psycholog-

ical, and (iv) contextual. As shown in Figure 4, physical

and contextual inputs are used in the majority of the

studies. On the other hand, less than 10% of the stud-

ies include physiological or psychological inputs to their

models.

To shed more light on the use of input variables in

the models, Figure 5 presents a matrix that maps the

input categories (shown in rows) to the output categories

covered in the previous section (shown in columns).

Results re-iterate the frequent use of physical and contex-

tual categories to predict all output categories. It is also

observed that appliance use is mostly modelled using

contextual input parameters (e.g. Wilke et al. 2013). This

finding is not surprising as plug-loads, such as comput-

ers and printers, are not driven by environmental fac-

tors but rather working schedules and requirements (e.g.

tasks). Time of day and arrival/departure times are the

twomost common contextual input variables used in the

reviewed articles (e.g. Jin et al. 2020; Widén et al. 2009). In

contrast, behaviours such as window opening are often

driven by physical conditions (e.g. temperature, humid-

ity, and indoor air quality) (Deme Belafi et al. 2018; Yao

and Zhao 2017), which explain the higher use compared

to contextual inputs (see ‘window operation’ column in

Figure 5).

Figure 6 illustrates the surveyed ‘physical’ environ-

mental variables and their frequency of occurrence for

each output category in a matrix format. Indoor and out-

door temperature are the two most often used input

parameters. Window operation models show the high-

est diversity in their input parameters, covering multi-

domain indoor and outdoor conditions, namely ther-

mal (e.g. temperature and humidity), visual (e.g. illumi-

nance and radiation), and air quality (e.g. CO2 and PM2.5

concentrations).
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Figure 4. Coverage of input categories in the reviewed articles.

Figure 5. Mapping of inputs and outputs in the reviewed articles. The values show the number of studies that satisfy each combination,
where darker cells reflect higher frequencies.

4.2. Model Development

4.2.1. Empirical basis

Regarding the documentation of the empirical basis used

to derive the model, a very limited number of articles

(about 7%of the total) do not report the type of study (i.e.

either observational or experimental) carried out and the

type of variables (either survey-based or sensor-based)

measured during the study. Only one of the reviewed

studies is based on experimental research (Schweiker and

Wagner 2016); all the others are observational studies.

In 49% of the studies, the variables are measured based

on sensors, while for 13% of the papers, the model is

developed from survey-based data. The rest of the mod-

els are derived using both types of measurements or get

data from the literature (mainly for lighting operation

and appliance use). Models of appliance use are the ones

most often using survey-based data, mainly coming from

time-use surveys.

Figure 6. Coverage of ‘physical’ input categories and mapping to modelled outputs.
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Figure 7. Distribution of the sample size for the monitored buildings, units and occupants. NS/NC stands for Not Stated/Not Clear.

The distribution of the number of monitored build-

ings, units, and occupants is shown in Figure 7. For ‘unit’,

we mean the smallest enclosed space controlled by one

person or a specified group of people: a room, an apart-

ment, or a house. About 16% of the reviewed works do

not clearly describe the sample size, while only 20% of

papers declared all three levels of sample size (buildings,

units, occupants). The number of monitored occupants is

themost difficult sample-related information to be found

in the reviewed papers. Most often, the authors indicate

the number of occupants indirectly by giving information

on thenumber ofmonitoredworkplaces or rooms. Papers

having appliances use, thermostat adjustment, shading,

and lighting operation as target modelled variables doc-

ument their sample size less often than papers about

windows and occupancy models but tend to declare the

number of occupants more frequently than the others.

From Figure 7, we can also observe that the number of

monitored buildings is very rarely above ten, and the

number of monitored occupants is most often between

10 and 50.

Only 5% of the papers do not describe the build-

ing type from which the empirical basis is collected.

The empirical basis for the rest of the papers is mostly

based on measurements from residential buildings (see

Figure 8), followed by commercial buildings (which are

always offices), representing about 50% of the cases with

respect to the monitored residential buildings. Only for

the development of shading models, commercial build-

ings are more often monitored than residential buildings

(see Figure 9). While for windows, the types of monitored

buildings are equally distributed among residential and

commercial buildings.

About 77% of the papers provide contextual informa-

tion on the empirical data used to derive the model. The

cultural and climatic contexts from which the empirical

data arederivedaredescribed in about 60%of thepapers.

The technological context is described 40% of the time,

while the demographic and socio-economic context is

described only 16% of the time. The papers considering

shading as target behaviour are the least documented in

terms of context and do not include any context descrip-

tion67%of the time. It is tobenoticed that thesenumbers

are different from those related to the domain of applica-

bility stated by the authors (section 4.1.2), and, in partic-

ular, the domain of applicability is less well documented

than the empirical basis.

The distribution of the empirical dataset’s length in

days and the frequency in data collection in minutes is

given in Figure 10 and Figure 11, respectively. In about

19% of the reviewed papers, the length of the dataset

(i.e. the duration of themonitored period) is not reported.

For those reporting the dataset’s length, the most often

employed monitored period is one year, followed by a

length from 28 to 90 days, which corresponds to a cou-

ple of months. About 27% of the papers do not clearly

describe the frequency of data sampling. A sampling

frequency equal to or less than 10min is most often

employed.

4.2.2. Features Selection

Among the analysed papers, 28% did perform feature

selection, 42%did not, while for 30%, it is not clear. Figure

12 shows the distribution of the selection criteria among

the papers that perform feature selection. It can be seen

that the two prominent methods for feature selection

are ‘information criteria’ and ‘significance criteria’. Also,

and not surprisingly, 83% of the articles that performed

feature selection relied upon logistic regression for this

important step.
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Figure 8. Distribution of the type of monitored buildings. NS/NC stands for Not Stated/Not Clear.

Figure 9. Coverage of monitored building type and mapping to modelled outputs. NS/NC stands for Not Stated/Not Clear.

4.2.3. Modelling formalism

The majority (43%) of the reviewed papers adopt genera

lized linear models to calculate the probability of an out-

come. Logistic regression is the most used (37%), while

probit regression is used only in 3% of the cases. To

account for the diversity of occupant behaviour, Haldi uti-

lized generalized linear mixed models (Haldi et al. 2017).

Few studies (3%) adopt the approach proposed by Wang

et al. (2016), which is based on a discrete three-parameter

Weibull cumulative function and can consider the time-

step as a model parameter explicitly.

In BPS, the time-step is discrete, and the transi-

tion probabilities vary with time (i.e. they are not con-

stant at each time step). This results in a discrete time-

inhomogeneous Markov chain, which is used in 26% of

the models. The term ‘Markov chain’ is commonly used

instead of ‘Markov process’ with a countable state space.

Data-driven models are only found in 13% of the

reviewed papers, there is no clear tendency, and differ-

ent modelling techniques are adopted. The works of Wei

et al. (2019; Pan et al. 2019) compare the performance

of data-driven models with stochastic analytical models.
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Figure 10. Distribution of dataset length. NS/NC stands for Not Stated/Not Clear.

Figure 11. Distribution of frequency of data sampling. NS/NC stands for Not Stated/Not Clear.

They both conclude that the data-driven models have

better predictions.

Agent-basedmodels, even if particularly suited to sim-

ulating complex systems, are the least used (6%).

4.3. Model evaluation

4.3.1. Empirical basis

A total of 47 out of the 86 reviewed articles included some

form of evaluation. Out of these 47 articles, 23 used exter-

nal data for evaluation. Hence, in these cases, the eval-

uation was conducted using datasets different from the

development dataset. Such external datasets included in

the reviewed articles were either from the same build-

ing (Zhou et al. 2021; Binini, Munda, and Dintchev 2017;

Widén and Wäckelgård 2010) or from another building

(Richardson et al. 2010; Schweiker et al. 2012; Ozawa,

Kudoh, and Yoshida 2018; Schweiker and Shukuya 2009).

In the former case, data involved either different occu-

pants (Widén and Wäckelgård 2010; Widén, Molin, and

Ellegård 2012) or was from another period (Zhou et al.

2021; Binini, Munda, and Dintchev 2017).

4.3.2. Model feedback

As mentioned previously in section 3.3, the comparison

of predictions of (especially stochastic) occupant mod-

els with empirical data represents a significant challenge

in model evaluation. This circumstance is commonly

referred to as the model feedback problem: occupants’

actions (e.g. opening the windows, closing the shades)

are likely to influence indoor conditions (e.g. room air

temperature, task illuminance level), and this, in turn, can

influence subsequent occupant actions (e.g. adjustment

of the thermostat, switching on the lights). The major-

ity of the reviewed articles do not address this challenge.

However, a small number of the reviewed papers (about

10% of the total) entail content relevant to the problem

of model feedback (Zhou et al. 2021; D’Oca and Hong

2015; Yun and Steemers 2010; Yun, Tuohy, and Steemers

2009; Fischer et al. 2016; Langevin,Wen, andGurian 2015;
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Figure 12. Distribution of the methods used for feature selection

Widén and Wäckelgård 2010). For instance, Yun, Tuohy,

and Steemers (2009) and Yun and Steemers (2010) devel-

opedabehavioural algorithmofwindow-control byusing

Markov chain and Monte Carlo methods that ‘generates a

time series ofwindow states as a function of the indoor ther-

mal stimulus’ and implemented it into a dynamic energy

simulation tool.

4.3.3. Metric type

The present review examined the articles in terms of the

types of behaviourally relevant model output or metric

(see section 2.3 for more details). Thereby, a differenti-

ation was made between direct metrics regarding, for

instance,windowoperationor thermostat control actions

and indirect metrics such as resultant heating or cooling

energyuse. Amongall reviewedarticles includinganeval-

uation, the majority (78%) included a direct metric type

and relatively few of them (22%) use an indirect metric

type.

4.3.4. Evaluation type

The reviewed studies entail a large spectrum of different

evaluation approaches. These include evaluations (com-

parisonof simulation resultswith correspondingobserva-

tions) performed on an interval-by-interval basis as well

as those involving the comparison of aggregated val-

ues. The subject of modelling was in roughly 30% of the

articles related to window operation. The most common

mode of evaluation in these studies involved the com-

parison of aggregated values. Thereby, different metrics

were subjected to evaluation, including the number of

opening/closing actions (in sevenpapers), the duration of

window opening/closing (in five papers), and the proba-

bility of window opening/closing (in four papers). Eight

articles address indirect metrics on energy use.

The temporal scale of aggregation varies considerably

among the reviewed articles, ranging from short intervals

(e.g. every minute Widén et al. 2009; Stokes, Rylatt, and

Lomas 2004; Richardson et al. 2010), every five minutes

(Haldi and Robinson 2009; Cedeno Laurent, Samuelson,

and Chen 2017), every fifteen minutes (Page et al. 2008;

Gottwalt et al. 2011) to extensive periods (e.g. annual in

8 articles). Likewise, the reviewed studies employ differ-

ent modes of aggregation. A majority of 16 articles use a

form of ‘sum’, other nine articles compare by usingmean.

Median (Schweiker et al. 2012), peak (Paatero and Lund

2006), or density functions (Page et al. 2008) are less used.

Different approaches have been followed within the

category of evaluation instances involving interval-by-

interval comparisons of modelled and observed results.

Eight papers merely provide a graphical comparison

without quantified statistics. Five papers rely on ‘classi-

cal’ statistics such as Pearson correlation coefficient or

root mean square error. Confusion matrix and related
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classification measures (e.g. accuracy, precision, recall)

are employed in ten papers.

4.4. Model Implementation

The description of the used computational environment

is mostly neglected in the current way occupant mod-

els are documented. The building simulation tool is

specified in only 17% of the reviewed articles. This can

be partly explained by the fact that occupant models

are often developed independently of a specific build-

ing simulation tool. More worrying is the fact that only

12% of the articles specify the used programming lan-

guage. Themost often used simulation environments are

EnergyPlus and ESP-r, followed by IDA ICE and Daysim

(RADIANCE-based). These simulation environments allow

a physics-based dynamic simulation approach. At the

same time, MATLAB is the preferred programming lan-

guage used 50% of the time. Other used programming

languages are VBA (Visual Basic for Applications), Python,

Erlang, R, Brahms, and NetLogo. These last two are multi-

agent modelling languages used explicitly for develop-

ing agent-based models. Similar to what is observed for

the computational environment, the adopted or envis-

aged type of integration is poorly addressed (in only 7%

of the reviewed articles). Computation specifications are

only provided in one paper (Binini, Munda, and Dintchev

2017).

5. Discussion

This paper presents a framework for reporting occupant

models together with a review of the existing literature

in view of the degree of its compliance with the frame-

work. Figure 13 summarizes the percentage of articles

reporting the corresponding items related to each cate-

gory of the introduced framework. Overall, the percent-

age of reported items from the framework varies strongly

with the category, while no paper reports all items.

The resulting inverted U-shape shows that at least the

core elements of an occupant model are reported with

high frequencies, whereas model purpose, the domain

of applicability, and model implementation are reported

least frequently. This observation forms the core of this

discussion.

The deeper reasons for the observed lack of declared

model purpose are not fully understood, as it was impos-

sible to consult individual authors regarding issues that

are not sufficiently explicated in their articles. The reasons

may simply be that authors took it for granted that the

purpose is obvious or that the corresponding informa-

tion or explanations are not sufficiently clear in the paper.

On the other hand, as noted in section 4.1.1, the low

percentage may suggest a trend towards purpose-free

models thought by authors suitable for any deployment

scenarios. This possible trend – if it exists – would have

two problematic aspects. Firstly, leaving out the mod-

elling purpose suggests that modelling is done purely

for the sake of modelling without underlying research

questions or ideas for future usage of gained knowledge

or model parameters. Readers of such work – being sci-

entists, applicants, or the general public – will need to

decide whether they see a potential application of the

results and, more importantly, whether the presented

model is suitable for their purpose. While well-trained

scientists may be able to answer both questions, it is

doubtful that all those invited to apply occupant mod-

els in their work can make such judgements. It appears

reasonable to suggest that such an approach needs to

be avoided for reasons of clarity and scientific endeavour,

which starts with a purpose. Secondly, occupant mod-

elling is often based on a large number of data points

derived, for example, from year-long longitudinal moni-

toring campaigns. With the dependence of significance

on sample size, even small effects likely result in sig-

nificant findings (Sullivan and Feinn 2012). The ques-

tion remains whether such a significant effect has any

scientific or practical relevance. For such a decision, it

is crucial to know the purpose of the model and the

final variable in question, for instance, differences in

energy use or likelihood to observe a specific occupant

behaviour.

A second identified issue is related to the diffuse poor

description of the model’s domain of applicability. Pre-

dictive models do not need to rely on a theory but can

be purely based on associations found in the available

data leading to a good prediction. Such an approach

is underlying many data mining methods. A predictive

model may predict the energy use of a future building

through BPS in a precise and satisfactory way. However,

the predictive model needs to be applied with caution to

another building because its predictive power depends

significantly on the context in which the data was col-

lected. Without an underlying theory or parallel causal

study, the observed associations used for the prediction

may miss important influencing factors when this model

is applied to a different context. For example, a predic-

tive model for window opening derived from data with-

out high outdoor temperatures and a context without

cooling capacities by an air-conditioning unit will likely

fail to predict the reduced window opening probabilities

at very high outdoor temperatures in such context. This

case was observed by Schweiker et al. (2012) while eval-

uating models derived from naturally ventilated rooms

in Switzerland with mixed-mode rooms under Japanese

summer conditions.
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Figure 13. Percentage of articles reporting corresponding items of each category of the introduced framework. Note that categories
‘Domain applicability’, ‘Model development’, and ‘Model implementation’ consist of several sub-categories, which individual percentage
values were used to derive the boxplot. For example, ‘Domain applicability’ (see also section 4.1.2) has 8 sub-categories with season
reported the least often (3%) and building type the most often (80%).

This third point of the discussion relates to the next

main point of the debate: the low percentage of docu-

mentation of items related to implementation. Without

knowing the intended purpose for more than 80% of the

models presented in the literature, it is without mean-

ing to criticize the lack of such information. Also, authors

may consider implementing BPS as an additional, sepa-

rate step presented in follow-up articles. Therefore, while

emphasizing the need to consider the practicability of

predictive variables used formodellingwhen thepurpose

is to implement the model into BPS (e.g. is the variable

available within the BPS environment, or is it possible to

emulate it?), we will not go deeper into this point of the

discussion.

An open question beyond the scope of this review is

to what extent the proposed framework supports a more

widespread application of occupant models in practice.

First, the question is whether such widespread applica-

tion is meaningful given the number of open questions

and non-evaluated models. For the sake of brevity, we

will not deepen this thought but rather point out that

a more transparent communication of a model back-

ground and evaluation status may at least reduce the

chance of models being adopted without reflection. Sec-

ond, this question requires empirical work, such as inter-

vention studies or interviews with practitioners as sug-

gested by Schweiker, O’Brien, and Gunay (2019) to anal-

yse the strengths and limitations of this framework for

practitioners and evaluate those elements most suit-

able for creating understanding and trust before adopt-

ing them. Implementing the proposed framework and

raising awareness among editors and reviewers about

the importance of each element would be the first step

towards this.

6. Conclusion

This paper introduces a framework to document occu-

pant models used in building performance simulation. It

consists of four blocks (description, development, evalu-

ation, and implementation) and provides and describes

several elements within each block to help researchers

transparently document and communicate their occu-

pant models. We cannot prove that the derived frame-

work is a comprehensive one or ‘gold standard’ for occu-

pant models’ documentation and we cannot guarantee

that it will be adequate and efficient in all future appli-

cations. However, it builds upon current literature as well

as a thorough discussion among a group of experts with

long-term experience in occupant modelling and estab-

lishes apicture thatprovidesmeans for critically reflecting

on how to report and document occupant models in the

future. Thus, the introduced documentation schema lays

theway to a standardizedmethodologyonhow to formu-

late and document occupant behavioural models for BPS

in the future. The efficiency and acceptance of the frame-

work alongside potentially missing elements will need to

be revisited several years from now.

Based on a systematic review, we have also verified

to which degree existing academic papers on occupant

models meet the framework. We have found that most

of the papers provide occupant models without specify-

ing their purpose and without providing any information
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about their implementation. The two aspects appear to

be related and indicate that occupant models have been

so far developed without any specific BPS application in

mind. This is partly understandable given the relatively

lowmaturity of the field. Moreworrying is the little efforts

so far dedicated to defining the domain of applicability of

the model and evaluating the model. These results show

the need for such a framework as suggested in this work

for researchers, reviewers and editors. Without investi-

gating future efforts in such directions, it may remain

difficult for practitioners to place confidence and trust in

the performances of occupant models and to be able to

use them. Consequently, a more widespread application

of occupant models in practice may be further delayed.

More transparent communicationof amodel background

and evaluation status may contribute to greater aware-

ness of the adoption of occupant models.

Note

1. The shrinkage penalty is composed of a penalty termmulti-

plied by a tuning parameter λ.
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