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ABSTRACT

The number of occupancy and occupant behaviour models developed for building performance
simulation (BPS) has steadily increased for the past four decades. However, their use is still limited in
practice. This is partly due to the difficulty in understanding their utility and to the challenges related
to theirimplementation into BPS. Both problems can be attributed to the lack of a framework for their
description and communication. In this paper, we fill this gap by introducing a framework to docu-
ment occupant models, that represents the state-of-the-art of available information on the topic.
The framework consists of four blocks (description, development, evaluation, and implementation)
and can also be regarded as a guideline to help researchers communicate their models transparently.
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Based on a systematic review, we verify to which degree existing academic papers on occupant mod-
els meet the framework, thus providing a self-critical assessment of the state-of-the-art of occupant

models’ documentation.

1. Introduction
1.1. Context

Occupancy and occupant behaviour have been sug-
gested to significantly contribute to the uncertainty of
Building Performance Simulation (BPS) results (O'Brien
etal. 2020; Yoshino, Hong, and Nord 2017). In the last four
decades, a steadily increasing number of efforts has been
undertaken to improve occupant models with respect to
their fidelity and resolution. However, the implementa-
tion of occupant models is still limited in practice. Evi-
dence from an international survey on current occupant
modelling practices and attitudes in BPS suggests that
occupant modelling remains mostly an academic exer-
cise, and practitioners’ current occupant assumptions are
simplistic and either overly optimistic or conservative
depending on the application (O’Brien et al. 2017). Sim-
ilarly, Azar et al. (2020) and Lindner, Park, and Mitterhofer
(2017) independently observed that the application of
occupant models is still very limited in the building design

process. One reason for the limited uptake of occupant
models in real-world applications could be the difficulty
in adequately understanding their utility and robustness
and the challenges related to their implementation into
BPS (Lindner, Park, and Mitterhofer 2017). Both problems
could be associated with the lack of a standard framework
and/or guideline for occupant models’ description, docu-
mentation, and communication (Mahdaviand Tahmasebi
2019).

1.2. Previous related works

Most of the past reviews on occupant modelling in build-
ings focused on the employed modelling formalisms and
techniques (Jia, Srinivasan, and Raheem 2017; Zhang et al.
2018; Dong et al. 2018; Gaetani, Hoes, and Hensen 2020;
Carlucci et al. 2020). Jia, Srinivasan, and Raheem (2017)
compared and analysed the advantages and limita-
tions of current occupant modelling approaches (agent-
based, statistical, stochastic, and data mining), making
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recommendations for future research, such as the need to
collect more empirical data and to further develop agent-
based models for integration into BPS tools. Zhang et al.
(2018) also reviewed agent-based, statistical, stochastic,
and data mining methods for occupant behaviour mod-
elling and identified major research gaps, including the
necessity of collecting data at city scale and account-
ing for the socio-economic status. Dong et al. (2018)
presented the most commonly used statistical and data
mining models and provided a modelling reference for
future researchers to select a proper method or model
for a specific research purpose. Similarly, Gaetani, Hoes,
and Hensen (2020) focused on introducing and testing a
methodology, which comprises uncertainty and sensitiv-
ity analysis, to help identify the fit-for-purpose modelling
formalism for each occupant aspect. Carlucci et al.'s more
recent review gave an exhaustive overview of methods
and techniques used for occupant behaviour modelling
(Carlucci et al. 2020).

Other more conceptual works dealt with framing occu-
pant behaviour to better understand and standardize its
semantic representation (Hong et al. 2015; Deme Belafi,
Hong, and Reith 2019; Arslan, Cruz, and Ginhac 2019). In
this respect, Hong et al. (2015) proposed the ‘Drivers —
Needs — Actions — Systems’ (DNAs) framework, which is
constituted of four key components: i) the Drivers of
behaviour, ii) the Needs of the occupants, iii) the Actions
carried out by the occupants, and iv) the building systems
acted upon by the occupants. Deme Belafi, Hong, and
Reith (2019) implemented the theoretical DNAs frame-
work into an XML (eXtensible Markup Language) schema
format and represented each occupant model in a sepa-
rate XML file to form a library of occupant models, which
can be used for co-simulation. Arslan, Cruz, and Ginhac
(2019) created a framework named ‘Occupant behaviours
in Dynamic Environments’ (OBiDE) to integrate the DNAs
ontology with a trajectory enrichment model for the
movements of the occupants.

In closer relation to the present paper, some past
works tackled specific aspects related to the process
of describing, developing, evaluating, and implement-
ing an occupant model (Lindner, Park, and Mitterhofer
2017; Gunay, O'Brien, and Beausoleil-Morrison 2013; Yan
et al. 2015; Mahdavi and Tahmasebi 2017; Mahdavi
and Tahmasebi 2016; Li et al. 2019; Wolf et al. 2015;
Abuimara et al. 2019; Abuimara, Gunay, and O'Brien 2021;
Abuimara et al. 2018). Gunay, O'Brien, and Beausoleil-
Morrison (2013) reviewed the research on adaptive occu-
pantbehaviourin offices, highlighting existing limitations
in observational, modelling, and simulation studies of
occupant behaviour. Yan et al. (2015) reviewed the cur-
rent state of the art and highlighted future challenges
in data collection, modelling, evaluation, and integration
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within BPS programmes. Especially concerning occupant
model evaluation, Mahdavi and Tahmasebi (2017) dis-
cussed evaluation requirements and promoted a rigor-
ous process towards quality assurance. In another work,
Mahdavi and Tahmasebi (2016) dealt with the context-
dependence of occupancy-related model use in BPS.
Wolf et al. (2015) reviewed evaluation methods of occu-
pant models and criticized internal validation procedures.
Lindner, Park, and Mitterhofer (2017) discussed issues
and requirements for the proper implementation of occu-
pant models in BPS tools, focusing in particular on an
office case study employing different occupant models.
Li et al. (2019) created a framework to help understand
the process of occupant model development, highlight-
ing associated challenges and establishing a set of criteria
for the rational selection from existing occupant mod-
els. Abuimara et al. (2019; Abuimara, Gunay, and O’Brien
2021; Abuimara et al. 2018) highlighted the infancy of
occupant models in terms of implementation and the
need to accommodate occupant models in an easy to
apply way to make it more convenient for practitioners
to use.

1.3. Research aims

Earlier studies have addressed specific aspects related to
the process of describing, developing, evaluating, and
implementing an occupant model (Lindner, Park, and
Mitterhofer 2017; Dong et al. 2018; Abuimara, Gunay,
and O'Brien 2021; Abuimara et al. 2018; Deme Belafi,
Hong, and Reith 2019; Gunay, O'Brien, and Beausoleil-
Morrison 2013; Yan et al. 2015; Mahdavi and Tahmasebi
2017; Mahdavi and Tahmasebi 2016; Li et al. 2019; Wolf
et al. 2015; Abuimara et al. 2019). However, they have
rather considered them individually, thus missing consid-
ering and including all the aforementioned elements in
a more holistic perspective. A view on the whole process
of describing, developing, evaluating, and implementing
an occupant model, which is independent of the partic-
ular modelling formalism adopted, is currently missing.
Furthermore, none of the past works has reviewed exist-
ing occupant behaviour papers intending to present the
current status of occupant models’ documentation.
Thus, the first objective of this paper is to derive a
framework for the documentation of occupant models
based on past works on the topic (Lindner, Park, and Mit-
terhofer 2017; Dong et al. 2018; Abuimara et al. 2019;
Abuimara, Gunay, and O’Brien 2021; Abuimara et al. 2018;
Gunay et al. 2014; Fabi et al. 2012; Schweiker et al. 2020;
Heinze, Wallisch, and Dunkler 2018; Coleman 1974; Hong
et al. 2018; Carlucci et al. 2020; Deme Belafi, Hong, and
Reith 2019; Gunay, O’Brien, and Beausoleil-Morrison 2013;
Yan et al. 2015; Mahdavi and Tahmasebi 2017; Mahdavi
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and Tahmasebi 2016; Li et al. 2019; Wolf et al. 2015).
The framework includes all the above-cited aspects:
description, development, evaluation, and implementa-
tion (section 3) and can be regarded as the state-of-
the-art of the available information on how an occupant
model should be documented. The second objective is to
verify to which degree existing academic papers on occu-
pant models meet this framework, thus providing a self-
critical assessment of the state-of-the-art of how occu-
pant models are currently documented in reality (section
4 and 5).

The purpose of the presented framework is three-fold.
Firstly, to serve as a guideline for documentation that can
help researchers transparently communicate their mod-
els. Secondly, to facilitate the objective of the evaluation
reliability of occupant models. Thirdly, to help modellers,
practitioners and stakeholders better comprehend occu-
pant models’ utility and direct them in selecting and
adopting the most suitable model for their application.

The framework does not aim to guide the develop-
ment of occupant models. Other works have been ded-
icated to this scope, in particular focusing on the optimal
choice of the model formalism depending on the type
of behaviour, building type, and spatial and temporal
scale (Jia, Srinivasan, and Raheem 2017; Zhang et al. 2018;
Dong et al. 2018; Gaetani, Hoes, and Hensen 2020; Car-
luccietal. 2020). Furthermore, the focus of this paperis on
occupant models developed for building/district perfor-
mance simulation, that is on models that are used to pre-
dict the performance of a building/district in terms of, for
example, energy consumption, carbon emissions, and/or
thermal comfort experienced by the occupants. Occu-
pant models integrated into real-time building energy
system controls are out of the scope of this work.

2, Methodology
2.1. Framework development

The framework is based on previous works (Lindner,
Park, and Mitterhofer 2017; Dong et al. 2018; Abuimara
etal. 2019; Abuimara, Gunay, and O'Brien 2021; Abuimara
et al. 2018; Gunay et al. 2014; Fabi et al. 2012; Schweiker
et al. 2020; Heinze, Wallisch, and Dunkler 2018; Coleman
1974; Hong et al. 2018; Carlucci et al. 2020; Deme Belafi,
Hong, and Reith 2019; Gunay, O'Brien, and Beausoleil-
Morrison 2013; Yan et al. 2015; Mahdavi and Tahmasebi
2017; Mahdavi and Tahmasebi 2016; Li et al. 2019; Wolf
etal. 2015) and recent reflections and discussions among
the authors, who are all participants of Annex 79 of the
International Energy Agency’s Energy in Buildings and
Communities Programme, titled ‘Occupant-centric build-
ing design and operation’. In deriving the framework, a

‘best practice’ approach could not be followed because
there is no real best practice in the literature of occupant
behaviour models and no model could be successfully
deployed to general practice (e.g. by standards). There-
fore, as experts engaged in the work of Annex79, we
discussed and elaborated a framework based on past
research efforts on the topic (Lindner, Park, and Mit-
terhofer 2017; Dong et al. 2018; Abuimara et al. 2019;
Abuimara, Gunay, and O’Brien 2021; Abuimara etal. 2018;
Gunay et al. 2014; Fabi et al. 2012; Schweiker et al. 2020;
Heinze, Wallisch, and Dunkler 2018; Coleman 1974; Hong
et al. 2018; Carlucci et al. 2020; Deme Belafi, Hong, and
Reith 2019; Gunay, O'Brien, and Beausoleil-Morrison 2013;
Yan et al. 2015; Mahdavi and Tahmasebi 2017; Mahdavi
and Tahmasebi 2016; Li et al. 2019; Wolf et al. 2015).
Toward this aim we would like to emphasize that the
framework has been developed to be: schematic, to make
it easier to find and extract all the information, and gen-
eral, to be adaptable to the different occupant models’
formalisms, purposes, and implementation needs.

2.2. Review of papers on occupant models

The bibliographic search to identify academic papers on
occupant models was conducted through the Scopus sci-
entific database as part of a recent work reviewing models
of occupants’ presence and actions in buildings (Carlucci
etal. 2020). As part of this search, 278 journal papers were
identified. These studies were manually screened to iden-
tify those papers dealing with models developed explic-
itly for building/district performance simulation; this led
to 82 papers being selected. We then added four papers
(Jin et al. 2020; Panchabikesan, Haghighat, and El Mankibi
2021; Lu et al. 2021; Zhou et al. 2021) published last
year (2020) that were not covered in the original review.
Papers that were about comparing and/or using previ-
ously published occupant models were excluded; thus,
only original papers about newly developed models for
predicting occupant behaviour in a building/district were
retained for review. A total of 86 papers (Jin et al. 2020;
Panchabikesan, Haghighat, and El Mankibi 2021; Lu et al.
2021; Zhou et al. 2021; de Santiago, Rodriguez-Villalén,
and Sicre 2017; Binini, Munda, and Dintchev 2017; Widén
et al. 2009; Yao and Steemers 2005; Bandi¢ and Kevri¢
2019; Wang, Yan, and Ren 2016; Stokes, Rylatt, and Lomas
2004; Richardson et al. 2010; Richardson et al. 2009; Zhou
et al. 2015; Hunt 1979; Gilani and O’Brien 2018; Richard-
son, Thomson, and Infield 2008; Page et al. 2008; Ander-
sen et al. 2014; D’'Oca and Hong 2015; Aerts et al. 2014;
Haldi and Robinson 2010; Belazi et al. 2019; Gunay et al.
2018; Tanimoto and Hagishima 2005; Ren, Yan, and Wang
2014; Fabi, Andersen, and Corgnati 2013; Chen etal. 2017;
Schweiker and Shukuya 2009; Bruce-Konuah, Jones, and



Fuertes 2019; Haldi and Robinson 2008; Deme Belafi et al.
2018; Cali, Wesseling, and Miiller 2018; Yao and Zhao
2017; Tetlow et al. 2015; Jones et al. 2017; Stazi et al.
2017; Cali et al. 2016; Shi and Zhao 2016; Fabi, Ander-
sen, and Corgnati 2015; Yun and Steemers 2010; Yun,
Tuohy, and Steemers 2009; Fritsch et al. 1990; Andersen
et al. 2013; Yun and Steemers 2008; Capasso et al. 1994;
Haldi and Robinson 2009; Schweiker et al. 2012; Pan et al.
2018; Shi et al. 2018; Li et al. 2015; Wei et al. 2019; Pan
et al. 2019; Yun, Kim, and Kim 2012; Barthelmes et al.
2017; Rosemann 2017; Yilmaz, Firth, and Allinson 2017;
Causone et al. 2019; Tanimoto, Hagishima, and Sagara
2008; Fischer et al. 2016; Kashif et al. 2013; Widén, Nils-
son, and Wackelgard 2009; Ozawa, Kudoh, and Yoshida
2018; Chang and Hong 2013; Cedeno Laurent, Samuel-
son, and Chen 2017; Herkel, Knapp, and Pfafferott 2008;
Mahdavi et al. 2008; Paatero and Lund 2006; Reinhart
2004; D'Oca et al. 2014; Langevin, Wen, and Gurian 2015;
Naspi et al. 2018; Naspi et al. 2018; Schweiker and Wag-
ner 2016; Jia et al. 2019; Widén and Wackelgard 2010;
Gottwalt et al. 2011; Putra, Andrews, and Senick 2017;
Wilke et al. 2013; Nord et al. 2018; Lee and Malkawi
2014; Haldi et al. 2017; Baetens and Saelens 2016; Nicol,
Humphreys, and Olesen 2004; Andersen et al. 2009; Pflu-
gradt and Muntwyler 2017) were thoroughly read and
systematically reviewed by extracting the information of
interest according to the documentation framework and
collating itin a spreadsheet that is publicly accessible (see
Supplementary Materials).

The review presented in this paper addresses only
occupant models developed for predicting new or future
observations. However, the distinction between occu-
pant models developed for prediction and those built
for explanation or description is not always obvious,
especially for regression-type models. For example, some
papers appear to build a descriptive model, but they
concurrently state that their models should be used in
BPS (Bruce-Konuah, Jones, and Fuertes 2019; Andersen
et al. 2013; Nicol 2001; Schweiker and Shukuya 2009).
Some of them are indeed then used in BPS (D'Oca
et al. 2014). This is due to the false assumption that
models with high explanatory power (i.e. high strength
of the underlined casual relationships) also have high
predictive power (Shmueli 2010). Given that the dis-
tinction between prediction and explanation/description
is not always understood, we have decided not to
exclude models which seem explanatory or descrip-
tive. Yet, it is of fundamental importance that, in the
future, the distinction between prediction and expla-
nation or description is well understood and that the
paper clearly states whether the goal of the devel-
oped occupant model is predictive, explanatory, or
descriptive.
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3. The occupant model documentation
framework

In this section, we describe the framework developed
for the documentation of occupant models used in BPS.
Figure 1 provides an overview of the framework whose
individual elements are described in detail in sub-sections
3.1,3.2,3.3, and 3.4. As it can be noticed in Figure 1, the
framework is given in a specific order: ‘1. Model Descrip-
tion’, ‘2. Model Development’, ‘3. Model Evaluation’, and,
finally, ‘4. Model Implementation’. This is not necessarily
the logical order followed when deriving a model since
a model could be implemented before being evaluated
and the ‘Required Inputs’ in ‘1. Model Description’ can-
not be identified before doing ‘Feature Selection’ in ‘2.
Model Development’. Hence, it should be highlighted that
the framework is meant to be applied in the specified
order only when reporting and documenting an occu-
pant model and not when deriving it. The narrative logic
of this documentation framework is to provide first a con-
textual overview of the model (‘Description’), then specify
how it has been developed (‘Development’) and evaluated
(‘Evaluation’). Finally, technical details for its implementa-
tion should be specified.

3.1. Model Description

The description of a model (block 1) represents the first
and most crucial step that should be undertaken by the
developers of an occupant model when documenting it.
This also allows the developers to reflect on the utility of
their model and its applicability domain. The elements of
the framework related to Model Description are summa-
rized in Table 1.

The authors of an occupant model should explicitly
report a clear and concise formulation of the problem
their model deals with (Model Purpose). Indeed, a BPS can
be used for different goals and in different phases of the
life cycle of a building and/or of the building delivery pro-
cess, such as a parametric study of a building’s design or
retrofitting options, a floor’s HVAC system sizing, aroom’s
overheating risk assessment, a district’'s energy flexibil-
ity capacity assessment, a building’s regulatory compli-
ance, etc. The related definition of the model’s bound-
aries (Domain of Applicability) should include different
aspects:

e the spatial scale, that is the simulation’s spatial exten-
sion (e.g. room-zone, floor, building, district, urban);

e the spatial resolution, that is the zonal destination of
the model (e.g. room, household, floor, building);

e the temporal scale, that is the simulation time length
(e.g. weekly, monthly, annual);
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1- MODEL
DESCRIPTION

4 - MODEL
IMPLEMENTATION

2 - MODEL
DEVELOPMENT

MODELL Il
NG
FORMAL sy

3 - MODEL
EVALUATION

Figure 1. Overview of the 14 elements of the framework, which are distributed into four blocks (Description, Development, Evaluation,

and Implementation).

Table 1. The elements of the framework related to block 1.

1 - MODEL DESCRIPTION

MODEL PURPOSE
DOMAIN OF APPLICABILITY

spatial scale

spatial resolution

temporal scale

temporal resolution

building type

demographic, socio-economic,
cultural, technological, and climatic
context

physical

physiological

psychological

contextual

REQUIRED INPUTs

MODELLED OUTPUTs

e thetemporal resolution, thatis the required simulation
time-step (e.g. 1, 5, 10 min, half-hour, hourly);

e the building type, that is the dominant function of
the building (e.g. residential, office, retail, educational,
dormitory);

e the demographic and socio-economic context (e.g.
social housing, nursing home);

e the cultural context (e.g. country);

e the technological context (e.g. system type and
control);

e the climatic context (e.g. KOppen climate classification,
season).

Occupant behaviour is a continuous-time process.
However, since in conventional BPS tools time advances
in fixed time-steps, it is most common to use a discrete-
time rather than an event-driven simulation approach.
This discretisation inevitably results in a loss of informa-
tion. For example, all short dynamics are ignored if they
last less than the given time-step. Moreover, the outcome
of interest is bound to occur only at the selected time-
step (e.g. every 5 min, every 10 min, etc.). The importance
of defining the temporal resolution has been stressed by
Gunay et al. (2014) and Lindner, Park, and Mitterhofer
(2017). Both of them have shown that the most often used
discrete-time simulation approaches require an occupant
model to have a time step that is fixed both throughout
the simulation run and between different runs or exper-
iments. A change in the size of the time-step can result
in considerable differences in the predicted outcomes
and performances of an occupant model. Consequently,
the time-step of the simulation is paramount and should
be chosen and communicated carefully. It is essential to
underline that the choice of the time-step also depends
on the granularity of the data used for constructing the
model. The work of Mahdavi and Tahmasebi (2016) fur-
ther shows that the choice of a specific level of spatial
and temporal scale and spatial and temporal resolution
depends on the purpose or deployment scenarios of the
model.



As part of an occupant model description, the authors
should also clearly define the inputs of the model
(Required Inputs), which are not necessarily continuous
variables (e.g. the typical physical ones) but they can
also be categorical variables (e.g. arrival/departure times,
kitchen/bedroom room types). For example, the occu-
pant model might have different analytical forms in differ-
ent categories. For facilitating their communication, the
required input variables can be classified in:

e physical, covering measurable physical properties of
the indoor and outdoor environment (e.g. indoor air
temperature, indoor transmitted solar radiation, out-
door relative humidity, rain),

e physiological, covering physiological characteristics of
the occupants (e.g. occupant age, gender, weight,
height, health status),

e psychological, covering psychological characteristics
of the occupants (e.g. occupant habits and attitudes,
personality traits, mental stress levels),

e contextual, that is the set of inputs related to the
context (e.g. arrival/departure times, kitchen/bedroom
room types, building and system design, time of day,
type of day, geographic location).

This classification is based on a simplification of the
occupant behaviour drivers identified in Fabi's review
(Fabi et al. 2012). For a more complete overview of the
contextual variables, see also the work of Schweiker et al.
(2020).

The model’s output, namely the predicted occupancy
and/or occupant behaviour (Modelled Outputs), should
also be specified. This could be more than one output; for
example, the outcome of a model could be both thermo-
stat and clothing adjustment behaviour. We identify the
following main targets:

occupancy (including occupant counting),
appliance use,

thermostat adjustment,

window operation,

shading operation,

lighting operation.

3.2. Model Development

The elements of the framework related to block 2 (Model
Development) are summarized in Table 2. The developers
of an occupant model should clearly describe the dataset
used to build/train their model (Empirical Basis), which
should include details on:
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Table 2. The elements of the framework related to block 2.

2 - MODEL DEVELOPMENT
EMPIRICAL BASIS

study type

data type

sample size

building type

demographic, socio-economic,
cultural, technological, and climatic
context

sampling frequency

length of the monitoring period

FEATURES SELECTION

MODELLING FORMALISM

e the type of study carried out for deriving the dataset,
which can be either observational (in actual buildings)
or experimental (i.e. laboratory-based in test rooms or
living labs),

e the measured variables, that can be survey-based (e.g.
Time Use Survey — TUS - activity data), sensor-based
(e.g. PIR records, lighting-switch records) or both of
them,

e the sample size in terms of number of buildings (e.g.
two buildings), independent surveyed units (e.g. 15
apartments, three open-plan offices), and occupants
(e.g. 20 occupants),

e the building type (e.g. residential, office, retail, educa-
tional, dormitory),

e the demographic and socio-economic context of the
study (e.g. social housing, nursing home),

e the cultural context (e.g. country),

e the technological context (e.g. system type and con-
trol),

e theclimatic context (e.g. KOppen climate classification,
season).

e the sampling frequency of the measurements (e.g. 1,5,
10 min, half-hour, hourly),

e thelength of the monitoring period (e.g. one month or
two summers)

It is to be noted that the ‘building type' and the ‘demo-
graphic, socio-economic, cultural, technological, and cli-
matic context’ characterize both the empirical basis and
the domain of applicability of the model. However, they
do not necessarily match since the model can be applied
beyond the boundaries of the empirical data. Any appli-
cation beyond the data collection domain needs to be
justified and evaluated.

The authors should also clearly define whether Inde-
pendent Variables/Features Selection was carried out to
reduce the data dimension by determining the most
relevant feature subsets and should also indicate the
method employed. Feature (or variable) selection is an
important and delicate aspect (arguably one of the most
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complex parts) in developing a model and is primar-
ily focused on removing non-informative or redundant
predictors. It depends on the modelling strategy (for
instance, tree-based models inherently perform variable
selection), which depends on the aim of the study.

Several approaches can be applied to perform feature
selection. In their review on variable selection, Heinze,
Wallisch, and Dunkler (2018) categorized the following
criteria for variable selection:

e ‘Significance criteria’ are perhaps the most popular cri-
teria for variable selection and include hypothesis tests
(e.g. Wald test’s p-value).

e ‘Change-in-estimate criterion’ consists of examining the
relative change (%) in the parameters of the remain-
ing variables when one is removed. If the difference is
above a threshold, it is considered relevant, and the
removed variable is added back to the model. This
approach can also be used to account for confounders.

e ‘Information criteria’ focus on selecting a model from
a set of models rather than variable selection. How-
ever, these methods penalize model complexity and,
therefore, the inclusion of a new variable. Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion
(BIC), and Mallows’ Cp, are examples that belong to this
category.

e 'Penalised likelihood’ is an alternative way to perform
model selection. In this case, a model that contains
all the predictors is fitted using a technique that
shrinks the coefficient estimates towards zero. When
the penalty is the ¢1 norm (i.e. the sum of the absolute
coefficients), some coefficient estimates are forced to
be exactly zero. Hence, a variable section is performed.
Lasso regression belongs to this category.

e 'Background knowledge’ refers to both subject-specific
and general knowledge in the domain of application
of the model.

These criteria can be implemented in variable selec-
tion algorithms. Some popular approaches are backward
elimination, forward selection, and stepwise (forward or
backwards) selection.

Regarding the Modelling Formalism, occupant behav
jour is often modelled by assuming it is a stochastic
process. Following the definition of Coleman (1974), a
stochastic process can be defined as ‘a system which
evolves in time while undergoing chance fluctuations’,
which means that there is a certain probability of get-
ting a certain outcome for each observation at a spe-
cific time. Therefore, to implement occupant behaviour
in BPS, two fundamental aspects need to be considered:
(i) the probability of a certain outcome; and (ii) the evo-
lution of this probability over time. For modelling the

probability of a certain outcome, we can use analytical
or statistical modelling approaches, which include gen-
eralized linear models, i.e. a broad class of models where
the response Y relates to the linear predictor X8 through
a link function (denoted by g(-)). This is not to be con-
fused with general linear models, which refers to conven-
tional linear regression models. However, if the ‘identify
link' (g(n) = n = XB) is selected, general linear mod-
els can be viewed as a particular case of generalized
linear models. For modelling the evolution of the prob-
ability over time, we identify the following three main
approaches:

e Bernoulli process is used to model the probability of
having a certain state (or event) independently from
the previous state (or event).

e A discrete-time Markov-chain technique is used to
model the probability of changing state or event (i.e.
transitions probabilities) depending on the previous
state (i.e. the conditions just before the occupants
undertake the action).

e Survival model is used to model the time until a certain
state or event occurs.

The Markov chain can be homogeneous or inhomo-
geneous depending on the ‘nature’ of the transition
probability matrix. If it is time-dependent, the Markov
chain is called inhomogeneous. Otherwise, it is called
homogeneous.

Apart from the analytical approaches, we can identify
two other main modelling formalisms:

e agent-based, where occupants are modelled as auto
nomous agents, which interact with each other and
the external environment (e.g. belief-desire-intention
model of agency);

e data-driven, which can be defined as ‘an approach
to modelling that focuses on using the computa-
tional intelligence and particularly machine learning
methods in building models that would complement
or replace the ‘knowledge-driven’ models describing
physical behaviour’ (Carlucci et al. 2020). Unlike ana-
lytical or statistical approaches, data-driven models
(e.g. k-means clustering) do not encapsulate scientific
understanding and knowledge in explicit mathemati-
cal equations and do not assume any prior distribution
or relation nor are hypothesis-driven (Ourmazd 2020;
Montans et al. 2019).

3.3. Model evaluation

Ideally, any occupant model should have undergone an
evaluation process with a set of data different from the



Table 3. The elements of the framework related to block 3.

3 — MODEL EVALUATION
EMPIRICAL BASIS

data quality

study type

data type

measured variables

sample size

building type

demographic, socio-economic, cultural,
technological, and climatic context

sampling frequency

length of the monitoring period

MODEL FEEDBACK

METRIC TYPE

EVALUATION TYPE

dataset used for its development/training (Mahdavi and
Tahmasebi 2019; Wolf et al. 2015). The elements of the
framework related to Model Evaluation (block 3) are sum-
marized in Table 3.

The authors of an occupant model should openly indi-
cate whether the evaluation is done with a dataset differ-
ent from the development/training dataset (in this case
we speak of ‘external evaluation’) and specify the quality
of the external data used for assessment (‘data quality’).
In the context of model evaluation, data quality depends
on where the external data comes from, i.e. whether the
external data comes from a different building and/or a
different socio-economic, cultural, technological, and cli-
matic context. In the case of external evaluation, the
definition of the empirical basis is characterized by the
same elements found in section 3.1.

The authors should also indicate whether, in the eval-
uation process, a dynamic simulation is done and, there-
fore, the impact of occupant models’ output (e.g. window
states) is considered on the models’ input (e.g. indoor
air temperature). This issue is commonly referred to as
the model feedback problem (see section 4.3.2 for more
details). The idea is that occupants’ control actions can
influence indoor conditions. Changes in indoor condi-
tions can, in turn, influence future occupant actions.

The type of metric and evaluation used should be
clearly stated. The metric can be:

e direct, when the evaluation is directly done in terms
of the occupant model outputs, that is, the pre-
dicted presence and control actions (window open-
ing/closing, thermostat switch on/off, etc.);

e indirect, when the evaluation is done with indirect met-
rics, for example:

o energy use (e.g. heating, cooling, primary, total,
lighting),

oindoor environmental variables (e.g. air temperature,
relative humidity, CO;),

o air change rate.
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Furthermore, the evaluation metrics can fall into two
additional broad categories depending on the level of
aggregation of the models’ predictions:

e interval-by-interval, when the interval-by-interval con-
gruence between predictions and measurements is
verified by comparing time series data pairs. This
includes all the metrics of type ‘machine learning’ (e.g.
precision, recall, accuracy, F-measure, RMSE, mean bias
error),

e aggregated, when the evaluation is done by compar-
ing aggregated values (e.g. comparing the simulated
and predicted annual energy consumption). The type
of aggregation differs depending on the level (e.g.
mean, median, minimum, maximum, standard devia-
tion, peak, Jensen-Shannon divergence for compar-
ing predicted and measured probability distributions)
and temporal scale (e.g. every minute, hourly, monthly,
annual).

Examples of direct and aggregated metrics for window
operation models, which represent the most developed
models so far, are:

o window opening/closing ratio
o number of opening/closing actions
o opening/closing duration

This classification of the type of metric and evaluation
is based on the work of Mahdavi and Tahmasebi (Mahdavi
and Tahmasebi 2017).

3.4. Model Implementation

The elements of the framework related to block 4 (Model
Implementation) are summarized in Table 4. The authors
of an occupant model should clearly describe the compu-
tational environment used in terms of building simulation
tools (e.g. EnergyPlus, IDA ICE, ESP-r, TRNSYS) and/or pro-
gramming languages (e.g. Python, MATLAB). Also, the
type of integration should be specified; this can be of
three types based on the classification provided by Hong
etal. (2018):

e direct input or control, where the user defines deter-
ministic or static schedules and/or rules using the
semantics of the building simulation tool, similarly to
inserting the building geometry’s inputs,

e user function or custom code, where the user modifies
the source code (e.g. by writing new functions) directly
inside the building simulation tool (e.g. through the
Energy Management System feature of EnergyPlus),
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Table 4. The elements of the framework related to block 4.

4 — MODEL IMPLEMENTATION
COMPUTATIONAL ENVIRONMENT

building simulation tool
programming language
INTEGRATION TYPE

COMPUTATIONAL SPECIFICATIONS

e co-simulation, where the user uses different simulation
tools running simultaneously and switching informa-
tionin a combined routine (e.g. FMU, Building Controls
Virtual Test Bed).

Finally, the authors should provide some computation
specifications (e.g. the computational time).

4. Areview of existing papers on occupant
models

This section presents the results of the review of 86 aca-
demic papers on occupant models to verify to which
degree they meet the framework proposed in the pre-
vious section. The distribution of the reviewed papers
in terms of year of publication and number of modelled
occupant behaviours is shown in Figure 2. The figure
highlights the increasing volume of scholarly outputs on
the topic over the years, especially articles evaluating one
or two occupant behaviour targets.

4.1. Model Description

4.1.1. Model purpose

Only a minimal number of articles (about 13% of the total)
specifically reports the problem their model is dealing
with or is trying to address (Model Purpose). In the major-
ity of the remaining papers, the reported purpose is very
generic, such as ‘energy use prediction’, ‘integration in BPS
software’, or ‘employment in BPS applications’. Thus, the
existing trend is to develop purpose-free models that are,
only ideally, suitable to any deployment scenarios. As will
be discussed later, the question needs to be answered
whether such an approach is meaningful in light of differ-
ences between models for explanation and prediction.

4.1.2. Domain of applicability

The domain of applicability refers to the definition of the
model’s boundary: the context and the extent to which
it is ‘safe’ to use the model. In this view, it is clear that
the intended use of the model must be objectively speci-
fied. However, some pieces of information are usually not
presented straightforwardly. As a result, it is not easy to
assess whether the authors provide this information as
a limit of the model’s applicability or just for descriptive
purposes.

Regarding the definition of the temporal scale and
resolution of the model among the reviewed papers, a
surprisingly high 45% do not state or clearly specify the
time-step, while the temporal scale is not mentioned in
57% of the cases. The majority of remaining papers (25
out of 86) are based on annual simulations but with dif-
ferent granularity: not stated/clear (16%), 1 min (20%),
5min (12%), 10 min (28%), 15 min (4%), 1 h (20%). Thus,
a time-step of 10 min is the one most often adopted.

Other essential aspects concern the spatial scale and
resolution of the model. The former refers to the simu-
lation’s spatial extension (e.g. building), while the latter
refers to the zonal destination of the model (e.g. room).
In 21% of the models, the two aspects coincide and con-
cern room-zone level. For 28% of the models, the spatial
scale concerns the building level, while only three out of
86 models deal with district/urban area.

Regarding the building type, about 38% are for resi-
dential purposes, 36% for offices, 6% for others (such as
dormitory, educational), and in 20% of the papers, this
information is not stated.

The ‘cultural context’ is the most reported among the
contextual information, with 62% of the papers reporting
the city and/or country. Following there is the ‘technolog-
ical context” (35% of the papers), which includes informa-
tion about system type and control. The least reported
information is the ‘climatic context’ and the ‘demographic
and socio-economic context’, each mentioned in only
seven out of 86 papers. Among those mentioning the
‘climatic context’, three mention the season, while four
explicitly mention the climatic zone as Kdppen classifica-
tion (indirectly, this information can be retrieved from the
city).

4.1.3. Modelled outputs

The majority of the reviewed papers cover a single out-
put category (67%), while the rest cover two (22%), three
(7%), and four (3%) target behaviours simultaneously.
As an example of the latter, Nicol modelled the impact
of outdoor temperature on four occupant behaviours,
namely thermostat adjustment, window, shading, and
lighting operation (Nicol, Humphreys, and Olesen 2004).
However, it is worth noting that all the studies covering
multiple occupant behaviours, including Nicol’s, derive
each behavioural model independently of the others,
overlooking potential impacts of one occupant behaviour
(e.g. thermostat adjustment) on another (e.g. window
operation). Figure 3 presents the percentage of articles
that modelled each target behaviour, from which we can
notice that window operation is the most covered output
category.
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Figure 2. Distribution of the reviewed papers in terms of year of publication and number of modelled behaviours.
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Figure 3. Coverage of output categories in the reviewed articles.

4.1.4. Required Inputs

The inputs used to model the outputs above are cate-
gorized as (i) physical, (ii) physiological, (iii) psycholog-
ical, and (iv) contextual. As shown in Figure 4, physical
and contextual inputs are used in the majority of the
studies. On the other hand, less than 10% of the stud-
ies include physiological or psychological inputs to their
models.

To shed more light on the use of input variables in
the models, Figure 5 presents a matrix that maps the
input categories (shown in rows) to the output categories
covered in the previous section (shown in columns).
Results re-iterate the frequent use of physical and contex-
tual categories to predict all output categories. It is also
observed that appliance use is mostly modelled using
contextual input parameters (e.g. Wilke et al. 2013). This
finding is not surprising as plug-loads, such as comput-
ers and printers, are not driven by environmental fac-
tors but rather working schedules and requirements (e.g.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage

tasks). Time of day and arrival/departure times are the
two most common contextual input variables used in the
reviewed articles (e.g. Jin et al. 2020; Widén et al. 2009). In
contrast, behaviours such as window opening are often
driven by physical conditions (e.g. temperature, humid-
ity, and indoor air quality) (Deme Belafi et al. 2018; Yao
and Zhao 2017), which explain the higher use compared
to contextual inputs (see ‘window operation’ column in
Figure 5).

Figure 6 illustrates the surveyed ‘physical’ environ-
mental variables and their frequency of occurrence for
each output category in a matrix format. Indoor and out-
door temperature are the two most often used input
parameters. Window operation models show the high-
est diversity in their input parameters, covering multi-
domain indoor and outdoor conditions, namely ther-
mal (e.g. temperature and humidity), visual (e.g. illumi-
nance and radiation), and air quality (e.g. CO; and PM2.5
concentrations).
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Modelled Appliance Lighting Shading Thermostat Window
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Figure 5. Mapping of inputs and outputs in the reviewed articles. The values show the number of studies that satisfy each combination,

where darker cells reflect higher frequencies.

4.2. Model Development

4.2.1. Empirical basis

Regarding the documentation of the empirical basis used
to derive the model, a very limited number of articles
(about 7% of the total) do not report the type of study (i.e.
either observational or experimental) carried out and the
type of variables (either survey-based or sensor-based)
measured during the study. Only one of the reviewed
studies is based on experimental research (Schweiker and

Wagner 2016); all the others are observational studies.
In 49% of the studies, the variables are measured based
on sensors, while for 13% of the papers, the model is
developed from survey-based data. The rest of the mod-
els are derived using both types of measurements or get
data from the literature (mainly for lighting operation
and appliance use). Models of appliance use are the ones
most often using survey-based data, mainly coming from
time-use surveys.

Modelled outputs

Appliance Lighting Shading Thermostat Window
Modelled inputs use operation Presence  operation adjustment operation
Indoor
Air temperature 5 3 1 2 4
CO2/PM2.5 concentration 1 3 1 2 oG
Illuminance 0 7 1 4 0 5
Radiant temperature 2 1 1 1 4 6
Relative humidty 0 2 0 1 3
Outdoor
Air temperature 5 2 2 2 Y
CO2/PM2.5 concentration 0 0 0 0 1 3
Rainfall 0 1 0 1 1 3
Relative humidity 2 0 0 1 ]
Solar radiation/Illuminance/Hours 3 6 2 3 + G
Windspeed/Direction 1 1 0 1 3 _

Figure 6. Coverage of ‘physical’ input categories and mapping to modelled outputs.
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The distribution of the number of monitored build-
ings, units, and occupants is shown in Figure 7. For ‘unit’,
we mean the smallest enclosed space controlled by one
person or a specified group of people: a room, an apart-
ment, or a house. About 16% of the reviewed works do
not clearly describe the sample size, while only 20% of
papers declared all three levels of sample size (buildings,
units, occupants). The number of monitored occupants is
the most difficult sample-related information to be found
in the reviewed papers. Most often, the authors indicate
the number of occupants indirectly by giving information
on the number of monitored workplaces or rooms. Papers
having appliances use, thermostat adjustment, shading,
and lighting operation as target modelled variables doc-
ument their sample size less often than papers about
windows and occupancy models but tend to declare the
number of occupants more frequently than the others.
From Figure 7, we can also observe that the number of
monitored buildings is very rarely above ten, and the
number of monitored occupants is most often between
10 and 50.

Only 5% of the papers do not describe the build-
ing type from which the empirical basis is collected.
The empirical basis for the rest of the papers is mostly
based on measurements from residential buildings (see
Figure 8), followed by commercial buildings (which are
always offices), representing about 50% of the cases with
respect to the monitored residential buildings. Only for
the development of shading models, commercial build-
ings are more often monitored than residential buildings
(see Figure 9). While for windows, the types of monitored
buildings are equally distributed among residential and
commercial buildings.

About 77% of the papers provide contextual informa-
tion on the empirical data used to derive the model. The
cultural and climatic contexts from which the empirical

data are derived are described in about 60% of the papers.
The technological context is described 40% of the time,
while the demographic and socio-economic context is
described only 16% of the time. The papers considering
shading as target behaviour are the least documented in
terms of context and do not include any context descrip-
tion 67% of the time. Itis to be noticed that these numbers
are different from those related to the domain of applica-
bility stated by the authors (section 4.1.2), and, in partic-
ular, the domain of applicability is less well documented
than the empirical basis.

The distribution of the empirical dataset’s length in
days and the frequency in data collection in minutes is
given in Figure 10 and Figure 11, respectively. In about
19% of the reviewed papers, the length of the dataset
(i.e.the duration of the monitored period) is not reported.
For those reporting the dataset’s length, the most often
employed monitored period is one year, followed by a
length from 28 to 90 days, which corresponds to a cou-
ple of months. About 27% of the papers do not clearly
describe the frequency of data sampling. A sampling
frequency equal to or less than 10 min is most often
employed.

4.2.2. Features Selection

Among the analysed papers, 28% did perform feature
selection, 42% did not, while for 30%, it is not clear. Figure
12 shows the distribution of the selection criteria among
the papers that perform feature selection. It can be seen
that the two prominent methods for feature selection
are ‘information criteria’ and ‘significance criteria’. Also,
and not surprisingly, 83% of the articles that performed
feature selection relied upon logistic regression for this
important step.
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Modelled outputs

Appliance Lighting Shading Thermostat Window
Building type use operation Presence  operation adjustment operation
Commercial 3 7 5 5 3 -
Dormitory 0 0 0 0 2 1
Educational 0 1 0 0 0 1
Goverment 0 1 0 1 0 0
Hospital 0 0 0 0 0 1
Museum 0 0 1 0 0 0
University 0 4 0 2 i 5
NS/NC 1 2 2 0 1

Figure 9. Coverage of monitored building type and mapping to modelled outputs. NS/NC stands for Not Stated/Not Clear.

4.2.3. Modelling formalism

The majority (43%) of the reviewed papers adopt genera
lized linear models to calculate the probability of an out-
come. Logistic regression is the most used (37%), while
probit regression is used only in 3% of the cases. To
account for the diversity of occupant behaviour, Haldi uti-
lized generalized linear mixed models (Haldi et al. 2017).
Few studies (3%) adopt the approach proposed by Wang
etal. (2016), which is based on a discrete three-parameter
Weibull cumulative function and can consider the time-
step as a model parameter explicitly.

In BPS, the time-step is discrete, and the transi-
tion probabilities vary with time (i.e. they are not con-
stant at each time step). This results in a discrete time-
inhomogeneous Markov chain, which is used in 26% of
the models. The term ‘Markov chain’ is commonly used
instead of ‘Markov process’ with a countable state space.

Data-driven models are only found in 13% of the
reviewed papers, there is no clear tendency, and differ-
ent modelling techniques are adopted. The works of Wei
et al. (2019; Pan et al. 2019) compare the performance
of data-driven models with stochastic analytical models.
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They both conclude that the data-driven models have
better predictions.

Agent-based models, even if particularly suited to sim-
ulating complex systems, are the least used (6%).

4.3. Model evaluation

4.3.1. Empirical basis

Atotal of 47 out of the 86 reviewed articles included some
form of evaluation. Out of these 47 articles, 23 used exter-
nal data for evaluation. Hence, in these cases, the eval-
uation was conducted using datasets different from the
development dataset. Such external datasets included in
the reviewed articles were either from the same build-
ing (Zhou et al. 2021; Binini, Munda, and Dintchev 2017;
Widén and Wackelgard 2010) or from another building
(Richardson et al. 2010; Schweiker et al. 2012; Ozawa,
Kudoh, and Yoshida 2018; Schweiker and Shukuya 2009).
In the former case, data involved either different occu-
pants (Widén and Wackelgard 2010; Widén, Molin, and

Ellegard 2012) or was from another period (Zhou et al.
2021; Binini, Munda, and Dintchev 2017).

4.3.2. Model feedback

As mentioned previously in section 3.3, the comparison
of predictions of (especially stochastic) occupant mod-
els with empirical data represents a significant challenge
in model evaluation. This circumstance is commonly
referred to as the model feedback problem: occupants’
actions (e.g. opening the windows, closing the shades)
are likely to influence indoor conditions (e.g. room air
temperature, task illuminance level), and this, in turn, can
influence subsequent occupant actions (e.g. adjustment
of the thermostat, switching on the lights). The major-
ity of the reviewed articles do not address this challenge.
However, a small number of the reviewed papers (about
10% of the total) entail content relevant to the problem
of model feedback (Zhou et al. 2021; D'Oca and Hong
2015; Yun and Steemers 2010; Yun, Tuohy, and Steemers
2009; Fischer et al. 2016; Langevin, Wen, and Gurian 2015;
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Widén and Wéckelgard 2010). For instance, Yun, Tuohy,
and Steemers (2009) and Yun and Steemers (2010) devel-
oped a behavioural algorithm of window-control by using
Markov chain and Monte Carlo methods that ‘generates a
time series of window states as a function of the indoor ther-
mal stimulus’ and implemented it into a dynamic energy
simulation tool.

4.3.3. Metric type

The present review examined the articles in terms of the
types of behaviourally relevant model output or metric
(see section 2.3 for more details). Thereby, a differenti-
ation was made between direct metrics regarding, for
instance, window operation or thermostat control actions
and indirect metrics such as resultant heating or cooling
energy use. Among all reviewed articles including an eval-
uation, the majority (78%) included a direct metric type
and relatively few of them (22%) use an indirect metric

type.

4.3.4. Evaluation type

The reviewed studies entail a large spectrum of different
evaluation approaches. These include evaluations (com-
parison of simulation results with corresponding observa-
tions) performed on an interval-by-interval basis as well
as those involving the comparison of aggregated val-
ues. The subject of modelling was in roughly 30% of the

articles related to window operation. The most common
mode of evaluation in these studies involved the com-
parison of aggregated values. Thereby, different metrics
were subjected to evaluation, including the number of
opening/closing actions (in seven papers), the duration of
window opening/closing (in five papers), and the proba-
bility of window opening/closing (in four papers). Eight
articles address indirect metrics on energy use.

The temporal scale of aggregation varies considerably
among the reviewed articles, ranging from short intervals
(e.g. every minute Widén et al. 2009; Stokes, Rylatt, and
Lomas 2004; Richardson et al. 2010), every five minutes
(Haldi and Robinson 2009; Cedeno Laurent, Samuelson,
and Chen 2017), every fifteen minutes (Page et al. 2008;
Gottwalt et al. 2011) to extensive periods (e.g. annual in
8 articles). Likewise, the reviewed studies employ differ-
ent modes of aggregation. A majority of 16 articles use a
form of ‘sum’, other nine articles compare by using mean.
Median (Schweiker et al. 2012), peak (Paatero and Lund
2006), or density functions (Page et al. 2008) are less used.

Different approaches have been followed within the
category of evaluation instances involving interval-by-
interval comparisons of modelled and observed results.
Eight papers merely provide a graphical comparison
without quantified statistics. Five papers rely on ‘classi-
cal’” statistics such as Pearson correlation coefficient or
root mean square error. Confusion matrix and related



classification measures (e.g. accuracy, precision, recall)
are employed in ten papers.

4.4. Model Implementation

The description of the used computational environment
is mostly neglected in the current way occupant mod-
els are documented. The building simulation tool is
specified in only 17% of the reviewed articles. This can
be partly explained by the fact that occupant models
are often developed independently of a specific build-
ing simulation tool. More worrying is the fact that only
12% of the articles specify the used programming lan-
guage. The most often used simulation environments are
EnergyPlus and ESP-r, followed by IDA ICE and Daysim
(RADIANCE-based). These simulation environments allow
a physics-based dynamic simulation approach. At the
same time, MATLAB is the preferred programming lan-
guage used 50% of the time. Other used programming
languages are VBA (Visual Basic for Applications), Python,
Erlang, R, Brahms, and NetLogo. These last two are multi-
agent modelling languages used explicitly for develop-
ing agent-based models. Similar to what is observed for
the computational environment, the adopted or envis-
aged type of integration is poorly addressed (in only 7%
of the reviewed articles). Computation specifications are
only provided in one paper (Binini, Munda, and Dintchev
2017).

5. Discussion

This paper presents a framework for reporting occupant
models together with a review of the existing literature
in view of the degree of its compliance with the frame-
work. Figure 13 summarizes the percentage of articles
reporting the corresponding items related to each cate-
gory of the introduced framework. Overall, the percent-
age of reported items from the framework varies strongly
with the category, while no paper reports all items.
The resulting inverted U-shape shows that at least the
core elements of an occupant model are reported with
high frequencies, whereas model purpose, the domain
of applicability, and model implementation are reported
least frequently. This observation forms the core of this
discussion.

The deeper reasons for the observed lack of declared
model purpose are not fully understood, as it was impos-
sible to consult individual authors regarding issues that
are not sufficiently explicated in their articles. The reasons
may simply be that authors took it for granted that the
purpose is obvious or that the corresponding informa-
tion or explanations are not sufficiently clear in the paper.
On the other hand, as noted in section 4.1.1, the low
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percentage may suggest a trend towards purpose-free
models thought by authors suitable for any deployment
scenarios. This possible trend - if it exists — would have
two problematic aspects. Firstly, leaving out the mod-
elling purpose suggests that modelling is done purely
for the sake of modelling without underlying research
questions or ideas for future usage of gained knowledge
or model parameters. Readers of such work — being sci-
entists, applicants, or the general public - will need to
decide whether they see a potential application of the
results and, more importantly, whether the presented
model is suitable for their purpose. While well-trained
scientists may be able to answer both questions, it is
doubtful that all those invited to apply occupant mod-
els in their work can make such judgements. It appears
reasonable to suggest that such an approach needs to
be avoided for reasons of clarity and scientific endeavour,
which starts with a purpose. Secondly, occupant mod-
elling is often based on a large number of data points
derived, for example, from year-long longitudinal moni-
toring campaigns. With the dependence of significance
on sample size, even small effects likely result in sig-
nificant findings (Sullivan and Feinn 2012). The ques-
tion remains whether such a significant effect has any
scientific or practical relevance. For such a decision, it
is crucial to know the purpose of the model and the
final variable in question, for instance, differences in
energy use or likelihood to observe a specific occupant
behaviour.

A second identified issue is related to the diffuse poor
description of the model’s domain of applicability. Pre-
dictive models do not need to rely on a theory but can
be purely based on associations found in the available
data leading to a good prediction. Such an approach
is underlying many data mining methods. A predictive
model may predict the energy use of a future building
through BPS in a precise and satisfactory way. However,
the predictive model needs to be applied with caution to
another building because its predictive power depends
significantly on the context in which the data was col-
lected. Without an underlying theory or parallel causal
study, the observed associations used for the prediction
may miss important influencing factors when this model
is applied to a different context. For example, a predic-
tive model for window opening derived from data with-
out high outdoor temperatures and a context without
cooling capacities by an air-conditioning unit will likely
fail to predict the reduced window opening probabilities
at very high outdoor temperatures in such context. This
case was observed by Schweiker et al. (2012) while eval-
uating models derived from naturally ventilated rooms
in Switzerland with mixed-mode rooms under Japanese
summer conditions.
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Figure 13. Percentage of articles reporting corresponding items of each category of the introduced framework. Note that categories
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reported the least often (3%) and building type the most often (80%).

This third point of the discussion relates to the next
main point of the debate: the low percentage of docu-
mentation of items related to implementation. Without
knowing the intended purpose for more than 80% of the
models presented in the literature, it is without mean-
ing to criticize the lack of such information. Also, authors
may consider implementing BPS as an additional, sepa-
rate step presented in follow-up articles. Therefore, while
emphasizing the need to consider the practicability of
predictive variables used for modelling when the purpose
is to implement the model into BPS (e.g. is the variable
available within the BPS environment, or is it possible to
emulate it?), we will not go deeper into this point of the
discussion.

An open question beyond the scope of this review is
to what extent the proposed framework supports a more
widespread application of occupant models in practice.
First, the question is whether such widespread applica-
tion is meaningful given the number of open questions
and non-evaluated models. For the sake of brevity, we
will not deepen this thought but rather point out that
a more transparent communication of a model back-
ground and evaluation status may at least reduce the
chance of models being adopted without reflection. Sec-
ond, this question requires empirical work, such as inter-
vention studies or interviews with practitioners as sug-
gested by Schweiker, O'Brien, and Gunay (2019) to anal-
yse the strengths and limitations of this framework for
practitioners and evaluate those elements most suit-
able for creating understanding and trust before adopt-
ing them. Implementing the proposed framework and
raising awareness among editors and reviewers about

the importance of each element would be the first step
towards this.

6. Conclusion

This paper introduces a framework to document occu-
pant models used in building performance simulation. It
consists of four blocks (description, development, evalu-
ation, and implementation) and provides and describes
several elements within each block to help researchers
transparently document and communicate their occu-
pant models. We cannot prove that the derived frame-
work is a comprehensive one or ‘gold standard’ for occu-
pant models’ documentation and we cannot guarantee
that it will be adequate and efficient in all future appli-
cations. However, it builds upon current literature as well
as a thorough discussion among a group of experts with
long-term experience in occupant modelling and estab-
lishes a picture that provides means for critically reflecting
on how to report and document occupant models in the
future. Thus, the introduced documentation schema lays
the way to a standardized methodology on how to formu-
late and document occupant behavioural models for BPS
in the future. The efficiency and acceptance of the frame-
work alongside potentially missing elements will need to
be revisited several years from now.

Based on a systematic review, we have also verified
to which degree existing academic papers on occupant
models meet the framework. We have found that most
of the papers provide occupant models without specify-
ing their purpose and without providing any information



about their implementation. The two aspects appear to
be related and indicate that occupant models have been
so far developed without any specific BPS application in
mind. This is partly understandable given the relatively
low maturity of the field. More worrying is the little efforts
so far dedicated to defining the domain of applicability of
the model and evaluating the model. These results show
the need for such a framework as suggested in this work
for researchers, reviewers and editors. Without investi-
gating future efforts in such directions, it may remain
difficult for practitioners to place confidence and trust in
the performances of occupant models and to be able to
use them. Consequently, a more widespread application
of occupant models in practice may be further delayed.
More transparent communication of a model background
and evaluation status may contribute to greater aware-
ness of the adoption of occupant models.

Note

1. The shrinkage penalty is composed of a penalty term multi-
plied by a tuning parameter A.
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