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ABSTRACT
Body size is often hypothesized to facilitate or constrain morphological diversity
in the cranial, appendicular, and axial skeletons. However, how overall body shape
scales with body size (i.e., body shape allometry) and whether these scaling patterns
differ between ecological groups remains poorly investigated. Here, we test whether
and how the relationships between body shape, body size, and limb lengths differ
among species with different locomotor specializations, and describe the underlying
morphological components that contribute to body shape evolution among squirrel
(Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from
osteological specimens held at museum collections. Using phylogenetic comparative
methods, we first found that body shape and its underlyingmorphological components
scale allometrically with body size, but these allometric patterns differ among squirrel
ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with
increasing body sizes whereas ground squirrels exhibited more robust bodies with
increasing body size. Second, we found that only ground squirrels exhibit a relationship
between forelimb length and body shape, where more elongate species exhibit relatively
shorter forelimbs. Third, we found that the relative length of the ribs and elongation or
shortening of the thoracic region contributes the most to body shape evolution across
squirrels. Overall, our work contributes to the growing understanding of mammalian
body shape evolution and how it is influenced by body size and locomotor ecology, in
this case from robust subterranean to gracile gliding squirrels.

Subjects Ecology, Evolutionary Studies, Zoology
Keywords Axial skeleton, Body elongation, Ecomorphology, Evolutionary allometry,
Thoracolumbar vertebrae

INTRODUCTION
Body size is often hypothesized to be a line of least evolutionary resistance formorphological
evolution (Marroig & Cheverud, 2005; Marroig & Cheverud, 2010), and evolutionary
changes in body size have a strong influence on an organism’s ecological, physiological,
morphological, and functional traits (Schmidt-Nielsen, 1975; LaBarbera, 1989; Calder,
2001; Pyron & Burbink, 2009). Because traits often scale with size, species can adapt to
different environments through evolutionary increases or decreases in body size (Zelditch
et al., 2017; Zelditch & Swiderski, 2022). However, extrinsic and intrinsic factors often
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constrain bodies towards certain sizes; therefore, in instances when evolutionary change
in body size is limited, new adaptations can arise through evolutionary changes in the
shape or proportions of traits (Zelditch et al., 2017). Unsurprisingly, a plethora of work
has found that ecological factors affect the evolution of the shape and proportions of the
skull (Janis, 1990; Olsen, 2017; Law et al., 2018; Arbour, Curtis & Santana, 2019; Grossnickle
et al., 2020; Paluh, Stanley & Blackburn, 2020), limbs (Van Valkenburgh, 1985; Higham
et al., 2015; Citadini et al., 2018; Baeckens, Goeyers & Van Damme, 2020) and vertebrae
(Buchholtz, 1998; Randau et al., 2016; Jones et al., 2018; Gillet, Frédérich & Parmentier,
2019; Luger et al., 2019; Adler et al., 2022). The evolution of diverse overall body shapes
can also facilitate morphological, functional, and ecological innovations that can lead to
increased diversification and niche specialization (Wiens, Brandley & Reeder, 2006; Collar
et al., 2016; Law, 2019; Friedman, Price & Wainwright, 2021;Morinaga & Bergmann, 2020).

Although the morphological patterns of body shape evolution are well-studied in
vertebrates, including squamate reptiles (Wiens & Slingluff, 2001; Bergmann et al., 2020;
Grinham & Norman, 2020), fishes (Strauss, 1985; Mehta et al., 2010; Ward & Mehta, 2010;
Friedman et al., 2019), and, more recently, carnivoran mammals (Law, 2021a; Law, 2022),
few have investigated evolutionary allometry between body shape and size. In Indo-Pacific
shore fishes, body size explains 3–50% of body shape variation depending on taxonomic
families, and larger fishes tend to exhibit more elongate bodies (Friedman et al., 2019).
Similarly, in carnivoran mammals, allometric effects of body size influence body shape
variation (Law, 2021a). However, the boundary between terrestrial and aquatic habitats
affects these allometric patterns: like fishes (Friedman et al., 2019), aquatic carnivorans
tend to evolve more elongate bodies with increasing size (Law, 2021b) whereas terrestrial
carnivorans tend to evolve more robust bodies with increasing size. This suggests that body
shape allometries differ between locomotor ecologies. Elongate body shapes are associated
with fin and limb size reduction (Gans, 1975;Wake, 1991;Wiens & Slingluff, 2001; Skinner,
Lee & Hutchinson, 2008; Ward & Mehta, 2010). In tetrapods, researchers have found that
the forelimbs are generally reduced or lost prior to the hind limbs through evolutionary time
(Gans, 1975; Wiens & Slingluff, 2001; Brandley, Huelsenbeck & Wiens, 2008; Law, Slater &
Mehta, 2019;Morinaga & Bergmann, 2020; but see Kohlsdorf & Wagner, 2006; Bergmann &
Morinaga, 2019). How locomotor ecologies affect relationships between body shape and
limb lengths in mammals remains to be tested.

Despite observed convergence in body plans (e.g., Brandley, Huelsenbeck & Wiens, 2008;
Friedman et al., 2016; Bergmann & Morinaga, 2018; Morinaga & Bergmann, 2020; Law,
2022), similar body shapes can evolve through multiple pathways including elongation
of the head, reduction of body depth, and elongation of the body axis via changes in
total vertebral number and/or elongation of individual vertebrae (Parra-Olea & Wake,
2001;Ward & Brainerd, 2007;Ward & Mehta, 2010; Collar et al., 2016; Law, 2022). Because
vertebral number is constrained in most mammals (Narita & Kurutani, 2005), they evolve
more elongate or robust bodies through changes in body depth and/or elongation or
shortening of the skull and vertebrae rather than vertebral number. For example, the
elongated neck found in giraffes is due to elongation of the cervical vertebrae rather
than increase in the number of vertebrae (Badlangana, Adams & Manger, 2009; Danowitz,
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Domalski & Solounias, 2015; Danowitz et al., 2015). In carnivorans, the elongation or
shortening of the thoracolumbar regions and changes in rib lengths contribute most to
variation in body shape, ranging from elongate weasels to robust bears (Law, 2021b).
Whether these patterns are similarly found in other mammalian clades is not known.

In this study, we used squirrels (family Sciuridae) as a model system to examine the
effects of body size on body shape evolution. We also investigated the relationship between
body shape and limb length as well as the underlying morphological components that
contribute to body shape evolution. Squirrels are qualitatively diverse, with body sizes
ranging from 32 g least chipmunks to 8 kg Olympic marmots and body shapes ranging
from the rotund bodies of marmots to the lithe bodies of gliding squirrels. In addition
to their diverse body plans, squirrels exhibit varied locomotor ecologies and habitat use,
including four ecotypes: ground squirrels that dig, tree squirrels that climb, gliding squirrels
that glide between trees, and more versatile chipmunks that can dig and climb. Therefore,
we also examined how morphological patterns differ between these four squirrel ecotypes.

Our objectives were three-fold. First, we examined the relationships between body
size and body shape and between body shape and limb lengths. Second, we tested if
these relationships differed between ecotypes. We predicted that ground squirrels would
exhibit more robust bodies with increasing body size and relatively shorter limbs. These
phenotypes would provide more structural support and force production when digging
large tunnel systems (Samuels & Van Valkenburgh, 2008). We predicted that all other
ecotypes (i.e., chipmunks, tree squirrels, and gliding squirrels) would evolve more elongate
bodies with increasing body size. Elongate bodies could facilitate heightened flexibility and
maneuverability for large squirrels when navigating complex microhabitats such as tree
branches. While it is known that the forelimbs of gliding squirrels are relatively longer
than those of other ecotypes (Peterka, 1936; Bryant, 1945; Thorington & Heaney, 1981;
Grossnickle et al., 2020), the relationship between body shape and forelimb length remains
unstudied. Accordingly, we predicted that gliding squirrels would exhibit relatively longer
forelimbs with increasing body elongation to increase patagium surface area for gliding. In
contrast, we predicted that chipmunks and tree squirrels would exhibit relatively shorter
forelimbs with increasing body elongation following similar patterns found in terrestrial
carnivoran mammals (Law, Slater & Mehta, 2019). For our final objective, we examined
which cranial and axial components contributed the most to overall body shape evolution
across squirrels and within each ecotype. We predicted that thoracolumbar elongation or
shortening will be the biggest contributor to body shape evolution, as this region provides
the body’s primary structural support against gravity (Kardong, 2014).

MATERIAL AND METHODS
Quantifying squirrel body shape
Wequantified squirrel body shape using 220 osteological specimens across 87 species. These
specimens were sourced from the collections of 11 museums (Table S1). We used female,
male, and sex-unknown individuals for our measurements in order to achieve the largest
sample size possible per species and across species. Additionally, each specimen measured
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Figure 1 Measurements of body regions used to calculate head-body elongation ratio (hbER), head
ER, and axial elongation index (AEI) of the cervical, thoracic, lumbar, and sacral regions.Measurements
of body regions used to calculate head-body elongation ratio (hbER), head ER, and axial elongation index
(AEI) of the cervical, thoracic, lumbar, and sacral regions. LX = lengths and HX = heights. hbER = (LH +
LB)/LR AEIV = P

LV /mean(HV ). H = head; R = rib; C = cervical; T = thoracic; L = lumbar; S = sacral;
B = body length.

Full-size DOI: 10.7717/peerj.14800/fig-1

was fullymature, whichwe determined by verifying that the cranial exoccipital-basioccipital
and basisphenoid-basioccipital sutures were fused and that all vertebrae and limb bones
were ossified.

We used the head-body elongation ratio (hbER) as our metric of body shape (Law, Slater
& Mehta, 2019), which was calculated as the sum of head length (LH ) and body length (LB)
divided by the body depth (LR): hbER = (LH + LB)/LR (Fig. 1). We measured head length
as the condylobasal length of the cranium from the anteriormost point on the premallixa
to the posteriormost point on the surfaces of the occipital condyles. We estimated body
length by summing the centrum lengths (measured along the ventral surface of the vertebral
centrum) of each cervical, thoracic, lumbar, and sacral vertebrae. All linear measurements
were taken to the nearest 0.01 mm using digital calipers. We estimated body depth as the
average length of the four longest ribs. Each rib was measured as a curve from the end of the
capitulum to the point of articulation with the costal cartilage using a flexible measuring
tape.

We also quantified the underlying cranial and axial components that contribute to body
shape evolution. Head elongation ratio (head ER) was calculated by dividing cranial length
(LH ) by cranial height (HH ). We used a modified version of the axial elongation index
(AEI; Ward & Brainerd, 2007; Law, Slater & Mehta, 2019) to examine how each vertebral
region (i.e., cervical, thoracic, lumbar, and sacral) contributes to body shape evolution.
For each vertebral region (V), we calculated AEIV as the total sum of vertebral lengths
(LV measured along the ventral surface of the vertebral centrum) divided by the average
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vertebral height (HV ; measured from the ventral surface of the centrum to the tip of the
neural spine): AEIV = P

LV /mean(HV ). We quantified body size using the geometric
mean of our linear measurements (Nth root of the product of our measurements for the
cranium, vertebrae, and ribs; N = 11) (Mosimann, 1970; Klingenberg, 2016).

Lastly, we measured the lengths of the forelimb and hind limb. Forelimb length was
estimated by summing the lengths of the scapula (from the dorsalmost point on the glenoid
fossa to the ventralmost point on the inferior angle), humerus (from the dorsalmost point
on the humeral head to the ventralmost point on the capitulum), radius (from the
dorsalmost point on the radial head to the ventralmost point on the styloid process), and
the thirdmetatarsals (from the distalmost point on themetatarsal head to the proximalmost
point on the metatarsal base). Hind limb length was estimated by summing the lengths of
the femur (from the dorsalmost point on the femoral neck to the ventralmost point on
the patellar surface), tibia (from the dorsalmost point on the intercondylar eminence to
the ventralmost point on the articular surface), and third metacarpal (from the distalmost
point on the metacarpal head to the proximalmost point on the metacarpal base). Carpals
and tarsals were not measured because they are frequently missing. To increase species
sample sizes, we used reduced limb datasets in which total limb lengths consisted of just
the long bones (i.e., humerus and radius for the forelimb and femur and tibia for the
hind limb) and the metatarsals and metacarpals removed. Our findings with these datasets
indicated that the major patterns remain largely the same (see Results).

Ecotype data
We categorized species into four ecotypes: chipmunks (n = 15), gliding squirrels (n = 11),
ground squirrels (n = 29), and tree squirrels (n = 32) (Fig. 2), representing all ecotypes
found in Sciuridae. We categorized squirrels based on locomotion and nest location using
natural history information from the Handbook of the Mammals of the World (Wilson,
Lacher & Mittermeier, 2016) and the Animal Diversity Web (https://animaldiversity.org/).
We classified tree squirrels as species that nest in trees and display both arboreal and
scansorial locomotion, gliding squirrels as species with derived morphologies (i.e., patagia)
for gliding locomotion, and ground squirrels as species that nest in underground burrows
anddisplay fossorial locomotion (Hayssen, 2008).Our fourth ecotype groupwas chipmunks
(genus Tamias), which display the broadest range of locomotor and nesting behaviors;
species are considered terrestrial, semi-fossorial, or semi-arboreal depending on the source
consulted, but none are considered fully fossorial or arboreal.

Statistical analyses
All analyses were performed under a phylogenetic framework using Upham, Esselstyn &
Jetz (2019) recent phylogeny of mammals pruned to include just the 87 studied squirrels.
We took the natural logarithm of all traits prior to statistical analyses and performed all
analyses in R 4.2.2 (R Core Team, 2022).

We tested for allometric relationships between body shape and body size as the
explanatory variable using a phylogenetic generalized least squares (PGLS) regression
with the R package phylolm v2.6.2 (Tung Ho si & Ané, 2014). We then tested if body
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Figure 2 Pruned phylogeny of studied species with branch colors representing ecotypes.
Full-size DOI: 10.7717/peerj.14800/fig-2

shape allometry differed among ecotypes using a PGLS regression with an ANCOVA
design with Type II sum of squares: body shape ⇠ body size*ecotype. To determine if
there was significant body shape allometry, we generated 95% confidence intervals using
bootstrapping (1,000 replications) of the slopes and intercepts of the model. Confidence
intervals that deviated from an isometric slope of 0 were interpreted as exhibiting significant
positive allometry (slope > 0) or negative allometry (slope < 0). The isometric slope was
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set as 0 because hbER is a dimensionless ratio. Additionally, we determined whether the
allometric slopes differed between ecotypes by comparing the mean slope of each ecotype
with the 95% confidence intervals of the mean slope of the other ecotypes. All regression
coefficients were simultaneously estimated with phylogenetic signal in the residual error as
Pagel’s lambda (�).

We examined if the relationships between limb length and body shape using PGLS
and tested if these relationships differed among ecotypes using PGLS regressions with
an ANCOVA design in phylolm. We excluded 11 species from which we were unable
to collect limb data. We determined if each ecotype exhibited a significant limb ⇠ body
shape relationship based on whether the 95% confidence intervals from 1,000 bootstrap
replications deviated from an isometric slope of 0. We size-corrected limb lengths prior
to analyses by extracting residuals for each trait against the geometric mean using a PGLS.
We also tested if size-corrected limb lengths differed among ecotypes. Differences among
ecotypes were considered significant in each measure of limb length if an ecotype’s value
for mean limb length was outside of other ecotypes’ 95% bootstrap confidence intervals
for that measure of limb length. We also ran PGLS regressions on the full limb datasets
that included the metacarpals and metatarsals.

Lastly, we determined which morphological components (i.e., cranium, ribs, cervical
vertebrae, thoracic vertebrae, lumbar vertebrae, and sacrum) were most related to body
shape by performing phylogenetic multiple regressions with the R package RRPP v1.0.0
(Collyer & Adams, 2018). The six morphological components were used as explanatory
variables and body shape was used as the response variable. We used R2 to examine the
proportion of the variance in body shape explained by all the morphological components
and determined that the component most associated with body shape had the highest R2.
Statistical significance was determined using the random residual permutation procedure
(RRPP) with 1,000 iterations (Adams & Collyer, 2018). We performed phylogenetic
multiple regressions for the whole clade as well as each of the four ecotypes.

RESULTS
Body shape allometry
Across all squirrels, we found that there was no significant relationship between body size
and body shape (adjusted R2 < 0.01, � = 0.80, slope [95% CI] = �0.02 [�0.07:0.02];
Tables S2, S3). However, including body size * ecotype as an interaction term indicated
that allometric trends in body shape differed between ecotypes (adjusted R2 = 0.50, �
= 0.00; Fig. 3; Tables S2, S3). Gliding squirrels (0.12 [0.06:0.19]) and chipmunks (0.24
[0.03:0.46]) exhibited positive allometry, indicating that gliding and chipmunk species
evolved more elongate bodies with increasing body size. In contrast, ground squirrels
(�0.11 [�0.15:�0.06]) exhibited negative allometry, indicating that ground squirrels
evolved more robust bodies with increasing body size. Tree squirrels did not exhibit a
significant relationship between body shape and body size (�0.02 [�0.08:0.03]).

Within the body shape components, head ER (adjusted R2 = 0.34, � = 0.67; 0.18
[0.13:0.23]) and cervical AEI (adjusted R2 = 0.54, � = 0.86; 0.22 [0.18:0.26]) scaled with
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Figure 3 Scatter plot of ln body size and ln body shape. Body size was quantified as the geometric mean
of cranial and all axial measurements, and body shape was quantified using the head-body elongation ra-
tio. Relationships between body size and body shape were tested using PGLS with an ANCOVA design.
Solid lines indicate significant relationships, and dashed lines indicate non-significant relationships. Con-
fidence intervals that deviated from an isometric slope of 0 were interpreted as exhibiting significant posi-
tive allometry (slope > 0) or negative allometry (slope < 0).

Full-size DOI: 10.7717/peerj.14800/fig-3

positive allometry with body size whereas lumbar ER (adjusted R2 = 0.05, �= 0.91; �0.09
[�0.16:�0.02]) scaled with negative allometry across all squirrels (Tables S2, S3). These
results indicate that squirrels exhibit more elongate heads and cervical regions but more
robust lumbar regions with increasing body size. In contrast, thoracic and sacral regions
and size-corrected rib length did not scale with body size (Tables S2, S3).

Allometric trends in body shape components also differed among ecotypes. For gliding
squirrels, we found positive allometry for ln head ER (0.21 [0.12:0.30]), ln cervical AEI
(0.29 [0.20:0.37]), and ln lumbar AEI (0.15 [0.01:0.29]; Fig. 4; Tables S2, S3). Tree squirrels
exhibited a positive slope for only ln cervical AEI (0.27 [0.20:0.35]). Ground squirrels
showed negative allometry for ln thoracic AEI (�0.17 [�0.27:�0.09]) and ln lumbar AEI
(�0.23 [�0.32:�0.14]) but positive allometry for ln cervical AEI (0.13 [0.07:0.18]), ln
head ER (0.22 [0.15:0.29]), and ln size-corrected rib length (0.05 [0.00:0.08]). Chipmunks
showed a positive trend for ln cervical AEI (0.50 [0.31:0.67]). We found no significant
allometry for ln sacral AEI in any ecotype (Fig. 4; Tables S2, S3).

Relationships between body shape and limb length
Across all squirrels, we found that body shape did not scale with either size-corrected
forelimb length (adjusted R2 < 0.01, � = 0.92, slope [95% CI] = 0.08 [�0.17:0.34]) or
size-corrected hind limb length (adjusted R2 = 0.20, �= 0.91, 0.08 [�0.17:0.29]; Tables S4,
S5). Findings remained largely the same when using the full forelimb (scapula + humerus
+ radius + metacarpal) and hind limb (femur + tibia + metatarsal) datasets (Tables S4, S5).
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Figure 4 Scatter plot of ln body size and ln eachmorphological component underlying body shape.
Body size was quantified as the geometric mean of cranial and all axial measurements. Relationships be-
tween body size and each morphological component were tested using PGLS with an ANCOVA design.
Confidence intervals that deviated from an isometric slope of 0 were interpreted as exhibiting significant
positive allometry (slope > 0) or negative allometry (slope < 0). Solid lines indicate significant relation-
ships, and dashed lines indicate non-significant relationships.

Full-size DOI: 10.7717/peerj.14800/fig-4

Relationships between body shape and size-corrected forelimb lengths differed between
ecotypes (adjusted R2 = 0.90, � = 0.00; Tables S4, S5). Ground squirrels exhibited a
negative relationship between size-corrected forelimb length and body shape (�0.391
[�0.672:�0.098]), whereas the remaining ecotypes did not exhibit significant relationships
between relative forelimb length and body shape (chipmunk slope = �0.01 [�0.56:0.48];
gliding squirrel slope = 0.37 [�0.04:0.86]; tree squirrel slope = 0.01 [�0.32:0.32]). In
contrast, none of the ecotypes exhibited significant relationships between relative hind
limb length and body shape (adjusted R2 = 0.18, � = 0.91; chipmunk slope = �0.05
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Figure 5 Scatter plot of ln body shape and ln size-corrected forelimb and hind limb lengths. Body
shape was quantified using the head-body elongation ratio. Relationships between body shape and limb
lengths were tested using PGLS with an ANCOVA design. Confidence intervals that deviated from an
isometric slope of 0 were interpreted as exhibiting significant positive relationship (slope > 0) or nega-
tive relationship (slope < 0). Solid lines indicate significant relationships, and dashed lines indicate non-
significant relationships.

Full-size DOI: 10.7717/peerj.14800/fig-5

[�0.45:0.32]; gliding squirrel slope = 0.33 [�0.35:09]; ground squirrel slope = 0.02
[�0.31:0.34]; tree squirrel slope = �0.14 [�0.55:0.25]; Fig. 5).

Only gliders exhibited significantly different relative forelimb lengths. Gliding squirrels
exhibited relatively longer forelimbs (residuals [95% CI] = 0.49 cm [0.17:0.80 cm]) than
all other ecotypes (chipmunks = 0.07 cm [�0.23:0.36 cm]; ground squirrels = 0.03 cm
[�0.27:0.32 cm]; tree squirrels = 0.16 cm [�1.45:0.46 cm]) (adjusted R2 = 0.00, � =
0.91; Fig. 6). There were no significant differences in relatively longer hind limbs among
chipmunks (�0.07 cm [�0.42:0.26 cm]), gliding squirrels (0.23 cm [�0.17:0.58 cm]),
ground squirrels (�0.09 cm [�0.43:0.22 cm]), and tree squirrels (�0.01 cm [�0.37:0.32
cm]) (adjusted R2 = 0.20, � = 0.91; Fig. 6).
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Figure 6 Violin plots of size-corrected forelimb length and size-corrected hind limb length.Gliding
squirrels exhibited relatively longer forelimbs than all other ecotypes and relatively longer hind limbs than
ground squirrels. The horizontal black line indicates the mean size-corrected limb length for all ecotypes.

Full-size DOI: 10.7717/peerj.14800/fig-6

Morphological components underlying body shape
We found that the relative length of the ribs (R2 = 0.64; P = 0.001) and elongation or
shortening of the thoracic region (R2 = 0.19; P = 0.001) and sacral region (R2 = 0.11;
P = 0.001) are most associated to body shape evolution across squirrels (Table 1; Fig.
7). Elongation or shortening of the head, cervical, and lumbar regions explained less
than 2%. When examining each ecotype separately, we found that the relative length of
the ribs was also the best explanatory variable of body shape in chipmunks (R2 = 0.48;
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Figure 7 Scatterplots of ln body shape andmorphological components underlying body shape. Body
shape was quantified using the head-body elongation ratio. R2, Z scores, and p values were obtained from
phylogenetic multiple regression with the random residual permutation procedure (RRPP). See Table 1
for full results.

Full-size DOI: 10.7717/peerj.14800/fig-7

P = 0.001), ground squirrels (R2, = 0.34; P = 0.001), and tree squirrels (R2 = 0.54; P =
0.001). In contrast, elongation or shortening of the head (R2 = 0.55; P = 0.003) was the
best explanatory variable of body shape in gliding squirrels. The remaining morphological
components explained 0 to 25% in body shape (Table 1; Fig. 7).

DISCUSSION
Body shape allometry and limb length evolution
Although size is known to influence variation in cranial, vertebral, and appendicular
shape within and across species (e.g., Baliga & Mehta, 2016; Zelditch et al., 2017; Jones et
al., 2018; Stepanova & Womack, 2020; Law et al., 2022), few studies have tested allometric
patterns in overall body shapes (but see Friedman et al., 2019; Law, 2021b). Here, our results
indicate that the relationship between body size and body shape is nuanced by ecological
specialization; both body shape allometry and relationships between body shape and limb
lengths differed between ecotypes (Fig. 3). Specifically, we found more elongate bodies
with increasing size (i.e., positive allometry) in chipmunk and gliding squirrel body shapes,
more robust bodies with increasing size (i.e., negative allometry) in ground squirrel body
shapes, and no significant effect of body size on the evolution of tree squirrel body shapes.

As predicted, ground squirrels exhibited more robust bodies with increasing body
size. This negative body shape allometry is consistent with what is found in terrestrial
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Table 1 Results of the phylogenetic multiple regression with the random residual permutation proce-
dure (RRPP) to determine which morphological components contributed most to body shape evolu-
tion across all squirrels and within each ecotype.We adjusted all P-values using a Benjamini–Hochberg
correction to reduce the type I error probability across multiple comparisons (Benjamini & Hochberg,
1995). Bold p-values indicate significance (↵ = 0.05). DF, degrees of freedom; SS, sum of squares.

Morphological components Df SS R2 F Z P

A. All ecotypes combined
ln head elongation ratio 1 0.00015 <0.01 4.280 1.650 0.044
ln cervical AEI 1 0.00001 <0.01 0.150 �0.600 0.721
ln thoracic AEI 1 0.01104 0.19 312.240 7.980 0.001
ln lumbar AEI 1 0.00107 0.02 30.240 3.810 0.001
ln sacral AEI 1 0.00620 0.11 175.300 6.160 0.001
ln size-corrected rib length 1 0.03773 0.64 1066.640 10.300 0.001
Residuals 80 0.00283 0.05
Total 86 0.05903

B. Chipmunks
ln head elongation ratio 1 0.00214 0.08 167.980 5.210 0.001
ln cervical AEI 1 0.00440 0.16 345.020 6.340 0.001
ln thoracic AEI 1 0.00224 0.08 175.560 4.980 0.001
ln lumbar AEI 1 0.00408 0.15 320.140 5.790 0.001
ln sacral AEI 1 0.00110 0.04 86.530 4.320 0.001
ln size-corrected rib length 1 0.01314 0.48 1031.090 8.310 0.001
Residuals 8 0.00010 0.00
Total 14 0.02719

C. Gliding squirrels
ln head elongation ratio 1 0.00200 0.55 52.220 3.240 0.003
ln cervical AEI 1 0.00001 <0.01 0.300 �0.240 0.604
ln thoracic AEI 1 0.00001 <0.01 0.350 �0.150 0.551
ln lumbar AEI 1 0.00091 0.25 23.710 2.500 0.004
ln sacral AEI 1 0.00018 0.05 4.600 1.320 0.084
ln size-corrected rib length 1 0.00041 0.11 10.570 1.770 0.031
Residuals 4 0.00015 0.04
Total 10 0.00367

D. Ground squirrels
ln head elongation ratio 1 0.00397 0.24 60.070 4.590 0.001
ln cervical AEI 1 0.00222 0.13 33.520 3.610 0.001
ln thoracic AEI 1 0.00072 0.04 10.850 2.430 0.006
ln lumbar AEI 1 0.00005 <0.01 0.680 0.210 0.428
ln sacral AEI 1 0.00265 0.16 40.080 3.770 0.001
ln size-corrected rib length 1 0.00575 0.34 86.920 5.060 0.001
Residuals 22 0.00145 0.09
Total 28 0.01681

(continued on next page)
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Table 1 (continued)

Morphological components Df SS R2 F Z P
E. Tree squirrels

ln head elongation ratio 1 0.00003 <0.01 1.440 0.780 0.23
ln cervical AEI 1 0.00172 0.16 91.960 4.780 0.001
ln thoracic AEI 1 0.00244 0.23 130.620 5.300 0.001
ln lumbar AEI 1 0.00014 0.01 7.480 2.060 0.013
ln sacral AEI 1 0.00006 0.01 3.310 1.380 0.082
ln size-corrected rib length 1 0.00570 0.54 305.280 7.860 0.001
Residuals 25 0.00047 0.04
Total 31 0.01055

carnivorans (Law, Slater & Mehta, 2019; Law, 2021a). In large terrestrial mammals, robust
body shapes (Law, 2021b) and low spinal flexibility (i.e., dorsostability) of the vertebral
column (Halpert, Jenkins Jr & Franks, 1987; Jones, 2015a) provide increased support against
gravity for their heavier bodies (Kardong, 2014). For example, the lumbar vertebrae of large
bovids and felids have more robust centra than found in smaller species, providing
more stability against dorsoventral bending during running (Jones, 2015a). However, in
Sciuridae, negative body shape allometry was only observed in ground squirrels, suggesting
that fossoriality facilitated selection towards more robust bodies with increasing size.

Ground squirrels evolved relatively shorter forelimbs with increasing body elongation,
reflecting the only significant trend observed between limb lengths and body shape in
squirrels. The reduction or loss of limbs tend to evolve with body elongation in ectotherms
(Gans, 1975; Wake, 1991; Wiens & Slingluff, 2001; Skinner, Lee & Hutchinson, 2008) and
musteloid mammals (Law, Slater & Mehta, 2019). With the notable exception of snakes
(Gans, 1975), this trend tends to be found in species that dig (Gans, 1975; Wake, 1991;
Lee, 1998; Rieppel, 1998), spend significant time hunting in burrows (Law, Slater & Mehta,
2019), or shelter in leaf litter and other surface debris (Gans, 1975). Additionally, elongate,
limb-reduced bodies tend to be associated with a small body size (Lee, 1998; Rieppel, 1998).
These trends are only corroborated by our results for ground squirrels, the most fossorial of
the four ecotypes. This allometric trend may suggest that small, elongate ground squirrels
rely more on their relatively shorter forelimbs to provide the necessary support, increased
mechanical advantage, and force production (Lagaria & Youlatos, 2006; Samuels & Van
Valkenburgh, 2008) needed to dig large burrow systems (Goldstein, 1972;Casinos, Quintana
& Viladiu, 1993) compared to larger, more robust ground squirrels. Additionally, we found
reduction of forelimb lengths in elongate species but not hind limb lengths, as seen in both
mustelids (Law, Slater & Mehta, 2019) and ectotherms (Gans, 1975; Wiens & Slingluff,
2001; Brandley, Huelsenbeck & Wiens, 2008; Morinaga & Bergmann, 2020). Our research
marked the first evidence of this trend in rodents.

In contrast to ground squirrels and terrestrial carnivorans, gliding squirrels exhibited
positive body shape allometry, in which larger species exhibit more elongate bodies.
Additionally, we confirm Thorington & Heaney’s (1981) hypothesis that small tree and
gliding squirrels exhibit similarly robust bodies, while large gliding squirrels are more
elongate than large tree squirrels. An elongate body could enable more aerodynamic and
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maneuverable gliding in large gliding squirrels, which face increased effects of gravity and
drag due to their larger sizes. Because body mass is expected to increase proportionally to
the cube of linear measurements whereas wing area increases proportionally to the square,
wing loading (bodymass/patagium area) would naturally be higher in large gliding squirrels
(Thorington & Heaney, 1981). There are multiple pathways through which large gliding
squirrels can compensate for this, including body elongation allometry (i.e., decreasing
relative bodyweight with size) and limb length allometry (i.e., disproportionately increasing
patagium area with size). The elongate forms of large gliding squirrels correspond to a
16% lower relative body weight than small gliding squirrels, decreasing the effects of wing
loading on large squirrels (Thorington & Heaney, 1981). Interestingly, relative limb length
did not increase with body elongation (Fig. 5), possibly due to constraints from scansorial
and gliding locomotion on forelimb length. Exceedingly long limbs could interfere with
the squirrels’ ability to climb, reduce maneuverability when gliding, and risk more frequent
breakage. Despite the lack of relationship between limb length and body elongation, gliding
squirrels increase the area of their patagium through the styliform cartilage on their wrists
(Johnson-Murray, 1977; Thorington, Darrow & Anderson, 1998). The styliform extension,
while isometric with respect to size (Thorington & Heaney, 1981), could reduce selection
towards positive allometry in limb length by both increasing maneuverability (acting
similarly to a winglet on an airplane wing) and reducing wing loading (Thorington, Darrow
& Anderson, 1998).

Despite the lack of relative limb length allometry, we confirm that gliding squirrels
exhibited relatively longer forelimbs than all other ecotypes (Fig. 6; Peterka, 1936; Bryant,
1945;Thorington & Heaney, 1981), a pattern that has been found across all glidingmammals
(Grossnickle et al., 2020). Therefore, the elongate bodies and relatively longer forelimbs
together in gliding squirrels could reduce the effects of wing loading on the gliding
capabilities of larger species. Interestingly, the observation that gliders exhibited relatively
longer hind limbs compared to the remaining ecotypeswas not aswell supported statistically
(Fig. 6). A possible explanation for this pattern is that, because of the positioning of
the forelimbs in the patagium, elongating the forelimbs may better support a wider
plagiopatagium than elongating the hind limbs. Longer hind limbs would increase the
uropatagium area and thus decrease the aspect ratio (wingspan2/wing area) of gliding
squirrels, which is already quite low compared to birds (Thorington & Heaney, 1981).
While a low aspect ratio could facilitate landing (Zimmerman, 1932; Thorington & Heaney,
1981) and increasemaneuverability (Norberg, 1995),Thorington & Heaney (1981) proposed
that this low aspect ratio could decrease glide ratio (horizontal distance/altitude loss). A
low glide ratio could negatively impact gliding ability, decreasing the selective pressure
for long hind limb length in gliding squirrels. Additionally, the relative hind limb lengths
of gliding squirrels increased with body elongation when the metatarsals were included.
The patagium connects at the ankle, so large gliders’ higher metatarsal length does not
affect wing area despite uropatagium area being relatively larger in large gliding squirrels,
possibly as an adaptation to compensate for their high wing loading (Thorington & Heaney,
1981). This finding could instead be related to the start of gliding locomotion; larger, more
elongate gliding squirrels may require more momentum from long metatarsals to propel
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themselves off of branches. Furthermore, aspects of the morphology other than forelimb
and hind limb length, such as patagium musculature (Johnson-Murray, 1977), could be
altered to compensate for wing loading or increase maneuverability in large species.

Generalist chipmunks did not exhibit similar trends to fossorial ground squirrels;
chipmunks showed neither a negative body shape allometric trend nor negative trend
between relative limb length and body elongation. A possible explanation is that chipmunks
exhibit a narrower range of body sizes, from the 32–50 g least chipmunk to the 66–150
g Eastern chipmunk (Kurta, 1995; Reid, 2006; Roland, 2009). Chipmunks are also small
compared to ground squirrels, which range from the 96–117 gwhite-tailed antelope squirrel
to the 8 kg Olympic marmot. Chipmunks and small ground squirrels tend to burrow for
shelter, whereas larger ground squirrels and marmots tend to build extensive burrow
systems (Armstrong, 2007). Therefore, these differences in size-related burrowing behavior
and lack of body size diversity within chipmunks could explain their different trends
compared to ground squirrels. Instead, chipmunks exhibit more elongate bodies with
increasing body size, an adaptation that may provide larger chipmunk species increased
maneuverability when climbing trees and navigating tight tree hollows.

Lastly, there was no relationship between body size and body shape in tree squirrels. An
elongate body could be relatively unimportant compared to relative tail length for arboreal
maneuvering. Tree squirrels exhibit relatively longer tails than ground squirrels (Hayssen,
2008), which may facilitate balance during arboreal locomotion (Buck, Tolman & Tolman,
1925; Siegel, 1970; Hayssen, 2008) and help right falling squirrels (Fukushima et al., 2021).
The relatively longer tails of larger squirrels could contribute to large tree squirrels’ ability
to navigate arboreal terrain despite the lack of body shape allometry.

Allometry of axial skeleton components
Locomotion can impact the evolution of the axial skeleton, especially the thoracolumbar
region, which is the main axial region responsible for generating the propulsive forces
necessary for locomotion (Boszczyk, Boszczyk & Putz, 2001; Kardong, 2014). Suspensory
mammals with dorsostabile adaptations have higher variability in presacral vertebral
number than running mammals with dorsomobile (high spinal flexibility) adaptations
(Williams et al., 2019). As size increases, the energetic and biomechanical costs of
dorsomobile running also increase. Therefore, a trade-off between stabilization and
efficiency may have led to increased lumbar stability with increasing body size in large
running mammals such as bovids (Jones, 2015a). Here, we found that allometry influenced
the evolution of the thoracolumbar region in only the ground and gliding squirrels.
Unsurprisingly, ground squirrels evolved a more robust thoracic region and relatively
longer ribs with increasing body size. Amore robust thoracic region and rib cage contributes
to dorsostability in large squirrels (Boszczyk, Boszczyk & Putz, 2001; Jones, 2015a; Jones,
2015b), which could support their bodies as they dig large tunnel systems. In contrast,
gliding squirrels evolved a more elongate lumbar region. The increased elongation in the
lumbar region of larger gliding squirrels could be an adaptation to provide dorsoventral
maneuverability and flexibility (Boszczyk, Boszczyk & Putz, 2001; Jones, 2015a; Jones, 2015b)
while gliding.
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The cervical region was the only morphological component measured that consistently
exhibited positive allometry across all four ecotypes. Increased elongation of the cervical
region with increasing size is counterintuitive in ground squirrels, since robust cervical
vertebrae could provide more support for the head as body size increases. In fact, across
mammals, the cervical spine tends to shorten relatively with increasing body size, albeit
these allometric trends differ between different clades (Arnold, Amson & Fischer, 2017). A
possible explanation for the positive cervical allometry in squirrels is that the flexibility
provided by a relatively longer neck is advantageous for large squirrels regardless of
ecotype, allowing more maneuverability of their necks when navigating complex terrain or
burrowing. Elongation of other vertebral regions contributes to dorsal flexibility (Boszczyk,
Boszczyk & Putz, 2001; Jones, 2015a; Jones, 2015b), and elongation of the cervical region
may similarly facilitate locomotion. Additionally, it is possible that an ability to see a
large range of land could be advantageous for large ground squirrels. To avoid predation,
large ground squirrels must seek out abundant piles of boulders and rocks for cover,
while smaller ground squirrels tend to use vegetation for cover (Armstrong, 2007). Larger
ground squirrels’ need to scan the landscape to look for large boulders could explain
selective pressures for more flexible necks. Furthermore, ground squirrels exhibit bipedal
posture when threatened by potential predators (Swaisgood, Rowe & Owings, 1999), and
an elongate neck could better enhance the view of their environment that this posture
provides, especially for large, conspicuous squirrels. Meanwhile, elongation of the cervical
vertebrae could be advantageous for gliding squirrels as it could contribute to the evolution
of a more elongate and aerodynamic form.

Gliding and ground squirrels exhibited a positive allometric trend for head elongation
ratio. More elongate heads in larger gliders may decrease drag and make gliding more
aerodynamic. The positive allometric trend in ground squirrels, however, is more
surprising. Some large ground squirrel species use their heads to push stones aside
when burrowing (Kwiecinski, 1998), which a more robust head would better facilitate.
The positive allometric trends of head elongation ratio in all ecotypes follow similar trends
of craniofacial evolutionary allometry (CREA), the tendency for larger species to evolve
relatively longer rostrums. CREAhas been observed in a diverse range ofmammalian clades,
including antelopes, kangaroos, bats, and mongooses (Cardini & Polly, 2013; Cardini et
al., 2015; Arbour, Curtis & Santana, 2021). CREA was also observed in tree squirrels of the
subfamily Sciurinae (Cardini & Polly, 2013), suggesting that the elongation of the rostrum
rather than the braincase contributed to the overall elongation of the cranium in squirrels.

Morphological components of body shape
The relative depth of the ribcage (R2 = 0.64) and thoracic vertebrae (R2 = 0.19) exhibited
the strongest relationships with body shape in squirrels, together contributing to 83%
of total body shape. These structures are vital to supporting the body against gravity
and supporting the limbs during propulsive forces (Kardong, 2014). Our findings slightly
differ from trends described in carnivorans, where elongation of the lumbar region
(R2 = 0.41) followed by relative length of the ribs (R2 = 0.21) and elongation of the thoracic
vertebrae (R2 = 0.14) exhibited the strongest relationships with body shape (Law, 2019).
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The dorsoventral flexibility that an elongate lumbar region provides (Boszczyk, Boszczyk
& Putz, 2001; Jones, 2015a; Jones, 2015b) could allow for increased maneuverability when
hunting, especially during pouncing and chasing behaviors. This could explain why the
lumbar region is associated with body shape far more in carnivorans compared to squirrels.

We also found that, consistent with findings in other taxonomic groups, the
morphological components best associated with body shape evolution differ between
ecotype or clade. In squirrels, relative rib lengths explained the most variation out of any
morphological component in most ecotypes (ground squirrels R2 = 0.34; chipmunks R2 =
0.48; tree squirrels R2 = 0.54) except for gliding squirrels, where head elongation (R2 = 0.55)
explained the majority of body shape evolution. Across carnivoran families, elongation
or shortening of the head, cervical, and/or lumbar regions, as well as the relative length
of the ribs explained the most variation in body shape (Law, Slater & Mehta, 2019; Law,
2021b). Even carnivorans that exhibit incomplete convergence towards body elongation
(i.e., weasels, civets, and mongooses) display multiple pathways towards their converging
elongate body plans (Law, 2022). Altogether, these results demonstrate how the evolution
of different body shapes can arise through multiple diverging evolutionary pathways
(Ward & Mehta, 2010; Ward & Mehta, 2014; Morinaga & Bergmann, 2017; Bergmann &
Morinaga, 2019; Law, 2021b; Law, 2022).

CONCLUSION
Habitat use influenced allometric patterns in body shape and its underlying morphological
components in Sciuridae. First, ground squirrels exhibit negative body shape allometry,
while gliding squirrels and chipmunks evolved more elongate bodies with increasing size.
Second, only ground squirrels exhibit a relationship between the forelimb and body shape,
where more elongate species exhibit relatively shorter forelimbs. Finally, the relative length
of the ribs and elongation or shortening of the thoracic region explained the most of body
shape evolution across squirrels. Altogether, because body shape evolution has far-reaching
effects on the physiology, biomechanics, and ecology of species, including heat conservation
(Brown & Lasiewski, 1972), locomotion (Sharpe et al., 2015; Ward et al., 2015), and ability
to exploit niches (Law, 2019), these results provide a strong morphological foundation for
future research investigating the evo-devo and evolutionary ecology of squirrel and other
mammalian body plans.
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