
Improving Social Network Embedding via New Second-Order
Continuous Graph Neural Networks

Yanfu Zhang

Electrical and Computer Engineering

University of Pittsburgh

Pittsburgh, PA, USA

yaz91@pitt.edu

Shangqian Gao

Electrical and Computer Engineering

University of Pittsburgh

Pittsburgh, PA, USA

shg84@pitt.edu

Jian Pei

School of Computer Science

Simon Fraser University

Vancouver, BC, Canada

jpei@cs.sfu.ca

Heng Huang
∗

Electrical and Computer Engineering

University of Pittsburgh

Pittsburgh, PA, USA

henghuanghh@gmail.com

ABSTRACT
Graph neural networks (GNN) are powerful tools in many web re-

search problems. However, existing GNNs are not fully suitable for

many real-world web applications. For example, over-smoothing

may affect personalized recommendations and the lack of an ex-

planation for the GNN prediction hind the understanding of many

business scenarios. To address these problems, in this paper, we pro-

pose a new second-order continuous GNN which naturally avoids

over-smoothing and enjoys better interpretability. There is some

research interest in continuous graph neural networks inspired by

the recent success of neural ordinary differential equations (ODEs).

However, there are some remaining problems w.r.t. the prevail-

ing first-order continuous GNN frameworks. Firstly, augmenting

node features is an essential, however heuristic step for the numer-

ical stability of current frameworks; secondly, first-order methods

characterize a diffusion process, in which the over-smoothing ef-

fect w.r.t. node representations are intrinsic; and thirdly, there are

some difficulties to integrate the topology of graphs into the ODEs.

Therefore, we propose a framework employing second-order graph

neural networks, which usually learn a less stiff transformation

than the first-order counterpart. Our method can also be viewed

as a coupled first-order model, which is easy to implement. We

propose a semi-model-agnostic method based on our model to en-

hance the prediction explanation using high-order information. We

construct an analog between continuous GNNs and some famous

partial differential equations and discuss some properties of the first

and second-order models. Extensive experiments demonstrate the

effectiveness of our proposed method, and the results outperform

related baselines.

∗
This work was partially supported by NSF IIS 1845666, 1852606, 1838627, 1837956,

1956002, IIA 2040588.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539415

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; • Networks→ Network algorithms.

KEYWORDS
graph neural networks, ordinary differential equation, prediction

explanation

ACM Reference Format:
Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. 2022. Improving So-

cial Network Embedding via New Second-Order Continuous Graph Neural

Networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3534678.

3539415

1 INTRODUCTION
Recently, there is growing interest in designing graph neural net-

works (GNN) to solve a variety of web research problems, such as

social network analysis [20], recommendation systems [34], fraud

detection [45], natural languages [16], brain connectome analy-

sis [44], etc.. Graph neural networks are primitively motivated by

graph convolution [4, 13] based on spectral graph theory. Consecu-

tive researches [7, 9, 11, 36, 38, 40, 43] show GNNs are powerful in

learning graph embeddings, and the simplicity and effectiveness

of GNN can be boosted via generalizing the graph convolution

operation to aggregate the information from the nodes of interest

and their neighbors. Some representative variants include Graph-

Sage [11], Message Passing Neural Network [38], Graph Attention

Network [31] and Graph Isomorphism Network [36].

There is some discrepancy between the practical requirements

for business scenarios and the existing research. For example, one

usually wants to make a personalized recommendation targeting

on individual users. Deeper networks usually are beneficial for

learning more complex data distributions. But node representa-

tions may be over-smoothed [13, 22, 36] due to the low-frequency

filtering property of many GNNs. As a result, the user difference

is blurred, which becomes a hindrance if one wants to make per-

sonalized recommendation. Another example is that it is difficult

to build business decision based on the black-box predictions of

https://doi.org/10.1145/3534678.3539415
https://doi.org/10.1145/3534678.3539415
https://doi.org/10.1145/3534678.3539415

KDD ’22, August 14–18, 2022, Washington, DC, USA Yanfu Zhang et al.

GNNs [17, 39, 41]. In social networks, finding influential neighbors

can significantly improve the understanding of the user behavior.

As such, there is some interest in explaining the GNN predictions

based on a small subgraph.

To address these problems, in this paper, we propose a novel

second-order continuous graph neural network. There were some

attempts to address over-smoothing problem [15, 36]. Inspired by

an emerging research topic connecting the residual network and

ordinary differential equations [2], continuous-depth GNNs was

proposed based on the dynamics of hidden layers and show advan-

tages than the discretized counterparts in better memory efficiency

and superior performance. The first-order frameworks adopted by

existing graph ODEs characterize the diffusion process which can-

not fully address the over-smoothing problem because the heat

kernel is usually the Gaussian. Besides, many methods [25, 35] use

augmented features as an ad-hoc step for numerical stability. The

selection of feature augmentation is thus discretionary and lacks

interpretability. Our approach learns the second-order dynamics

of GNNs and considers the effect of a force term and a damping

term to avoid over-smoothing, which can be viewed as discretizing

the variants of wave equations. Our model can also be viewed as a

coupled first-order equation with interpretable augmented feature

velocity. Previous GNN explanation methods are usually model-

agnostic, which omits the second-order information in our model.

We design a new semi-model-agnostic method that explicitly con-

siders the high-order information but leaves the GNN structure

untouched to enhance the prediction explanation.

Our contributions can be summarized as follows:

• We propose a second-order continuous GNN based on the

message passing neural network framework. Our second-

order model can be expressed as a coupled first-order equa-

tion via augmenting the node features with their gradients,

and the implementation is feasible using the popular first-

order framework.

• We construct an analog between continuous GNNs and par-

tial differential equations because graph Laplacian can be

viewed as discretized Laplacian operator on manifolds.

• We introduce a method to explain the GNN prediction via

leveraging the high-order information with an independent

edge embedding network. The explanation is agnostic to the

specific GNN structure.

• We conduct extensive experiments on several graphs datasets

of homophily, which is an important property of social net-

works [18, 23, 46]. The results show that our method outper-

forms related baselines in various downstream tasks, and the

second-order information can boost the model explanation.

2 RELATED WORK
Neural ODEs: Residual network [12] is an important method to

push neural networks to extreme depths. It is observed that the

skip links in ResNet can be seen as an Euler discretization of a

continuous transformation. Based on this connection, the research

on neural ODEs evokes emerging interest. A popular framework,

Neural ODEs [2], considers the continuous-depth neural networks

via taking the limit of this discretization. The optimization w.r.t.
the ODE solvers adopt the adjoint sensitivity method [26], which

treats the ODE solve as a black box and solve a second augmented

ODE backward. The continuous depths make neural ODEs suitable

for modeling the dynamics of complex systems, particularly those

that cannot be described analytically. Meanwhile, it is difficult for

standard neural networks to learn symmetries and conservation

laws while neural ODEs can address this issue. For example, Hamil-

tonian Neural Networks [10] and Lagrangian Neural Networks [3]

can produce energy-conserving models for various tasks.

Augmented Neural ODEs In Neural ODEs, the hidden states

evolves continuously according to a differential equation, whose

velocity is described by a neural network. Once the dynamics are

known, the gradients of some objective with regard to the model

parameters can be computed through adjoint sensitivity method.

It is shown that the feature mapping learned by Neural ODEs is

a homeomorphism [6], which implies the existence of functions

Neural ODEs cannot represent. Augmented Neural ODEs [6] is

proposed to address these limitations via introducing additional

features. A related variant of augmented neural ODEs is the Sec-

ond Order Neural ODEs [21]. SONODE explicitly considers the

velocities as augmented dimensions, and proposes to learn the ac-

celeration. The inductive bias introduced in SONODE is beneficial

in learning many dynamical systems governed by second order

laws, such as Newton’s equations of motion and oscillators. SON-

ODE can be solved either using the adjoint state directly or using

the coupled first order ODE. Of note, augmented neural ODEs can

also learn high-order dynamics. However, the high order dynamics

learned by ANODE are characterized by abstract functions and

the augmented features typically are entangled, which leads to

difficulties in interpretability.

Graph Representation Learning: Graph representation learning

is featured by mining the topological structures of graphs and en-

coding nodes with low-dimensional embeddings. Representative

works collect local patterns and learn mappings from graphs to vec-

tors, including Word2Vec [19], DeepWalk [24], and LINE [30]. To

simultaneously exploit the structural knowledge and the enriched

side information in attribute graphs, increasing interests are paid

to GNNs. GNN [13] is based on graph convolution, an extension of

regular convolutions that can process structural data. Via designing

a more efficient aggregation mechanism, GraphSage [11, 38, 40] and

Message Passing Neural Network (MPNN) [9] broaden the applica-

tion of GNNs to the analysis for large-scale graphs. Graph Atten-

tion Network (GAN) [31] introduces an attention mechanism into

general network analysis, and self-attention is proposed for graph

pooling [14] for graph classification tasks. Based on the relationship

between GNNs and graph isomorphism problem, Graph Isomor-

phism Network (GIN) [36] and Deep Graph Convolutional Neural

Network(DGCNN) [42] are designed. On the other hand, there

is some attempt to learn interpretable graph representation [39],

particularly for some applications, e.g., brain networks [28, 29].

Continuous-depth Graph Neural Networks The idea behind
continuous-depth neural networks is also employed in graph neural

networks to handle structural data. Graph neural ordinary Differ-

ential Equations (GDEs) [25] propose a continuum of GNN layers

to characterize the input-output relationship. In detail, the static

models and Spatio-temporal models are developed to handle dif-

ferent tasks. Alternatively, Continuous Graph Neural Networks

Improving Social Network Embedding via New Second-Order Continuous Graph Neural Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

(CGNN) [35] proposes a propagation scheme inspired by diffusion-

based methods. Specifically, the representations learned by CGNN

have entangled w.r.t. the graph structure and the node features

while the terminal time goes to infinite time. The continuous-depth

formulation of GNNs also inspires some related methods. For exam-

ple, the numerical gap between the discrete and continuous graph

diffusion process can affect the model performance [32], and Simple

Graph Convolution [33] can be boosted by decoupling the termi-

nal time and the finite difference steps. Continuous Graph Flow

(CGF) [5], as a graph generative model, generalizes the messaging

passing mechanism to continuous time.

3 PROPOSED METHOD

𝒉 𝒕 + 𝒅𝒕 = 𝒉 𝒕 + ሶ𝒉 𝒕
ሶ𝒉 𝒕 + 𝒅𝒕 = ሶ𝒉 𝒕 + ሷ𝒉 𝒕

ሷ𝒉 𝒕 = 𝒇 𝒗, 𝒕 + ෍

𝒖∈𝑵𝒗

𝒘𝒗𝒖𝒈(𝒖, 𝒕)

𝒉 𝒕 , ሶ𝒉 𝒕 𝒉 𝒕 + 𝒅𝒕 , ሶ𝒉 𝒕 + 𝒅𝒕

Figure 1: Learn the second order GNN.

In this section, we first review the Messaging Passing Neural Net-

work (MPNN) and the first-order continuous GNN, then describe

our second-order continuous GNNs. Figure. 1 illustrates the second-

order dynamics of the node embeddings on a manifold, which will

be detailed in the following. Via reformulating our model as cou-

pled first-order neural ODEs, we give a simple implementation.

We propose a method to explain the GNN prediction jointly using

the first and the second order information. At last, motivated by

the connection between graph Laplacian and the Laplace-Beltrami

operator, we discuss some properties of continuous GNNs from

the view of neural partial differential equations instead of ordinary

differential equations.

3.1 Second-Order Continuous GNNs
3.1.1 Revisiting Messaging Passing Neural Networks and First-Order
Continuous GNNs. Existing continuous GNNs are based on the

continuous counterpart of residual structures in GNNs. In this part,

we first describe the Messaging Passing Neural Network (MPNN),

then recap the first-order continuous GNN under this framework.

We denote a graph G by its node setV and its edge set E. For a
single node 𝑣 ∈ V , we useN(𝑣) B {𝑢 ∈ V : (𝑣,𝑢) ∈ E ∨ (𝑢, 𝑣) ∈ E}
to denote its neighbors. A MPNN layer performs a spatial-based

convolution on 𝑣 , and the representation of 𝑣 at layer 𝑙 +1 is defined
on the representations of 𝑣 and its neighbor N(𝑣) at layer 𝑙 ,

𝒉(𝑣) (𝑙 + 1) = 𝒖

𝒉(𝑣) (𝑙),
∑︁

𝑢∈N(𝑣)
𝒎

(
𝒉(𝑣) (𝑙),𝒉(𝑢) (𝑙)

) . (1)

Specifically, we have 𝒉(𝑣) (0) = 𝒙𝑣 , which is the input to the MPNN.

𝒙𝑣 can be node features or some representations learned by an

encoder. 𝒖 and 𝒎 are functions with trainable parameters.

A general first-order continuous GNN can be defined by first

setting 𝒖 (𝒙,𝒚) B 𝒙 + 𝒈(𝒙,𝒚) [25], where 𝒈
(
𝒉(𝑣) (𝑙),𝒉(N(𝑣)) (𝑙)

)
=

𝒈
(∑

𝑢∈N(𝑣) 𝒎
(
𝒉(𝑣) (𝑙),𝒉(𝑢) (𝑙)

))
is some function, (1) can be writ-

ten as,

𝒉(𝑣) (𝑙 + 1) − 𝒉(𝑣) (𝑙) = 𝒈
(
𝒉(𝑣) (𝑙),𝒉(N(𝑣)) (𝑙)

)
. (2)

By interpreting the layer 𝑙 as a discretezation step in time 𝑡 , the

continuous-depth counterpart of MPNN is defined on the continuity

equation of the above difference equation,

¤𝒉(𝑣) (𝑡) = 𝒇 (𝑣)
𝑀𝑃𝑁𝑁

(𝑯 , 𝜽) B 𝒈
(
𝒉(𝑣) (𝑡),𝒉(N(𝑣)) (𝑡)

)
. (3)

Here 𝑯 refers to all node feartures, and 𝜽 refers to the model

parameters, which defines the differential function. Formally, given

input node features, the continuous MPNNs compute the node

representations by solving the Cauchy problem,

¤𝒉(𝑣) (𝑡) = 𝒈
(
𝒉(𝑣) (𝑡),𝒉(N(𝑣)) (𝑡)

)
, 𝒉(𝑣) (0) = 𝒙 (𝑣)

0
. (4)

Similar to neural ODEs, the forward pass is to solve the problem

numerically using ODE solvers, and the optimization of parameters

uses the adjoint sensitivity method.

3.1.2 Second-Order Continuous Graph Neural Networks. In this

paper, we consider a second-order dynamics for GCN. Specifically,

we alter the definition of 𝒖 and the second-order model is defined

as,

¥𝒉(𝑣) (𝑡) = 𝒇 (𝑣)
𝑀𝑃𝑁𝑁

(𝑯 , 𝜽) B 𝒈
(
𝒉(𝑣) (𝑡),𝒉(N(𝑣)) (𝑡)

)
. (5)

𝒈(·) considers the interaction the neighbors have on the center node
𝑣 . More generally, we consider two additional terms for (5), a term

for the velocity decay and a term only related to the center node.

Finally, our second-order continuous GNNs solves the following

Cauchy problem,

¥𝒉(𝑣) (𝑡) + 𝛼 ¤𝒉(𝑣) (𝑡) = 𝒇 (𝒉(𝑣) (𝑡)) + 𝒈
(
𝒉(𝑣) (𝑡),𝒉(N(𝑣)) (𝑡)

)
, (6)

𝒉(𝑣) (0) = 𝒙 (𝑣)
0
, ¤𝒉(𝑣) (0) = 0. (7)

Here 𝛼 > 0 is a small positive number, 𝒇 (𝒉(𝑣) (𝑡)) is the force

term. The initial state for
¤𝒉(𝑣) (0) is set to 0 for simplicity. The

differential and the node representations at time 𝑡 is then given by

¤𝒉(𝑣) (𝑡) =
∫ 𝑡
0

¥𝒉(𝑣) (𝑡)𝑑𝑡 and 𝒉(𝑣) (𝑡) = 𝒙 (𝑣)
0
+
∫ 𝑡
0

¤𝒉(𝑣) (𝑡)𝑑𝑡 . 𝛼 ¤𝒉(𝑣) (𝑡)
is usually called a damping term.

Our model has a straightforward physical explanation. Let every

node in a graph represent a ball. The features describe the spatial po-

sition of the balls. The edges denote the existence of the interaction

between balls, for example, we can think that two linked nodes are

two balls connected by a spring. The damping term can be viewed

as friction. The force term is associate with the medium a ball lies

in, which is not dependent on the other balls. For example, the balls

are placed on a curved surface and are under the influence of a

component of weight. An one-dimensional example is illustrated

in Fig. 2.

KDD ’22, August 14–18, 2022, Washington, DC, USA Yanfu Zhang et al.

1

2 3

1
2

3

t=0

t → +∞

Figure 2: A ball-spring system under the second order dy-
namics (elastic force, gravity, and friction).

3.2 Implementation of Second-Order
Continuous GNN

The forward pass of our model can be accomplished via off-the-shelf

ODE solvers. Similar to the first-order scenario, the backpropaga-

tion can be performed via the adjoint sensitivity method [26], which

treats ODE solvers as black-boxes and has a low memory cost. The

adjoint state of (8) can be computed using Lagrangian methods.

Proposition 1. The adjoint state of (8) follows the second order
ODE ¥𝑟 = 𝑟⊺ 𝜕 ¥𝒉

𝜕𝒉(𝒗) − 𝛼 ¤𝑟
⊺. The update of the model parameters is the

integral 𝑑𝐿
𝑑𝜽 = −

∫
0

𝑡
𝑟⊺ 𝜕𝑥

𝜕𝜽 𝑑𝑠 .

Our model is a special case of Proposition 3.1 in Norcliffe et al.

[21], and the above result is obtained by substituting the damping
¥𝒉.

The second-order differential equations in our approach can also be

viewed as first-order coupled differential equations [21]. This rela-

tion gives an alternative model of our second-order CGNN as first-

order augmented Neural ODEs. More specifically, we augment the

node features to include their differentials 𝒛 (𝑣) =
[
𝒉(𝑣) (𝑡), ¤𝒉(𝑣) (𝑡)

]
,

then our second-order continuous GNN can then be represented as

a first-order Cauchy problem,

𝒛 (𝑣) =
[
𝒉(𝑣) (𝑡), ¤𝒉(𝑣) (𝑡)

]
, ¤𝒛 (𝑣) =

[
¤𝒉(𝑣) (𝑡), ¥𝒉(𝑣) (𝑡)

]
, 𝒛 (𝑣)

0
=

[
𝒙 (𝑣)
0
, 0

]
.

(8)

As pointed out in Norcliffe et al. [21], the adjoint state of the second-

order model is equivalent to the adjoint state of the coupled first-

order model. The disentangled representation in second-order mod-

els may involve more computation than the entangled augmented

NODE. Due to this reason, we use the first-order optimization for

simplicity in our implementation. In detail, we maintain 𝒛 (𝑣) in
our continuous GNNs, and in the forward pass ¤𝒛 (𝑣) is obtained by

concatenating
¤𝒉(𝑣) from the stale 𝒛 and the newly computed

¥𝒉(𝑣) .
No modification is required for the backward propagation.

3.3 Enhanced Explanation for Graph Neural
Networks Using Second-Order Information

In the representation learning for graph data, the high-order part

of 𝒛 is discarded. However, it can provide some information in

explaining the prediction of GNNs, which indicates that our second-

order continuous GNN enjoys better interpretability compared to

first-order methods. More specifically, in this section we propose

a new method for example-level explanations via employing the

first-order and the second-order information jointly.

3.3.1 Problem Formulation. We employ the definition of example-

level explanation from [39]. Assume we have a trained GNN 𝑦 =

𝑓 (G𝑐 , 𝑥𝑐). Here G𝑐 (𝑣) is a computation graph spanned from 𝑣 ∈ G,
which is the induced subgraph on the full G involved in computing

the prediction for 𝑣 . The associated adjacency matrix is𝐴𝑐 (𝑣). 𝑥𝑐 (𝑣)
is the associated feature set {𝑥 𝑗 |𝑣 𝑗 ∈ G𝑐 (𝑣)}. Using the computation

graph instead of the full graph can greatly reduce the computational

burden. Given a node 𝑣 , its explanation is (G𝑠 , 𝑥𝑠 (𝑣)). Here G𝑠 is a
small subgraph on the computation graphG𝑐 (𝑣) and 𝑥𝑠 (𝑣) is a small

subset of node features, masked out by {𝑥 𝑗 |𝑣 𝑗 ∈ G𝑠 (𝑣)}. (G𝑠 , 𝑥𝑠 (𝑣))
are important the prediction 𝑦𝑣 . The importance is evaluated using

mutual information 𝐼 ,

max

G𝑠
𝐼 (𝑦, (G𝑠 , 𝑥𝑠)) = 𝐻 (𝑌) − 𝐻 (𝑌 |G = G𝑠 , 𝑥 = 𝑥𝑆), (9)

here 𝐻 is the entropy. Typical explanation-generation methods

are model-agnostic by fixing the GNN 𝑓 (G𝑐 , 𝑥𝑐), therefore, 𝐻 (𝑌)
is constant. The second term can be bounded,

𝐻 (𝑌 |G = G𝑠 , 𝑥 = 𝑥𝑆) = −E𝑌 |G𝑆 ,𝑥𝑆 [log 𝑃𝑓 (𝑌 |G = G𝑆 , 𝑋 = 𝑋𝑆)],
(10)

We use 𝐴𝑠 (𝑣) to represent the adjacency matrix of G𝑆 . Of note,
model-agnostic methods fail to make use the second-order infor-

mation in our model. To address this problem, we provide a semi-

model-aware explanation-generation method in the following.

3.3.2 Semi-model-aware GNN Explainer. The explanation adja-

cency matrix can be expressed by 𝐴𝑠 (𝑣) = 𝐴𝑐 (𝑣) ⊙ 𝑀 , where 𝑀

is a mask matrix, and its entries are binary. Using this expression,

directly optimizing (10) boils down to an integer problem with re-

spect to𝑀 , and the size of feasible set is 2
|E |

. To make the problem

tractable, we resort to a relaxation of 𝑀 using mean-field varia-

tional approximation, and using Monte Carlo method to compute

the explanation. As illustrated in Fig. 3, our method sample sub-

graphs by two steps. First, we decompose the distribution of G
into a multivariate Bernoulli distribution as 𝑃 (G) = Π (𝑖, 𝑗) ∈E𝑃 (𝑒𝑖 𝑗),
here 𝑒𝑖 𝑗 ∈ [0, 1] is the relaxed entry of𝑀 , denoting the probability

that edge (𝑣𝑖 , 𝑣 𝑗) is selected. We compute 𝑒𝑖 𝑗 using an edge embed-

ding network based on the node embeddings. Second, the subgraph

is sampled from 𝑃 (G) using a reparameterization trick. Since the

sampling is not differentiable, we use straight through estimator

(STE) to enable the back-propagation. We feed the sampled sub-

graphs into the GNN with weights frozen, and update the edge

embedding network with respect to (10).

In detail, we compute the embedding for edge (𝑣𝑖 , 𝑣 𝑗) by a deep

neural network. Since our GNN works on undirected graphs, we

anonymize the edge direction by defining,

𝝁𝑖 𝑗 , 𝚺𝑖 𝑗 =
1

2

(
𝜙 (𝒛𝑣𝑖 , 𝒛𝑣𝑗) + 𝜙 (𝒛𝑣𝑗 , 𝒛𝑣𝑖)

)
. (11)

Similar to variaitional autoencoder, we learn a mean and a vari-

ance for the edge embeddings. In the sampling step, we use the

reparameterization trick from the invertible Gaussian family [27],

𝑒𝑖 𝑗 = 𝑔(𝝁𝑖 𝑗 + 𝜖 ∗ 𝚺𝑖 𝑗 , 𝜏), (12)

Improving Social Network Embedding via New Second-Order Continuous Graph Neural Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

… …

round

reparameterize
0.4

0.6

0.9

0.4

0.5

0.2

0.7

0.6

embed

(a) (b) (c) (d)

Figure 3: The pipeline for subgraph sampling. We compute the edge embeddings using a deep neural network. We use the
invertible Gaussian reparameterization trick to sample the subgraph, which allows the straight-through gradients estimation
for the back-propagation. We update the embedding network using Monte Carlo method to optimize the mutual information
between the explanation and the computation graph.

here 𝜖 ∼ N(0, 1) is a Gaussian noise of the same size |E𝑐 |, 𝜏 is

a temperature parameter, 𝑔(·, 𝜏) is an invertible smooth function.

Specifically, we let,

𝑔(𝑦, 𝜏) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥++ (𝑤, 𝜏) =
exp(𝑦𝑘/𝜏)∑𝐾−1
exp(𝑦𝑘/𝜏) + 𝛿

, (13)

here 𝛿 > 0 ensures the invertibility. lim𝜏←0 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥++ (𝑦, 𝜏) is one-
hot [27], which allows the straight through gradient estimation.

Compared to Gumbel-Softmax, the invertible Gaussian reparame-

terization is more flexible.

To pursue a compact explanation, we also consider a regulariza-

tion with respect to the size of the sampled subgraphs. To sum up,

we update 𝜙 (·) with respect to the sampled subgraphs using the

following objectives,

min

𝜙
T = − E𝑌 |G𝑆 ,𝑥𝑆

[
log 𝑃𝑓 (𝑌 |G = G𝑆 , 𝑋 = 𝑋𝑆)

]
+ (14)

𝜆

(
𝑅𝑒𝐿𝑈

(∑︁
𝑒𝑖 𝑗 − 𝐾𝑚

))
2

.

here 𝐾𝑚 is a predetermined positive integer limiting the node num-

bers in subgraphs.

3.4 First-Order v.s. Second-Order
Existing works usually let

𝒈
©­«

∑︁
𝑢∈N(𝑣)

𝒎
(
𝒉(𝑣) (𝑡),𝒉(𝑢) (𝑡)

)ª®¬ = 𝜎 (
∑︁

𝑢∈N(𝑣)
𝒘𝑢 (𝒉(𝑣) (𝑡) − 𝒉(𝑢) (𝑡))),

(15)

which can be viewed as applying some generalized graph Laplacian

to the features. Graph Laplacian matrix associated to a point cloud

converges to the Laplace-Beltrami operator on the underlying data

manifold [1]. As such, to better capture the data distribution, we

should consider both temporal and spatial continuity in GNNs,

which corresponds to the depth and the data distributions respec-

tively. We insert the continuous Laplacian operator to (3) and abuse

𝑣 to represent the hidden state, the first order continuous GNNs

can be written as a standard heat equation,

¤𝒉(𝑣, 𝑡) = Δ𝒉(𝑣, 𝑡), 𝒉(𝑣, 0) = 𝒉0 . (16)

Similarly, the second-order continuous GNNs can be written as an

inhomogeneous wave equations,

¥𝒉(𝑣, 𝑡) + 𝛼 ¤𝒉(𝑣, 𝑡) = Δ𝒉(𝑣, 𝑡) + 𝒇 (𝑣, 𝑡), (17)

𝒉(𝑣, 0) = 𝒉0,
𝜕

𝜕𝑡
𝒉(𝑣, 0) = 0. (18)

Compared to standard Neural ODEs, the properties of continuous

GNNs can be better characterized by the associated partial differ-

ential equations. For simplicity, we omnit the weights in GNNS.

In the rest of the section, we will use these simplified models to

tentatively show that the over-smoothing effect is intrinsic in first-

order continuous GNNs, and discuss some pros and cons to use the

second-order methods instead of the first-order method.

Over-Smoothing Effect as Intrinsic Property of First-Order
Continuous Graph Neural Networks: First-order continuous
graph neural networks are intimately related to the heat equa-

tion, which characterizes the diffusion of heat on a manifold. More

specifically, existing works define a Cauchy problem for the ho-

mogeneous heat equation. However, the steady-state solution of

the heat equation implies that the over-smoothing is intrinsic for

first-order continuous graph neural networks. To see this, we have

the following proposition:

Proposition 2. Let 𝒉0 ∈ 𝐿1 (R𝑛), namely
∫
R𝑛
|𝒉0 |𝑑𝑥 < ∞. For

any 𝑥 ∈ R𝑘 , we have lim𝑡→+∞ |𝒉(𝑥, 𝑡) | = 0.

Proof. This is a direct result by applying the fundamental solu-

tion of heat equation [8]. The fundamental solution is,

𝒉(𝑥, 𝑡) =
∫
R𝑛

Φ(𝑥 − 𝑦, 𝑡)𝒉0 (𝑦)𝑑𝑦, (19)

Φ(𝑥, 𝑡) B 1

(4𝜋𝑡)𝑛/2
exp(− |𝑥 |

2

4𝑡
), (20)

The heat kernel Φ(𝑥, 𝑡) is a Gaussian, and we have

|𝒉(𝑥, 𝑡) | ≤ 1

(4𝜋𝑡)𝑛/2

∫
R𝑛

exp(− |𝑥 − 𝑦 |
2

4𝑡
)𝒉0 (𝑦)𝑑𝑦 (21)

≤ 1

(4𝜋𝑡)𝑛/2

∫
R𝑛
|𝒉0 (𝑦) |𝑑𝑦.

Thenwe have lim𝑡→+∞ |𝒉(𝑥, 𝑡) | = lim𝑡→+∞ 1

(4𝜋𝑡)𝑛/2
∫
R𝑛
|𝒉0 (𝑦) |𝑑𝑦 =

0. □

KDD ’22, August 14–18, 2022, Washington, DC, USA Yanfu Zhang et al.

Using the above result we immediate have lim𝑡→+∞ |𝒉(𝑣1, 𝑡) −
𝒉(𝑣2, 𝑡) | = 0 for any two nodes 𝑣1 and 𝑣2. In the context of con-

tinuous graph neural networks, it means that node features are

eventually blurred when the terminal time goes to infinity. More

specifically, the steady-state solution have exponential decay rate

which is not related to the specific form of the original feature

distribution 𝒉0. This result also implies that the learned data repre-

sentations are more dispersed to compensate for the exponential

decay w.r.t. the terminal time if the model is trained using a longer

integral time.

The solution of the second-order CGNN: The solution of

the second-order CGNN is dependent on the initial values. For

simplicity, we consider a forced wave equation via setting 𝛼 = 0

in (17) and assume the feature dimension 𝑛 is even. First we obtain

a homogeneous problem by letting 𝒇 (𝑣, 𝑡) = 0. Using the spherical

means Evans [8], the solution is,

𝒉(𝑥, 𝑡) = 1

𝑛!!

[(
𝜕

𝜕𝑡

) (
1

𝑡

𝜕

𝜕𝑡

) 𝑛−2
2

(
1

(𝑛 + 1)𝛼 (𝑛 + 1) · (22)∫
𝐵 (𝑥,𝑡)

𝒉0 (𝑦)
(𝑡2 − |𝑦 − 𝑥 |2)1/2

𝑑𝑦

)]
,

Here 𝐵(𝑥, 𝑡) is a ball, 𝛼 (𝑛 + 1) is the volume of n-dimension unit

ball. Next we insert 𝒇 (𝑣, 𝑡) and let 𝒉0 (𝑣) = 0. We have the following

nonhomogeneous problem,

𝜕2

𝜕𝑡2
𝒉(𝑣, 𝑡) = Δ𝒉(𝑣, 𝑡) + 𝒇 (𝑣, 𝑡),𝒉(𝑣, 0) = 0,

𝜕

𝜕𝑡
𝒉(𝑣, 0) = 0. (23)

Define 𝒉(𝑣, 𝑡 ; 𝑠) to be the solution of a homogeneous problem with

starting time 𝑠 and initial value 𝒉(𝑣, 𝑠) = 𝒇 (𝑣, 𝑡). Duhamel’s princi-

ple asserts that 𝒉𝑛 (𝑣, 𝑡) B
∫ 𝑡
0
𝒉(𝑣, 𝑡 ; 𝑠)𝑑𝑠 is the solution to (22). The

full solution to the forced wave equation is then the sum of (23) and

𝒉(𝑣, 𝑠). The outputs of the second-order model are always related

to the initial values since 𝒉0 (𝑦) is contained in the formulae, which

avoids the zero value problem in the first-order case. The solution

takes a different form when the feature dimension is odd, but the

dependency on initial states are still valid.

More Discussions: In this part, we discuss the pros and cons

of using second-order continuous GNN instead of the first-order

continuous GNN.

Second-order continuous GNN usually learn a smoother trans-

formation than the first-order, which may alleviate over-fitting.

The first-order and the second-order continuous GNN both attempt

to compute a depth-varying vector field via solving Cauchy prob-

lems. However, a severe issue with the first-order Cauchy problem

is the stiffness of the learned vector fields. More specifically, the

feature mapping 𝑔 is a homeomorphism, so the features of Neu-

ral ODEs preserve the topology of the input space [6]. Instead,

the second-order neural ODEs are not limited to homeomorphic

transformations [21].

The first-order augmented ODE implementation of our approach

avoids the ad-hoc feature-augmentation in existing first-order graph

ODEs and allows better interpretability. To address this stiffness

of learned representations, Augmented Neural ODEs (ANODE) [6]

proposes mapping the node features to higher dimensions, which

is a widely used trick in Graph-based Neural ODEs. Although

augmented neural ODEs can learn high-order dynamics [21], the

learned augmented features are difficult to be interpreted, because

the high-order behavior is entangled in these features. Our model

explicitly defines the augmented features as the gradients of the

node features, which have fixed size and clear interpretability.

Sometimes, the second-order models may not be advantageous

compared to the augmented first-order models. For example, our

definition of the second-order model may not be the minimal aug-

mentation [21]. On the other hand, sometimes, there exist eminent

higher-order dynamics behind the data transformation, which can

be learned by augmented first-order models. In this case, the second-

order models may lose their interpretability and performance supe-

riority.

In general, although it is difficult to claim there exists a per-

formance gap between the optimal potential first-order and the

second-order continuous GNN, second-order model has better in-

terpretability, has a simpler form, and usually learns a less stiff data

distribution. As such, second-order continuous GNN is more likely

to give better performance in practice.

4 EXPERIMENTAL RESULTS
This section evaluates the performance of our approach on the

semi-supervised node and graph classification tasks.

4.1 Datasets and Experiment Settings
Semi-supervised Node Classification For this task, three bench-

mark datasets are used, including Cora, Citeseer, and Pubmed. We

use the standard data splits for the benchmark datasets, where 20

nodes of each class are used for training and another 500 labeled

nodes are used for validation. We also include the experiments with

random splits. The statistics of datasets are described in Table 1.

Table 1: Statistics of datasets for node classification.

Dataset # Nodes # Edges # Features # Classes # Label Rate

Cora 2708 5429 1433 7 0.036

Citeseer 3327 4732 3703 6 0.052

Pubmed 19,717 44,338 500 3 0.003

GraphClassification For this task, we predict the labels for graphs.

We consider five datasets [37], including IMDB-Binary (IMDB-

B), IMDB-Multi (IMDB-M), COLLAB, Reddit Binary (RDT-B), and

Reddit-Multi5k (RDT-M). The statistics of datasets are described in

Table 2.

Table 2: Statistics of datasets for graph classification.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M

graphs 1000 1500 5000 2000 5000

classes 2 3 3 2 5

avg.# nodes 19.8 13.0 74.5 429.6 508.5

Explanation for Graph Neural Network In this task, we fol-

low the setting in GNNExplainer [39] and PGExplainer [17] and

construct four kinds of node classification datasets. (1) BA-Shapes
is a single graph without node features. We first generate a base

Improving Social Network Embedding via New Second-Order Continuous Graph Neural Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

Barabasi-Albert (BA) graph with 300 nodes. Then we attach 80

“house”-structured graph motifs to the nodes in the base graph

randomly. We add 0.1 random edges to perturb the graph. Nodes in

the base BA graph is labelled with 0. The top, middle, and bottom

nodes of the houses are labelled with 1, 2 and 3 respectively. (2) BA-
Community is a union of two BA-Shapes graphs with node features.

We assign eight classes to the nodes based on the BA-Shapes graph

community and the structural roles. We generate node features us-

ing two Gaussian distributions for the two BA-Shapes respectively.

(3) Tree-Cycles is also a base-motif graph. We use an 8-level balance

binary tree as the base graph, and attach 80 six-node circle graph

motifs to the base graph. (4) Tree-Grids uses the same base graph

as Tree-Cycles but 3-by-3 grid graph motifs. Table 2 illustrates the

synthesized datasets.

Experimental Settings: For the classification tasks, we consider

three variants of our second-order continuous GNNs: proposed,
where neither the damping nor the force term is used; proposed∗,
which uses the force term; proposed∗∗, in which both the damping

and the force term are used. In all models we use one linear layer,

one continuous GNN layer, and one linear prediction layer. For

proposed, we use a standard graph convolution layer to approximate

the dynamics. For proposed∗, the force term is approximated by one

linear linear with sigmoid function. For proposed∗∗, the damping

term 𝛼 is set to 0.95. The terminal time for the continuous layer

is set to 15. The hidden dimension is 16. For the prediction layer,

we use a dropout rate of 0.2. Cora and Citeseer are trained for

100 epochs using rmsprop optimizer with learning rate 0.005. The

rest of the involved datasets are train for 200 epochs using Adam

optimizer with learning rate 0.005. All results were collected using

single NVIDIA P40 with 24GB GPU memory.

For the explanation task, we follow the quantitative evaluation

settings in GNNExplainer [39] and PGExplainer [17]. The expla-

nation is assessed as a binary classification of edges. Specifically,

the edges inside motifs are regarded as positive, and negative oth-

erwise. 𝑒𝑖 𝑗 is viewed the prediction score. We report the average

AUC scores and the standard deviations based on ten repeats of the

experiments.

4.2 Baseline Methods
We include representative discrete GNN and continuous GNNmeth-

ods as the baselines. Given the relation between our second-order

method and augmented neural ODEs, we also include related meth-

ods. The following results are obtained by run the official imple-

mentation of the baselines. When the codes are not available, we

cite the values from the original papers.

Discrete GNNs: For standard discrete GNNswe consider the Graph
Convolutional Network (GCN) [13] and the Graph Attention Net-

work (GAT) [31]. Both are the most representative GNN methods,

and are conidered as widely used baselines for related continuous

GNNs methods [25, 35].

Continuous GNNs: We include three state-of-the-art continuous

GNN models as the related baselines, Graph Neural Ordinary Dif-

ferential Equations (GDE) [25], Ordinary differential equations on

graph networks (GODE) [47], and continuous GNN (CGNN) [35].

We include three variants for GDE with different ODE solvers. For

CGNN,we also include two variants, CGNNwithweights (WCGNN)

and diffusion CGNN.

Augmented Neural ODEs: We include Augmented Neural ODEs

(ANODE) and Second Order Neural ODEs (SONODE) as baselines.

Both ANODE [6] and SONODE [21] are designed for non-structural

data, so we only use the node features and drops the graph for these

two methods.

4.3 Comparison Results
4.3.1 Semi-Supervised Node Classification. : The results for semi-

supervised node classification on standard test-train splits are sum-

marized in Table 3 . In most cases, continuous methods outperforms

discrete GNNs. For non-graph methods ANODE and SONODE, the

performance is significantly lower than GNNs. The results demon-

strates that our approach has superior performance compared to

the first-order continuous GNNs in most cases. Particularly, damp-

ing term can help improve the performance. Meanwhile, the huge

gap between non-graph ANODEs and our approach show that the

structural information is critical in node classification, and par-

tial differential equations are of potential. Table 3 summarizes the

results for both the predefined and the random test-train splits. Sim-

ilar observations can be confirmed. It is also observed that GAT is

less stable considering the data splits, compared to the continuous

methods.

4.3.2 Graph Classification. : The results for graph classification

are summarized in Table 4. Compare to the standard baselines,

continuous GNNs are generally superior in peformance. Among all

continuous methods, our approach with a damping term performs

the best. We also notice that the average size of graphs has a large

influence on the performance of continuous GNNs. For example,

the improvement of continuous methods are much more prominent

for RDT-B and RDT-M than for IMDB-B and IMDB-M.

Figure 4: Training loss (left) and validation accuracy (right)
under different integration time.

4.3.3 Prediction Explanation. : The results for prediction expla-

nation are summarized in Table 5. The explanation accuracy is

computed based on the ground truth node labels for the synthetic

datasets. A better explainability method has higher prediction

scores for edges that are in the ground-truth explanation. We com-

pare the explainability of our method to two first-order continu-

ous GNNs. Proposed First-order omit the high order information,

which serves as an ablation study. Proposed Second-order is our

full method. The quantitative results show that different first order

models show similar explainability in most cases. Our second-order

method shows some improvement compared to the first order meth-

ods.

KDD ’22, August 14–18, 2022, Washington, DC, USA Yanfu Zhang et al.

Table 3: Node classification results on citation networks. The Cora, Citeseer, and Pubmed columns summarize the results
using standard test-training split. The corresponding columns with superscript ∗ summarize the results over 10 random splits
test-training split. The values for GCN-GODE and GAT-GODE are taken from the original paper. Best-performing methods
are bold faced, and the runner-ups are underlined. For the random split, The results of GCN-GODE and GAT-GODE are not
available and are denoted by −.

Dataset Cora Citeseer Pubmed Cora
∗

Citeseer
∗

Pubmed
∗

GCN [13] 81.8 ± 0.8 70.8 ± 0.8 80.0 ± 0.5 80.5 ± 1.1 72.3 ± 0.9 79.4 ± 1.5
GAT [31] 82.6 ± 0.7 71.5 ± 0.8 79.7 ± 0.4 80.1 ± 1.5 72.4 ± 1.2 78.4 ± 1.6

GDE-rk2 [25] 82.9 ± 0.5 72.4 ± 0.5 79.8 ± 0.4 81.4 ± 0.5 72.1 ± 0.6 78.9 ± 0.7
GDE-rk4 [25] 83.8 ± 0.5 72.4 ± 0.5 79.7 ± 0.4 81.6 ± 0.4 71.8 ± 0.5 79.5 ± 0.6
GDE-dpr5 [25] 81.9 ± 1.1 69.0 ± 1.1 78.3 ± 0.7 79.3 ± 1.3 68.1 ± 0.9 75.1 ± 0.9
GCN-GODE [47] 81.8 ± 0.3 72.4 ± 0.8 80.1 ± 0.3 − − −
GAT-GODE [47] 83.3 ± 0.3 72.1 ± 0.6 79.1 ± 0.5 − − −

CGNN [35] 83.8 ± 1.1 72.7 ± 0.6 82.2 ± 0.5 82.5 ± 1.0 72.2 ± 1.0 80.4 ± 1.3
WCGNN [35] 83.6 ± 0.7 72.8 ± 0.7 82.1 ± 0.5 82.0 ± 1.0 72.2 ± 0.9 79.8 ± 0.9
ANODE [6] 58.4 ± 1.5 61.6 ± 0.8 69.8 ± 0.5 59.6 ± 1.3 59.9 ± 1.1 70.7 ± 0.5
SONODE [21] 59.9 ± 1.3 61.5 ± 0.9 70.1 ± 0.4 60.1 ± 1.4 60.3 ± 0.9 71.0 ± 0.6
Proposed 83.3 ± 0.9 72.9 ± 0.8 82.0 ± 0.7 82.5 ± 0.8 72.7 ± 0.6 79.4 ± 1.0
Proposed

∗
83.5 ± 0.6 72.5 ± 1.0 81.5 ± 0.5 82.6 ± 0.6 71.6 ± 0.8 79.9 ± 0.8

Proposed
∗∗ 84.3 ± 0.8 73.2 ± 0.9 82.1 ± 0.5 83.5 ± 1.0 72.1 ± 0.8 80.9 ± 0.9

Table 4: Graph Classification results.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M

GCN [13] 70.9 ± 4.6 49.4 ± 3.2 73.3 ± 3.1 82.9 ± 2.8 52.4 ± 2.1
GDE-rk2 [25] 70.4 ± 3.5 48.5 ± 3.6 75.6 ± 1.6 87.9 ± 1.7 54.1 ± 1.6
GDE-rk4 [25] 71.5 ± 3.8 48.1 ± 2.9 74.9 ± 1.3 86.4 ± 1.5 54.3 ± 1.4
GDE-dpr5 [25] 69.1 ± 4.1 48.2 ± 3.0 71.0 ± 2.5 83.1 ± 3.4 52.0 ± 2.2
CGNN [35] 71.4 ± 3.3 47.4 ± 3.6 75.4 ± 1.9 87.7 ± 2.2 55.3 ± 1.5
WCGNN [35] 71.8 ± 2.9 48.9 ± 2.3 75.7 ± 2.1 88.2 ± 2.3 54.9 ± 1.2
Proposed 71.6 ± 3.1 49.4 ± 3.0 75.2 ± 2.2 88.0 ± 2.0 53.7 ± 1.5
Proposed

∗
71.9 ± 3.8 48.5 ± 3.4 76.0 ± 1.7 87.5 ± 2.1 53.2 ± 1.4

Proposed
∗∗ 72.5 ± 3.6 48.8 ± 2.9 76.3 ± 2.5 89.6 ± 1.8 56.0 ± 1.7

Table 5: Explanation AUC results.

BA-Shapes BA-Community Tree-Cycles Tree-Grid

Base
Community 0

Community 1

Motifs

GDE-rk2 [25] 0.934 ± 0.013 0.877 ± 0.022 0.914 ± 0.010 0.873 ± 0.016
CGNN [35] 0.926 ± 0.017 0.849 ± 0.016 0.955 ± 0.015 0.881 ± 0.007

Proposed First-order 0.930 ± 0.015 0.911 ± 0.024 0.949 ± 0.008 0.887 ± 0.015
Proposed Second-order 0.954 ± 0.011 0.955 ± 0.021 0.975 ± 0.011 0.912 ± 0.013

4.4 Analysis of Model Parameters
4.4.1 The model performance v.s. Integration Time. : Figure 4 de-
scribes the semi-supervised node classification performance of our

method when the model is trained using different integration time.

It can be observed that the predicting power is robust to the different

integration time. For the first order method, heuristic augmented

features are used to achieve a similar phenomenon. Our method

suggest a more explicit explanation by defining the high-order

behaviors.

4.4.2 The Effect of Damping Term. : We notice that the damped

version of our approach usually yield the best performance, in

Improving Social Network Embedding via New Second-Order Continuous Graph Neural Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 5: Training loss (left) and validation accuracy (right)
with different damping terms.

which 𝛼 is a tunable hyperparamater. Figure. 5 describes the semi-

supervised node classification performance of our method when

the model is trained using different 𝛼 . It can be observed that our

approach is insensitive to 𝛼 for a wide range of [0.01, 0.10]. When

𝛼 is larger (for example, 0.2), the gradients vanishes quickly and

the model performance is witnessed to decrease slightly.

5 CONCLUSION
In this paper we propose a second order Continuous GNN. Com-

pared to existing methods, our approach employs a second order

dynamics, which avoids the over-smoothing and provide additional

information to understand the prediction. Our method also can be

viewed as a continuous GNN model with interpretable augmented

features. Extensive experiments demonstrate that our approach

outperforms related baselines for social network applications and

has better interpretability.

REFERENCES
[1] Mikhail Belkin et al. 2008. Towards a theoretical foundation for Laplacian-based

manifold methods. J. Comput. System Sci. 74, 8 (2008), 1289–1308.
[2] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018.

Neural ordinary differential equations. arXiv preprint arXiv:1806.07366 (2018).
[3] Miles Cranmer, Sam Greydanus, et al. 2020. Lagrangian neural networks. arXiv

preprint arXiv:2003.04630 (2020).
[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. InAdvances
in Neural Information Processing Systems. 3844–3852.

[5] Zhiwei Deng, Megha Nawhal, Lili Meng, and Greg Mori. 2019. Continuous graph

flow. arXiv preprint arXiv:1908.02436 (2019).
[6] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. 2019. Augmented neural

odes. arXiv preprint arXiv:1904.01681 (2019).
[7] David K Duvenaud, Dougal Maclaurin, et al. 2015. Convolutional Networks on

Graphs for Learning Molecular Fingerprints. In Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett

(Eds.), Vol. 28. Curran Associates, Inc., 2224–2232.

[8] Lawrence C Evans. 1998. Partial differential equations. Graduate studies in
mathematics 19, 2 (1998).

[9] Justin Gilmer, Samuel S Schoenholz, et al. 2017. Neural message passing for

quantum chemistry. In International Conference on Machine Learning. PMLR,

1263–1272.

[10] Sam Greydanus, Misko Dzamba, and Jason Yosinski. 2019. Hamiltonian neural

networks. arXiv preprint arXiv:1906.01563 (2019).
[11] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. arXiv preprint arXiv:1706.02216 (2017).
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.

In International conference on machine learning. PMLR, 3734–3743.

[15] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deep-

gcns: Can gcns go as deep as cnns?. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 9267–9276.

[16] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-task

identification of entities, relations, and coreference for scientific knowledge graph

construction. arXiv preprint arXiv:1808.09602 (2018).
[17] Dongsheng Luo, Wei Cheng, et al. 2020. Parameterized explainer for graph neural

network. arXiv preprint arXiv:2011.04573 (2020).
[18] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[19] Tomas Mikolov et al. 2013. Efficient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781 (2013).
[20] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 2014. Informa-

tion network or social network? The structure of the Twitter follow graph. In

Proceedings of the 23rd International Conference on World Wide Web. 493–498.
[21] Alexander Norcliffe, Cristian Bodnar, et al. 2020. On second order behaviour in

augmented neural odes. arXiv preprint arXiv:2006.07220 (2020).
[22] Kenta Oono and Taiji Suzuki. 2019. Graph neural networks exponentially lose

expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019).

[23] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.

2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[25] Michael Poli, Stefano Massaroli, et al. 2019. Graph neural ordinary differential

equations. arXiv preprint arXiv:1911.07532 (2019).
[26] Lev Semenovich Pontryagin. 2018. Mathematical theory of optimal processes.

Routledge.

[27] Andres Potapczynski, Gabriel Loaiza-Ganem, and John P Cunningham. 2019.

Invertible gaussian reparameterization: Revisiting the gumbel-softmax. arXiv
preprint arXiv:1912.09588 (2019).

[28] Haoteng Tang, Lei Guo, et al. 2022. Hierarchical Brain Embedding Using Explain-

able Graph Learning. In 2022 IEEE 19th International Symposium on Biomedical
Imaging (ISBI). IEEE, 1–5.

[29] Haoteng Tang, Guixiang Ma, et al. 2021. CommPOOL: An interpretable graph

pooling framework for hierarchical graph representation learning. Neural Net-
works 143 (2021), 669–677.

[30] Jian Tang,MengQu, et al. 2015. Line: Large-scale information network embedding.

In Proceedings of the 24th international conference on world wide web. 1067–1077.
[31] Petar Veličković, Guillem Cucurull, et al. 2017. Graph attention networks. arXiv

preprint arXiv:1710.10903 (2017).
[32] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting

the Diffusion Process in Linear Graph Convolutional Networks. arXiv preprint
arXiv:2102.10739 (2021).

[33] Felix Wu, Amauri Souza, et al. 2019. Simplifying graph convolutional networks.

In International conference on machine learning. PMLR, 6861–6871.

[34] Shu Wu, Yuyuan Tang, et al. 2019. Session-based recommendation with graph

neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 346–353.

[35] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. 2020. Continuous graph neural

networks. In International Conference on Machine Learning. PMLR, 10432–10441.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[37] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings

of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining. 1365–1374.

[38] Rex Ying et al. 2018. Graph convolutional neural networks for web-scale recom-

mender systems. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 974–983.

[39] Rex Ying, Dylan Bourgeois, et al. 2019. Gnnexplainer: Generating explanations

for graph neural networks. Advances in neural information processing systems 32
(2019), 9240.

[40] Zhitao Ying et al. 2018. Hierarchical graph representation learning with differen-

tiable pooling. In Advances in Neural Information Processing Systems. 4805–4815.
[41] Hao Yuan, Jiliang Tang, et al. 2020. Xgnn: Towards model-level explanations of

graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 430–438.

[42] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-

to-end deep learning architecture for graph classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 32.

[43] Yanfu Zhang, Hongchang Gao, et al. 2022. Robust Self-Supervised Structural

Graph Neural Network for Social Network Prediction. In Proceedings of the ACM
Web Conference 2022. 1352–1361.

[44] Yanfu Zhang and Heng Huang. 2019. New graph-blind convolutional network

for brain connectome data analysis. In International Conference on Information
Processing in Medical Imaging. Springer, 669–681.

[45] Da Zheng, Minjie Wang, et al. 2020. Learning graph neural networks with deep

graph library. In Companion Proceedings of the Web Conference 2020. 305–306.
[46] Jiong Zhu, Yujun Yan, et al. 2020. Generalizing graph neural networks beyond

homophily. arXiv preprint arXiv:2006.11468 (2020).
[47] Juntang Zhuang, Nicha Dvornek, et al. 2019. Ordinary differential equations on

graph networks. (2019).

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Second-Order Continuous GNNs
	3.2 Implementation of Second-Order Continuous GNN
	3.3 Enhanced Explanation for Graph Neural Networks Using Second-Order Information
	3.4 First-Order v.s. Second-Order

	4 Experimental Results
	4.1 Datasets and Experiment Settings
	4.2 Baseline Methods
	4.3 Comparison Results
	4.4 Analysis of Model Parameters

	5 Conclusion
	References

