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ABSTRACT

Graph neural networks (GNN) are powerful tools in many web re-
search problems. However, existing GNNs are not fully suitable for
many real-world web applications. For example, over-smoothing
may affect personalized recommendations and the lack of an ex-
planation for the GNN prediction hind the understanding of many
business scenarios. To address these problems, in this paper, we pro-
pose a new second-order continuous GNN which naturally avoids
over-smoothing and enjoys better interpretability. There is some
research interest in continuous graph neural networks inspired by
the recent success of neural ordinary differential equations (ODEs).
However, there are some remaining problems w.r.t. the prevail-
ing first-order continuous GNN frameworks. Firstly, augmenting
node features is an essential, however heuristic step for the numer-
ical stability of current frameworks; secondly, first-order methods
characterize a diffusion process, in which the over-smoothing ef-
fect wr.t. node representations are intrinsic; and thirdly, there are
some difficulties to integrate the topology of graphs into the ODEs.
Therefore, we propose a framework employing second-order graph
neural networks, which usually learn a less stiff transformation
than the first-order counterpart. Our method can also be viewed
as a coupled first-order model, which is easy to implement. We
propose a semi-model-agnostic method based on our model to en-
hance the prediction explanation using high-order information. We
construct an analog between continuous GNNs and some famous
partial differential equations and discuss some properties of the first
and second-order models. Extensive experiments demonstrate the
effectiveness of our proposed method, and the results outperform
related baselines.
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1 INTRODUCTION

Recently, there is growing interest in designing graph neural net-
works (GNN) to solve a variety of web research problems, such as
social network analysis [20], recommendation systems [34], fraud
detection [45], natural languages [16], brain connectome analy-
sis [44], etc.. Graph neural networks are primitively motivated by
graph convolution [4, 13] based on spectral graph theory. Consecu-
tive researches [7, 9, 11, 36, 38, 40, 43] show GNNs are powerful in
learning graph embeddings, and the simplicity and effectiveness
of GNN can be boosted via generalizing the graph convolution
operation to aggregate the information from the nodes of interest
and their neighbors. Some representative variants include Graph-
Sage [11], Message Passing Neural Network [38], Graph Attention
Network [31] and Graph Isomorphism Network [36].

There is some discrepancy between the practical requirements
for business scenarios and the existing research. For example, one
usually wants to make a personalized recommendation targeting
on individual users. Deeper networks usually are beneficial for
learning more complex data distributions. But node representa-
tions may be over-smoothed [13, 22, 36] due to the low-frequency
filtering property of many GNNs. As a result, the user difference
is blurred, which becomes a hindrance if one wants to make per-
sonalized recommendation. Another example is that it is difficult
to build business decision based on the black-box predictions of
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GNNs [17, 39, 41]. In social networks, finding influential neighbors
can significantly improve the understanding of the user behavior.
As such, there is some interest in explaining the GNN predictions
based on a small subgraph.

To address these problems, in this paper, we propose a novel
second-order continuous graph neural network. There were some
attempts to address over-smoothing problem [15, 36]. Inspired by
an emerging research topic connecting the residual network and
ordinary differential equations [2], continuous-depth GNNs was
proposed based on the dynamics of hidden layers and show advan-
tages than the discretized counterparts in better memory efficiency
and superior performance. The first-order frameworks adopted by
existing graph ODEs characterize the diffusion process which can-
not fully address the over-smoothing problem because the heat
kernel is usually the Gaussian. Besides, many methods [25, 35] use
augmented features as an ad-hoc step for numerical stability. The
selection of feature augmentation is thus discretionary and lacks
interpretability. Our approach learns the second-order dynamics
of GNNs and considers the effect of a force term and a damping
term to avoid over-smoothing, which can be viewed as discretizing
the variants of wave equations. Our model can also be viewed as a
coupled first-order equation with interpretable augmented feature
velocity. Previous GNN explanation methods are usually model-
agnostic, which omits the second-order information in our model.
We design a new semi-model-agnostic method that explicitly con-
siders the high-order information but leaves the GNN structure
untouched to enhance the prediction explanation.

Our contributions can be summarized as follows:

e We propose a second-order continuous GNN based on the
message passing neural network framework. Our second-
order model can be expressed as a coupled first-order equa-
tion via augmenting the node features with their gradients,
and the implementation is feasible using the popular first-
order framework.

e We construct an analog between continuous GNNs and par-
tial differential equations because graph Laplacian can be
viewed as discretized Laplacian operator on manifolds.

e We introduce a method to explain the GNN prediction via
leveraging the high-order information with an independent
edge embedding network. The explanation is agnostic to the
specific GNN structure.

o We conduct extensive experiments on several graphs datasets
of homophily, which is an important property of social net-
works [18, 23, 46]. The results show that our method outper-
forms related baselines in various downstream tasks, and the
second-order information can boost the model explanation.

2 RELATED WORK

Neural ODEs: Residual network [12] is an important method to
push neural networks to extreme depths. It is observed that the
skip links in ResNet can be seen as an Euler discretization of a
continuous transformation. Based on this connection, the research
on neural ODEs evokes emerging interest. A popular framework,
Neural ODEs [2], considers the continuous-depth neural networks
via taking the limit of this discretization. The optimization w.r.t.
the ODE solvers adopt the adjoint sensitivity method [26], which
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treats the ODE solve as a black box and solve a second augmented
ODE backward. The continuous depths make neural ODEs suitable
for modeling the dynamics of complex systems, particularly those
that cannot be described analytically. Meanwhile, it is difficult for
standard neural networks to learn symmetries and conservation
laws while neural ODEs can address this issue. For example, Hamil-
tonian Neural Networks [10] and Lagrangian Neural Networks [3]
can produce energy-conserving models for various tasks.
Augmented Neural ODEs In Neural ODEs, the hidden states
evolves continuously according to a differential equation, whose
velocity is described by a neural network. Once the dynamics are
known, the gradients of some objective with regard to the model
parameters can be computed through adjoint sensitivity method.
It is shown that the feature mapping learned by Neural ODEs is
a homeomorphism [6], which implies the existence of functions
Neural ODEs cannot represent. Augmented Neural ODEs [6] is
proposed to address these limitations via introducing additional
features. A related variant of augmented neural ODEs is the Sec-
ond Order Neural ODEs [21]. SONODE explicitly considers the
velocities as augmented dimensions, and proposes to learn the ac-
celeration. The inductive bias introduced in SONODE is beneficial
in learning many dynamical systems governed by second order
laws, such as Newton’s equations of motion and oscillators. SON-
ODE can be solved either using the adjoint state directly or using
the coupled first order ODE. Of note, augmented neural ODEs can
also learn high-order dynamics. However, the high order dynamics
learned by ANODE are characterized by abstract functions and
the augmented features typically are entangled, which leads to
difficulties in interpretability.

Graph Representation Learning: Graph representation learning
is featured by mining the topological structures of graphs and en-
coding nodes with low-dimensional embeddings. Representative
works collect local patterns and learn mappings from graphs to vec-
tors, including Word2Vec [19], DeepWalk [24], and LINE [30]. To
simultaneously exploit the structural knowledge and the enriched
side information in attribute graphs, increasing interests are paid
to GNNs. GNN [13] is based on graph convolution, an extension of
regular convolutions that can process structural data. Via designing
amore efficient aggregation mechanism, GraphSage [11, 38, 40] and
Message Passing Neural Network (MPNN) [9] broaden the applica-
tion of GNNss to the analysis for large-scale graphs. Graph Atten-
tion Network (GAN) [31] introduces an attention mechanism into
general network analysis, and self-attention is proposed for graph
pooling [14] for graph classification tasks. Based on the relationship
between GNNs and graph isomorphism problem, Graph Isomor-
phism Network (GIN) [36] and Deep Graph Convolutional Neural
Network(DGCNN) [42] are designed. On the other hand, there
is some attempt to learn interpretable graph representation [39],
particularly for some applications, e.g., brain networks [28, 29].
Continuous-depth Graph Neural Networks The idea behind
continuous-depth neural networks is also employed in graph neural
networks to handle structural data. Graph neural ordinary Differ-
ential Equations (GDEs) [25] propose a continuum of GNN layers
to characterize the input-output relationship. In detail, the static
models and Spatio-temporal models are developed to handle dif-
ferent tasks. Alternatively, Continuous Graph Neural Networks
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(CGNN) [35] proposes a propagation scheme inspired by diffusion-
based methods. Specifically, the representations learned by CGNN
have entangled w.r.t. the graph structure and the node features
while the terminal time goes to infinite time. The continuous-depth
formulation of GNNs also inspires some related methods. For exam-
ple, the numerical gap between the discrete and continuous graph
diffusion process can affect the model performance [32], and Simple
Graph Convolution [33] can be boosted by decoupling the termi-
nal time and the finite difference steps. Continuous Graph Flow
(CGF) [5], as a graph generative model, generalizes the messaging
passing mechanism to continuous time.

3 PROPOSED METHOD

h(O), (D)

(e +de) = h(e) + h(t)
h(t+do) = h(©) +h (©)

hO=f@0+ ) wagwt
Figure 1: Learn the second order GNN.

In this section, we first review the Messaging Passing Neural Net-
work (MPNN) and the first-order continuous GNN, then describe
our second-order continuous GNNs. Figure. 1 illustrates the second-
order dynamics of the node embeddings on a manifold, which will
be detailed in the following. Via reformulating our model as cou-
pled first-order neural ODEs, we give a simple implementation.
We propose a method to explain the GNN prediction jointly using
the first and the second order information. At last, motivated by
the connection between graph Laplacian and the Laplace-Beltrami
operator, we discuss some properties of continuous GNNs from
the view of neural partial differential equations instead of ordinary
differential equations.

3.1 Second-Order Continuous GNNs

3.1.1  Revisiting Messaging Passing Neural Networks and First-Order
Continuous GNNs. Existing continuous GNNs are based on the
continuous counterpart of residual structures in GNNs. In this part,
we first describe the Messaging Passing Neural Network (MPNN),
then recap the first-order continuous GNN under this framework.

We denote a graph G by its node set V and its edge set &. For a
singlenodev € V,weuse N(v) :={u eV :(v,u) € EV (u,0) € E}
to denote its neighbors. A MPNN layer performs a spatial-based
convolution on v, and the representation of v at layer [ +1 is defined
on the representations of v and its neighbor N (v) at layer [,

ROU+1) =u|n® ), Z m(h(”)(l),h(“)(l)) NG

ueN(v)

Specifically, we have h(?) (0) = x,, which is the input to the MPNN.
xy can be node features or some representations learned by an
encoder. u and m are functions with trainable parameters.
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A general first-order continuous GNN can be defined by first
setting u(x,y) = x + g(x,y) [25], where g (h(”)(l),h(/wv))(l)) =

g (ZueN(z)) m (h(z’) (), h®™ (l))) is some function, (1) can be writ-

ten as,
RO 41 = RO 1) = g (1O 0N ). @

By interpreting the layer [ as a discretezation step in time ¢, the
continuous-depth counterpart of MPNN is defined on the continuity
equation of the above difference equation,

RO = fi)

Ay (H.0) = g (RO 00N ). )

Here H refers to all node feartures, and 0 refers to the model
parameters, which defines the differential function. Formally, given
input node features, the continuous MPNNs compute the node
representations by solving the Cauchy problem,

KO0 =g (WO 0N ), w0 =x7. @

Similar to neural ODEs, the forward pass is to solve the problem
numerically using ODE solvers, and the optimization of parameters
uses the adjoint sensitivity method.

3.1.2  Second-Order Continuous Graph Neural Networks. In this
paper, we consider a second-order dynamics for GCN. Specifically,
we alter the definition of u and the second-order model is defined
as,

9 (1) =f(0)

oy (H:0) = g (RO (0, AN () 5)

g(+) considers the interaction the neighbors have on the center node
0. More generally, we consider two additional terms for (5), a term
for the velocity decay and a term only related to the center node.
Finally, our second-order continuous GNNs solves the following
Cauchy problem,

R (1) +ah® (1) = F0 (1) + g (12 0.8V @), (@)

@) =", R (0)=o. )
Here @ > 0 is a small positive number, f(h(”) (t)) is the force
term. The initial state for h(?)(0) is set to 0 for simplicity. The
differential and the node representations at time ¢ is then given by
RO (1) = [ (0dt and RO (1) = x$7 + [ B (1)dt. ah @ (1)
is usually called a damping term.

Our model has a straightforward physical explanation. Let every
node in a graph represent a ball. The features describe the spatial po-
sition of the balls. The edges denote the existence of the interaction
between balls, for example, we can think that two linked nodes are
two balls connected by a spring. The damping term can be viewed
as friction. The force term is associate with the medium a ball lies
in, which is not dependent on the other balls. For example, the balls
are placed on a curved surface and are under the influence of a
component of weight. An one-dimensional example is illustrated
in Fig. 2.



KDD ’22, August 14-18, 2022, Washington, DC, USA

.
t=0 &

¢ )
< =

( t - +0 )

¢ )

Figure 2: A ball-spring system under the second order dy-
namics (elastic force, gravity, and friction).

3.2 Implementation of Second-Order
Continuous GNN

The forward pass of our model can be accomplished via off-the-shelf
ODE solvers. Similar to the first-order scenario, the backpropaga-
tion can be performed via the adjoint sensitivity method [26], which
treats ODE solvers as black-boxes and has a low memory cost. The
adjoint state of (8) can be computed using Lagrangian methods.

PROPOSITION 1. The adjoint state of (8) follows the second order

ODE# =rT #(hv) — arT. The update of the model parameters is the

j dL _ _ [0 .1ox
integral gz = ft r75ds.

Our model is a special case of Proposition 3.1 in Norcliffe et al.
[21], and the above result is obtained by substituting the damping .
The second-order differential equations in our approach can also be
viewed as first-order coupled differential equations [21]. This rela-
tion gives an alternative model of our second-order CGNN as first-
order augmented Neural ODEs. More specifically, we augment the

node features to include their differentials z(?) = [h(v) (1), h® (t)],

then our second-order continuous GNN can then be represented as
a first-order Cauchy problem,

2@ = [0 0. ()], 29 = [ 0.0 )], 20 = [ 0]

®)
As pointed out in Norcliffe et al. [21], the adjoint state of the second-
order model is equivalent to the adjoint state of the coupled first-
order model. The disentangled representation in second-order mod-
els may involve more computation than the entangled augmented
NODE. Due to this reason, we use the first-order optimization for
simplicity in our implementation. In detail, we maintain z® in
our continuous GNNs, and in the forward pass 2 is obtained by
concatenating A from the stale z and the newly computed ACN
No modification is required for the backward propagation.

3.3 Enhanced Explanation for Graph Neural
Networks Using Second-Order Information

In the representation learning for graph data, the high-order part

of z is discarded. However, it can provide some information in

explaining the prediction of GNNs, which indicates that our second-
order continuous GNN enjoys better interpretability compared to
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first-order methods. More specifically, in this section we propose
a new method for example-level explanations via employing the
first-order and the second-order information jointly.

3.3.1  Problem Formulation. We employ the definition of example-
level explanation from [39]. Assume we have a trained GNN ¢ =
f(Ge, xc). Here G.(v) is a computation graph spanned from o € G,
which is the induced subgraph on the full G involved in computing
the prediction for v. The associated adjacency matrix is A¢ (v). x¢ (v)
is the associated feature set {xj|v; € G (v)}. Using the computation
graph instead of the full graph can greatly reduce the computational
burden. Given a node v, its explanation is (Gs, x5 (v)). Here Gs is a
small subgraph on the computation graph G.(v) and x; (v) is a small
subset of node features, masked out by {xj[0; € Gs(v)}. (Gs, x5(0))
are important the prediction 7j,. The importance is evaluated using
mutual information I,

mgaxf(% (Gs.x5)) = H(Y) - H(Y|G = Gs,x = x), ©)

here H is the entropy. Typical explanation-generation methods
are model-agnostic by fixing the GNN f(G¢, x¢), therefore, H(Y)
is constant. The second term can be bounded,

H(Y|G = Gs, x = x5) = ~By|gg.xs [log Pr(Y|G = G5, X = X5)],
(10)
We use As(v) to represent the adjacency matrix of Gs. Of note,
model-agnostic methods fail to make use the second-order infor-
mation in our model. To address this problem, we provide a semi-
model-aware explanation-generation method in the following.

3.3.2 Semi-model-aware GNN Explainer. The explanation adja-
cency matrix can be expressed by As(v) = Ac(v) © M, where M
is a mask matrix, and its entries are binary. Using this expression,
directly optimizing (10) boils down to an integer problem with re-
spect to M, and the size of feasible set is 2 €], To make the problem
tractable, we resort to a relaxation of M using mean-field varia-
tional approximation, and using Monte Carlo method to compute
the explanation. As illustrated in Fig. 3, our method sample sub-
graphs by two steps. First, we decompose the distribution of G
into a multivariate Bernoulli distribution as P(G) = I1(; j)egP(eij),
here e;; € [0,1] is the relaxed entry of M, denoting the probability
that edge (v;,0;) is selected. We compute e;; using an edge embed-
ding network based on the node embeddings. Second, the subgraph
is sampled from P(G) using a reparameterization trick. Since the
sampling is not differentiable, we use straight through estimator
(STE) to enable the back-propagation. We feed the sampled sub-
graphs into the GNN with weights frozen, and update the edge
embedding network with respect to (10).

In detail, we compute the embedding for edge (v;,v;) by a deep
neural network. Since our GNN works on undirected graphs, we
anonymize the edge direction by defining,

i35 = 5 ($(2070) + 920, 20.)) ay

Similar to variaitional autoencoder, we learn a mean and a vari-
ance for the edge embeddings. In the sampling step, we use the
reparameterization trick from the invertible Gaussian family [27],

eij = g(pij + €%}, 1), (12)
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Figure 3: The pipeline for subgraph sampling. We compute the edge embeddings using a deep neural network. We use the
invertible Gaussian reparameterization trick to sample the subgraph, which allows the straight-through gradients estimation
for the back-propagation. We update the embedding network using Monte Carlo method to optimize the mutual information

between the explanation and the computation graph.

here ¢ ~ N(0,1) is a Gaussian noise of the same size |E|, 7 is
a temperature parameter, g(-, 7) is an invertible smooth function.
Specifically, we let,

exp (Y /1)
YK exp(yp/o) +6 9

here § > 0 ensures the invertibility. lim¢ so ftmax4+(y, ) is one-
hot [27], which allows the straight through gradient estimation.
Compared to Gumbel-Softmax, the invertible Gaussian reparame-
terization is more flexible.

To pursue a compact explanation, we also consider a regulariza-
tion with respect to the size of the sampled subgraphs. To sum up,
we update ¢(-) with respect to the sampled subgraphs using the
following objectives,

g(y, 1) = softmaxsy(w, 1) =

ngn‘T =—Ey|gxs 108 Pf (YIG = Gs. X = X5)| + (14)

2 (ReLU (Z i) —Km))z.

here K, is a predetermined positive integer limiting the node num-
bers in subgraphs.

3.4 First-Order v.s. Second-Order

Existing works usually let

gl X mEOORD @) |0 Y w0 -h @),
ueN(v) ueN(v) ( )
15

which can be viewed as applying some generalized graph Laplacian
to the features. Graph Laplacian matrix associated to a point cloud
converges to the Laplace-Beltrami operator on the underlying data
manifold [1]. As such, to better capture the data distribution, we
should consider both temporal and spatial continuity in GNNs,
which corresponds to the depth and the data distributions respec-
tively. We insert the continuous Laplacian operator to (3) and abuse
v to represent the hidden state, the first order continuous GNNs
can be written as a standard heat equation,

h(v,t) = Ah(v,t), h(0,0) = ho. (16)

Similarly, the second-order continuous GNNs can be written as an
inhomogeneous wave equations,

h(v,t) + ah(v,t) = Ah(v, 1) + f(0, 1), (17)
h(v,0) = hy, %h(v, 0) =0. (18)

Compared to standard Neural ODEs, the properties of continuous
GNNss can be better characterized by the associated partial differ-
ential equations. For simplicity, we omnit the weights in GNNS.
In the rest of the section, we will use these simplified models to
tentatively show that the over-smoothing effect is intrinsic in first-
order continuous GNNs, and discuss some pros and cons to use the
second-order methods instead of the first-order method.

Over-Smoothing Effect as Intrinsic Property of First-Order
Continuous Graph Neural Networks: First-order continuous
graph neural networks are intimately related to the heat equa-
tion, which characterizes the diffusion of heat on a manifold. More
specifically, existing works define a Cauchy problem for the ho-
mogeneous heat equation. However, the steady-state solution of
the heat equation implies that the over-smoothing is intrinsic for
first-order continuous graph neural networks. To see this, we have
the following proposition:

PROPOSITION 2. Lethy € L'(R"), namely [,,|holdx < oo. For

any x € R¥, we have lim;_ yc0lh(x, )| = 0.

Proor. This is a direct result by applying the fundamental solu-
tion of heat equation [8]. The fundamental solution is,

W) = [ @G-y 0howdy, (19)
D(x,t) = ———— exp(—ﬁ) (20)
’ (4rt)n/? at "

The heat kernel ®(x, t) is a Gaussian, and we have

1 lx - yl?

h(x,t)| < ——— / exp(—
I e

1
< W/ano(yﬂdy-

Then we have lim;—, oo |h(x, t)| = lims— 400 W /Rn |ho(y)|dy =
0. m]

Yho(y)dy — (21)
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Using the above result we immediate have lim; 40 |h (01, 1) —
h(vg,t)| = 0 for any two nodes v1 and v. In the context of con-
tinuous graph neural networks, it means that node features are
eventually blurred when the terminal time goes to infinity. More
specifically, the steady-state solution have exponential decay rate
which is not related to the specific form of the original feature
distribution hy. This result also implies that the learned data repre-
sentations are more dispersed to compensate for the exponential
decay wr.t. the terminal time if the model is trained using a longer
integral time.

The solution of the second-order CGNN: The solution of
the second-order CGNN is dependent on the initial values. For
simplicity, we consider a forced wave equation via setting = 0
in (17) and assume the feature dimension n is even. First we obtain
a homogeneous problem by letting f(v, t) = 0. Using the spherical
means Evans [8], the solution is,

1 0 10 %2 1
"“"”:m[(a)(;a) (—<n+1>a<n+1)' @2

ho(y) )
—d
/Bm) @ ly-xp)z"

Here B(x,t) is a ball, a(n + 1) is the volume of n-dimension unit
ball. Next we insert f(v, t) and let ho(v) = 0. We have the following
nonhomogeneous problem,

5

2
%h(v, t) = Ah(u,t) + f(0,1), h(0,0) = 0, %h(v, 0)=0. (23)

Define h(v, t; s) to be the solution of a homogeneous problem with
starting time s and initial value h(v,s) = f(v, t). Duhamel’s princi-
ple asserts that b, (v, t) = /Ot h(v, t;s)ds is the solution to (22). The
full solution to the forced wave equation is then the sum of (23) and
h(v,s). The outputs of the second-order model are always related
to the initial values since h(y) is contained in the formulae, which
avoids the zero value problem in the first-order case. The solution
takes a different form when the feature dimension is odd, but the
dependency on initial states are still valid.

More Discussions: In this part, we discuss the pros and cons
of using second-order continuous GNN instead of the first-order
continuous GNN.

Second-order continuous GNN usually learn a smoother trans-
formation than the first-order, which may alleviate over-fitting.
The first-order and the second-order continuous GNN both attempt
to compute a depth-varying vector field via solving Cauchy prob-
lems. However, a severe issue with the first-order Cauchy problem
is the stiffness of the learned vector fields. More specifically, the
feature mapping g is a homeomorphism, so the features of Neu-
ral ODEs preserve the topology of the input space [6]. Instead,
the second-order neural ODEs are not limited to homeomorphic
transformations [21].

The first-order augmented ODE implementation of our approach
avoids the ad-hoc feature-augmentation in existing first-order graph
ODEs and allows better interpretability. To address this stiffness
of learned representations, Augmented Neural ODEs (ANODE) [6]
proposes mapping the node features to higher dimensions, which
is a widely used trick in Graph-based Neural ODEs. Although
augmented neural ODEs can learn high-order dynamics [21], the
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learned augmented features are difficult to be interpreted, because
the high-order behavior is entangled in these features. Our model
explicitly defines the augmented features as the gradients of the
node features, which have fixed size and clear interpretability.

Sometimes, the second-order models may not be advantageous
compared to the augmented first-order models. For example, our
definition of the second-order model may not be the minimal aug-
mentation [21]. On the other hand, sometimes, there exist eminent
higher-order dynamics behind the data transformation, which can
be learned by augmented first-order models. In this case, the second-
order models may lose their interpretability and performance supe-
riority.

In general, although it is difficult to claim there exists a per-
formance gap between the optimal potential first-order and the
second-order continuous GNN, second-order model has better in-
terpretability, has a simpler form, and usually learns a less stiff data
distribution. As such, second-order continuous GNN is more likely
to give better performance in practice.

4 EXPERIMENTAL RESULTS

This section evaluates the performance of our approach on the
semi-supervised node and graph classification tasks.

4.1 Datasets and Experiment Settings

Semi-supervised Node Classification For this task, three bench-
mark datasets are used, including Cora, Citeseer, and Pubmed. We
use the standard data splits for the benchmark datasets, where 20
nodes of each class are used for training and another 500 labeled
nodes are used for validation. We also include the experiments with
random splits. The statistics of datasets are described in Table 1.

Table 1: Statistics of datasets for node classification.

Dataset ‘ #Nodes #Edges #Features # Classes # Label Rate

Cora 2708 5429 1433 7 0.036
Citeseer 3327 4732 3703 6 0.052
Pubmed 19,717 44,338 500 3 0.003

Graph Classification For this task, we predict the labels for graphs.
We consider five datasets [37], including IMDB-Binary (IMDB-
B), IMDB-Multi (IMDB-M), COLLAB, Reddit Binary (RDT-B), and
Reddit-Multi5k (RDT-M). The statistics of datasets are described in
Table 2.

Table 2: Statistics of datasets for graph classification.

Dataset ‘ IMDB-B IMDB-M COLLAB RDT-B RDT-M

# graphs 1000 1500 5000 2000 5000

# classes 2 3 3 2 5
avg.# nodes 19.8 13.0 74.5 429.6 508.5

Explanation for Graph Neural Network In this task, we fol-
low the setting in GNNExplainer [39] and PGExplainer [17] and
construct four kinds of node classification datasets. (1) BA-Shapes
is a single graph without node features. We first generate a base
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Barabasi-Albert (BA) graph with 300 nodes. Then we attach 80
“house”-structured graph motifs to the nodes in the base graph
randomly. We add 0.1 random edges to perturb the graph. Nodes in
the base BA graph is labelled with 0. The top, middle, and bottom
nodes of the houses are labelled with 1, 2 and 3 respectively. (2) BA-
Community is a union of two BA-Shapes graphs with node features.
We assign eight classes to the nodes based on the BA-Shapes graph
community and the structural roles. We generate node features us-
ing two Gaussian distributions for the two BA-Shapes respectively.
(3) Tree-Cycles is also a base-motif graph. We use an 8-level balance
binary tree as the base graph, and attach 80 six-node circle graph
motifs to the base graph. (4) Tree-Grids uses the same base graph
as Tree-Cycles but 3-by-3 grid graph motifs. Table 2 illustrates the
synthesized datasets.

Experimental Settings: For the classification tasks, we consider
three variants of our second-order continuous GNNs: proposed,
where neither the damping nor the force term is used; proposed”,
which uses the force term; proposed™*, in which both the damping
and the force term are used. In all models we use one linear layer,
one continuous GNN layer, and one linear prediction layer. For
proposed, we use a standard graph convolution layer to approximate
the dynamics. For proposed”, the force term is approximated by one
linear linear with sigmoid function. For proposed**, the damping
term « is set to 0.95. The terminal time for the continuous layer
is set to 15. The hidden dimension is 16. For the prediction layer,
we use a dropout rate of 0.2. Cora and Citeseer are trained for
100 epochs using rmsprop optimizer with learning rate 0.005. The
rest of the involved datasets are train for 200 epochs using Adam
optimizer with learning rate 0.005. All results were collected using
single NVIDIA P40 with 24GB GPU memory.

For the explanation task, we follow the quantitative evaluation
settings in GNNExplainer [39] and PGExplainer [17]. The expla-
nation is assessed as a binary classification of edges. Specifically,
the edges inside motifs are regarded as positive, and negative oth-
erwise. e;; is viewed the prediction score. We report the average
AUC scores and the standard deviations based on ten repeats of the
experiments.

4.2 Baseline Methods

We include representative discrete GNN and continuous GNN meth-
ods as the baselines. Given the relation between our second-order
method and augmented neural ODEs, we also include related meth-
ods. The following results are obtained by run the official imple-
mentation of the baselines. When the codes are not available, we
cite the values from the original papers.

Discrete GNN s: For standard discrete GNNs we consider the Graph
Convolutional Network (GCN) [13] and the Graph Attention Net-
work (GAT) [31]. Both are the most representative GNN methods,
and are conidered as widely used baselines for related continuous
GNNs methods [25, 35].

Continuous GNNs: We include three state-of-the-art continuous
GNN models as the related baselines, Graph Neural Ordinary Dif-
ferential Equations (GDE) [25], Ordinary differential equations on
graph networks (GODE) [47], and continuous GNN (CGNN) [35].
We include three variants for GDE with different ODE solvers. For
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CGNN, we also include two variants, CGNN with weights (WCGNN)
and diffusion CGNN.

Augmented Neural ODEs: We include Augmented Neural ODEs
(ANODE) and Second Order Neural ODEs (SONODE) as baselines.
Both ANODE [6] and SONODE [21] are designed for non-structural
data, so we only use the node features and drops the graph for these
two methods.

4.3 Comparison Results

4.3.1 Semi-Supervised Node Classification. : The results for semi-
supervised node classification on standard test-train splits are sum-
marized in Table 3 . In most cases, continuous methods outperforms
discrete GNNs. For non-graph methods ANODE and SONODE, the
performance is significantly lower than GNNs. The results demon-
strates that our approach has superior performance compared to
the first-order continuous GNNs in most cases. Particularly, damp-
ing term can help improve the performance. Meanwhile, the huge
gap between non-graph ANODESs and our approach show that the
structural information is critical in node classification, and par-
tial differential equations are of potential. Table 3 summarizes the
results for both the predefined and the random test-train splits. Sim-
ilar observations can be confirmed. It is also observed that GAT is
less stable considering the data splits, compared to the continuous
methods.

4.3.2 Graph Classification. : The results for graph classification
are summarized in Table 4. Compare to the standard baselines,
continuous GNNs are generally superior in peformance. Among all
continuous methods, our approach with a damping term performs
the best. We also notice that the average size of graphs has a large
influence on the performance of continuous GNNs. For example,
the improvement of continuous methods are much more prominent
for RDT-B and RDT-M than for IMDB-B and IMDB-M.
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Figure 4: Training loss (left) and validation accuracy (right)
under different integration time.

4.3.3  Prediction Explanation. : The results for prediction expla-
nation are summarized in Table 5. The explanation accuracy is
computed based on the ground truth node labels for the synthetic
datasets. A better explainability method has higher prediction
scores for edges that are in the ground-truth explanation. We com-
pare the explainability of our method to two first-order continu-
ous GNNs. Proposed First-order omit the high order information,
which serves as an ablation study. Proposed Second-order is our
full method. The quantitative results show that different first order
models show similar explainability in most cases. Our second-order
method shows some improvement compared to the first order meth-
ods.
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Table 3: Node classification results on citation networks. The Cora, Citeseer, and Pubmed columns summarize the results
using standard test-training split. The corresponding columns with superscript * summarize the results over 10 random splits
test-training split. The values for GCN-GODE and GAT-GODE are taken from the original paper. Best-performing methods
are bold faced, and the runner-ups are underlined. For the random split, The results of GCN-GODE and GAT-GODE are not

available and are denoted by —.

Dataset Cora Citeseer Pubmed Cora* Citeseer” Pubmed*
GCN [13] 81.8+0.8 70.8 £ 0.8 80.0 = 0.5 80.5+ 1.1 72.3+0.9 79.4 £ 1.5
GAT [31] 82.6 £ 0.7 715+ 0.8 79.7£0.4 80.1+1.5 72.4+£1.2 78.4 £1.6

GDE-rk2 [25] 82.9+0.5 72.4+0.5 79.8 £ 0.4 81.4+ 0.5 72.1+0.6 78.9 £ 0.7
GDE-rk4 [25] 83.8+0.5 72.4+0.5 79.7£0.4 81.6 £ 0.4 71.8 £0.5 79.5 £ 0.6
GDE-dpr5 [25] 81.9+1.1 69.0+1.1 78.3 £ 0.7 79.3+1.3 68.1+0.9 75.1+0.9
GCN-GODE [47] 81.8+0.3 72.4+0.8 80.1+0.3 - - -
GAT-GODE [47] 83.3+0.3 72.1£0.6 79.1 £0.5 - - -
CGNN [35] 83.8+1.1 72.7+0.6 82.2+0.5 82.5+1.0 72.2+1.0 80.4+1.3
WCGNN [35] 83.6 £ 0.7 72.8+0.7 82.1+0.5 82.0+ 1.0 72.2+09 79.8 £0.9
ANODE [6] 584+ 1.5 61.6 0.8 69.8 £ 0.5 59.6 +1.3 59.9+1.1 70.7 £ 0.5
SONODE [21] 59.9+1.3 61.5+0.9 70.1+0.4 60.1+1.4 60.3+0.9 71.0 £ 0.6
Proposed 83.3+0.9 729+ 0.8 82.0 0.7 82.5+0.8 72.7 £ 0.6 79.4+1.0
Proposed* 83.5+0.6 725+ 1.0 81.5+ 0.5 82.6 £ 0.6 71.6 £ 0.8 79.9 £ 0.8
Proposed™* 84.3+0.8 73.2£0.9 82.1+0.5 83.5+1.0 72.1£0.8 80.9+£0.9
Table 4: Graph Classification results.
Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M
GCN [13] 70.9 +£ 4.6 49.4+3.2 73.3+3.1 82.9+2.8 524+ 2.1
GDE-rk2 [25] 70.4 £ 3.5 48.5+3.6 75.6 £ 1.6 87.9+1.7 54.1+1.6
GDE-rk4 [25] 71.5+3.8 48.1+2.9 749+ 1.3 86.4+ 1.5 543+ 1.4
GDE-dpr5 [25] 69.1+4.1 48.2+3.0 71.0 = 2.5 83.1+3.4 52.0+2.2
CGNN [35] 71.4+3.3 474+ 3.6 754+19 87.7+2.2 553+ 1.5
WCGNN [35] 71.8 £2.9 489+ 23 75.7+ 2.1 88.2+2.3 549+ 1.2
Proposed 71.6 £ 3.1 49.4+£3.0 75.2+2.2 88.0 £ 2.0 53.7+1.5
Proposed” 71.9+3.8 48.5+34 76.0 + 1.7 87.5+2.1 53.2+1.4
Proposed™™* 72.5+3.6 48.8+2.9 76.3 2.5 89.6 +1.8 56.0 + 1.7
Table 5: Explanation AUC results.
BA-Shapes BA-Community Tree-Cycles Tree-Grid
Base g
/o\ P —a [+ °© °
Motifs 7 > o
o 2 d @ 1%
GDE-rk2 [25] 0.934 +0.013 0.877 £ 0.022 0.914 £ 0.010 0.873 £ 0.016
CGNN [35] 0.926 £ 0.017 0.849 £ 0.016 0.955 + 0.015 0.881 + 0.007
Proposed First-order 0.930 = 0.015 0.911 +0.024 0.949 £ 0.008 0.887 £ 0.015
Proposed Second-order 0.954 +0.011 0.955 + 0.021 0.975 +0.011 0.912 +0.013

4.4 Analysis of Model Parameters

4.4.1  The model performance v.s. Integration Time. : Figure 4 de-
scribes the semi-supervised node classification performance of our
method when the model is trained using different integration time.
It can be observed that the predicting power is robust to the different
integration time. For the first order method, heuristic augmented

features are used to achieve a similar phenomenon. Our method
suggest a more explicit explanation by defining the high-order
behaviors.

4.4.2 The Effect of Damping Term. : We notice that the damped
version of our approach usually yield the best performance, in
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Figure 5: Training loss (left) and validation accuracy (right)
with different damping terms.

which « is a tunable hyperparamater. Figure. 5 describes the semi-
supervised node classification performance of our method when
the model is trained using different a. It can be observed that our
approach is insensitive to « for a wide range of [0.01,0.10]. When
a is larger (for example, 0.2), the gradients vanishes quickly and
the model performance is witnessed to decrease slightly.

5 CONCLUSION

In this paper we propose a second order Continuous GNN. Com-
pared to existing methods, our approach employs a second order
dynamics, which avoids the over-smoothing and provide additional
information to understand the prediction. Our method also can be
viewed as a continuous GNN model with interpretable augmented
features. Extensive experiments demonstrate that our approach
outperforms related baselines for social network applications and
has better interpretability.
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