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Quantum computing for future real-time building HVAC controls 
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H I G H L I G H T S  

• We used quantum computing to optimize model predictive control of building HVAC systems. 
• We formulated mixed-integer non-linear programming as quadratic unconstrained binary optimization for quantum computer. 
• Solution of quantum computing was almost the same as traditional optimization method, but computing time was greatly reduced. 
• Quantum computing had the potential to solve large-scale non-linear optimization problems for building energy systems.  
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A B S T R A C T   

Buildings contribute to more than 70% of overall U.S. electricity usage and greenhouse gas (GHG) emissions. 
HVAC systems in buildings often consume more than 40% of the total building energy usage. To reduce such high 
energy use, numerous control strategies including optimal and predictive controls have been developed and 
demonstrated. To achieve a near real-time solution, most previous research has simplified the non-linearity of 
building thermodynamics and provided an approximate optimal solution. The future HVAC control optimizes 
more connected devices in buildings, which requires a rapid and accurate response, not only to the building itself 
but also to the grid signals. It also poses the challenge of solving non-linear problems with discrete variables. 
With the recent development of quantum computers, this has become feasible. In this paper, we developed a new 
optimization solution based on quantum annealing for model predictive control (MPC) of a rooftop unit (RTU). 
Compared to traditional optimization methods, we obtained similar solutions with less than 2% differences and 
improved computational speed from hours to seconds. We also demonstrated an 80% reduction in total elec
tricity consumption and a 21% reduction in electricity bills by considering day-ahead price time-of-use demand 
response signals. Quantum computing has proven capable of solving large-scale non-linear discrete optimization 
problems for building energy systems.   

1. Background 

By 2050, a staggering 70 % of the world’s population is projected to 
live and work in cities [1], while two-thirds of global primary energy 
consumption will be attributed to cities, leading to the production of 71 
% of the global direct energy-related greenhouse gas (GHG) emissions 
[2]. People currently spend more than 90 % of their time in buildings, 
which contributes to more than 76 % of overall U.S. electricity usage 
[3]. Such GHG emissions contribute to climate change, which is one of 
the most dominant forces shaping the Earth system and the greatest 
challenges of our generation. Many globally recognized environmental 
and climate threats such as heat stress, abrupt cold snap, air pollution, 
water scarcity, and energy insecurity are either rooted in or exacerbated 

by the uniqueness of the urban environment. With the aging of the US 
building stock, grid, and urban infrastructure, climate threats are ex
pected to further intensify due to the rapid urban development coupled 
with climate change. 

In the US, space heating accounted for 38 % of the energy delivered 
in buildings, far more than any other end-use. Meanwhile, electricity 
used for space cooling by residential and commercial sectors accounted 
for 10 % of total US electricity consumption in 2020 [4]. Advanced 
building controls have demonstrated 20–80 % energy savings through 
literature [5,6]. It also offers a vast potential for sustainable buildings 
[7]. With energy-saving and sustainability requirements, we need 
optimal control for the building HVAC systems. 

Currently, proportional-integral (PI) controllers are widely used in 
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building automation systems for their simplicity and robustness to 
achieve conditioned indoor environments [8]. However, it only re
sponds to current sensor readings without consideration of any other 
effects as reactive control. In buildings, there are complex heat transfers 
and the lagging effects due to the thermal mass of envelopes and indoor 
sources. They will increase the demands of load on the HVAC system and 
lead to a waste of energy [9]. Therefore, a good control strategy is 
needed to take into account the thermal effects of the buildings and 
reduce the energy usage while maintaining indoor comfort. Originated 
from advanced process control, model predictive control (MPC) can 
capture the dynamics of the building systems [10]. Predictions are 
derived with the information from the physical devices, thus the optimal 
control can be applied to systems with well-defined constraints. The 
features of MPC make it more prevalent in power system control. With 
the development of computing tools, MPC is getting more and more 
attention in the field of building energy [11]. Modeling and optimization 
can play an important role in the sustainable energy systems of buildings 
[7]. However, most of the real-time MPC case studies for building HVAC 
system have the following characteristics that prevent large-scale and 
robust deployment: difficulty in achieving real-time MPC, inaccuracy 
due to simplified non-linear models, and inefficient solver for discrete 
variables. 

1.1. Difficulty in achieving real-time MPC 

First, with the uncertainties of the weather forecast [12–14], occu
pancy level [12,15,16], and real-time energy pricing [17–20], the MPC 
required real-time response to update the control operations. It was 
necessary to solve the optimization problem within the control time 
step, such as 15 min. But it is very difficult to achieve real-time MPC for 
building HVAC systems. Many researchers have attempted to develop 
real-time MPC to reduce the energy use by building HVAC systems, such 
as air handling units (AHU), heat pumps, and variable air volume (VAV) 
systems [21]. For example, Schirrer et al. [22] developed a real-time 
non-linear MPC for a low-energy office building consisting of the heat 
pump and solar collector. Even for a 30 % variation in weather predic
tion, it showed good control performance and robustness. Joe and 
Karava [23] proposed an MPC strategy to optimize the performance of 
radiant floor heating and cooling systems in office buildings. The elec
tricity use of the chiller was three polynomials. They found that the 
controller could save 29–50 % of energy compared with a baseline air 
delivery system. Asad et al. [24] developed multiplexed real-time opti
mization for non-linear dynamics of AHU and achieved 10 % energy 
savings. Ganesh et al. [25] used a mass balance model and built a dy
namic optimization strategy of AHU for the control of indoor air pol
lutants. The optimization reduced the pollutant concentration by 31 % 
and energy use by 17.7 %. For a building with many thermal zones, the 
optimal control design for HVAC system will have a large number of 
control variables, in particular, discrete variables (e.g. fan status). This 
causes the search space increasing exponentially, resulting in an NP- 
hard problem. Hilliard et al. [26] implemented MPC with zone-based 
thermal comfort adjustments for an academic building. The experi
ments showed a 29 % reduction in HVAC electricity. Brooks et al. [27] 
developed an occupancy-based energy-efficient MPC for multiple rooms 
and showed energy savings potential of 29–80 %. Li et al. [28] decom
posed the multi-objective optimization of thermal comfort, air quality, 
and energy use for VAV systems. It effectively found the proper trade-off 
between maintaining thermal comfort and indoor air quality, and the 
energy use was only 2 % higher. Bengea et al. [29] presented field 
experiment results of MPC, which optimized the operation of VAV 
serving a commercial building. Their demonstration results showed 
energy savings of 20 % during the transition season and 70 % during the 
heating season. Based on the literature review, the main challenge to 
achieve real-time MPC is the computational algorithm to solve the 
optimization part of a MPC within one control step (e.g 15 min). In order 
to achieve real-time, prior research studies simplified nonlinear control 

models to be a continuous and linear, and solved within a short control 
step [30], or a discrete linear problem that can be solved by mix-integer 
programming quickly as well [31]. None of prior studies were a non- 
linear optimization problem with discrete variables and implemented 
in real-time. 

1.2. Inaccuracy due to simplified non-linear models 

Second, most energy systems in buildings were complex and non- 
linear systems. The non-linearity of the system made the optimal con
trol difficult, and the optimization results could be inaccurate due to the 
simplified models. For optimizing the complex non-linear building 
HVAC systems, previous approaches included multi-stage and multi- 
level optimization [19,17,32], decomposed, distributed, and decen
tralized optimization [33,34,18], agent-based method [34,19,13], local 
approximation and linearization [20,35,36]. These methods could not 
only convert and solve non-linear problems, but also accelerate the 
computation. For example, Cigler et al. [37] outlined an approximation 
of non-linear optimal control for the predicted mean vote index and 
obtained an additional 10–15 % of energy-saving potential. Drgoňa et al. 
[38] developed MPC by decoupling of non-linearities for a ground- 
source heat pump in an office building and saved 53.5 % of energy. 
However, these existing approaches to speed up the computation may 
lack of accuracy due to simplified non-linear models. Recently, some 
studies have used machine learning models to solve optimal control for 
complex building HVAC systems [39,40,41,5]. Such models were easy to 
build, even for a very complicated system. So that machine learning 
models could achieve real-time control. But for the robustness of these 
models in varied environments, the verification from previous studies 
using the machine learning method was only implemented for one or a 
few days. 

1.3. Inefficient solver for discrete variables 

In addition, optimization of building HVAC systems usually involved 
many discrete variables, such as whether to use a system component, 
operating status as on or off, and hierarchical stage control. Current 
optimization solvers were inefficient for complex problems with many 
discrete variables. The traditional approach for the optimization of 
discrete variables was typically a search algorithm [41]. In recent years, 
mixed-integer linear programming (MILP) and mixed-integer non-linear 
programming (MINLP) have received increasing attention from both 
academia and industry [42]. Deterministic algorithms for solving large- 
scale problems were needed to deal with growing subproblem sizes and 
exponential growth of branch-and-bound trees. In this case, it led to the 
enumeration of solution alternatives in the feasible space. This method 
could not deal with the optimization of a complex system in real-time 
[43]. In addition, meta-heuristics techniques, such as simulated 
annealing [44], particle swarm optimization [45,46], and genetic al
gorithm (GA) [47–49] also became popular nowadays, due to their ease 
of implementation and low requirement for prior knowledge of the 
optimization problem. However, these techniques could only solve un
constrained optimization problems. They could not strictly find the 
global optimum, either [50]. For complex problems that were hard to 
converge, multiple runs were required to find a better solution. Previ
ously, GA was used to optimize the building HVAC system [51]. People 
also formulated the optimization of building HVAC systems and net-zero 
energy building into MILP, and used Gurobi and CPLEX software to solve 
[52,53]. These traditional optimization methods for large-scale energy 
systems required a very high computational effort [54]. With the 
increasing complexity of the problem and more discrete variables to be 
optimized, it typically required exponential computing time [55]. 
Finally, the most common technique used to solve real-time building 
energy management problems was convex optimization. For linear 
optimization, MILP, and quadratic programming, due to the simplicity 
and convexity, a global solution was guaranteed [6]. Non-linearity of 
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complicated energy systems also made formulating the control strategy 
very hard [56]. In many engineering optimization problems, the non- 
convexity of the problem made it impossible to obtain a globally 
optimal solution [6]. 

Through the literature review, we found that developing real-time 
MPC of a non-linear system for mixed-integer discrete optimization 
was very challenging. The research gap and challenges are that few 
previous studies could find the optimal control for the complex non- 
linear systems with discrete variables within an acceptable computing 
time. In order to increase the efficiency and reliability of the energy 
system at a building or building clusters level, it is imperative to opti
mally manage and control a large number of smart devices for future 
smart buildings and communities. Hence, we needed a better compu
tational tool to solve these optimization problems. 

The purpose of this study was to apply quantum computing (QC) to 
optimize energy efficiency through developing a non-linear MPC with 
discrete variables for building HVAC system. Specifically, we formulated 
the MPC optimization of a rooftop unit (RTU) into a quadratic uncon
strained binary optimization (QUBO) problem. To verify the feasibility, 
then we used a quantum computer to solve such an optimization prob
lem and obtained the results successfully. At last, we also compared the 
results and computing time of quantum computing with traditional 
optimization methods. 

2. Quantum computing 

Quantum computing uses quantum mechanics to solve problems that 
are too complicated for conventional computers. For example, it uses 
qubits that can represent 0/1 at the same time to compute, so the 
computational speed can increase exponentially with the number of 
qubits. Quantum computing has recently attracted more attention due to 
its unique ability that was different from conventional computers in 
terms of computational principles and speeds. The circuits in a quantum 
computer obeyed quantum mechanics. The basic unit of a quantum 
computer was the qubit. A qubit could be in a quantum state of 1 or 0, or 
a superposition of the two states. However, when it was measured, it was 
either 0 or 1; the probability of either outcome depended on the quan
tum state of qubits immediately before the measurement [57]. Another 
property of qubits was the ability to form entangled states, allowing to 
form relationships between separated random behaviors. Quantum 
computers used these characteristics of the qubit to carry out 
computations. 

Since the computational principle of the quantum computer was 
different from that of conventional computers, it provided a novel 
approach to solving some complex problems with significant speed ad
vantages [58,59]. For example, Shor [60] proposed the quantum algo
rithm for factorization of large numbers, which was exponentially faster 
than any classical algorithm. Due to the potential applications of cryp
tography, it greatly motivated the development of quantum algorithms. 
Grover’s search algorithm [61] was able to search large databases in the 
square root of complexity time. Harrow et al. [62] developed a quantum 
algorithm for solving linear systems of equations. Inspired by these al
gorithms, many researchers have developed numerous quantum algo
rithms for further applications, such as data fitting [63], clustering [64], 
and solving linear differential equations [65]. 

To solve optimization problems, quantum annealing and adiabatic 
quantum computation relied on the adiabatic theorem. People have 
built quantum annealers in recent years [66]. In the system, it was 
initialized in the lowest energy eigenstate of the Hamiltonian. Hamil
tonian was a mathematical description of a physical system in terms of 
energy, corresponding to the objective function of an optimization 
problem [67]. The slow annealing process evolved the quantum state 
into a user-defined problem. By reducing the Hamiltonian of the system 
from a large value to zero, the system was driven to its optimum state as 
the eigenstate of the quantum Hamiltonian. It could be used for 
searching for optimal solution space effectively [68]. Quantum 

Hamiltonian in Ising formulation could be expressed as 

Hising = −
A(s)

2
∑

i
σ̂ (i)

x +
B(s)

2

(
∑

i
hi σ̂ (i)

z +
∑

i>j
Jij σ̂ (i)

z σ̂ (j)
z

)

(1)  

where σ̂ was Pauli matrices operating on a qubit qi, A(s) the tunneling 
energy at annealing fraction s, B(s) the Problem Hamiltonian energy at 
annealing fraction s, hi the self-interaction energy on a qubit. Jij the 
coupling energies between spins. 

Compared to the traditional optimization algorithm like ant colony 
optimization algorithm [69], GA [47], and simulated annealing [44] to 
find optimal values, quantum annealing was a more powerful method. It 
allowed quantum tunneling, which gave an increasing likelihood of 
reaching the ground state under the same conditions of annealing 
schedule and interaction. It assisted in escaping the local minimum and 
enabled the search for the global minimum [70]. The recent develop
ment of hardware and algorithms of quantum annealer has given people 
the opportunities to solve extremely complex optimization problems, 
even NP-hard problems [67]. To solve an optimization problem using 
quantum annealing, we first needed to formulate it as unconstrained 
optimization. With the properties of qubits, then we needed to formulate 
the continuous or discrete optimization variables into binary variables. 
When the objective function was a polynomial of variables, it was 
polynomial unconstrained binary optimization (PUBO), which was a 
subset of binary optimization as 

H(x) =
∑

S
CS

∏

i∈S
xi (2)  

where xi ∈ {0, 1}. 
The quantum annealer could solve QUBO problem, where the order 

of the polynomial in Eq (2) was two that 

H(x) =
∑

i
Cixi +

∑

i,j
Cijxixj (3)  

where xi,xj ∈ {0, 1}. 
The first part was linear, and the second part was quadratic and non- 

linear. Its form was the same as the quantum Hamiltonian in Eq (1), thus 
we could map the QUBO problem into the quantum processing unit 
(QPU) and solve it by quantum annealing. 

Recently, some researchers were trying to develop algorithms and 
utilize quantum annealers to resolve optimization problems, especially 
complex multivariable optimization [71]. For example, Ajagekar and 
You [72,73] developed novel quantum computing-based hybrid solution 
strategies for molecular design and facility location-allocation for en
ergy systems infrastructure development, unit commitment of electricity 
power systems operations, and heat exchanger network synthesis. Ding 
et al. [74] applied quantum annealing for network design and analysis. 
Castillo et al. [75] optimized the refinery scheduling process with a 
quantum annealer. Quantum annealing could also optimize the power 
network [76,77] and water distribution network [78]. The optimiza
tion’s outcomes were deemed to be quite positive. At last, the quantum 
annealer also had the potential to solve more problems, such as the 
optimization of machine learning models [79–81]. However, quantum 
computing method has never been used for optimizing the model pre
dictive control of building HVAC systems. The possible reasons are as 
follows. At first, prior studies often relied on a continuous and linear 
MPC optimization problem [30], or a discrete linear problem that can be 
solved by mix-integer programming [31]. On the other hand, a practical 
quantum computer has not been available in the past years. 

3. Methodology 

3.1. General MPC problem for building HVAC systems 

The general MPC formulation for the building HVAC systems can be 
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written in the following form [82]: 

min
u0 ,...,uN−1

∑N−1

k=0
ℓk(xk, yk, rk, uk, sk)

s.t.

xk+1 = f (xk, uk, dk)

yk = g(xk, uk, dk)

sk = h(xk, yk, uk, dk)

x0 = x̂

xk ∈ X , uk ∈ U , sk ∈ S

k ∈ NN−1
0

(4)  

Where ℓk is the objective function, xk the system states, yk the system 
outputs, rk the reference signal, uk the system inputs, sk the slack vari
ables, dk the disturbances, x0 the initial state, X the constraints for xk, 
U the constraints for uk, S the constraints for sk, k the time step, and N 
the prediction horizon. The optimal control would minimize the objec
tive function, such as energy use or electricity bill for the building HVAC 
systems affected by the disturbances and within the constraints of 
comfort and system bounds. 

To solve this optimization problem by quantum computing, we first 
needed to formulate the constrained problem into an unconstrained one 
by employing penalty terms in the objective function for xk,uk, sk. Then 
we needed to formulate the system inputs uk in the form of binary qubits. 
Thus, the optimization can be reformulated in the following form: 

min
qki

[

l X (xk) + l U (uk) + l S (sk) +
∑N−1

k=0
l k(xk, yk, rk, uk, sk)

]

s.t.

xk+1 = f (xk, uk, dk)

yk = g(xk, uk, dk)

sk = h(xk, yk, uk, dk)

x0 = x̂

uk = uk(qki)

k ∈ NN−1
0

qki ∈ {0, 1}

(5) 

Even the objective function, the state-space model, the system 
model, and the penalty function were non-linear, as long as l X , l U , l S ,

l k, f , g, h, uk were polynomial functions, the above objective function 

Fig. 1. Overview of the methodology in this study.  
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was a polynomial of qki. As a result, the form of the objective function 
was the same as Eq (2). Previously, researchers [83,84] have developed 
algorithms to convert the problem from PUBO to QUBO - from Eq (2) to 
Eq (3). Hence, quantum computing could resolve the MPC problem for 
building HVAC systems. In this paper, we used quantum computing to 
solve the non-linear mixed-integer programming for RTU optimal con
trol as an example. 

3.2. Quantum computing for optimizing RTU operation 

Fig. 1 shows the overview of the methodology in this study. We first 
built the real-time MPC of the RTU in the building with discrete fan stage 
variables to minimize the total coil load and electricity price across the 
prediction horizon. We developed the thermal network model and 
collected the data to calibrate the model. Then, we reformulated the 
problem as the QUBO by using a penalty function and the substitution 
method. We could find the coefficients through programming. Then we 
used the D-Wave advantage, which was a commercial quantum 
computing equipment. We used Python to submit the coefficients to D- 
Wave quantum computer by Leap cloud system. By minor embedding 
the nodes and edge weights of the chimeric graph architecture of qubits, 
the D-Wave quantum computer could solve such optimization problems 
and find the global optimum by outputting qubits states of 0/1 from the 
quantum processor unit (QPU). Therefore, we could analyze the results 
and obtain the optimal MPC solutions for the RTU fan stages. 

3.2.1. MPC and coil load calculation 
In this study, the purpose of the MPC for building HVAC systems was 

to minimize the coil load or electricity price used by an RTU of EcoBlue 
technology 48GCM04 for cooling in summer, while maintaining the 
room air temperature around a set point when the room was occupied. 
When the room was unoccupied, we also applied setback control to save 
energy. The optimization of the MPC for coil load can be written as 

min
st

∑k+M

t=k
Qcoil

s.t.
Ẋ = AX + Bu + Ew
22◦C⩽Tz⩽24◦C when Pz > 0; 10◦C⩽Tz⩽32◦C when Pz = 0

(6)  

where st was the discrete fan stage to be optimized, k was the first 
optimization time step, k + M was the last optimization time step, Qcoil 
was the coil load at each time step, X was the state of the building (i.e., 
wall temperature and zone air temperature), u was the cooling load of 
the RTU, w was the uncontrollable inputs including ambient air tem
perature, solar heat gain, and internal heat gains, Tz was the zone air 
temperature, Pz was the number of occupants. The constraints were that 
air temperature should be around the set point temperature 23 ◦C with a 
dead band of 1◦C. Setback when unoccupied was 10 ◦C for the heating 
season and 32 ◦C for cooling. The zone air temperatures at future time 
steps were predicted by the state-space model. For the MPC of building 
HVAC systems, the control time step was 15 min. In this paper, we used 
the prediction horizon with 2, 3, 6, 12, and 24 h. Thus, we optimized 8, 
12, 24, 48, and 96 time steps in future horizons. 

In addition, the electricity price could vary due to the grid demand 
response. For example, there was difference between the time-of-use 
energy rate during the peak time and off-peak time. In the summer 
season when the outdoor air temperature was hot and grid stress was 
high, the electricity price would be higher. It could reduce the energy 
usage during the time of high grid stress and emergencies. The optimi
zation of the MPC for electricity price could be written when the 
objective function in Eq. (6) is Qcoil⋅price(t), and price(t) was the elec
tricity price per kWh. At each time step, we needed to manipulate the 
system inputs, the stage of fan st, with the consideration of several future 
prediction horizons. Therefore, st was a discrete variable with possible 
values 0, 1, or 2 to be optimized. Here 0 represented fan off status, while 

1 and 2 represented stages I and II, respectively. Various stages of the fan 
represented different powers and speeds. It could be adjusted according 
to the need and circumstances for load requirement and energy 
efficiency. 

We evaluated the coil load at each time step using the following 
equations 

Qcoil = Qref ⋅EIR⋅fEIRT ⋅fCCMT ⋅Vsupply (7)  

fEIRT = C0 + C1To + C2T2
o + C3Tmix + C4T2

mix + C5ToTmix (8)  

fCCMT = C6 + C7To + C8T2
o + C9Tmix + C10T2

mix + C11ToTmix (9)  

where the coil load was proportional to a given reference load, a con
stant energy input ratio (EIR), energy input ratio temperature (EIRT), 
compressor control module temperature (CCMT), and supply airflow 
rate Vsupply. The performance curves of EIRT and CCMT were the non- 
linear functions of the outdoor air temperature To and the mixed air 
temperature Tmix. C0 ∼ C11 were coefficients provided by the manufac
turer, as Table 1 shows [85]. Thus, the coil load was a quartic poly
nomial of Tmix. 

The mixed air temperature in the duct was related to the stage of the 
fan st , the outdoor air flow rate Vo,t , and the supply air flow rate Vsupply,t 

as 

Tmix,t =

⎧
⎪⎨

⎪⎩

To,t, if st = 0
[

Vo,t

Vsupply,t
To,t +

(

1 −
Vo,t

Vsupply,t

)

Tz,t

]

, if st = 1 or 2
(10) 

When the fan was off, the mixed air temperature was the same as the 
outdoor air temperature. When the fan was on, the mixed air tempera
ture was the volume-weighted average of outdoor air temperature and 
zone return air temperature. 

The required outdoor airflow rate of the RTU was based on the 
ASHRAE Standard 62.1 [86] as 

Vo,t =
RpPz,t + RaAz

Ez
(11)  

where Rp was the outdoor air flow rate required per person, Pz,t the zone 
population, Ra the outdoor airflow rate required per unit area, Az the 
zone floor area, Ez the zone air distribution effectiveness. In this study, 
we used Rp = 8.5m3/h per person,Ra = 1.1m3/h,Az = 68m2, and Ez = 1 
according to ASHRAE Standard 62.1 [86]. 

The supply airflow rate of the RTU at each time step was related to st, 
so that 

Vsupply,t =

⎧
⎨

⎩

0, st = 0
V1, st = 1
V2, st = 2

(12)  

Where V1 = 0.32m3/s (675 CFM) and V2 = 0.42m3/s (900 CFM), which 
were provided by the manufacturer. 

We still needed to predict the zone air temperature at upcoming time 
steps for the predictive control, which would be introduced in the next 
subsection. With Eqs (7) - (12), we could calculate the coil energy use, 
whose total in the next several time steps would be minimized by MPC. It 
was worthy to note that for each additional optimization time step, the 

Table 1 
Value of coefficients to calculate EIRT and CCMT.  

Coefficient Value Coefficient Value 

C0  1.2788 C6  0.15979 
C1  −0.0019315 C7  −0.0012132 
C2  −0.000239 C8  5.4e-5 
C3  −0.066933 C9  −0.0050051 
C4  0.0010513 C10  0.00025547 
C5  0.00058568 C11  −0.00012701  
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number of possible combinations of system inputs tripled. As a result, 
when the number of prediction horizons and solution space was large, it 
was extremely difficult to find the optimum control quickly by tradi
tional optimization methods. For coordinated control of several RTUs 
[31,87] and large-scale MPC problems [88], the optimization would be 
more difficult. 

3.2.2. RC model for room air temperature 
Fig. 2 shows a thermal resistance–capacitance (RC) network model 

to predict the zone air temperature for the MPC. The governing equa
tions of the state-space model for the wall temperature and zone air 
temperature were 

Ṫw =
Ta − Tw

CwR2
+

Tz − Tw

CwR1
+

Q̇sol

Cw
(13)  

Ṫz =
Tw − Tz

CzR1
+

Ta − Tz

CzRwin
+

Q̇HVAC + Q̇int + Q̇sol

Cz
(14)  

Where Ta was the ambient air temperature, Tw the wall temperature, Tz 

the zone air temperature, Q̇sol the heat gain from solar radiation on walls 
and the air node, Q̇HVAC the heat gain from the HVAC system, Q̇int the 
heat gains from internal sources, Rwin the window thermal resistance, R1 
and R2 the thermal resistance of the exterior wall, Cw the exterior wall 
heat capacity, and Cz the zone heat capacity. 

We could write Eqs (13)-(14) in matrix form as 

Ẋ = AX + Bu + Ew (15)  

X = [ Tw Tz ]
T (16)  

A =

⎡

⎢
⎢
⎢
⎣

−
R1 + R2

CwR1R2

1
CwR1

1
CzR1

−
R1 + Rwin

CzR1Rwin

⎤

⎥
⎥
⎥
⎦

(17)  

B =

[

0 1
Cz

]T

(18)  

u = Q̇HVAC (19)  

E =

⎡

⎢
⎢
⎢
⎣

1
CzR2

1
Cw

0

1
CzRwin

1
Cz

1
Cz

⎤

⎥
⎥
⎥
⎦

(20)  

w =
[

Tamb Q̇sol Q̇int

]T
(21) 

The heat gain from the HVAC systems was calculated as 

Q̇HVAC = cairρairVsupply
(
Tsupply − Tz

)
(22) 

We used Tsupply with 12◦C for cooling the room in this study. For the 
other parameters of thermal resistance and heat capacity, we used the 
collected data in the office to calibrate the values of these parameters. 

The discretized state-space model of Eq (15) was 

Xt = eAT Xt−1 + A−1(
eAT − I

)
But−1 + A−1(

eAT − I
)
Ewt−1 (23)  

Where I was the identity matrix. 
Thus, the solution of the above discretized state-space RC model 

could be written as 
[

Tw,t
Tz,t

]

= eAT(t−1)

[
Tw,1
Tz,1

]

+
∑t−1

i=1
eAT(t−1−i)A−1(

eAT

− I
)
Bui +

∑t−1

i=1
eAT(t−1−i)A−1(

eAT − I
)
Ewi (24)  

3.2.3. Data collection 
We collected all the data in an office building on the campus of 

Syracuse University, as shown in Fig. 3. Fig. 4 also shows the data 
collection devices. Fig. 4 (a) demonstrates that we used a people 

Fig. 2. RC network model for the room equipped with RTU.  

Fig. 3. Photos of the building and the office room for data collection.  
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counting sensor (Density Entry) to collect the room occupancy data. It 
used the depth sensor and infrared lasers to measure the entry move
ment. There were air temperature sensors, flow rate sensors, and smart 

meters equipped in the room. So we could also monitor the zone air 
temperature, internal heat gain, supply air temperature, and supply air 
flow rate of the HVAC system by using installed sensor (HOBO data 

Fig. 4. Data collection devices in this study: (a) sensor (Density Entry) for measuring the number of occupants in the room; (b) sensor for measuring supply air 
temperature and on the diffuser. 

Fig. 5. (a) MPC block diagram using quantum computing. (b) Process of formulating the HVAC control problem to QUBO and solved by quantum computing.  
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logger MX1102A, temperature measurement range and accuracy: 0◦ to 
50 ◦C and ± 0.21 ◦C from 0◦ to 50 ◦C) and Building Automation and 
Control Networks (BACnet) [89]. We programmed it in Python and the 
data were automatically read and placed in the PostgreSQL database. As 
for the outdoor weather information, we used the data from the Syracuse 
STEM weather station. The internal heat gain, outdoor weather data, 
and room occupancy data were also used in MPC as disturbances. We 
collected data for three days in the summer season of 2021 and the 
frequency of data collection was 5 min. 

3.3. Binary optimization for quantum computing 

Fig. 5 shows the MPC block diagram using quantum computing and 
the process of formulating the HVAC control problem to QUBO for 
quantum computing. For the MPC optimization of the RTU, the objective 
function in Eq (6) was for constrained optimization with discrete vari
ablesst. We needed to reformulate the constrained optimization problem 
to an unconstrained binary optimization so that it could become a PUBO 
as Eq (2), and further formulate it into QUBO as Eq (3) for quantum 
computing. 

At first, the supply air flow rate and mixed air temperature in Eq (10) 
and (12) could be written in a unified form instead of the piecewise form 
as 

Tmix,t =
(st − 1)(st − 2)

2
To,t − st(st − 2)

[
Vo,t

V1
To,t +

(

1

−
Vo,t

V1

)

Tz,t

]

+
st(st − 1)

2

[
Vo,t

V2
To,t +

(

1 −
Vo,t

V2

)

Tz,t

]

(25)  

Vsupply,t =
st(st − 1)

2
V2 − st(st − 2)V1 (26) 

Thus, Vsupply and Tmix were quadratic polynomials of st. 

Then with the thermal network model, we could calculate the pre
dicted state of zone air temperature and wall temperature at any time 
step by using Eq (24). The first and last terms were given constant at 
each time step, and Vsupply in the second term was a quadratic polynomial 
of st. So Tz,t was also a quadratic polynomial of st. 

Next, there were constraints of zone air temperature in Eq (6). In this 
study, we used a penalty function adding to the objective function to 
convert the constrained optimization to unconstrained optimization. 
The ideal penalty function was step functions as shown in Fig. 6(a). Since 
we could only use polynomial optimization for quantum computing, we 
used quadratic penalty functions when the room was occupied and un
occupied. Fig. 6(b) and (c) show the penalty functions that 

fp =

⎧
⎪⎨

⎪⎩

(Tz − 23)
2
, Pz > 0

(
Tz − 21

12

)2

, Pz = 0
(27) 

Therefore the new objective function could be written as 

min
st

∑k+M

t=k

[
Qcoil,t + W⋅fp

(
Tz,t

) ]
(28) 

where W was a weight to control the importance between the coil 
load and the penalty of air temperature deviation. Large weight could 
increase the impact of deviations from the temperature set point. And 
fp

(
Tz,t

)
was a quadratic polynomial of st. 

Since the optimized stage of the fan in each time step st ∈ {0, 1, 2}, 
we used two binary variables qt1, qt2 ∈ {0, 1} to represent as 

st = qt1 + qt2 (29) 

In particular, for the fan stage to be optimized at the next time step in 
the prediction horizon, it was represented by the first two qubits. 

Hence, we could finally formulate the optimization of MPC into a 

Fig. 6. (a) Ideal penalty functions; (b) penalty function we used when the room was occupied; and (c) penalty function we used when the room was unoccupied.  
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binary optimization for any time step k as 

min
qti

∑k+M

t=k

[
Qcoil,t + W⋅fp

(
Tz,t

) ]

s.t.
Eqs(7) − (9), (11), (23) − (27), (29)

qt1, qt2 ∈ {0, 1}

(30) 

We found that the objective function in above optimization problem 
was a tenth-degree polynomial of the binary variablesqti. Note that 

qn
i = qi (31) 

when qi ∈ {0, 1} and n was a positive integer. The higher exponent 
terms could be further simplified and reduced to one. 

After a simplification, we found that the objective function contained 
not only linear and non-linear second-order terms, but also three-order 
and four-order terms, as the following form: 

H =
∑

i
Ciqi +

∑

i,j
Cijqiqj +

∑

i,j,k
Cijkqiqjqk +

∑

i,j,k,l
Cijklqiqjqkql (32) 

Note that the constant term did not affect the optimization result, 
thus it was removed. 

Then we also needed to reduce the high-order polynomials of 
objective function from four-order PUBO as Eq (2) into QUBO as Eq (3). 
Based on the Handbook of D-Wave quantum annealer [90] and litera
tures [83,84], the non-quadratic polynomials could be reformulated and 
reduced to quadratics by minimum selection method [83] and substi
tution method [84]. 

Minimum selection method worked on only one term, by introducing 
an ancillary binary variable w, to minimize a cubic term of Cijkqiqjqk 

minCijkqiqjqk

s.t.qi, qj, qk ∈ {0, 1}

⇔

{
minCijkw

(
qi + qj + qk − 2

)
, Cijk < 0

minCijk
[
(w − 1)

(
qi + qj + qk − 1

)
+ qiqj + qiqk + qjqk

]
, Cijk > 0

(33) 

Similarly, for minimization of a quartic term Cijklqiqjqkql   

Since there was more than one high-order term in the objective 
function in Eq (32) of this study, we also used the substitution method 
[84]. The algorithm was as follows: as long as there existed high-order 
terms containing qiqj like Cijkqiqjqk or Cijklqiqjqkql in the polynomial of 
objective function H, we introduced an ancillary binary variable wij to 
replace qiqj and looped through the operations as follows: 

Cijqiqj = Cijwij (35)  

Cijkqiqjqk = Cijkwijqk (36)  

Cijklqiqjqkql = Cijkwijqkql (37)  

H = H + M
[
qiqj − 2

(
qi + qj

)
wij + 3wij

]
(38) 

Where H was the polynomial of objective function in Eq (32), and M 
[84] was defined as 

M≜1 +
∑

ij

⃒
⃒Cij

⃒
⃒ (39) 

The above Eq (38) was established since the minimum of H has not 
changed as the following two equivalences [84] for any qi, qj, wij ∈ {0, 1}

always hold 

qiqj = wij ⇔ qiqj − 2
(
qi + qj

)
wij + 3wij = 0 (40)  

qiqj ∕= wij ⇔ qiqj − 2
(
qi + qj

)
wij + 3wij > 0 (41) 

From the aforementioned Eqs (35)-(38), the four-order PUBO as Eq 
(32) can be gradually reduced to QUBO. Similarly, the interaction of 
more than four variables could also be reduced by sequentially intro
ducing new binary variables, but they did not appear in the objective 
function of this study. Finally, the problem could be written as QUBO in 
the form of Eq (3). And it could be mapped and solved by the D-Wave 
quantum computer. 

3.4. D-Wave annealer configuration 

After reformulating the problem as the QUBO, we obtained the linear 
coefficients and non-linear quadratic coefficients. The minor embedding 
would map them to the nodes and edge weights of the chimeric graph 
architecture of qubits in the QPU. With these qubit biases and coupling 
strengths on the D-Wave quantum computer, it could use quantum 
annealing to minimize the Hamiltonian energy of this configuration. 
Therefore, the system could find the lowest energy state of this config
uration, which corresponded to the global minimum of the objective 
function with high probability [91]. 

In order to find the optimal solutions to the QUBO problems, we used 
the D-Wave advantage, which was a commercial quantum computing 
equipment aiming to achieve quantum annealing. The D-Wave Advan
tage system contained a QPU with over 5000 qubits and 35,000 couples 
among qubits [92]. The QPU needed to operate at a temperature of 12 
mK and be isolated from the surrounding environment. The topology 
structure of the QPU was Pegasus as shown in Fig. 1, with the graph size 

of P16 and connectivity of Degree 15. After the quantum computer 
reached the low energy solution of the Hamiltonian after annealing as 
Eq (1), it could output the samples of states of the qubits. As a result, we 
were able to obtain the corresponding optimal solution of the QUBO and 
the original optimization problem for the RTU. The time of one 
annealing process on D-Wave Advantage was 2 μs. In order to obtain a 
reasonable optimal solution, we used the number of reads with 10,000 
times for the annealing process. We used Python to submit the co
efficients of the QUBO to D-Wave annealer by Leap cloud system [93]. 

3.5. Comparison with other control strategies and traditional optimization 
method 

3.5.1. Baseline control strategy 
To verify the results of the MPC by quantum computing, we evalu

ated the energy savings of the MPC and compared it with other control 

minCijklqiqjqkql

s.t.qi, qj, qk, ql ∈ {0, 1}

⇔

{
minCijklw

(
qi + qj + qk + ql − 3

)
, Cijkl < 0

minCijkl
{

w
[

− 2
(
qi + qj + qk + ql

)
+ 3

]
+ qiqj + qiqk + qiql + qjqk + qjql + qkql

}
, Cijkl > 0

(34)   
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Fig. 7. Collected data of (a) ambient air temperature; (b) zone air temperature; (c) cooling load by HVAC system; (d) internal heat gain; (e) number of occupants; (f) 
solar heat gain. 
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strategies. In this study, we compared with fixed rule-based on–off 
control coupling the setback control with ASHRAE Guideline 36 [94]. 
For on–off control, the temperature set point was always equaled the 
occupied set point of 23◦C. For setback control, the set point in occupied 
time was the same. In the unoccupied time before 8:00 and after 17:30, 
the set point was 32◦C. The control algorithm at each time step was as 
follows:  

• If zone air temperature was higher than the set point, and fan stage 
was off ⟶ fan stage I.  

• If zone air temperature was higher than the set point and the one at 
the previous time step, and fan stage I was on ⟶ fan stage II.  

• If zone air temperature was lower than the set point and fan stage II 
was on ⟶ fan stage I.  

• If zone temperature was lower than the set point and cooling stage I 
was on ⟶ fan stage off.  

• Otherwise ⟶ keep the current fan stage. 

3.5.2. Traditional optimization method 
To validate the feasibility and efficiency of quantum computing for 

MPC of building HVAC systems, we also compared the computing time 
with traditional optimization methods. We solved the non-linear 

discrete optimization of MPC as Eq (30) by using GA in the Global 
Optimization Toolbox in MATLAB R2021a. It was a popular algorithm 
that mimic a natural selection process that repeatedly modified a pop
ulation of individual solutions that were restricted to integral values. In 
order to obtain reasonable results, the population size was based on the 
number of binary variables to be optimized. We set the max stall gen
erations with 50, and optimization function tolerance with 1e-4. 

In addition, we also solved the QUBO as Eq (30) by using Gurobi 
9.0.1. It used the cutting plane algorithm to find the optimized results for 
the mixed-integer quadratic programming. We set the optimal solution 
tolerance with 1e-4. 

4. Results 

4.1. Collected data 

Fig. 7 shows the collected data on ambient air temperature, zone air 
temperature,Q̇HVAC, number of occupants, Q̇int and Q̇sol on three days in 
summer. The data were collected between July 14th-16th, 2021. For 
internal heat gains, they contained heat from occupants, light bulbs, and 
internal appliances. Based on the actual information about the room, we 
assumed that the heat gain was 100 W per occupant, 60 W per bulb, 100 
W per desktop, and 30 W per monitor [95]. When the room was occu
pied, all the lights were on. And the number of working desktops was the 
same as number of occupants. We used these data to calibrate the RC 
model and obtained the values of the parameters, as listed in Table A1. 
The calibrated RC model could predict the room air temperature with 
root mean square error of less than 0.2◦C. So the model can be used to 
predict the room thermodynamics. We also used the ambient air tem
perature, the number of occupants in the room, solar heat gain, and the 
internal heat gain for the MPC as disturbances. 

4.2. Results of quantum computing 

After the reformulation, we were able to obtain all the linear and 
quadratic coefficients of QUBO for quantum computing. We got 10,000 

Table 2 
Raw outputs of quantum computing at 20th time step.  

Sample q1 q2 q3 q4 q5 … Hamiltonian 

1 0 0 0 0 0 … 5.246113e-3 
2 0 0 1 0 0 … 6.526900e-3 
3 0 0 0 0 0 … 6.535851e-3 
4 0 0 0 0 0 … 6.535851e-3 
5 0 0 0 0 0 … 7.294013e-3 
6 0 0 0 0 0 … 7.295246e-3 
7 0 0 0 0 0 … 7.522984e-3 
8 0 0 0 0 0 … 7.962238e-3 
9 0 0 0 0 0 … 7.973845e-3 
10 0 0 0 0 0 … 8.037716e-3 
… … … … … … … …  

Fig. 8. Hamiltonian distribution of 50 smallest samples at (a) 20th, (b) 70th, and (c) 143rd time steps.  
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annealing samples in each time step that could acquire stable results 
with a high probability of reaching the global minimum. Table 2 lists the 
raw outputs of quantum computing at the 20th time step for a 3-hour 
prediction horizon. This table lists ten sample results in the order of 
Hamiltonian as Eq (1) from small to large, which was a very small 
fraction of all output results due to space. For each Hamiltonian energy, 
the corresponding states of first 5 qubits were listed in the table. We 
found that q1 + q2 with small Hamiltonian had a high probability of 
being equal to 0 at the 20th time step. As Eq (29) expressed, these results 
implied the optimal control of the fan stage at the 20th time step should 
be 0 and turn off with a high probability. 

Fig. 8 shows the occurrence distribution of 50 samples with the 
lowest Hamiltonian at the 20th, 70th, and 143rd time steps. As low 
Hamiltonian represented a high probability of global minimum, in these 
three time steps, the optimal controls were off, stage I and stage II, 
respectively. Similar to Table 2 and Fig. 8, then we analyzed the outputs 
to obtain the MPC optimization results at each time step. Therefore, the 
non-linear optimal control problem of building HVAC system with 
discrete variables could be resolved by quantum computing. 

4.3. Comparison of results and computing time with traditional 
optimization and control 

We got 10,000 annealing samples at each time step that could obtain 
stable results with a high probability of reaching the global minimum. 
Then we could analyze the results of quantum annealing at each time 

step to obtain the optimal control of the RTU fan stage. Fig. 9 compares 
the optimal air temperature control, fan stage, and cooling load between 
quantum computing and traditional optimization methods for 2-hour 
and 3-hour prediction horizons. We found that the RTU used the most 
cooling load on the second day. In the afternoon when the outdoor air 
temperature and solar gain were high, the RTU started to cool down the 
room. After the working hour and at night, the RTU did not work to save 
energy. We found that the difference in optimal control results between 
quantum computing and the traditional optimization method occurred 
in a total of 6 time steps, which was 2.1 % over three days. The predicted 
cooling load by quantum computing was 1.1 % more than the traditional 
method. This result showed that quantum computing could obtain 
optimization results similar to the traditional optimization method. 
Fig. 9 also shows the predicted air temperature could be controlled 
within the lower and upper bound of the set point as thermal comfort 
level by quantum computing. Fig. 10 compares the results of optimal air 
temperature control, fan stage, and cooling load for quantum computing 
MPC with 6-hour, 12-hour, and 24-hour prediction horizons. Although 
most of the cooling load was still used on the second day, the total 
cooling load did not vary significantly with different prediction hori
zons. The difference between 6-hour and 24-hour prediction horizon 
was 6.5 %. Traditional optimization methods were very hard to achieve 
these results for long prediction horizons. 

Fixed on–off control with occupancy information was still used for 
many buildings. Compared with this baseline control, we found that 
MPC optimized by the traditional optimization method could save 

Fig. 9. Comparison of optimal air temperature control, fan stage, and cooling load between quantum computing and traditional optimization method for (a) 2-hour 
prediction horizon; (b) 3-hour prediction horizon. And gray shade represents the room was occupied. 
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cooling load by 43.5 %. MPC optimized by quantum computing could 
save 42.9 % of cooling load. The energy-saving by quantum computing 
and the traditional optimization method was similar. Hence, we could 
use quantum computing to optimize the MPC of building HVAC systems 
the same as the traditional optimization method. 

As for the computing time, adding the sampling time, readout time 
and delay time for the quantum computer, the total QPU time for one 

time step optimization was less than 1 s when the prediction horizon was 
no more than 6 h. It was almost the same for various prediction horizons 
and the number of binary variables. That was due to the fact that the 
quantum annealing and sampling could be operated for all the qubits on 
QPU simultaneously, making it a truly parallelized calculation [96,97]. 
In this case, raising the prediction horizon or the number of optimizing 
variables would not significantly increase the computing time of quan
tum computing. This phenomenon has also been observed in some 
previous studies [70]. When the prediction horizon was 12 h, there were 
more than 2000 binary variables and 20,000 non-linear terms. The 
quadratic matrix was not sparse and the problem could not be directly 
embedded in the QPU architecture. The quantum computer needed to 
use the decomposer to divide the optimization problem into sub
problems to solve. This required some iterative algorithms. Thus, the 
quantum computing time for 12 h and 24 h prediction horizons was 6 s 
and 37 s, respectively. Even yet, such computing time was still much 
shorter than the control time step with 15 min. Hence, quantum 
computing could respond quickly for larger problems and achieve real- 
time optimization. 

We also carried out the MPC of RTU optimization for larger 

Fig. 10. Comparison of optimal air temperature control, fan stage and cooling load for quantum computing between MPC with 6-hour, 12-hour, and 24-hour 
prediction horizons. And gray shade represents the room was occupied. 

Table 3 
Comparison of computing time between quantum computing (QC) and traditional optimization methods.  

Prediction 
horizon 

Number 
of time 
steps 

Number 
of 
discrete stages 

Number of binary variables Number of non-linear quadratic terms Computing time for each time step 
GA Gurobi QC 

2 h 8 24 72 237 8 s 0.4 s 1 s 
3 h 12 36 159 777 21 s 36 s 1 s 
6 h 24 72 577 5430 207 s greater than4h 1 s 
12 h 48 144 2305 22,938 26 min greater than12 h 6 s 
24 h 96 288 9217 94,405 greater than12 h – 37 s  

Fig. 11. Electricity price for time-of-use rate and peak day rate in one day.  
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prediction horizons by traditional optimization methods. For GA, it 
could find the optimal solution quickly when the number of binary 
variables was 72 and 159 in 2 h and 3 h prediction horizons, respec
tively. However, Table 3 shows that the computing time for each time 
step was 26 min and over 12 h when the prediction horizon was 12 h and 
24 h, respectively. That was due to the huge number of both binary 
optimized variables and non-linear terms. The program took a longer 
time to run and obtain a converged result. Similarly, as for Gurobi, it 
took 36 s to solve the optimization problem with 159 binary variables. 
However, when there were 577 and 2305 binary variables in the non- 
linear quadratic optimization problem, it was unable to solve the 
problem within 4 h and 12 h. Therefore, only quantum computing could 
achieve real-time optimization if the prediction horizon was more than 
12 h. The computing time of quantum computing for solving the 
quadratic optimization in this study was greatly reduced to less than 0.4 
% of that by traditional optimization methods. Increasing the prediction 
horizon and number of optimizing variables would significantly increase 
the time of optimization calculation for traditional optimization 
methods. The problem with more discrete optimization variables could 
take the advantage of quantum computing. Therefore, quantum 
computing had greater potential for large-scale optimization problems 
and even NP-hard problems. 

4.4. Optimization of electricity usage and bill 

To reduce the load and the electricity price during peak times, we 
also used MPC to optimize the fan stage of the RTU. Fig. 11 shows the 
electricity price for the time-of-use rate and peak day rate [98]. The 
time-of-use rate for peak, part-peak, and off-peak hours on normal days 
was $0.38551, $0.33628, and $0.31547 per kWh, respectively. In 
summer, the peak time was 4 pm to 9 pm, and part-peak time was 2 pm 
to 4 pm and 9 pm to 11 pm. As for the peak hour on the peak day, the 
trigger ambient temperature was around 36.7 ◦C (98◦F). The electricity 
price for the peak hour on the peak day was $0.6 per kWh. The 

Fig. 12. Ambient air temperature in summer for peak day rate in Los Angeles.  

Fig. 13. Comparison of optimal air temperature control and cooling load by quantum computing to minimize the electricity bill between the prediction horizon of 2 
h, 6 h, and 24 h and rule-based on/off control as a baseline. The red, orange, and blue shades represent the peak day, peak hour, and part-peak hour, respectively. 

Table 4 
Total electricity bills and peak usage calculated by baseline control and quantum 
computing with various prediction horizons.  

Prediction 
horizon 

Total 
electricity bill/ 
$ 

Electricity bill 
reduction 

Peak 
load/ 
kWh 

Peak load 
reduction 

Baseline 
control  

20.63 –  33.90 – 

2 h  20.51 −0.6 %  28.89 −15 % 
3 h  19.07 −7.5 %  21.96 −35 % 
6 h  18.02 −13 %  5.39 −84 % 
12 h  17.12 −17 %  1.54 −95 % 
24 h  16.31 −21 %  7.02 −79 %  
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participants would be notified one day prior to the peak day occurred to 
respond to the grid signal and arrange the electricity usage to reduce the 
load. Therefore, to optimize the operation of the RTU for the peak day, 
we used the actual outdoor air temperature during Sep. 5th-7th 2020 in 
summer in Los Angeles, California, as Fig. 12 shows. On Sep. 6th during 
the peak day, the highest air temperature was about 37 ◦C in the 
afternoon. 

Fig. 13 shows the optimal air temperature control and cooling load 
using quantum computing for low electricity prices with different pre
diction horizons and rule-based on/off control as a baseline. The cooling 
load could be rescheduled to part-peak and off-peak hours by MPC. 
Especially for 12 h and 24 h ahead prediction horizon, the entire cooling 
load was not in the peak day. Table 4 lists the electricity bills calculated 
by quantum computing for 2 h, 3 h, 6 h, 12 h, and 24 h prediction ho
rizons. By using quantum computing, the total electricity bill could be 
reduced by 21 % compared with the baseline ruled-based on–off control. 
Regarding the peak hour reduction, Fig. 13 also shows that most of the 
electrical load was on the peak day and peak hours under baseline 
control. However, for MPC, 12 h and 24 h prediction control greatly 
reduced the load in the peak hour and peak day. Table 4 shows that the 
peak load reduction could be 95 % and 79 % compared with baseline 
control for 12 h and 24 h prediction horizons, respectively. So quantum 
computing also significantly reduced the grid stress during the peak 
time. Such optimization could not be achieved by commonly used 
traditional optimization methods. Therefore, for the complex day ahead 
time-of-use demand response scenarios, only quantum computing could 
achieve real-time MPC to minimize the electricity usage of the RTU and 
grid stress. 

5. Discussion and future works 

In this study, we used quantum computing to solve the optimization 
of energy-efficient model predictive control of RTU in the office build
ing. We reformulated the optimization to the QUBO for the D-Wave 
quantum computer, which was the only commercial quantum computer 
available now. Currently, the architectures of quantum computing were 
still in the early stage of development that had limitations in the ease of 
computation, performance, and even algorithm. Only limited number of 
qubits and their coupling in the QPU could be used for direct embedding 
in D-Wave Advantage system. Large-scale problems still needed to be 
decomposed into many sub-problems to be solved. This required the 
assistance of traditional optimization algorithms; thus the computing 
time would increase. Some factors such as error correction, decoherence 
qubits, and limited quantum control lead to obstacles of accuracy of 
quantum computing and quantum computer. To improve the precision 
of optimization, increasing annealing time and spin reversal transform 
were feasible ways, but they would also lead to more computing time. 
What is more, quantum computing required reformulation of the orig
inal problem into a specific format, thus not all the optimization prob
lems could be solved. If the objective function or constraint in the 
optimization problem is not a polynomial, but a fraction, radical 
expression, or contain special functions (e.g. exp, log, sin), then it cannot 
be reformulated into the form of Hamiltonian in Eq (1). Thus this opti
mization cannot be solved by a quantum computer easily. This is the 
current limitation of using a quantum computer to solve optimization. 
As long as the final objective function is polynomial, even for non-linear 
problems, quantum computers can solve it. We need further studies to 
take advantage of quantum computing for more complex problems. 
From an optimization perspective, annealing-based quantum computers 
were closer to discrete optimization problems than gate-model quantum 
computers [99]. This was because annealing was specifically built for 
optimization, whereas gate quantum computers followed general 
computing methods. Quantum computers for commonly used 
computing were still developing in the early stage. Finally, there was a 
huge cost for hardware and maintenance of the quantum computer. The 
energy required to run quantum computing may be higher than the 

optimized energy efficiency of the building HVAC system at this stage. 
Therefore, before quantum computing can become commonly practical, 
the issue of high cost must be addressed. In the future, it is anticipated 
that researchers can overcome the existing obstacles to make quantum 
computing play a greater role. 

For the future work, there are few potential aspects: 1) optimize 
supply air temperature. Theoretically, it is possible to include supply air 
temperature as one of the continuous optimal variables, and additional 
energy savings will be expected. However, additional efforts on refor
mulation of the optimization equation are needed; 2) different poly
nomial formulations for the penalty function. Future work can also focus 
on various forms of penalty functions. Such variation will impact the 
optimization results. It will be interesting to compare and select the most 
suitable penalty function. 

6. Conclusion 

In this study, we proposed the methods based on quantum computing 
to solve the mixed-integer non-linear optimization of MPC for the 
building HVAC systems. This research led to the following conclusions:  

1. The original MPC of RTU optimization as a non-linear problem with 
discrete variables could be formulated as the QUBO, so that quantum 
computers could solve it.  

2. Using quantum computing, we could obtain the similar solution as 
using the traditional optimization methods with a short prediction 
horizon, and the control differences were less than 2 %. For a longer 
prediction horizon, the computing time of quantum computers for 
solving the optimization problem in this study was greatly reduced to 
less than 0.4 % of that by the traditional optimization methods. Only 
quantum computing could achieve real-time optimization and 
responding to the control signal within 15 min. The problem with 
more discrete optimized variables could take the advantage of 
quantum computing.  

3. MPC optimized by the traditional optimization method and quantum 
computing could save the cooling load by 43.5 % and 42.9 % 
compared with on–off control, respectively.  

4. Day-ahead real-time MPC by quantum computing could reschedule 
the electricity usage of the RTU to off-peak hours by 80 % and reduce 
the electricity bill by 21 %. Therefore, quantum computing had the 
potential to solve large-scale non-linear optimization problems for 
building energy systems. 
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The values of the parameters of the RC model.  
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