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Abstract

The advent of community-science databases in conjunction with museum specimen locality information has
exponentially increased the power and accuracy of ecological niche modeling (ENM). Increased occurrence
data has provided colossal potential to understand the distributions of lesser known or endangered species,
including arthropods. Although niche modeling of termites has been conducted in the context of invasive and
pest species, few studies have been performed to understand the distribution of basal termite genera. Using
specimen records from the American Museum of Natural History (AMNH) as well as locality databases, we
generated ecological niche models for 12 basal termite species belonging to six genera and three families. We
extracted environmental data from the Worldclim 19 bioclimatic dataset v2, along with SoilGrids datasets and
generated models using MaxEnt. We chose Optimal models based on partial Receiving Operating character-
istic () ROC) and omission rate criterion and determined variable importance using permutation analysis. We
also calculated response curves to understand changes in suitability with changes in environmental variables.
Optimal models for our 12 termite species ranged in complexity, but no discernible pattern was noted among
genera, families, or geographic range. Permutation analysis revealed that habitat suitability is affected pre-
dominantly by seasonal or monthly temperature and precipitation variation. Our findings not only highlight
the efficacy of largely community-science and museum-based datasets, but our models provide a baseline for
predictions of future abundance of lesser-known arthropod species in the face of habitat destruction and cli-
mate change.
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Termites (Blattodea), are social cockroaches that are ubiquitous

globally. Termite taxonomic groups were historically defined by
the presence or absence of certain gut endosymbionts; they were
originally divided into the ‘higher termites’ (Termitidae), and the
‘lower termites’ (all other families) based on the endosymbiotic
fauna in their hindguts, which are responsible for digestion of the
cellulose in the wood termites consume. Flagellated protists, ar-
chaea, and bacteria are found in the hind guts of ‘lower termites’
inherited likely from nonsocial cockroach ancestors (Cleveland
1923, Brugerolle and Radek 2006, Engel et al. 2009, Dietrich
et al. 2014, Poulsen 2015, Korb et al. 2019); ‘higher termites’ in-
stead rely solely on bacteria and their host cellulases, or fungi,
to digest cellulose (Brune and Ohkuma 2010, Poulsen 2015).
Recent classification instead defines two major groups, the non-
Neoisoptera and Neoisoptera (Engel et al. 2009); the Neoisoptera
are a monophyletic group of termites which possess a fontanelle for

defense in the soldier caste, (comprising the ‘lower termite’ families
Stylotermitidae, Serritermitidae, and Rhinotermitidae as well as the
‘higher termite’ Termitidae) include several common pest termites.
The non-neoisopteran taxa form a paraphyletic assemblage, with
the monophyletic family Kalotermitidae recovered as sister to the
Neoisoptera. The Kalotermitidae were considered ‘lower termites’
based on their endosymbiotic fauna, and the family includes several
hard wood feeding species that are economically important pests. By
contrast, harvesters’ termites, which are non-Kalotermitidae, non-
neoisopteran termites (including Stolotermitidae, Archotermopsidae,
and Hodotermitidae) that form a taxonomic assemblage at the basal
nodes of the termite tree of life are less well studied since few are
structural pests, and they are far rarer in online databases of termite
records (Fig. 1). Termite niches have not been well studied empir-
ically, and here we use Ecological Niche Modeling to evaluate the
climatic variables shaping termite distributions.
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Fig. 1. Summary tree showing current state of termite phylogeny. Simplified schematic based on familial termite relationships recovered with high support
in (Engel et al. 2009, Legendre et al. 2015). Stylotermitidae is placed in its current position based on (Bucek et al. 2019). Branches representing unresolved
relationships (bootstrap values < 75) are indicated by *. The cockroach family Cryptocercidae was used as an outgroup, and soldier illustrations correlate
with families used in summary tree. A. Mastotermes (Froggatt 1897, Blattodea Mastotermitidae), B. Zootermopsis angusticollis (Hagen 1858, Blattodea,
Archotermopsidae), C. Hodotermopsis sjostedi (Holmgren 1911, Blattodea, Archotermopsidae), D. Anacanothermoes ochraceus (Burmeister 1839, Blattodea,
Hodotermitidae), E. Porotermes adamsoni (Froggat 1897, Blattodea, Stolotermitidae), F Cryptotermes brevis (Walker 1853, Blattodea, Kalotermitidae), G.
Stylotermes halumicus (Liang, et al. 2017, Blattodea, Stylotermitidae), H. Coptotermes formosanus (Shiraki 1909, Blattodea, Rhinotermitidae), I. Serritermes
serrifer (Hagen and Bates, Blattodea, Serritermitidae), J. Neocapritermes taraqua (Krishna and Araujo 1968, Blattodea, Termitidae), K. Nasutitermes corniger

(Motschulsky 1855, Blattodea, Termitidae)

Ecological Niche Modeling (ENM) is a ubiquitous technique
utilized by ecologists to estimate the abiotic distribution of a spe-
cies by correlating observational (occurrence) data with spatially ex-
plicit environmental data (Guisan and Zimmerman 2000, Guisan
and Thuiller 2005). Occurrence data is commonly obtained from
natural history collections, community science observations, or
abundance data based on field sampling, while environmental data
is typically derived as climate variables from field stations or re-
mote sensing satellites. These models are generated and overlaid on
a Geographical Information System (GIS) to visually interpret the
factors which underlie the species’ distribution. Such modeling has
become an essential tool for addressing issues in ecology, evolution,
biogeography, conservation biology, and climate change (Guisan and
Zimmerman 2000; Guisan and Thuiller 2005; Pearman and Weber
2007; Pearman et al. 2008; Peterson 2011; Peterson et al. 2011;
Anderson 2012, 2013).

To reduce spatial biases within modern-day ENMs, occurrence data
must be sampled throughout the entire range of the taxon (Peterson
2011). Such information is crucial for assessing environmental suit-
ability of regions or times of interest for species or genus-level niche
characteristics. In recent years, the centralization of large biodiversity
datasets (GBIF, iNaturalist) has allowed more accurate and large-scale
modeling of species distributions where localities accrued from mu-
seum specimens are lacking. Such aggregated biodiversity datasets
possess extreme potential for determining habitat suitability of en-
dangered or lesser-known arthropod species. Although ENM has been
used for several insect groups (Urbani et al. 2017, Kass et al. 2020,
Lee et al. 2021), for the social cockroaches, commonly called termites,
niche modeling has not been widely implemented beyond pest taxa and

invasive species (Tonini et al. 2014, Maynard et al. 2015, Cramer et al.
2017, Hyseni and Garrick 2019, Hochmair et al. 2020).

A recent review of available records noted that most ter-
mite observations seem to be available from Australia, where
Stolotermitidae are most species rich (Hochmair et al. 2020), how-
ever, GBIF, iNaturalist and other databases have generally had far
fewer records from the non-Kalotermitidae, non-Neoisopteran fam-
ilies and museums currently hold the bulk of geographic range in-
formation for these taxa. To date, no ecological niche modeling has
been undertaken for a majority of such ‘lower termites’ including
Mastotermes Froggat 1897 (Mastotermitidae Desneux 1904),
Stolotermes Hagen, 1858, Porotermes Hagen, 1858 (Stolotermitidae
Holmgre 1910), Hodotermes Hagen 1853, Zootermopsis Emerson
1993, Archotermopsis Engel et al., 2009, Hodotermopsis Holmgren,
1911 (Archotermopsidae Engel et al., 2009). Ecological niche
modeling has only been performed for Microhodotermes Sjostedt
(Hodotermitidae) (Cramer et al. 2017).

Non-Kalotermitidae, non-neoisopteran termites are gener-
ally found in the southern hemisphere, except for Zootermopsis,
a genus distributed in the Southwestern United States including,
Arizona, New Mexico, and Mexico, as well as the Pacific north-
west coasts including California, Oregon, Washington, and Canada.
Hodotermitidae include taxa from the Middle East, Africa, and
Southwest Asia, while Stolotermitidae has a disjunct distribution ex-
tending through Eastern Australia & New Zealand, southern Africa,
and South America. Archotermopsidae is similarly disjunct with rep-
resentatives found in Africa, Asia, and North America. The family
Mastotermitidae is the earliest branching lineage in the termite tree
of life, but the sole living representative, Mastotermes darwinensis,
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currently restricted to Australia and New Zealand (but with a
broader fossil distribution) is a highly apomorphic taxon (Nalepa
and Jones 1991, Thorne and Carpenter 1992, Thorne et al. 2000,
Zhao et al. 2019) (Fig. 1). The remaining extant families generally
make small to moderate sized colonies (but these can be rather large
in Microhodotermes), and only Hodotermitidae have true worker
castes, with Stolotermitidae and Archoptermopsidae instead having
pseudergates (Legendre et al. 2015). Hodotermitidae are typical har-
vesters, feeding on grasses, twigs, bark, and laying pheremone trails
(Krishna et al. 2013a). Archotermopsidae and Stolotermitidae in-
clude species which feed on rotting wood (Krishna et al. 2013a). In
most of these non-Kalotermitidae non-neoisopteran taxa pair bonds
are formed between male and female mates (Grasse 1947, Nalepa
and Jones 1991).

Here, we used specimen records from the American Museum of
Natural History (AMNH) termite collection, The Global Biodiversity
Information Facility (GBIF.com), and iNaturalist to generate MaxEnt
models for select species in the genera Hodotermes, Mastotermes,
Microhodotermes, Porotermes, Stolotermes, and Zootermopsis. This
project is the first to utilize community-science and museum bio-
diversity data to construct full-range habitat suitability models of
non-Kalotermitidae, non-neoisopteran termites outside of a single
study on Microhodotermes (Cramer et al. 2017). The aim of this
project is to create ecological niche maps for these enigmatic ‘lower
termites’, which we hope will be used by future studies as a baseline
when making predictions. Additionally, given recent fires and on-
going anthropogenically driven habitat alteration, these models can
be used by future studies to make predictions about potential shifts
in the ranges of these species.

We used the machine learning algorithm Maxent v3.4.4.
(Maximum entropy)(Phillips and Dudik 2008), which remains one
of the top-performing algorithms for fitting presence-background
SDMs (Valavi et al. 2021) in conjunction with the kuenm R package
(Cobos et al. 2019). To evaluate models, we used the ‘checkerboard’
method of spatial partitioning in which a checkerboard grid is over-
laid across our study extent, and localities are partitioned into two
separate bins based on their placement (50% testing, and 50%
training) (Radosavljevic and Anderson 2014). As the combination
of two key complexity settings in Maxent models, feature classes
and regularization multipliers, can strongly influence model outputs
(Warren and Seifert 2011, Radosavljevic and Anderson 2014), we
tuned model complexity to find optimal settings. This process con-
sists of varying complexity settings, running models with combin-
ations of these settings, and finally selecting optimal settings based
on performance metrics. Feature classes determine the shape of the
model fit, while regularization multipliers control how much com-
plexity is penalized—this can result in predictor variable coefficients
shrinking to 0 and thus dropping out of the model (Phillips and
Dudik 2008). For tuning, in order of increasing complexity, we chose
the feature classes linear (L), quadratic (Q), and hinge (H), as well
as regularization multipliers 1 through 5 (higher numbers penalize
complexity more). We excluded from consideration other available
feature classes because of difficulties in interpretation and excessive
complexity (product), and due to redundancy with existing classes
(threshold) (Phillips et al. 2017). The regularization multiplier value
range we chose includes the default value of 1, but also values higher
than this to fit simpler models; this approximate range is typically
used for studies with similar sample sizes (Moreno-Amat et al. 20135,
Kass et al. 2020).

We assessed model performance through statistical significance
of the partial Receiver Operating Characteristic (ROC) and omission
rate, and chose the optimal model based on the Akaike Information

Criterion for low sample sizes (AICc)(Cobos et al. 2019). Within
the kuenm R package, statistical significance among models is de-
termined via bootstrap resampling of 50% of the testing data, with
probability distributions assessed by direct count of the proportion
of bootstrap replicates possessing an AUC value of <1.0 (Cobos et al.
2019). AUC ranges from 0 (no-better-than-random prediction) and
1 (perfect prediction) (Peterson et al. 2008, Peterson 2011). Model
performance was measured via omission rate in which a threshold
is applied to a continuous model prediction. Application of the
threshold makes the model binary, in which points are categorized
as either within or outside the prediction. We set our omission rate to
10% (E = 10%) which excludes the lowest 10% of values of points
within a prediction, making it the strictest of all binary predictor
metrics for MaxEnt (Peterson and Soberén 2012, Kass et al. 2021).
Model performance is assessed by AICc which indicates how well
models fit into our data while penalizing complexity to favor simpler
models(Warren and Seifert 2011). AICc is calculated by standard-
izing the raw scores of all Maxent models within geographic space
to sum to one, then multiplying the suitability scores of each grid
cell containing a presence. The number of parameters (nparam) is
measured by counting all parameters with a nonzero lambda weight
(Warren and Seifert 2011). Among models which were statistically
significant, we selected the optimal model with the delta AICc <2
and had omission rates below 10%. In the event of multiple models
possessing significance, we opted for simpler models (fewer features
and regularization). We generated the final model using our thinned
occurrence dataset with 10 bootstrap replicates with ‘cloglog’ out-
puts, and generated distribution predictions using each species’ un-
correlated environmental dataset.

We documented variable importance and marginal response
curves to better understand the modeled relationships between the
predictor variables and our data for each final model. We recorded
the permutation importance metric output by Maxent, which is
calculated by randomly permuting the values of all environmental
variables but one, building a new model, then calculating the dif-
ference between each model’s training AUC and that of the empir-
ical model (Phillips 2005). Marginal response curves are generated
by constraining all predictor variables but one to their means, then
making model predictions along the full range of the focal variable
associated with the training data. These curves show the modeled
relationship of each variable individually with the occurrence data
when all other variables are held constant and are affected by the
complexity of the model settings (Phillips et al. 2017).

Suitability predictions, permutation analyses, and response curves
revealed differences in bioclimatic variable importance among termite
genera despite geographic overlap. Predictions for Microhodotermes
viator and Porotermes planiceps (Mastotermitidae) revealed high
overlap in suitability within the southwest tip of South Africa, how-
ever suitability extends eastward along the coast of South Africa in P.
planiceps. (Fig. 2A and B). Permutation analyses revealed that Mean
Diurnal Range (bio02), pH in H20, possessed high variable import-
ance within optimal models of M. viator and P. planiceps, with both
variables exhibiting negative linear response curves. Volumetric frac-
tion of coarse particles, soil suborder and proportion of silt par-
ticles possessed high variable importance in M. viator, with response
curves exhibiting positive quadratic, and positive and negative linear
relationships with suitability. Furthermore, suitability was highest
within cambisol, greysol, and plinthosol soils. Within P. planiceps,
proportion of clay particles possessed high permutation importance,
exhibiting a negative linear relationship with suitability (Table 3).

Hodotermes mossambicus also shared significant overlap in
suitability with M. viator and P. planiceps, but suitability extends
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Fig. 2. Termite SDM predictions for species located within South Africa (top and bottom), and Argentina (right) for A. Porotermes planiceps (Stolotermitidae) B.
Microhodotermes viator (Hodotermitidae), and C. Porotermes quadricollis. Final model predictions were generated using our thinned occurrence dataset and
final set of uncorrelated environmental variables for each species, with 10 bootstrap replicates with ‘cloglog’ outputs in which raw values are converted to a
range of 0-1 to approximate a probability of occurrence (Cobos et al. 2019). Brighter shades indicate areas of higher suitability (higher probability of occurrence),
while darker shades indicate areas of lower suitability (lower probability of occurrence).

northward into Namibia, Botswana, Zimbabwe, and Mozambique
(Fig. 2C). Precipitation of the wettest month (bio13), isothermality
(bio03), pH in H20, Proportion of silt particles, and maximum tem-
perature of the warmest month (bio035) possessed the highest permu-
tation importance, with response curves exhibiting predominantly
negative linear, or positive hinge relationships (Table 3).

Predictions for P. quadricollis revealed high suitability within
northwest Argentina (Fig. 3A). Isothermality (bio03), and Soil sub-
order possessed the highest permutation importance with response
curves exhibiting positive linear relationships with suitability; suit-
ability was highest within cambisol soil (Table 3).

Predictions for S. ruficeps revealed high suitability along the
northeastern coasts of the southern island of New Zealand, with
additional areas of high suitability within the southern interior of
the southern island (Fig. 3B). Soil suborder possessed the highest per-
mutation importance, with suitability being highest within cambisol
soils.

Predictions for S. brunneicornis revealed high suitability
throughout Tazmania (Fig. 3C), with mean diurnal range (bio02),
minimum temperature of the coldest month (bio06), isothermality
(bio03), proportion of clay particles, and precipitation of the driest
month (bio14) possessing the highest permutation importance.
Response curves revealed positive and negative linear relationships
with suitability.

Predictions of Z. angusticollis and Z. nevadensis (Stolotermitidae)
possessed substantial overlap in suitability along the coasts of north-
west California, Oregon, Washington, and British Columbia (Fig. 4A
and B). Annual mean temperature (bio01), and soil suborder pos-
sessed high permutation importance within optimal models of both
species, with response curves exhibiting positive linear relationships.

Zootermopsis angusticollis possessed high variability in soil sub-
order, with suitability being highest within Calcicols, Histols,
Lixisols, Luvisols, Phaeozems, and Planosols, while suitability was
highest in leptosols for Z. nevadensis. Mean diurnal range (bio02),
precipitation of the driest month (bio14), and pH in H20, also pos-
sessed the high permutation importance within Z. angusticollis, with
response curves exhibiting positive and negative linear relationships.
Precipitation of the wettest month (bio13), and precipitation sea-
sonality (bio15) possessed high permutation importance within Z.
nevadensis, with response curves exhibiting positive and weak nega-
tive linear relationships with suitability (Table 3).

Predictions for Z. laticeps revealed high suitability within
southern Arizona, New Mexico, and northern Mexico (Fig. 4C). Soil
pH, soil suborder, volumetric fraction of coarse particles, precipita-
tion of the driest month (bio14), and isothermality (bio03) possessed
the highest permutation importance, with response curves exhibiting
positive and negative linear relationships; suitability was highest
within Gleysol and Podzol soils (Table 3).

Predictions of P. adamsoni and S. victoriensis (Mastotermitidae)
possessed significant overlap in suitability along southeast Australia,
and Tazmania (overlapping with S. brunneicornis) (Fig. SA and
B). Mean diurnal range possessed high permutation importance
within both species’ optimal models, with response curves exhib-
iting a negative linear relationship with suitability. Precipitation of
the driest month (bio14), proportion of silt particles, pH in H20,
minimum temperature of the coldest month (bio06), and volumetric
fraction of coarse particles possessed high permutation import-
ance within P. adamsoni, with response curves exhibiting positive
quadratic, and negative hinge relationships with suitability (Table
3). Precipitation of the driest month (bio14), proportion of clay
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Table 1. Termite species chosen for analysis, with sample size of occurrence localities before and after spatial thinning by 5 km, and geo-

graphic range of species

Species No. occurrences Thinned occurrences Countries
Archotermopsidae

Hodotermes mossambicus 139 108 South Africa, Namibia, Botswana, Angola, Zimbabwe, Mozambique
Hodotermitidae

Mastotermes darwiniensis 277 173 Northern Territory, Queensland, Western Australia

Mastotermitidae

Microhodotermes viator 203 89
Porotermes adamsoni 147 98
Porotermes planiceps 15 8
Porotermes quadricollis 14 10
Stolotermes brunneicornis 51 28
Stolotermes ruficeps 23 14
Stolotermes victoriensis 45 31
Stolotermitidae
Zootermopsis angusticollis 466 234
Zootermopsis laticeps 92 27
Zootermopsis nevadensis 56 50

South Africa

New South Wales, Victoria, Queensland
South Africa

Chile, Argentina

Tazmania

New Zealand

Victoria, New South Wales, Queensland

Baja, California, Oregon, Washington, British Columbia
Arizona, New Mexico, Chihuahua

Baja, California, Oregon, Washington, British Columbia

particles, soil suborder, and isothermality (bio03) possessed high
permutation importance within S. victoriensis, with response curves
exhibiting positive quadratic and negative linear relationships with
suitability; suitability was highest within cambisol soils (Table 3).

Finally, Predictions for M. darwiniensis (Hodotermitidae)
revealed high suitability within northern Australia (Fig. 5C).
Precipitation seasonality (biol5), proportion of silt particles,
isothermality (bio03), proportion of clay particles, and annual mean
temperature (bio01), possessed the highest permutation importance,
with response curves exhibiting positive quadratic, and positive and
negative linear relationships with suitability (Table 3).

Although the data for some species is presently limited due to
lack of occurrences, the results were generally robust, with most spe-
cies possessing at least 0.70 AUC__, and 10% omission less than 0.1.
Species which possessed low AUC_ (<0.70) include S. ruficeps, and
Z. laticeps. Even though the true geographic extent of S. ruficeps is
well known (i.e., it is endemic to New Zealand), occurrences were
low for this species (7 = 8), and there was unequal sampling across
both islands, which may explain why the model possesses an omis-
sion rate equal to zero. Zootermopsis laticeps possessed higher oc-
currence records (7 =27), however, the lack of knowledge about
the true geographic range of the species potentially resulted in an

underfit model, explaining the low AUC__ and no 10% omission;

test
the same can be said for P. quadricollis. Omission rates fluctuate
more readily in low occurrence models since fewer data points can
dictate the 10% threshold of omission regardless of the spatial par-
tition involved (Radosavljevic and Anderson 2014). Preliminary
data in which occurrence points for S. ruficeps, Z. laticeps, and P.
quadricollis were partitioned using the jackknife’ method revealed
more complex models and 10% omission rates closer to 0.1, sug-
gesting our models are overfitting due to the lack of knowledge
about the species’ ranges or lack of occurrence records. In general,
these species are not common in collections, but if collection infor-
mation from multiple museums were incorporated this could po-
tentially be overcome if that data was accessible. A potential pitfall
for termite species is the lack of taxonomic knowledge for proper

species identification by community scientists, as well as spatial un-
certainty of occurrences, which may slow down the accumulation of
research grade occurrences (Aragjo et al. 2019).

The presence of simple feature classes, combined with high AICc
values suggests underfitting of several species’ models (Phillips and
Dudik 2008, Warren and Seifert 2011, Radosavljevic and Anderson
2014). Optimal models for H. mossambicus, P. adamsoni, Z.
angusticollis, and Z. nevadensis were explained by either linear or
hinge feature classes and high degrees of regularization suggesting
heavy penalization on overcomplexity, combined with high AICc
values indicates overly simple models (Warren and Seifert 2011).
Opverfitting is also apparent within the models for S. ruficeps, Z.
laticeps, P. quadricollis,and P. planiceps. Even though the AICc values
for the three species are minimal (163 - 590), this may be an arti-
fact due to the small sample sizes of occurrence data. Furthermore,
all three species models are explained by simple feature classes and
high regularization, but low numbers of coefficients (1-8 param-
eters) (Table 2). High numbers of coefficients in a model suggest high
degrees of variable contribution among multiple variables resulting
in high regularization to reduce the noise of multiple variables
(Phillips and Dudik 2008, Warren and Seifert 2011, Radosavljevic
and Anderson 2014). However, fewer coefficients and high regu-
larization results in a handful of variables dictating the model,
increasing chances for overfitting. Underfitting is further supported
by the prediction rasters produced. Predictions for H. mossambicus,
S. ruficeps, Z. laticeps, P. quadricollis, and P. planiceps possess large
areas of intermediate suitability, with minimal areas of distinct high
or low suitability indicative of a generalist model (Phillips and Dudik
2008, Warren and Seifert 2011, Radosavljevic and Anderson 2014)
(Figs. 2A, C, 3A,B, and 4C). Optimal models for S. brunneicornis are
explained by simple linear or hinge feature classes, however, their
AICc values and coefficients are very low, suggesting less overfitting
(Warren and Seifert 2011). Predictions for S. brunneicornis possess
more distinct boundaries of areas of high or lower suitability (Fig.
3C). Finally, optimal models for M. darwiniensis, M. viator, and S.
victoriensis, possess linear quadratic feature classes, low degrees of
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Fig. 3. Termite SDM predictions for species located within Argentina and Chile (top left), New Zealand (top right), and Tazmania (bottom) for A. Porotermes
quadricollis (Stolotermitidae) and B. Stolotermes ruficeps, and C. Stolotermes brunneicornis. Final model predictions were generated using our thinned
occurrence dataset and final set of uncorrelated environmental variables for each species, with 10 bootstrap replicates with ‘cloglog’ outputs in which raw
values are converted to a range of 0-1 to approximate a probability of occurrence (Cobos et al. 2019). Brighter colors indicate areas of higher suitability (higher
probability of occurrence), while darker colors indicate areas of lower suitability (lower probability of occurrence).

regularization, and high parameters, and intermediate AICc values
suggesting a balance between over and underfitting.

Termite niche modeling suggested interesting drivers of habitat
suitability, including temperature. Temperature is hypothesized to
be a main factor driving termite distributions (Cancello et al. 2014),
and has been hypothesized as the main driver for their distribution
being purely restricted to the tropics and subtropics (Eggleton et
al. 1994, Eggleton 2000, Cerezer et al. 2020). Furthermore, current
research suggests that increases in termite species richness towards
the equator are the result of increases in average and extreme tem-
perature gradients (Cerezer et al. 2020). Response curves from our
analyses seem to partly support previous research in which habitat
suitability for some termite species increased with increases in tem-
perature variables which exhibited high importance in modeling,
however other species sampled expressed negative relationships in
suitability with temperature fluctuations and extremes. Even though

termite species exhibited a litany of environmental variables which
exhibited high permutation importance within modeling, the most
common temperature variables present were annual mean tem-
perature (bio01), mean diurnal range (bio02), and isothermality
(bio03). All species which possessed mean annual temperature as
a variable of high importance (M. darwiniensis, Z. angusticollis,
Z. nevadensis) expressed positive linear relationships with suit-
ability. Stolotermes brunneicornis also expressed negative rela-
tionships with minimum temperature of the coldest month (bio06)
suggesting that yearly and monthly temperatures were associated
with increased suitability. The only species which expressed nega-
tive relationships with increasing temperature was H. mossambicus,
in which suitability decreased with increases in temperature of the
warmest month (bio035). Since occurrences for H. mossambicus ex-
tend over 30°C latitude, we hypothesize that temperature of the
warmest month might have inflated permutation importance due to
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Fig. 4. Termite SDM predictions for species located within Eastern United States and Canada for A. Zootermopsis nevadensis (Stolotermitidae)(left) B.
Zootermopsis angusticollis (right), and C. Zootermopsis laticeps (bottom). Final model predictions were generated using our thinned occurrence dataset and
final set of uncorrelated environmental variables for each species, with 10 bootstrap replicates with ‘cloglog’ outputs in which raw values are converted to a
range of 0 - 1 to approximate a probability of occurrence (Cobos et al. 2019). Brighter colors indicate areas of higher suitability (higher probability of occurrence),
while darker colors indicate areas of lower suitability (lower probability of occurrence).

occurrences closer to the tropics possessing less temperature fluctu-
ation than South Africa.

It is interesting that all species which had mean diurnal range
as a predictor expressed negative relationships with suitability,
while isothermality expressed both positive and linear relationships
with suitability across taxa. Annual mean diurnal range is a metric
for determining relevance of temperature fluctuation on a species
by determining the average range of temperature across months
(monthly maximum temperature—monthly minimum temperature)
(O’Donnell and Ignizio 2012). Isothermality determines if species
distribution is affected by fluctuations within a month relative to
a year by quantifying how large day-to-night temperatures differ
relative to summer-to-winter temperatures. Isothermal values close
to 100 indicate daily temperature ranges match annual temperature

ranges (O’Donnell and Ignizio 2012). Species models which pos-
sessed isothermality exhibited negative linear relationships with suit-
ability include H. mossambicus, M. darwiniensis, and S. victoriensis,
while P. quadricollis and S. brunneicornis expressed positive linear
relationships. We hypothesize that our termite species exhibit higher
suitability for lower monthly temperature extremes but express plas-
ticity in resilience to large yearly temperature fluctuations. Previous
research has suggested that termites possess narrower thermal niches
within the tropics (Cerezer et al. 2020). However, no discernable
patterns of variable importance pertaining to temperature are shared
among related species (i.e, among the species of Zootermopsis),
or species sharing geographic overlap (i.e., Australian species of
Stolotermes and Porotermes), suggesting temperature thresholds
and suitability are species specific. A caveat to this hypothesis is
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Fig. 5. Termite SDM predictions for species located within Southern Australia
for A. Porotermes adamsoni (Stolotermitidae)(left) and B. Stolotermes
victoriensis (right), and C. Mastotermes darwiniensis (Mastotermitidae). Final
model predictions were generated using our thinned occurrence dataset and
final set of uncorrelated environmental variables for each species, with 10
bootstrap replicates with ‘cloglog’ outputs in which raw values are converted
to a range of 0 - 1 to approximate a probability of occurrence (Cobos et al.
2018). Brighter colors indicate areas of higher suitability (higher probability
of occurrence), while darker colors indicate areas of lower suitability (lower
probability of occurrence)..

that these variables are for the land surface. Since termite mounds
constructed by species Microhodotermes and Hodotermes possess
constant temperature and circulation for optimal thermoregulation
(Korb 2003), further research is required to understand the degree of
temperature fluctuation above and below ground.

Precipitation is also hypothesized to affect termite community
composition, diversity, and distribution, with termite species richness
increasing with increasing rainfall (Eggleton et al. 1994, Eggleton
2000, Gathorne-Hardy and Eggleton 2001, Davies et al. 2015, Korb
et al. 2019, Clement et al. 2021). Buxton (1981) found that African
termite foraging behavior was most common during rainy seasons;
since foraging behavior involves termites leaving their colonies to
search for food in their habitat, this behavior results in termites
being observed by humans and collected for databases such as those
used here. This response to rainfall may not be universal across the
taxon, however, by contrast, recent work by (Clement et al. 2021)
suggests that rainfall does not shape species richness for Australian
termites; this study only included Neoisopteran taxa, however, and
none of the species included in the present study were evaluated in
their work. Permutation analyses revealed that precipitation vari-
ables pertaining to moisture (i.e., wettest and driest) possessed the
highest importance in species maxent models across regions. Most of
the species possessed bioclimatic variables 13 and 14 (precipitation
of the wettest and driest months respectively) as a variable of high

importance. Porotermes mossambicus possessed positive relation-
ships with precipitation of the wettest month while Z. nevadensis ex-
pressed a negative relationship. Stolotermes victoriensis expressed a
positive quadratic relationship with precipitation of the driest month
while S. brunneicornis, Z. angusticollis, and Z. laticeps expressed
negative linear relationships. Precipitation seasonality (bio15) also
expressed a positive quadratic relationship within M. darwiniensis,
and a positive relationship within Z. nevadensis. Due to the lack of
discernible patterns of precipitation variables among taxa sampled,
we hypothesize that precipitation extremes and variability is more
species specific.

Previous research has suggested that termite abundance and
habitat suitability are highest within tropical dry ecosystems as op-
posed to tropical rainforests within Australia (Davies et al. 2013,
Clement et al. 2021). Studies have indicated that termite abundance
in Queensland across a precipitation gradient increases at savanna
sites, coining an Australian termite diversity anomaly (Clement
et al. 2021), which is part of the global termite functional diver-
sity anomaly. Response curves for Australian termite species (M.
darwiniensis, S. victoriensis) indicated increased suitability with in-
creases in precipitation. Stolotermes brunneicornis also expressed
decreased suitability with increases in precipitation of the driest
month, supporting the hypothesis that Southern Australian termite
species prefer drier climates at least for three of the four Australian
species sampled. Even though distributions for M. darwiniensis
overlap with termite species collected within (Clement et al. 2021),
M. darwiniensis was not sampled within their analysis. Furthermore,
(Clement et al. 2021)sampled the feeding guild which was not a vari-
able considered within our analysis. Habitat suitability modeling of
more Australian termite species is required to support or refute the
Australian termite diversity anomaly.

Termites spend much of their lifetime burrowing, tunneling,
foraging, and in some families eating soil; combined with their high
abundance makes them one of the main animals influencing soil
chemical, physical, and biological function (Wood 1988, Holt and
Lepage 2000). Conversely, the properties of soil could also drastic-
ally affect the distribution of termite species (Calaby and Gay 1959).
Soil properties including class, moisture, particle size, nutrient avail-
ability, and amount of clay have been extensively studied in subterra-
nean and soil-consuming termites within the family Rhinotermitidae,
and Termitidae (Fall et al. 2001; Jouquet et al. 2002; Cornelius and
Osbrink 2010, 2011; Wang and Henderson 2014; Bourguignon et al.
2015). Among the species sampled, no overall patterns of soil type in
regard to silt, sand, or clay proportions were discovered, suggesting
soil preference is species specific, yet parsing affinity to soil as op-
posed to vegetation within termites is an area of little study (Calaby
and Gay 1959).

Studies of soil preferences on ‘lower’ Australian termites such as
Porotermes, Stolotermes, and Mastotermes are sparser, restricted to
a few dissertations and natural history observations (Mensa-Bonsu
1976, Nkunika 1988). In our analyses, the optimal model for M.
darwiniensis expressed positive quadratic relationships with the pro-
portions of silt and clay particles suggesting an optimal proportion
of water retention and porosity when it comes to soil suitability. M.
darwiniensis are most found within dead logs but possess runaway
tunnels to and from foraging sites which may be affected by soil type
(Hill 1942). Stolotermes victoriensis displayed the highest suitability
within Cambisol soils which are classified as having high sand and
silt content, which may explain why S. victoriensis also displayed
negative relationships with proportion of clay particles. Interestingly,
S. brunneicornis expressed the opposite pattern in which suitability
increased with increases in the proportion of clay. Although the
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Table 2. SDM Model performance and parameters chosen as optimal for each termite species. Settings shown are the p-value for the par-

tial Receiver Operating Characteristic (pROC), feature classes, and regularization (rm). Statistics show are AUC of testing data (AUC

),

‘test

omission rate for 10 percentile training values, number of nonzero coefficients (parameters), and Akaike criterion for small sample sizes

(AlCc) and delta AlCc

Species p-value (ROC)  Feature rm  AUCtest delta.AICc AlICc Omission (10%)  Parameters (nparam)
Archotermopsidae
Hodotermes mossambicus 0 H 5 0.81 0 4117.7 0.04 24
Hodotermitidae
Mastotermes darwiniensis 0 LQ 1 0.82 0 2666.2 0.09 15
Mastotermitidae
Microhodotermes viator 0 LQ 1 0.95 0 1562.30 0.08 18
Porotermes planiceps 0 H N 0.76 0 163.10 0.00 3
Porotermes quadricollis 0 5 0.67 0 219.30 0.33 2
Stolotermes brunneicornis 0 L 4 0.86 0 485.01 0.06 6
Stolotermes ruficeps 0 3 0.69 0 274.50 0.00 1
Stolotermes victoriensis 0 LQ 1 0.94 0 629.50 0.10 9
Porotermes adamsoni 0 H 4 0.91 0 2037.70 0.10 24
Stolotermitidae
Zootermopsis angusticollis 0 1 0.94 0 4482.80 0.09 22
Zootermopsis laticeps 0 L 4 0.62 0 590.80 0.00 8
Zootermopsis nevadensis 0 N 0.89 0 1082.60 0.09 20

biology of S. wvictoriensis and S. africanus overlap (Coaton 1949,
Coaton and Sheasby 1979), no studies explore habitat preferences
of S. brunneicornis. Porotermes adamsoni expressed a positive quad-
ratic relationship to the proportion of silt particles and soil pH.
Despite their overlap in substrate type (decaying logs on the forest
floor) both species expressed differences in soil importance. We hy-
pothesize these differences could be due to P. adamsoni being an
invasive species and possessing physiological differences to soil type
(Evans et al. 2013).

Although the North American ‘lower’ termite genera
Zootermopsis feeds on unhealthy trees and dead branches, recent
studies noted soil particles in their hindguts suggesting a closer as-
sociation with soil microbial communities than previously thought
(Mullins et al. 2021). Within our studies, Z. angusticollis, and Z.
laticeps, and Z. nevadensis expressed different correlations wit for
soil type with Z. angusticollis exhibiting highest suitability for 6
soil suborders. Zootermopsis angusticollis is an invasive species,
which may explain their generalist preferences for soil type (Evans
et al. 2013). Zootermopsis laticeps expressed positive relation-
ships with volumetric fraction of coarse particles suggesting more
coarse-grained soils correlate with suitability, indicative of the arid
and desert regions it inhabits.

Substrate use of southern African species of termites dif-
fers greatly, ranging from above ground mounds (Heuweltjies)
within Microhodotermes, to underground colonies in the northern
Savannahs within Hodotermes. Microhodotermes viator and H.
mossambicus prefer rainfall between 125 - 750 mm explaining
their increases in suitability with increases in the proportion of silt,
due to silt soils not retaining water (Coaton 1949). Furthermore,
M. viator expressed a positive quadratic relationship with the volu-
metric fraction of coarse particles. Since M. viator do not build
nests in soils of higher rock content (Coaton and Sheasby 1979),
the species might possess an optimal soil grain size for colony
establishment.

Materials and Methods

Occurrence Records

We acquired occurrence records of non-Kalotermitidae non-
neoisopteran species from the GBIF and iNaturalist. Recently, col-
leagues assessed the suitability of iNaturalist termite records for
MaxEnt analyses for the over 6,000 records of termites in their
database (Hochmair et al. 2020), finding that the records plus mu-
seum data can provide useful insights for geographic range studies.
We selected occurrences possessing preserved museum samples and
research grade observations which are occurrences possessing veri-
fied latitude and longitude coordinates, a photograph of the sighting,
date, and %5 agreement on species identification by the community.
Further occurrence filtering consisted of removing sightings with
erroneous localities (middle of the ocean, locations of large mu-
seums). Additional localities were acquired from uncatalogued
specimens of species housed within the AMNH termite collection.
We used gazetteers to acquire coordinates for museum specimens
lacking latitude and longitude data but specific enough locality in-
formation. In total, 12 species were selected for species distribu-
tion modeling; these had sufficient (z > §)(Raxworthy et al. 2007)
and verifiable (research grade) occurrence records and were in the
genera Hodotermes, Mastotermes, Microbodotermes, Porotermes,
Stolotermes, and Zootermopsis (Table 1). These taxa span several
continents in their combined geographic ranges. Briefly, Hodotermes
has an African distribution, Mastotermes an Australian distribution,
Microbodotermes has an African distribution, Porotermes has an
African, Australian, and Neotropical distribution, Stolotermes has
an African and Australian distribution, and Zootermopsis has a
Nearctic distribution.

Environmental Data
All modeling and environmental raster collection was conducted
using the statistical program R v. 4.0 with the packages ENMeval
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Table 3. Species used in maxent modeling, environmental variables which expressed the top five highest permutation importance within
each species’ optimal maxent model, permutation importance of each environmental variable, and the resultant response curve behavior
expressed with that variable in relation to suitability, or soil type which expressed the highest suitability. Maxent calculates permutation im-
portance by changing the values of each environmental variable at random, then calculating the difference using the AUC from the ‘training
data’. The values of each environmental variable are randomly permuted within the training presence and background data, the resultant
drop in training AUC is calculated, then normalized to percentages. Response curves show how each environmental variable individually
affects the maxent prediction in terms of increasing or decreasing suitability. Behavior of response curve is dictated by model complexity
(feature classes and regularization multipliers). Variables follow Worldclim v2

Species Environmental variable Permutation (%) Response behavior/Soil suborder
Archotermopsidae
Hodotermes mossambicus Precipitation of Wettest Month (bio13) 341 Negative linear
isothermality (bio03) 31 Negative linear
pH in H20 16.6 Positive hinge
Proportion of silt particles 8.2 Positive hinge
Max Temperature of Warmest Month (bio05) 4.2 Negative linear
Hodotermitidae
Mastotermes darwiniensis Precipitation Seasonality (biol5) 64.3 Positive quadratic
Proportion of silt particles 9.6 Positive quadratic
isothermality (bio03) 9.4 Negative linear
Proportion of clay particles 7.5 Positive quadratic
Annual Mean Temperature (bio01) 2.9 Positive linear
Microhodotermes viator Volumetric fraction of coarse particles 63.1 Positive quadratic
Mean Diurnal Range (bio02) 27 Negative linear
Soil suborder 8.4 Cambisols, greysols, plinthosols
pH in H20 5.8 Negative linear
Proportion of silt particles 5.3 Positive linear
Porotermes planiceps Mean Diurnal Range (bio02) 98.5 Negative linear
Proportion of clay particles 1.2 Negative linear
pH in H20 0.3 Negative linear
Porotermes quadricollis isothermality (bio03) 64.4 Positive linear
Soil suborder 35.6 Cambisol
Stolotermes brunneicornis Mean Diurnal Range (bio02) 50.5 Negative linear
Min Temperature of Coldest Month (bio06) 24.1 Negative linear
isothermality (bio03) 21 Positive linear
Proportion of clay particles 2.8 Positive linear
Precipitation of Driest Month (bio14) 1.6 Negative linear
Stolotermes ruficeps Soil suborder 100 Cambisol
Stolotermes victoriensis Precipitation of Driest Month (bio14) 82.6 Positive quadratic
Mean Diurnal Range (bio02) 5.5 Negative linear
Proportion of clay particles 4.4 Negative linear
Soil suborder 3.8 Cambisol
isothermality (bio03) 3.7 Negative linear
Porotermes adamsoni Mean Diurnal Range (bio02) 92 Negative linear
Proportion of silt particles 3.9 Positive quadratic
pH in H20 1.5 Positive quadratic
Min Temperature of Coldest Month (bio06) 0.8 Negative Hinge

Volumetric fraction of coarse particles 0.6 Negative Hinge
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Table 3. Continued

Species Environmental variable

Permutation (%) Response behavior/Soil suborder

Stolotermitidae
Zootermopsis angusticollis Annual Mean Temperature (bio01)

Mean Diurnal Range (bio02)

Precipitation of Driest Month (bio14)

pH in H20

Soil suborder

Zootermopsis laticeps pH in H20

Soil suborder

Volumetric fraction of coarse particles

Precipitation of Driest Month (bio14)

isothermality (bio03)
Zootermopsis nevadensis

Precipitation Seasonality (biol35)

Soil suborder

Annual Mean Temperature (bio01)

Proportion of clay particles

Precipitation of Wettest Month (bio13)

45 Positive linear
18.6 Negative linear
13.9 Negative linear
13.3 Negative linear
2.8 Calcicols, Histols, Lixisols,

Luvisols, Phacozems, Planosols

28.9 Negative linear
26 Gleysols, Podzols
22.9 Positive linear
16.6 Negative linear
4.3 Negative linear
41.3 Positive linear
33 Positive linear
14.7 Leptosols
7.7 Positive linear
3.3 Weak negative linear

v2.0 (Kass et al. 2021) and Wallace v.1.9. (Kass et al. 2018). We
acquired environmental rasters at 2.5 arc-second resolution
(~5 km at the equator) from the WorldClim 2.0 database (Fick
and Hijmans 2017). We downloaded the long-term bioclimatic
dataset (1970-2000) consisting of 19 bioclimatic variables ex-
trapolated from monthly Min and Max temperature, humidity,
mean, and coefficient of variation of annual solar radiation.
Variables follow Worldclim v2: BIO1 = Annual Mean Temperature,
BIO2 = Mean Diurnal Range (Mean of monthly (maximum tem-
perature—minimum temperature)), BIO3 = Isothermality (BIO2/
BIO7) (x100), BIO4 = Temperature Seasonality (standard devi-
ation x 100), BIOS = Maximum Temperature of Warmest Month,
BIO6 = Min Temperature of Coldest Month, BIO7 = Temperature
Annual Range (BIO5S-BIO6), BIO8 = Mean Temperature of
Wettest Quarter, BIO9 = Mean Temperature of Driest Quarter,
BIO10 = Mean Temperature of Warmest Quarter, BIO11 = Mean
Temperature of Coldest Quarter, BIO12 = Annual Precipitation,
BIO13 = Precipitation of Wettest Month, BIO14 = Precipitation
of Driest Month, BIO15 = Precipitation Seasonality (Coefficient
of Variation), BIO16 = Precipitation of Wettest Quarter,
BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation
of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter.
Although occurrence records for termite species range from the
past 100 yr, we considered the broad patterns observed within these
long-term datasets as sufficient to accurately represent the environ-
mental conditions for the termite taxa. We omitted four layers from
the bioclimatic variables (bio08, bio09, bio18, bio19) due to their
known spatial artifacts (Moo-Llanes et al. 2021). We also acquired
environmental variables from the Global Soil Information Facilities
(GSIF) SoilGrids database at 250 m resolution at 0-5 cm (Hengl et al.
2017). We included soil pH in H,0, proportion of sand (>0.05 mm),
silt (20.002 mm and <0.05 mm), and clay (<0.002 mm) particles in
the fine earth fraction (g/100 g), Volumetric fraction of coarse frag-
ments (>2.0 mm)(cm¥100 cm® (vol%)), and a categorical raster of
the United States Department of Agriculture (USDA) Soil Taxonomy
Suborders (67 soil classes). Species in the genera Stolotermes,
Zootermopsis, and Porotermes are damp or deadwood burrowers,

while species in the genera Microhodotermes and Hodotermes con-
struct above ground dumps and conical mounds. We chose to in-
clude soil variables for all species as soil can express both direct
effects on mound construction, or indirect effects on decay of rotten
logs (Holt and Lepage 2000).

Termite Species Distribution Modeling

Before modeling, we processed our occurrences to account for sam-
pling bias, delineated a study extent to sample background records,
and omitted highly correlated environmental variables. We spatially
thinned occurrence records by 5 km to prevent spatial autocorrel-
ation and pseudoreplication of the same termite mound (Krishna
et al. 2013a, b; Aiello-Lammens et al. 2015) (Table 1). We investi-
gated collinearity among our environmental variables within each
species using the ‘vifcor” and ‘vifstep’ functions in the usdm package
(Naimi 2017). The ‘vifcor’ function finds the pair of variables which
possesses the highest linear correlation, then excludes the variable
having the highest variance inflation factor (VIF). This process is re-
peated until no variables remain with correlations higher than the
correlation threshold. The ‘vifstep’ function calculates the VIF for all
variables, then excludes any with a VIF higher than the threshold.
We set our correlation threshold at 0.9, and VIF threshold at 10
(Dohoo et al. 1997, Lin 2008). We sampled 25,000 random back-
ground points over a study extent defined as the minimum convex
polygon around all localities for each species buffered by 555 km
(approx. 5 °C). We chose this study extent to include areas within
the species’ dispersal limitations (Krishna et al. 2013a, b), as well as
hypothesized regions currently under sampled.

Results

A total of 300 candidate models were built for our termite’s species
(25 per species). Settings varied considerably among statistically sig-
nificant optimal species models, spanning from simple models with
few feature classes, low regularization, and low parameters to rela-
tively complex with multiple feature classes, high regularization, and
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high parameters; however, no pattern of model complexity was iden-
tified among species or families (Table 2). All optimal models pos-
sessed partial ROC p-values and delta AICc values of 0. AUC values
of the testing data (AUC_) ranged from 0.62 to 0.95, 10% omission
rate ranged from 0.00 to 0.33, and AICc values ranged from 274
to 4117, and the number of parameters retained in optimal models
ranged from 1 to 24. Response curves for variables of high permuta-
tion importance revealed predominantly simple positive and negative
linear or hinge-loss relationships of suitability (suitability remains
constant after a variable threshold), with Microbodotermes viator,
Mastotermes darwiniensis, Stolotermes victoriensis, and Porotermes
adamsoni expressing positive quadratic relationships (Table 3). All
occurrence records, environmental data, candidate models, calibra-
tion results, final models, and R code to generate models can be
accessed via dryad digital repository (https://datadryad.org/stash/
share/X475eeVQ8cVb1WzC2U1Pkc9GANT1y1f-dmspozGfphes).

Discussion

In recent years, community science databases (i.e., iNaturalist) have
provided an alternate option for filling gaps in occurrence data for
data-poor species with great potential for habitat suitability modeling
for endangered or lesser-known arthropods (Coxen et al. 2017,
Bradter et al. 2018, Hochmair et al. 2020). However, such modeling
has for the most part been only applied to vertebrate species with re-
search into lesser-known arthropod species lagging (Silva et al. 2013,
2016; Wang et al. 2018). The sparse models using insect occurrence
data have been used to estimate migration routes (Menchetti et al.
2019, Kass et al. 2020), range shift responses (Urbani et al. 2017),
and expansion of invasive species ranges including native and in-
vasive termites (Maynard et al. 2015, Hill et al. 2017, Hyseni and
Garrick 2019). Here, we presented the first suite of modeled poten-
tial distributions for a diversity of basal termite genera of economic
importance, utilizing randomly sampled occurrence data.

Conclusion

This study marks the first attempt to create habitat suitability maps
of basal termite genera. Although models of species were less ro-
bust than others, more occurrence data is constantly being acquired
through a litany of scientific and public sources, community science
databases, and digitization of museum collections. Species sampled
in this analysis hold importance for their evolutionary history as well
as their importance as pests such as M. darwiniensis which used to
have a pandemic distribution and is considered one of the most de-
structive in their region (Watson and Gay 1970, Watson and Abbey
1993, Thistleton et al. 2007). These maps will be useful for termite
biologists working in field settings to collect and observe these spe-
cies. Future studies could utilize our models as a baseline for pre-
dictions of future habitat suitability of species in the face of habitat
destruction such as forest fires or used in conjunction with paleo-
climates to understand past changes in distribution patterns of these
basal termite species.

Supplementary Data

Supplementary data are available at Insect Systematics and Diversity online.
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