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ABSTRACT

Buildings contribute to more than 70% of overall U.S. electricity usage and greenhouse gas (GHG) emissions.
HVAC systems in buildings often consume more than 40% of the total building energy usage. To reduce such high
energy use, numerous control strategies including optimal and predictive controls have been developed and
demonstrated. To achieve a near real-time solution, most previous research has simplified the non-linearity of
building thermodynamics and provided an approximate optimal solution. The future HVAC control optimizes
more connected devices in buildings, which requires a rapid and accurate response, not only to the building itself
but also to the grid signals. It also poses the challenge of solving non-linear problems with discrete variables.
With the recent development of quantum computers, this has become feasible. In this paper, we developed a new
optimization solution based on quantum annealing for model predictive control (MPC) of a rooftop unit (RTU).
Compared to traditional optimization methods, we obtained similar solutions with less than 2% differences and
improved computational speed from hours to seconds. We also demonstrated an 80% reduction in total elec-
tricity consumption and a 21% reduction in electricity bills by considering day-ahead price time-of-use demand
response signals. Quantum computing has proven capable of solving large-scale non-linear discrete optimization
problems for building energy systems.

1. Background

by the uniqueness of the urban environment. With the aging of the US
building stock, grid, and urban infrastructure, climate threats are ex-

By 2050, a staggering 70 % of the world’s population is projected to
live and work in cities [1], while two-thirds of global primary energy
consumption will be attributed to cities, leading to the production of 71
% of the global direct energy-related greenhouse gas (GHG) emissions
[2]. People currently spend more than 90 % of their time in buildings,
which contributes to more than 76 % of overall U.S. electricity usage
[3]. Such GHG emissions contribute to climate change, which is one of
the most dominant forces shaping the Earth system and the greatest
challenges of our generation. Many globally recognized environmental
and climate threats such as heat stress, abrupt cold snap, air pollution,
water scarcity, and energy insecurity are either rooted in or exacerbated
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pected to further intensify due to the rapid urban development coupled
with climate change.

In the US, space heating accounted for 38 % of the energy delivered
in buildings, far more than any other end-use. Meanwhile, electricity
used for space cooling by residential and commercial sectors accounted
for 10 % of total US electricity consumption in 2020 [4]. Advanced
building controls have demonstrated 20-80 % energy savings through
literature [5,6]. It also offers a vast potential for sustainable buildings
[7]. With energy-saving and sustainability requirements, we need
optimal control for the building HVAC systems.

Currently, proportional-integral (PI) controllers are widely used in
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building automation systems for their simplicity and robustness to
achieve conditioned indoor environments [8]. However, it only re-
sponds to current sensor readings without consideration of any other
effects as reactive control. In buildings, there are complex heat transfers
and the lagging effects due to the thermal mass of envelopes and indoor
sources. They will increase the demands of load on the HVAC system and
lead to a waste of energy [9]. Therefore, a good control strategy is
needed to take into account the thermal effects of the buildings and
reduce the energy usage while maintaining indoor comfort. Originated
from advanced process control, model predictive control (MPC) can
capture the dynamics of the building systems [10]. Predictions are
derived with the information from the physical devices, thus the optimal
control can be applied to systems with well-defined constraints. The
features of MPC make it more prevalent in power system control. With
the development of computing tools, MPC is getting more and more
attention in the field of building energy [11]. Modeling and optimization
can play an important role in the sustainable energy systems of buildings
[7]. However, most of the real-time MPC case studies for building HVAC
system have the following characteristics that prevent large-scale and
robust deployment: difficulty in achieving real-time MPC, inaccuracy
due to simplified non-linear models, and inefficient solver for discrete
variables.

1.1. Difficulty in achieving real-time MPC

First, with the uncertainties of the weather forecast [12-14], occu-
pancy level [12,15,16], and real-time energy pricing [17-20], the MPC
required real-time response to update the control operations. It was
necessary to solve the optimization problem within the control time
step, such as 15 min. But it is very difficult to achieve real-time MPC for
building HVAC systems. Many researchers have attempted to develop
real-time MPC to reduce the energy use by building HVAC systems, such
as air handling units (AHU), heat pumps, and variable air volume (VAV)
systems [21]. For example, Schirrer et al. [22] developed a real-time
non-linear MPC for a low-energy office building consisting of the heat
pump and solar collector. Even for a 30 % variation in weather predic-
tion, it showed good control performance and robustness. Joe and
Karava [23] proposed an MPC strategy to optimize the performance of
radiant floor heating and cooling systems in office buildings. The elec-
tricity use of the chiller was three polynomials. They found that the
controller could save 29-50 % of energy compared with a baseline air
delivery system. Asad et al. [24] developed multiplexed real-time opti-
mization for non-linear dynamics of AHU and achieved 10 % energy
savings. Ganesh et al. [25] used a mass balance model and built a dy-
namic optimization strategy of AHU for the control of indoor air pol-
lutants. The optimization reduced the pollutant concentration by 31 %
and energy use by 17.7 %. For a building with many thermal zones, the
optimal control design for HVAC system will have a large number of
control variables, in particular, discrete variables (e.g. fan status). This
causes the search space increasing exponentially, resulting in an NP-
hard problem. Hilliard et al. [26] implemented MPC with zone-based
thermal comfort adjustments for an academic building. The experi-
ments showed a 29 % reduction in HVAC electricity. Brooks et al. [27]
developed an occupancy-based energy-efficient MPC for multiple rooms
and showed energy savings potential of 29-80 %. Li et al. [28] decom-
posed the multi-objective optimization of thermal comfort, air quality,
and energy use for VAV systems. It effectively found the proper trade-off
between maintaining thermal comfort and indoor air quality, and the
energy use was only 2 % higher. Bengea et al. [29] presented field
experiment results of MPC, which optimized the operation of VAV
serving a commercial building. Their demonstration results showed
energy savings of 20 % during the transition season and 70 % during the
heating season. Based on the literature review, the main challenge to
achieve real-time MPC is the computational algorithm to solve the
optimization part of a MPC within one control step (e.g 15 min). In order
to achieve real-time, prior research studies simplified nonlinear control
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models to be a continuous and linear, and solved within a short control
step [30], or a discrete linear problem that can be solved by mix-integer
programming quickly as well [31]. None of prior studies were a non-
linear optimization problem with discrete variables and implemented
in real-time.

1.2. Inaccuracy due to simplified non-linear models

Second, most energy systems in buildings were complex and non-
linear systems. The non-linearity of the system made the optimal con-
trol difficult, and the optimization results could be inaccurate due to the
simplified models. For optimizing the complex non-linear building
HVAC systems, previous approaches included multi-stage and multi-
level optimization [19,17,32], decomposed, distributed, and decen-
tralized optimization [33,34,18], agent-based method [34,19,13], local
approximation and linearization [20,35,36]. These methods could not
only convert and solve non-linear problems, but also accelerate the
computation. For example, Cigler et al. [37] outlined an approximation
of non-linear optimal control for the predicted mean vote index and
obtained an additional 10-15 % of energy-saving potential. Drgona et al.
[38] developed MPC by decoupling of non-linearities for a ground-
source heat pump in an office building and saved 53.5 % of energy.
However, these existing approaches to speed up the computation may
lack of accuracy due to simplified non-linear models. Recently, some
studies have used machine learning models to solve optimal control for
complex building HVAC systems [39,40,41,5]. Such models were easy to
build, even for a very complicated system. So that machine learning
models could achieve real-time control. But for the robustness of these
models in varied environments, the verification from previous studies
using the machine learning method was only implemented for one or a
few days.

1.3. Inefficient solver for discrete variables

In addition, optimization of building HVAC systems usually involved
many discrete variables, such as whether to use a system component,
operating status as on or off, and hierarchical stage control. Current
optimization solvers were inefficient for complex problems with many
discrete variables. The traditional approach for the optimization of
discrete variables was typically a search algorithm [41]. In recent years,
mixed-integer linear programming (MILP) and mixed-integer non-linear
programming (MINLP) have received increasing attention from both
academia and industry [42]. Deterministic algorithms for solving large-
scale problems were needed to deal with growing subproblem sizes and
exponential growth of branch-and-bound trees. In this case, it led to the
enumeration of solution alternatives in the feasible space. This method
could not deal with the optimization of a complex system in real-time
[43]. In addition, meta-heuristics techniques, such as simulated
annealing [44], particle swarm optimization [45,46], and genetic al-
gorithm (GA) [47-49] also became popular nowadays, due to their ease
of implementation and low requirement for prior knowledge of the
optimization problem. However, these techniques could only solve un-
constrained optimization problems. They could not strictly find the
global optimum, either [50]. For complex problems that were hard to
converge, multiple runs were required to find a better solution. Previ-
ously, GA was used to optimize the building HVAC system [51]. People
also formulated the optimization of building HVAC systems and net-zero
energy building into MILP, and used Gurobi and CPLEX software to solve
[52,53]. These traditional optimization methods for large-scale energy
systems required a very high computational effort [54]. With the
increasing complexity of the problem and more discrete variables to be
optimized, it typically required exponential computing time [55].
Finally, the most common technique used to solve real-time building
energy management problems was convex optimization. For linear
optimization, MILP, and quadratic programming, due to the simplicity
and convexity, a global solution was guaranteed [6]. Non-linearity of
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complicated energy systems also made formulating the control strategy
very hard [56]. In many engineering optimization problems, the non-
convexity of the problem made it impossible to obtain a globally
optimal solution [6].

Through the literature review, we found that developing real-time
MPC of a non-linear system for mixed-integer discrete optimization
was very challenging. The research gap and challenges are that few
previous studies could find the optimal control for the complex non-
linear systems with discrete variables within an acceptable computing
time. In order to increase the efficiency and reliability of the energy
system at a building or building clusters level, it is imperative to opti-
mally manage and control a large number of smart devices for future
smart buildings and communities. Hence, we needed a better compu-
tational tool to solve these optimization problems.

The purpose of this study was to apply quantum computing (QC) to
optimize energy efficiency through developing a non-linear MPC with
discrete variables for building HVAC system. Specifically, we formulated
the MPC optimization of a rooftop unit (RTU) into a quadratic uncon-
strained binary optimization (QUBO) problem. To verify the feasibility,
then we used a quantum computer to solve such an optimization prob-
lem and obtained the results successfully. At last, we also compared the
results and computing time of quantum computing with traditional
optimization methods.

2. Quantum computing

Quantum computing uses quantum mechanics to solve problems that
are too complicated for conventional computers. For example, it uses
qubits that can represent 0/1 at the same time to compute, so the
computational speed can increase exponentially with the number of
qubits. Quantum computing has recently attracted more attention due to
its unique ability that was different from conventional computers in
terms of computational principles and speeds. The circuits in a quantum
computer obeyed quantum mechanics. The basic unit of a quantum
computer was the qubit. A qubit could be in a quantum state of 1 or 0, or
a superposition of the two states. However, when it was measured, it was
either 0 or 1; the probability of either outcome depended on the quan-
tum state of qubits immediately before the measurement [57]. Another
property of qubits was the ability to form entangled states, allowing to
form relationships between separated random behaviors. Quantum
computers used these characteristics of the qubit to carry out
computations.

Since the computational principle of the quantum computer was
different from that of conventional computers, it provided a novel
approach to solving some complex problems with significant speed ad-
vantages [58,59]. For example, Shor [60] proposed the quantum algo-
rithm for factorization of large numbers, which was exponentially faster
than any classical algorithm. Due to the potential applications of cryp-
tography, it greatly motivated the development of quantum algorithms.
Grover’s search algorithm [61] was able to search large databases in the
square root of complexity time. Harrow et al. [62] developed a quantum
algorithm for solving linear systems of equations. Inspired by these al-
gorithms, many researchers have developed numerous quantum algo-
rithms for further applications, such as data fitting [63], clustering [64],
and solving linear differential equations [65].

To solve optimization problems, quantum annealing and adiabatic
quantum computation relied on the adiabatic theorem. People have
built quantum annealers in recent years [66]. In the system, it was
initialized in the lowest energy eigenstate of the Hamiltonian. Hamil-
tonian was a mathematical description of a physical system in terms of
energy, corresponding to the objective function of an optimization
problem [67]. The slow annealing process evolved the quantum state
into a user-defined problem. By reducing the Hamiltonian of the system
from a large value to zero, the system was driven to its optimum state as
the eigenstate of the quantum Hamiltonian. It could be used for
searching for optimal solution space effectively [68]. Quantum
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Hamiltonian in Ising formulation could be expressed as

Als) 0, B(s) ~ ()G
Hising = _ngihrT Zhia£)+zjijgi)0'?) (€]

i>j

where ¢ was Pauli matrices operating on a qubit g;, A(s) the tunneling
energy at annealing fraction s, B(s) the Problem Hamiltonian energy at
annealing fraction s, h; the self-interaction energy on a qubit. J; the
coupling energies between spins.

Compared to the traditional optimization algorithm like ant colony
optimization algorithm [69], GA [47], and simulated annealing [44] to
find optimal values, quantum annealing was a more powerful method. It
allowed quantum tunneling, which gave an increasing likelihood of
reaching the ground state under the same conditions of annealing
schedule and interaction. It assisted in escaping the local minimum and
enabled the search for the global minimum [70]. The recent develop-
ment of hardware and algorithms of quantum annealer has given people
the opportunities to solve extremely complex optimization problems,
even NP-hard problems [67]. To solve an optimization problem using
quantum annealing, we first needed to formulate it as unconstrained
optimization. With the properties of qubits, then we needed to formulate
the continuous or discrete optimization variables into binary variables.
When the objective function was a polynomial of variables, it was
polynomial unconstrained binary optimization (PUBO), which was a
subset of binary optimization as

H(x) = Cs[[x 2

i€

where x; € {0,1}.
The quantum annealer could solve QUBO problem, where the order
of the polynomial in Eq (2) was two that

H(x) =Y Cxi+ > Cypxix; 3
i ij

where x;,x; € {0,1}.

The first part was linear, and the second part was quadratic and non-
linear. Its form was the same as the quantum Hamiltonian in Eq (1), thus
we could map the QUBO problem into the quantum processing unit
(QPU) and solve it by quantum annealing.

Recently, some researchers were trying to develop algorithms and
utilize quantum annealers to resolve optimization problems, especially
complex multivariable optimization [71]. For example, Ajagekar and
You [72,73] developed novel quantum computing-based hybrid solution
strategies for molecular design and facility location-allocation for en-
ergy systems infrastructure development, unit commitment of electricity
power systems operations, and heat exchanger network synthesis. Ding
et al. [74] applied quantum annealing for network design and analysis.
Castillo et al. [75] optimized the refinery scheduling process with a
quantum annealer. Quantum annealing could also optimize the power
network [76,77] and water distribution network [78]. The optimiza-
tion’s outcomes were deemed to be quite positive. At last, the quantum
annealer also had the potential to solve more problems, such as the
optimization of machine learning models [79-81]. However, quantum
computing method has never been used for optimizing the model pre-
dictive control of building HVAC systems. The possible reasons are as
follows. At first, prior studies often relied on a continuous and linear
MPC optimization problem [30], or a discrete linear problem that can be
solved by mix-integer programming [31]. On the other hand, a practical
quantum computer has not been available in the past years.

3. Methodology
3.1. General MPC problem for building HVAC systems

The general MPC formulation for the building HVAC systems can be
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Fig. 1. Overview of the methodology in this study.

written in the following form [82]:

N—

i
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Where 7} is the objective function, x; the system states, y, the system
outputs, ry the reference signal, uy the system inputs, s the slack vari-
ables, dy the disturbances, x, the initial state, 2 the constraints for xy,
7/ the constraints for uy, .’ the constraints for s, k the time step, and N
the prediction horizon. The optimal control would minimize the objec-
tive function, such as energy use or electricity bill for the building HVAC
systems affected by the disturbances and within the constraints of
comfort and system bounds.

To solve this optimization problem by quantum computing, we first
needed to formulate the constrained problem into an unconstrained one
by employing penalty terms in the objective function for xy,ux,sx. Then
we needed to formulate the system inputs uy in the form of binary qubits.
Thus, the optimization can be reformulated in the following form:

. V-1
min |/ o (%) + 7 7 (u) + 7 7 (si) + Zk:o (ks Y, s s Sk

ki

s.t.
Xt = f (e, ., di)
Vi = 8(Xes U, ) ®)
Sk = h(xkvykvukydk)
X=X

we = ue(qui)

ke Ny

qii €10,1}

Even the objective function, the state-space model, the system

model, and the penalty function were non-linear, aslongas /.7 ,,/ »,
/x.f,& h,ux were polynomial functions, the above objective function
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was a polynomial of gy;. As a result, the form of the objective function
was the same as Eq (2). Previously, researchers [83,84] have developed
algorithms to convert the problem from PUBO to QUBO - from Eq (2) to
Eq (3). Hence, quantum computing could resolve the MPC problem for
building HVAC systems. In this paper, we used quantum computing to
solve the non-linear mixed-integer programming for RTU optimal con-
trol as an example.

3.2. Quantum computing for optimizing RTU operation

Fig. 1 shows the overview of the methodology in this study. We first
built the real-time MPC of the RTU in the building with discrete fan stage
variables to minimize the total coil load and electricity price across the
prediction horizon. We developed the thermal network model and
collected the data to calibrate the model. Then, we reformulated the
problem as the QUBO by using a penalty function and the substitution
method. We could find the coefficients through programming. Then we
used the p-Wave advantage, which was a commercial quantum
computing equipment. We used Python to submit the coefficients to p-
Wave quantum computer by Leap cloud system. By minor embedding
the nodes and edge weights of the chimeric graph architecture of qubits,
the p-Wave quantum computer could solve such optimization problems
and find the global optimum by outputting qubits states of 0/1 from the
quantum processor unit (QPU). Therefore, we could analyze the results
and obtain the optimal MPC solutions for the RTU fan stages.

3.2.1. MPC and coil load calculation

In this study, the purpose of the MPC for building HVAC systems was
to minimize the coil load or electricity price used by an RTU of EcoBlue
technology 48GCMO04 for cooling in summer, while maintaining the
room air temperature around a set point when the room was occupied.
When the room was unoccupied, we also applied setback control to save
energy. The optimization of the MPC for coil load can be written as

k+M

min Z Qcoil

St —k
s.t. (6)
X = AX + Bu + Ew

22°C<T,<24°C when P, > 0; 10°C<T,<32°C when P, =0

where s; was the discrete fan stage to be optimized, k was the first
optimization time step, k + M was the last optimization time step, Q.o
was the coil load at each time step, X was the state of the building (i.e.,
wall temperature and zone air temperature), u was the cooling load of
the RTU, w was the uncontrollable inputs including ambient air tem-
perature, solar heat gain, and internal heat gains, T, was the zone air
temperature, P, was the number of occupants. The constraints were that
air temperature should be around the set point temperature 23 °C with a
dead band of 1°C. Setback when unoccupied was 10 °C for the heating
season and 32 °C for cooling. The zone air temperatures at future time
steps were predicted by the state-space model. For the MPC of building
HVAC systems, the control time step was 15 min. In this paper, we used
the prediction horizon with 2, 3, 6, 12, and 24 h. Thus, we optimized 8,
12, 24, 48, and 96 time steps in future horizons.

In addition, the electricity price could vary due to the grid demand
response. For example, there was difference between the time-of-use
energy rate during the peak time and off-peak time. In the summer
season when the outdoor air temperature was hot and grid stress was
high, the electricity price would be higher. It could reduce the energy
usage during the time of high grid stress and emergencies. The optimi-
zation of the MPC for electricity price could be written when the
objective function in Eq. (6) is Qq-price(t), and price(t) was the elec-
tricity price per kWh. At each time step, we needed to manipulate the
system inputs, the stage of fan s;, with the consideration of several future
prediction horizons. Therefore, s, was a discrete variable with possible
values 0, 1, or 2 to be optimized. Here O represented fan off status, while
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Table 1

Value of coefficients to calculate EIRT and CCMT.
Coefficient Value Coefficient Value
Co 1.2788 Ce 0.15979
C1 —0.0019315 Cy —0.0012132
Cy —0.000239 Cg 5.4e-5
Cs —0.066933 Coy —0.0050051
Cy 0.0010513 Cio 0.00025547
Cs 0.00058568 Cn —0.00012701

1 and 2 represented stages I and II, respectively. Various stages of the fan
represented different powers and speeds. It could be adjusted according
to the need and circumstances for load requirement and energy
efficiency.

We evaluated the coil load at each time step using the following
equations

Ocoit = Qrep EIR frirrfeemr Vupply @]
ferr = Co+ C 1Ty + CoT? + C3 Ty + Cu T2, + CsT, T ®
Seemr = Ce + C1T, + CxT,? + CoTopix + Clonu-X + CuT,Thix (C)]

where the coil load was proportional to a given reference load, a con-
stant energy input ratio (EIR), energy input ratio temperature (EIRT),
compressor control module temperature (CCMT), and supply airflow
rate Vg, The performance curves of EIRT and CCMT were the non-
linear functions of the outdoor air temperature T, and the mixed air
temperature Tp;. Co ~ C11 were coefficients provided by the manufac-
turer, as Table 1 shows [85]. Thus, the coil load was a quartic poly-
nomial of Tryix.

The mixed air temperature in the duct was related to the stage of the
fan s;, the outdoor air flow rate V,, and the supply air flow rate Vi,
as

T, if s, =0
Vou

supply,t

(10

Toivs = |: er

supply,t

Tg‘,+<1— >T,ﬂ,}7ifst:10r2
When the fan was off, the mixed air temperature was the same as the
outdoor air temperature. When the fan was on, the mixed air tempera-
ture was the volume-weighted average of outdoor air temperature and
zone return air temperature.
The required outdoor airflow rate of the RTU was based on the
ASHRAE Standard 62.1 [86] as

R,P.; + R.A;

E 1D

Vou =

where R, was the outdoor air flow rate required per person, P, the zone
population, R, the outdoor airflow rate required per unit area, A, the
zone floor area, E, the zone air distribution effectiveness. In this study,
we used R, = 8.5m>/h per person,R, = 1.1m%/h,A, = 68m?, and E, = 1
according to ASHRAE Standard 62.1 [86].

The supply airflow rate of the RTU at each time step was related to s;,
so that

0,5, =0
‘/:uppb\t = Vi,s, =1 12)
Vz, S = 2

Where V; = 0.32m3/s (675 CFM) and V, = 0.42m?/s (900 CFM), which
were provided by the manufacturer.

We still needed to predict the zone air temperature at upcoming time
steps for the predictive control, which would be introduced in the next
subsection. With Egs (7) - (12), we could calculate the coil energy use,
whose total in the next several time steps would be minimized by MPC. It
was worthy to note that for each additional optimization time step, the
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Quvac

Qsol
Fig. 2. RC network model for the room equipped with RTU.

number of possible combinations of system inputs tripled. As a result,
when the number of prediction horizons and solution space was large, it
was extremely difficult to find the optimum control quickly by tradi-
tional optimization methods. For coordinated control of several RTUs
[31,87] and large-scale MPC problems [88], the optimization would be
more difficult.

3.2.2. RC model for room air temperature

Fig. 2 shows a thermal resistance—capacitance (RC) network model
to predict the zone air temperature for the MPC. The governing equa-
tions of the state-space model for the wall temperature and zone air
temperature were

T,—T, T.-Ty Qu
= === 13
CWRZ Cle + Cw ( )
- Tw - T Ta - ' 'in ) 50
7. — iy Z+QHVAC+Qr+Q.l 14)

CzR] Cszin CZ

Where T, was the ambient air temperature, T, the wall temperature, T,
the zone air temperature, Q,,; the heat gain from solar radiation on walls
and the air node, Quyac the heat gain from the HVAC system, Q;, the
heat gains from internal sources, Ry, the window thermal resistance, Ry
and R, the thermal resistance of the exterior wall, C,, the exterior wall
heat capacity, and C, the zone heat capacity.

We could write Egs (13)-(14) in matrix form as

X =AX+Bu+Ew (15)
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x=[1, T.| 16)
Ri+R 1
CWR1R2 CWRl
A= 17)
1 Rl + Rwin
L Cle CleRwin
r T
B=10 CL (18)
u= QHVAC (19)
1 1
— 0
E-| R & (20)
1 1 1
Csz[n Cz Cz
. . T
w= [Tamb Q:ol Qinl] (21)

The heat gain from the HVAC systems was calculated as

QHVAC = Cairpairvsupply (Tsupply - Tz) (22)

We used Ty, with 12°C for cooling the room in this study. For the
other parameters of thermal resistance and heat capacity, we used the
collected data in the office to calibrate the values of these parameters.

The discretized state-space model of Eq (15) was

X =X, +A7" (" —I)Bu,_; +A7"' (" —I)Ew,_, (23)

Where I was the identity matrix.
Thus, the solution of the above discretized state-space RC model
could be written as

Toi| _ are—1y| Twa < T(t—1-i) g —1 ( AT
{Tn]_w ] e e

C,

1—1
— DB+ S A4 (AT 1) Ew, 24)
i=1

3.2.3. Data collection

We collected all the data in an office building on the campus of
Syracuse University, as shown in Fig. 3. Fig. 4 also shows the data
collection devices. Fig. 4 (a) demonstrates that we used a people

@

(b)

Fig. 3. Photos of the building and the office room for data collection.
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Fig. 4. Data collection devices in this study: (a) sensor (Density Entry) for measuring the number of occupants in the room; (b) sensor for measuring supply air

temperature and on the diffuser.
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Fig. 5. (a) MPC block diagram using quantum computing. (b) Process of formulating the HVAC control problem to QUBO and solved by quantum computing.

counting sensor (Density Entry) to collect the room occupancy data. It
used the depth sensor and infrared lasers to measure the entry move-
ment. There were air temperature sensors, flow rate sensors, and smart

meters equipped in the room. So we could also monitor the zone air
temperature, internal heat gain, supply air temperature, and supply air
flow rate of the HVAC system by using installed sensor (HOBO data
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Fig. 6. (a) Ideal penalty functions; (b) penalty function we used when the room was occupied; and (c) penalty function we used when the room was unoccupied.

logger MX1102A, temperature measurement range and accuracy: 0° to
50 °C and + 0.21 °C from 0° to 50 °C) and Building Automation and
Control Networks (BACnet) [89]. We programmed it in Python and the
data were automatically read and placed in the PostgreSQL database. As
for the outdoor weather information, we used the data from the Syracuse
STEM weather station. The internal heat gain, outdoor weather data,
and room occupancy data were also used in MPC as disturbances. We
collected data for three days in the summer season of 2021 and the
frequency of data collection was 5 min.

3.3. Binary optimization for quantum computing

Fig. 5 shows the MPC block diagram using quantum computing and
the process of formulating the HVAC control problem to QUBO for
quantum computing. For the MPC optimization of the RTU, the objective
function in Eq (6) was for constrained optimization with discrete vari-
abless;. We needed to reformulate the constrained optimization problem
to an unconstrained binary optimization so that it could become a PUBO
as Eq (2), and further formulate it into QUBO as Eq (3) for quantum
computing.

At first, the supply air flow rate and mixed air temperature in Eq (10)
and (12) could be written in a unified form instead of the piecewise form
as

s —1)(s, —2 V,.
Tmix‘l = %Tu‘z - S,(S, - 2) |:V11T!;,t + (1
Vour Sr(sr - 1) Vour Vou
— T, — | =T, 1——|T; 25
v, > A,t:| + P v, T+ v, zt (25)
se(se — 1
Vsupply,l = %VZ -8 (SI - 2) Vl (26)

Thus, Vg, and Ty, were quadratic polynomials of s;.

Then with the thermal network model, we could calculate the pre-
dicted state of zone air temperature and wall temperature at any time
step by using Eq (24). The first and last terms were given constant at
each time step, and Vg, in the second term was a quadratic polynomial
of s;. So T, was also a quadratic polynomial of s.

Next, there were constraints of zone air temperature in Eq (6). In this
study, we used a penalty function adding to the objective function to
convert the constrained optimization to unconstrained optimization.
The ideal penalty function was step functions as shown in Fig. 6(a). Since
we could only use polynomial optimization for quantum computing, we
used quadratic penalty functions when the room was occupied and un-
occupied. Fig. 6(b) and (c) show the penalty functions that

(T.—23)*,P.>0

fr=9 (T.—21\*
: ,P.=0
(=) -

27)

Therefore the new objective function could be written as

k+M

min Y [Qeoirs + W, (Ts) | (28)
"=k

where W was a weight to control the importance between the coil
load and the penalty of air temperature deviation. Large weight could
increase the impact of deviations from the temperature set point. And
f»(Ts.) was a quadratic polynomial of s,.

Since the optimized stage of the fan in each time step s, € {0,1,2},
we used two binary variables g1, qs2 € {0,1} to represent as

St =qn +4qn (29)

In particular, for the fan stage to be optimized at the next time step in
the prediction horizon, it was represented by the first two qubits.
Hence, we could finally formulate the optimization of MPC into a
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binary optimization for any time step k as

k+M

min > [Qots + Wy (T1) ]

st (30)
Eqgs(7) — (9), (11),(23) — (27),(29)

qn,qn € {07 1}

We found that the objective function in above optimization problem
was a tenth-degree polynomial of the binary variablesq,. Note that

q; = qi (31)
when g; € {0,1} and n was a positive integer. The higher exponent
terms could be further simplified and reduced to one.
After a simplification, we found that the objective function contained

not only linear and non-linear second-order terms, but also three-order
and four-order terms, as the following form:

H = Zcilh + Zcx‘ﬂi% + Z];Cijkqi%'qk + ;Cl‘j}dqi%qk‘]l (32)
i ij ijk ik,

Note that the constant term did not affect the optimization result,
thus it was removed.

Then we also needed to reduce the high-order polynomials of
objective function from four-order PUBO as Eq (2) into QUBO as Eq (3).
Based on the Handbook of p-Wave quantum annealer [90] and litera-
tures [83,84], the non-quadratic polynomials could be reformulated and
reduced to quadratics by minimum selection method [83] and substi-
tution method [84].

Minimum selection method worked on only one term, by introducing
an ancillary binary variable w, to minimize a cubic term of Cjyqiq;qx

minCiuqiq;qx
5.t.gi,q;, qx € {0, 1}
{ minC,»jkw(qi +q +aq — 2), Ciu <0

minCi [(W - 1)(‘15 +q; +qr — 1) + 49:9; + 99k + g4k ] ,Cije >0
(33)

Similarly, for minimization of a quartic term Cyxqiq;qxq:

minCiuqiq;qq:
819, G5, qr @ € {0, 1}
{ minCyuw (g; + g + gk + 41 — 3), Cju < 0
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Where H was the polynomial of objective function in Eq (32), and M
[84] was defined as

M2+ 39)
ij

The above Eq (38) was established since the minimum of H has not
changed as the following two equivalences [84] for any g;, q;, w; € {0,1}
always hold

qiq; = wy © qiq; — 2(q; + q;)wy + 3wy =0 (40)

aiq; # wi < qiq; — 2(q; + qj)wij +3w; >0 (41)

From the aforementioned Eqs (35)-(38), the four-order PUBO as Eq
(32) can be gradually reduced to QUBO. Similarly, the interaction of
more than four variables could also be reduced by sequentially intro-
ducing new binary variables, but they did not appear in the objective
function of this study. Finally, the problem could be written as QUBO in
the form of Eq (3). And it could be mapped and solved by the p-Wave
quantum computer.

3.4. D-Wave annealer configuration

After reformulating the problem as the QUBO, we obtained the linear
coefficients and non-linear quadratic coefficients. The minor embedding
would map them to the nodes and edge weights of the chimeric graph
architecture of qubits in the QPU. With these qubit biases and coupling
strengths on the D-Wave quantum computer, it could use quantum
annealing to minimize the Hamiltonian energy of this configuration.
Therefore, the system could find the lowest energy state of this config-
uration, which corresponded to the global minimum of the objective
function with high probability [91].

In order to find the optimal solutions to the QUBO problems, we used
the D-Wave advantage, which was a commercial quantum computing
equipment aiming to achieve quantum annealing. The p-Wave Advan-
tage system contained a QPU with over 5000 qubits and 35,000 couples
among qubits [92]. The QPU needed to operate at a temperature of 12
mK and be isolated from the surrounding environment. The topology
structure of the QPU was Pegasus as shown in Fig. 1, with the graph size

(34

minCyo{w[ - 2(q; + ¢ + qc + 1) + 3] + 0:g; + G + 9iq1 + G + 491 + 441 }, Cia > 0

Since there was more than one high-order term in the objective
function in Eq (32) of this study, we also used the substitution method
[84]. The algorithm was as follows: as long as there existed high-order
terms containing q;q; like Cjxq:iqjqx or Cjxqiqjqxq; in the polynomial of
objective function H, we introduced an ancillary binary variable w; to
replace q;q; and looped through the operations as follows:

Ciqiq; = Cywy (3%
Ciiqiqiqr = Ciwiiq (36)
Cinqiqiqrq: = Ciwiqiq: (37)
H =H+M|qiq; — 2(q; + q;) wy + 3wy | (38)

of P16 and connectivity of Degree 15. After the quantum computer
reached the low energy solution of the Hamiltonian after annealing as
Eq (1), it could output the samples of states of the qubits. As a result, we
were able to obtain the corresponding optimal solution of the QUBO and
the original optimization problem for the RTU. The time of one
annealing process on D-Wave Advantage was 2 ps. In order to obtain a
reasonable optimal solution, we used the number of reads with 10,000
times for the annealing process. We used Python to submit the co-
efficients of the QUBO to D-Wave annealer by Leap cloud system [93].

3.5. Comparison with other control strategies and traditional optimization
method

3.5.1. Baseline control strategy
To verify the results of the MPC by quantum computing, we evalu-
ated the energy savings of the MPC and compared it with other control
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Table 2

Raw outputs of quantum computing at 20th time step.
Sample ql q2 q3 q4 q5 Hamiltonian
1 0 0 0 0 0 5.246113e-3
2 0 0 1 0 0 6.526900e-3
3 0 0 0 0 0 6.535851e-3
4 0 0 0 0 0 6.535851e-3
5 0 0 0 0 0 7.294013e-3
6 0 0 0 0 0 7.295246e-3
7 0 0 0 0 0 7.522984e-3
8 0 0 0 0 0 7.962238e-3
9 0 0 0 0 0 7.973845e-3
10 0 0 0 0 0 8.037716e-3

strategies. In this study, we compared with fixed rule-based on-off
control coupling the setback control with ASHRAE Guideline 36 [94].
For on-off control, the temperature set point was always equaled the
occupied set point of 23°C. For setback control, the set point in occupied
time was the same. In the unoccupied time before 8:00 and after 17:30,
the set point was 32°C. The control algorithm at each time step was as
follows:

e If zone air temperature was higher than the set point, and fan stage
was off — fan stage L.

e If zone air temperature was higher than the set point and the one at
the previous time step, and fan stage I was on — fan stage II.

e If zone air temperature was lower than the set point and fan stage II
was on — fan stage L.

o If zone temperature was lower than the set point and cooling stage I
was on — fan stage off.

e Otherwise — keep the current fan stage.

3.5.2. Traditional optimization method

To validate the feasibility and efficiency of quantum computing for
MPC of building HVAC systems, we also compared the computing time
with traditional optimization methods. We solved the non-linear
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discrete optimization of MPC as Eq (30) by using GA in the Global
Optimization Toolbox in MATLAB R2021a. It was a popular algorithm
that mimic a natural selection process that repeatedly modified a pop-
ulation of individual solutions that were restricted to integral values. In
order to obtain reasonable results, the population size was based on the
number of binary variables to be optimized. We set the max stall gen-
erations with 50, and optimization function tolerance with le-4.

In addition, we also solved the QUBO as Eq (30) by using Gurobi
9.0.1. It used the cutting plane algorithm to find the optimized results for
the mixed-integer quadratic programming. We set the optimal solution
tolerance with le-4.

4. Results
4.1. Collected data

Fig. 7 shows the collected data on ambient air temperature, zone air
temperature,Qpyac, number of occupants, Q;, and Q,,; on three days in
summer. The data were collected between July 14th-16th, 2021. For
internal heat gains, they contained heat from occupants, light bulbs, and
internal appliances. Based on the actual information about the room, we
assumed that the heat gain was 100 W per occupant, 60 W per bulb, 100
W per desktop, and 30 W per monitor [95]. When the room was occu-
pied, all the lights were on. And the number of working desktops was the
same as number of occupants. We used these data to calibrate the RC
model and obtained the values of the parameters, as listed in Table Al.
The calibrated RC model could predict the room air temperature with
root mean square error of less than 0.2°C. So the model can be used to
predict the room thermodynamics. We also used the ambient air tem-
perature, the number of occupants in the room, solar heat gain, and the
internal heat gain for the MPC as disturbances.

4.2. Results of quantum computing

After the reformulation, we were able to obtain all the linear and
quadratic coefficients of QUBO for quantum computing. We got 10,000
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Fig. 8. Hamiltonian distribution of 50 smallest samples at (a) 20th, (b) 70th, and (c) 143rd time steps.
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annealing samples in each time step that could acquire stable results
with a high probability of reaching the global minimum. Table 2 lists the
raw outputs of quantum computing at the 20th time step for a 3-hour
prediction horizon. This table lists ten sample results in the order of
Hamiltonian as Eq (1) from small to large, which was a very small
fraction of all output results due to space. For each Hamiltonian energy,
the corresponding states of first 5 qubits were listed in the table. We
found that q1 + g2 with small Hamiltonian had a high probability of
being equal to 0 at the 20th time step. As Eq (29) expressed, these results
implied the optimal control of the fan stage at the 20th time step should
be 0 and turn off with a high probability.

Fig. 8 shows the occurrence distribution of 50 samples with the
lowest Hamiltonian at the 20th, 70th, and 143rd time steps. As low
Hamiltonian represented a high probability of global minimum, in these
three time steps, the optimal controls were off, stage I and stage II,
respectively. Similar to Table 2 and Fig. 8, then we analyzed the outputs
to obtain the MPC optimization results at each time step. Therefore, the
non-linear optimal control problem of building HVAC system with
discrete variables could be resolved by quantum computing.

4.3. Comparison of results and computing time with traditional
optimization and control

We got 10,000 annealing samples at each time step that could obtain
stable results with a high probability of reaching the global minimum.
Then we could analyze the results of quantum annealing at each time

Quantum computing

(b)

Fig. 9. Comparison of optimal air temperature control, fan stage, and cooling load between quantum computing and traditional optimization method for (a) 2-hour
prediction horizon; (b) 3-hour prediction horizon. And gray shade represents the room was occupied.
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step to obtain the optimal control of the RTU fan stage. Fig. 9 compares
the optimal air temperature control, fan stage, and cooling load between
quantum computing and traditional optimization methods for 2-hour
and 3-hour prediction horizons. We found that the RTU used the most
cooling load on the second day. In the afternoon when the outdoor air
temperature and solar gain were high, the RTU started to cool down the
room. After the working hour and at night, the RTU did not work to save
energy. We found that the difference in optimal control results between
quantum computing and the traditional optimization method occurred
in a total of 6 time steps, which was 2.1 % over three days. The predicted
cooling load by quantum computing was 1.1 % more than the traditional
method. This result showed that quantum computing could obtain
optimization results similar to the traditional optimization method.
Fig. 9 also shows the predicted air temperature could be controlled
within the lower and upper bound of the set point as thermal comfort
level by quantum computing. Fig. 10 compares the results of optimal air
temperature control, fan stage, and cooling load for quantum computing
MPC with 6-hour, 12-hour, and 24-hour prediction horizons. Although
most of the cooling load was still used on the second day, the total
cooling load did not vary significantly with different prediction hori-
zons. The difference between 6-hour and 24-hour prediction horizon
was 6.5 %. Traditional optimization methods were very hard to achieve
these results for long prediction horizons.

Fixed on-off control with occupancy information was still used for
many buildings. Compared with this baseline control, we found that
MPC optimized by the traditional optimization method could save
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Table 3

Comparison of computing time between quantum computing (QC) and traditional optimization methods.

Prediction Number Number Number of binary variables Number of non-linear quadratic terms Computing time for each time step
horizon of time of GA Gurobi QC
steps discrete stages

2h 8 24 72 237 8s 0.4s 1s
3h 12 36 159 777 21s 36s 1s
6h 24 72 577 5430 207 s greater than4h 1s
12h 48 144 2305 22,938 26 min greater than12 h 6s
24 h 96 288 9217 94,405 greater than12 h — 37s

cooling load by 43.5 %. MPC optimized by quantum computing could
save 42.9 % of cooling load. The energy-saving by quantum computing
and the traditional optimization method was similar. Hence, we could
use quantum computing to optimize the MPC of building HVAC systems
the same as the traditional optimization method.

As for the computing time, adding the sampling time, readout time
and delay time for the quantum computer, the total QPU time for one

= 06} ]
E 0.5F :
&“
E 0.4f -\ ]
o 03f ]
02 L 1 1 L 1
0 5 10 15 20
Hour
—— Time of use Peak day

F

=3

g. 11. Electricity price for time-of-use rate and peak day rate in one day.
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time step optimization was less than 1 s when the prediction horizon was
no more than 6 h. It was almost the same for various prediction horizons
and the number of binary variables. That was due to the fact that the
quantum annealing and sampling could be operated for all the qubits on
QPU simultaneously, making it a truly parallelized calculation [96,97].
In this case, raising the prediction horizon or the number of optimizing
variables would not significantly increase the computing time of quan-
tum computing. This phenomenon has also been observed in some
previous studies [70]. When the prediction horizon was 12 h, there were
more than 2000 binary variables and 20,000 non-linear terms. The
quadratic matrix was not sparse and the problem could not be directly
embedded in the QPU architecture. The quantum computer needed to
use the decomposer to divide the optimization problem into sub-
problems to solve. This required some iterative algorithms. Thus, the
quantum computing time for 12 h and 24 h prediction horizons was 6 s
and 37 s, respectively. Even yet, such computing time was still much
shorter than the control time step with 15 min. Hence, quantum
computing could respond quickly for larger problems and achieve real-
time optimization.

We also carried out the MPC of RTU optimization for larger
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Fig. 13. Comparison of optimal air temperature control and cooling load by quantum computing to minimize the electricity bill between the prediction horizon of 2
h, 6 h, and 24 h and rule-based on/off control as a baseline. The red, orange, and blue shades represent the peak day, peak hour, and part-peak hour, respectively.

prediction horizons by traditional optimization methods. For GA, it
could find the optimal solution quickly when the number of binary
variables was 72 and 159 in 2 h and 3 h prediction horizons, respec-
tively. However, Table 3 shows that the computing time for each time
step was 26 min and over 12 h when the prediction horizon was 12 h and
24 h, respectively. That was due to the huge number of both binary
optimized variables and non-linear terms. The program took a longer
time to run and obtain a converged result. Similarly, as for Gurobi, it
took 36 s to solve the optimization problem with 159 binary variables.
However, when there were 577 and 2305 binary variables in the non-
linear quadratic optimization problem, it was unable to solve the
problem within 4 h and 12 h. Therefore, only quantum computing could
achieve real-time optimization if the prediction horizon was more than
12 h. The computing time of quantum computing for solving the
quadratic optimization in this study was greatly reduced to less than 0.4
% of that by traditional optimization methods. Increasing the prediction
horizon and number of optimizing variables would significantly increase
the time of optimization calculation for traditional optimization
methods. The problem with more discrete optimization variables could
take the advantage of quantum computing. Therefore, quantum
computing had greater potential for large-scale optimization problems
and even NP-hard problems.

14

Table 4
Total electricity bills and peak usage calculated by baseline control and quantum
computing with various prediction horizons.

Prediction Total Electricity bill Peak Peak load
horizon electricity bill/  reduction load/ reduction
$ kwh

Baseline 20.63 - 33.90 -
control

2h 20.51 —0.6 % 28.89 —-15%

3h 19.07 -7.5% 21.96 —-35%

6h 18.02 -13% 5.39 —84 %

12h 17.12 —-17 % 1.54 —95 %

24 h 16.31 —21% 7.02 -79 %

4.4. Optimization of electricity usage and bill

To reduce the load and the electricity price during peak times, we
also used MPC to optimize the fan stage of the RTU. Fig. 11 shows the
electricity price for the time-of-use rate and peak day rate [98]. The
time-of-use rate for peak, part-peak, and off-peak hours on normal days
was $0.38551, $0.33628, and $0.31547 per kWh, respectively. In
summer, the peak time was 4 pm to 9 pm, and part-peak time was 2 pm
to 4 pm and 9 pm to 11 pm. As for the peak hour on the peak day, the
trigger ambient temperature was around 36.7 °C (98°F). The electricity
price for the peak hour on the peak day was $0.6 per kWh. The
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participants would be notified one day prior to the peak day occurred to
respond to the grid signal and arrange the electricity usage to reduce the
load. Therefore, to optimize the operation of the RTU for the peak day,
we used the actual outdoor air temperature during Sep. 5th-7th 2020 in
summer in Los Angeles, California, as Fig. 12 shows. On Sep. 6th during
the peak day, the highest air temperature was about 37 °C in the
afternoon.

Fig. 13 shows the optimal air temperature control and cooling load
using quantum computing for low electricity prices with different pre-
diction horizons and rule-based on/off control as a baseline. The cooling
load could be rescheduled to part-peak and off-peak hours by MPC.
Especially for 12 h and 24 h ahead prediction horizon, the entire cooling
load was not in the peak day. Table 4 lists the electricity bills calculated
by quantum computing for 2 h, 3 h, 6 h, 12 h, and 24 h prediction ho-
rizons. By using quantum computing, the total electricity bill could be
reduced by 21 % compared with the baseline ruled-based on-off control.
Regarding the peak hour reduction, Fig. 13 also shows that most of the
electrical load was on the peak day and peak hours under baseline
control. However, for MPC, 12 h and 24 h prediction control greatly
reduced the load in the peak hour and peak day. Table 4 shows that the
peak load reduction could be 95 % and 79 % compared with baseline
control for 12 h and 24 h prediction horizons, respectively. So quantum
computing also significantly reduced the grid stress during the peak
time. Such optimization could not be achieved by commonly used
traditional optimization methods. Therefore, for the complex day ahead
time-of-use demand response scenarios, only quantum computing could
achieve real-time MPC to minimize the electricity usage of the RTU and
grid stress.

5. Discussion and future works

In this study, we used quantum computing to solve the optimization
of energy-efficient model predictive control of RTU in the office build-
ing. We reformulated the optimization to the QUBO for the p-Wave
quantum computer, which was the only commercial quantum computer
available now. Currently, the architectures of quantum computing were
still in the early stage of development that had limitations in the ease of
computation, performance, and even algorithm. Only limited number of
qubits and their coupling in the QPU could be used for direct embedding
in p-Wave Advantage system. Large-scale problems still needed to be
decomposed into many sub-problems to be solved. This required the
assistance of traditional optimization algorithms; thus the computing
time would increase. Some factors such as error correction, decoherence
qubits, and limited quantum control lead to obstacles of accuracy of
quantum computing and quantum computer. To improve the precision
of optimization, increasing annealing time and spin reversal transform
were feasible ways, but they would also lead to more computing time.
What is more, quantum computing required reformulation of the orig-
inal problem into a specific format, thus not all the optimization prob-
lems could be solved. If the objective function or constraint in the
optimization problem is not a polynomial, but a fraction, radical
expression, or contain special functions (e.g. exp, log, sin), then it cannot
be reformulated into the form of Hamiltonian in Eq (1). Thus this opti-
mization cannot be solved by a quantum computer easily. This is the
current limitation of using a quantum computer to solve optimization.
As long as the final objective function is polynomial, even for non-linear
problems, quantum computers can solve it. We need further studies to
take advantage of quantum computing for more complex problems.
From an optimization perspective, annealing-based quantum computers
were closer to discrete optimization problems than gate-model quantum
computers [99]. This was because annealing was specifically built for
optimization, whereas gate quantum computers followed general
computing methods. Quantum computers for commonly used
computing were still developing in the early stage. Finally, there was a
huge cost for hardware and maintenance of the quantum computer. The
energy required to run quantum computing may be higher than the
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optimized energy efficiency of the building HVAC system at this stage.
Therefore, before quantum computing can become commonly practical,
the issue of high cost must be addressed. In the future, it is anticipated
that researchers can overcome the existing obstacles to make quantum
computing play a greater role.

For the future work, there are few potential aspects: 1) optimize
supply air temperature. Theoretically, it is possible to include supply air
temperature as one of the continuous optimal variables, and additional
energy savings will be expected. However, additional efforts on refor-
mulation of the optimization equation are needed; 2) different poly-
nomial formulations for the penalty function. Future work can also focus
on various forms of penalty functions. Such variation will impact the
optimization results. It will be interesting to compare and select the most
suitable penalty function.

6. Conclusion

In this study, we proposed the methods based on quantum computing
to solve the mixed-integer non-linear optimization of MPC for the
building HVAC systems. This research led to the following conclusions:

1. The original MPC of RTU optimization as a non-linear problem with
discrete variables could be formulated as the QUBO, so that quantum
computers could solve it.

2. Using quantum computing, we could obtain the similar solution as
using the traditional optimization methods with a short prediction
horizon, and the control differences were less than 2 %. For a longer
prediction horizon, the computing time of quantum computers for
solving the optimization problem in this study was greatly reduced to
less than 0.4 % of that by the traditional optimization methods. Only
quantum computing could achieve real-time optimization and
responding to the control signal within 15 min. The problem with
more discrete optimized variables could take the advantage of
quantum computing.

3. MPC optimized by the traditional optimization method and quantum
computing could save the cooling load by 43.5 % and 42.9 %
compared with on—off control, respectively.

4. Day-ahead real-time MPC by quantum computing could reschedule
the electricity usage of the RTU to off-peak hours by 80 % and reduce
the electricity bill by 21 %. Therefore, quantum computing had the
potential to solve large-scale non-linear optimization problems for
building energy systems.
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Appendix
Table Al
The values of the parameters of the RC model.
Parameter Value
Ry 0.2
Ry 0.2
Riyin 0.003
C, 2.62e8
Cyw 1.38e8
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