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Abstract 
The advent of community-science databases in conjunction with museum specimen locality information has 
exponentially increased the power and accuracy of ecological niche modeling (ENM). Increased occurrence 
data has provided colossal potential to understand the distributions of lesser known or endangered species, 
including arthropods. Although niche modeling of termites has been conducted in the context of invasive and 
pest species, few studies have been performed to understand the distribution of basal termite genera. Using 
specimen records from the American Museum of Natural History (AMNH) as well as locality databases, we 
generated ecological niche models for 12 basal termite species belonging to six genera and three families. We 
extracted environmental data from the Worldclim 19 bioclimatic dataset v2, along with SoilGrids datasets and 
generated models using MaxEnt. We chose Optimal models based on partial Receiving Operating character-
istic (pROC) and omission rate criterion and determined variable importance using permutation analysis. We 
also calculated response curves to understand changes in suitability with changes in environmental variables. 
Optimal models for our 12 termite species ranged in complexity, but no discernible pattern was noted among 
genera, families, or geographic range. Permutation analysis revealed that habitat suitability is affected pre-
dominantly by seasonal or monthly temperature and precipitation variation. Our findings not only highlight 
the efficacy of largely community-science and museum-based datasets, but our models provide a baseline for 
predictions of future abundance of lesser-known arthropod species in the face of habitat destruction and cli-
mate change.
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Graphical Abstract 
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Termites (Blattodea), are social cockroaches that are ubiquitous 
globally. Termite taxonomic groups were historically de!ned by 
the presence or absence of certain gut endosymbionts; they were 
originally divided into the ‘higher termites’ (Termitidae), and the 
‘lower termites’ (all other families) based on the endosymbiotic 
fauna in their hindguts, which are responsible for digestion of the 
cellulose in the wood termites consume. Flagellated protists, ar-
chaea, and bacteria are found in the hind guts of ‘lower termites’ 
inherited likely from nonsocial cockroach ancestors (Cleveland 
1923, Brugerolle and Radek 2006, Engel et al. 2009, Dietrich 
et al. 2014, Poulsen 2015, Korb et al. 2019); ‘higher termites’ in-
stead rely solely on bacteria and their host cellulases, or fungi, 
to digest cellulose (Brune and Ohkuma 2010, Poulsen 2015). 
Recent classi!cation instead de!nes two major groups, the non-
Neoisoptera and Neoisoptera (Engel et al. 2009); the Neoisoptera 
are a monophyletic group of termites which possess a fontanelle for 

defense in the soldier caste, (comprising the ‘lower termite’ families 
Stylotermitidae, Serritermitidae, and Rhinotermitidae as well as the 
‘higher termite’ Termitidae) include several common pest termites. 
The non-neoisopteran taxa form a paraphyletic assemblage, with 
the monophyletic family Kalotermitidae recovered as sister to the 
Neoisoptera. The Kalotermitidae were considered ‘lower termites’ 
based on their endosymbiotic fauna, and the family includes several 
hard wood feeding species that are economically important pests. By 
contrast, harvesters’ termites, which are non-Kalotermitidae, non-
neoisopteran termites (including Stolotermitidae, Archotermopsidae, 
and Hodotermitidae) that form a taxonomic assemblage at the basal 
nodes of the termite tree of life are less well studied since few are 
structural pests, and they are far rarer in online databases of termite 
records (Fig. 1). Termite niches have not been well studied empir-
ically, and here we use Ecological Niche Modeling to evaluate the 
climatic variables shaping termite distributions.
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Ecological Niche Modeling (ENM) is a ubiquitous technique 
utilized by ecologists to estimate the abiotic distribution of a spe-
cies by correlating observational (occurrence) data with spatially ex-
plicit environmental data (Guisan and Zimmerman 2000, Guisan 
and Thuiller 2005). Occurrence data is commonly obtained from 
natural history collections, community science observations, or 
abundance data based on !eld sampling, while environmental data 
is typically derived as climate variables from !eld stations or re-
mote sensing satellites. These models are generated and overlaid on 
a Geographical Information System (GIS) to visually interpret the 
factors which underlie the species’ distribution. Such modeling has 
become an essential tool for addressing issues in ecology, evolution, 
biogeography, conservation biology, and climate change (Guisan and 
Zimmerman 2000; Guisan and Thuiller 2005; Pearman and Weber 
2007; Pearman et al. 2008; Peterson 2011; Peterson et al. 2011; 
Anderson 2012, 2013).

To reduce spatial biases within modern-day ENMs, occurrence data 
must be sampled throughout the entire range of the taxon (Peterson 
2011). Such information is crucial for assessing environmental suit-
ability of regions or times of interest for species or genus-level niche 
characteristics. In recent years, the centralization of large biodiversity 
datasets (GBIF, iNaturalist) has allowed more accurate and large-scale 
modeling of species distributions where localities accrued from mu-
seum specimens are lacking. Such aggregated biodiversity datasets 
possess extreme potential for determining habitat suitability of en-
dangered or lesser-known arthropod species. Although ENM has been 
used for several insect groups (Urbani et al. 2017, Kass et al. 2020, 
Lee et al. 2021), for the social cockroaches, commonly called termites, 
niche modeling has not been widely implemented beyond pest taxa and 

invasive species (Tonini et al. 2014, Maynard et al. 2015, Cramer et al. 
2017, Hyseni and Garrick 2019, Hochmair et al. 2020).

A recent review of available records noted that most ter-
mite observations seem to be available from Australia, where 
Stolotermitidae are most species rich (Hochmair et al. 2020), how-
ever, GBIF, iNaturalist and other databases have generally had far 
fewer records from the non-Kalotermitidae, non-Neoisopteran fam-
ilies and museums currently hold the bulk of geographic range in-
formation for these taxa. To date, no ecological niche modeling has 
been undertaken for a majority of such ‘lower termites’ including 
Mastotermes Froggat 1897 (Mastotermitidae Desneux 1904), 
Stolotermes Hagen, 1858, Porotermes Hagen, 1858 (Stolotermitidae 
Holmgre 1910), Hodotermes Hagen 1853, Zootermopsis Emerson 
1993, Archotermopsis Engel et al., 2009, Hodotermopsis Holmgren, 
1911 (Archotermopsidae Engel et al., 2009). Ecological niche 
modeling has only been performed for Microhodotermes Sjöstedt 
(Hodotermitidae) (Cramer et al. 2017).

Non-Kalotermitidae, non-neoisopteran termites are gener-
ally found in the southern hemisphere, except for Zootermopsis, 
a genus distributed in the Southwestern United States including, 
Arizona, New Mexico, and Mexico, as well as the Paci!c north-
west coasts including California, Oregon, Washington, and Canada. 
Hodotermitidae include taxa from the Middle East, Africa, and 
Southwest Asia, while Stolotermitidae has a disjunct distribution ex-
tending through Eastern Australia & New Zealand, southern Africa, 
and South America. Archotermopsidae is similarly disjunct with rep-
resentatives found in Africa, Asia, and North America. The family 
Mastotermitidae is the earliest branching lineage in the termite tree 
of life, but the sole living representative, Mastotermes darwinensis, 

Fig. 1. Summary tree showing current state of termite phylogeny. Simplified schematic based on familial termite relationships recovered with high support 
in (Engel et al. 2009, Legendre et al. 2015). Stylotermitidae is placed in its current position based on (Bucek et al. 2019). Branches representing unresolved 
relationships (bootstrap values < 75) are indicated by *. The cockroach family Cryptocercidae was used as an outgroup, and soldier illustrations correlate 
with families used in summary tree. A. Mastotermes (Froggatt 1897, Blattodea Mastotermitidae), B. Zootermopsis angusticollis (Hagen 1858, Blattodea, 
Archotermopsidae), C. Hodotermopsis sjostedi (Holmgren 1911, Blattodea, Archotermopsidae), D. Anacanothermoes ochraceus (Burmeister 1839, Blattodea, 
Hodotermitidae), E. Porotermes adamsoni (Froggat 1897, Blattodea, Stolotermitidae), F. Cryptotermes brevis (Walker 1853, Blattodea, Kalotermitidae), G. 
Stylotermes halumicus (Liang, et al. 2017, Blattodea, Stylotermitidae), H. Coptotermes formosanus (Shiraki 1909, Blattodea, Rhinotermitidae), I. Serritermes 
serrifer (Hagen and Bates, Blattodea, Serritermitidae), J. Neocapritermes taraqua (Krishna and Araujo 1968, Blattodea, Termitidae), K. Nasutitermes corniger 
(Motschulsky 1855, Blattodea, Termitidae)
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currently restricted to Australia and New Zealand (but with a 
broader fossil distribution) is a highly apomorphic taxon (Nalepa 
and Jones 1991, Thorne and Carpenter 1992, Thorne et al. 2000, 
Zhao et al. 2019) (Fig. 1). The remaining extant families generally 
make small to moderate sized colonies (but these can be rather large 
in Microhodotermes), and only Hodotermitidae have true worker 
castes, with Stolotermitidae and Archoptermopsidae instead having 
pseudergates (Legendre et al. 2015). Hodotermitidae are typical har-
vesters, feeding on grasses, twigs, bark, and laying pheremone trails 
(Krishna et al. 2013a). Archotermopsidae and Stolotermitidae in-
clude species which feed on rotting wood (Krishna et al. 2013a). In 
most of these non-Kalotermitidae non-neoisopteran taxa pair bonds 
are formed between male and female mates (Grasse 1947, Nalepa 
and Jones 1991).

Here, we used specimen records from the American Museum of 
Natural History (AMNH) termite collection, The Global Biodiversity 
Information Facility (GBIF.com), and iNaturalist to generate MaxEnt 
models for select species in the genera Hodotermes, Mastotermes, 
Microhodotermes, Porotermes, Stolotermes, and Zootermopsis. This 
project is the !rst to utilize community-science and museum bio-
diversity data to construct full-range habitat suitability models of 
non-Kalotermitidae, non-neoisopteran termites outside of a single 
study on Microhodotermes (Cramer et al. 2017). The aim of this 
project is to create ecological niche maps for these enigmatic ‘lower 
termites’, which we hope will be used by future studies as a baseline 
when making predictions. Additionally, given recent !res and on-
going anthropogenically driven habitat alteration, these models can 
be used by future studies to make predictions about potential shifts 
in the ranges of these species.

We used the machine learning algorithm Maxent v3.4.4. 
(Maximum entropy)(Phillips and Dudík 2008), which remains one 
of the top-performing algorithms for !tting presence-background 
SDMs (Valavi et al. 2021) in conjunction with the kuenm R package 
(Cobos et al. 2019). To evaluate models, we used the ‘checkerboard’ 
method of spatial partitioning in which a checkerboard grid is over-
laid across our study extent, and localities are partitioned into two 
separate bins based on their placement (50% testing, and 50% 
training) (Radosavljevic and Anderson 2014). As the combination 
of two key complexity settings in Maxent models, feature classes 
and regularization multipliers, can strongly in"uence model outputs 
(Warren and Seifert 2011, Radosavljevic and Anderson 2014), we 
tuned model complexity to !nd optimal settings. This process con-
sists of varying complexity settings, running models with combin-
ations of these settings, and !nally selecting optimal settings based 
on performance metrics. Feature classes determine the shape of the 
model !t, while regularization multipliers control how much com-
plexity is penalized—this can result in predictor variable coef!cients 
shrinking to 0 and thus dropping out of the model (Phillips and 
Dudík 2008). For tuning, in order of increasing complexity, we chose 
the feature classes linear (L), quadratic (Q), and hinge (H), as well 
as regularization multipliers 1 through 5 (higher numbers penalize 
complexity more). We excluded from consideration other available 
feature classes because of dif!culties in interpretation and excessive 
complexity (product), and due to redundancy with existing classes 
(threshold) (Phillips et al. 2017). The regularization multiplier value 
range we chose includes the default value of 1, but also values higher 
than this to !t simpler models; this approximate range is typically 
used for studies with similar sample sizes (Moreno-Amat et al. 2015, 
Kass et al. 2020).

We assessed model performance through statistical signi!cance 
of the partial Receiver Operating Characteristic (ROC) and omission 
rate, and chose the optimal model based on the Akaike Information 

Criterion for low sample sizes (AICc)(Cobos et al. 2019). Within 
the kuenm R package, statistical signi!cance among models is de-
termined via bootstrap resampling of 50% of the testing data, with 
probability distributions assessed by direct count of the proportion 
of bootstrap replicates possessing an AUC value of ≤1.0 (Cobos et al. 
2019). AUC ranges from 0 (no-better-than-random prediction) and 
1 (perfect prediction) (Peterson et al. 2008, Peterson 2011). Model 
performance was measured via omission rate in which a threshold 
is applied to a continuous model prediction. Application of the 
threshold makes the model binary, in which points are categorized 
as either within or outside the prediction. We set our omission rate to 
10% (E = 10%) which excludes the lowest 10% of values of points 
within a prediction, making it the strictest of all binary predictor 
metrics for MaxEnt (Peterson and Soberón 2012, Kass et al. 2021). 
Model performance is assessed by AICc which indicates how well 
models !t into our data while penalizing complexity to favor simpler 
models(Warren and Seifert 2011). AICc is calculated by standard-
izing the raw scores of all Maxent models within geographic space 
to sum to one, then multiplying the suitability scores of each grid 
cell containing a presence. The number of parameters (nparam) is 
measured by counting all parameters with a nonzero lambda weight 
(Warren and Seifert 2011). Among models which were statistically 
signi!cant, we selected the optimal model with the delta AICc ≤ 2 
and had omission rates below 10%. In the event of multiple models 
possessing signi!cance, we opted for simpler models (fewer features 
and regularization). We generated the !nal model using our thinned 
occurrence dataset with 10 bootstrap replicates with ‘cloglog’ out-
puts, and generated distribution predictions using each species’ un-
correlated environmental dataset.

We documented variable importance and marginal response 
curves to better understand the modeled relationships between the 
predictor variables and our data for each !nal model. We recorded 
the permutation importance metric output by Maxent, which is 
calculated by randomly permuting the values of all environmental 
variables but one, building a new model, then calculating the dif-
ference between each model’s training AUC and that of the empir-
ical model (Phillips 2005). Marginal response curves are generated 
by constraining all predictor variables but one to their means, then 
making model predictions along the full range of the focal variable 
associated with the training data. These curves show the modeled 
relationship of each variable individually with the occurrence data 
when all other variables are held constant and are affected by the 
complexity of the model settings (Phillips et al. 2017).

Suitability predictions, permutation analyses, and response curves 
revealed differences in bioclimatic variable importance among termite 
genera despite geographic overlap. Predictions for Microhodotermes 
viator and Porotermes planiceps (Mastotermitidae) revealed high 
overlap in suitability within the southwest tip of South Africa, how-
ever suitability extends eastward along the coast of South Africa in P. 
planiceps. (Fig. 2A and B). Permutation analyses revealed that Mean 
Diurnal Range (bio02), pH in H20, possessed high variable import-
ance within optimal models of M. viator and P. planiceps, with both 
variables exhibiting negative linear response curves. Volumetric frac-
tion of coarse particles, soil suborder and proportion of silt par-
ticles possessed high variable importance in M. viator, with response 
curves exhibiting positive quadratic, and positive and negative linear 
relationships with suitability. Furthermore, suitability was highest 
within cambisol, greysol, and plinthosol soils. Within P. planiceps, 
proportion of clay particles possessed high permutation importance, 
exhibiting a negative linear relationship with suitability (Table 3).

Hodotermes mossambicus also shared signi!cant overlap in 
suitability with M. viator and P. planiceps, but suitability extends 
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northward into Namibia, Botswana, Zimbabwe, and Mozambique 
(Fig. 2C). Precipitation of the wettest month (bio13), isothermality 
(bio03), pH in H20, Proportion of silt particles, and maximum tem-
perature of the warmest month (bio05) possessed the highest permu-
tation importance, with response curves exhibiting predominantly 
negative linear, or positive hinge relationships (Table 3).

Predictions for P. quadricollis revealed high suitability within 
northwest Argentina (Fig. 3A). Isothermality (bio03), and Soil sub-
order possessed the highest permutation importance with response 
curves exhibiting positive linear relationships with suitability; suit-
ability was highest within cambisol soil (Table 3).

Predictions for S. ru!ceps revealed high suitability along the 
northeastern coasts of the southern island of New Zealand, with 
additional areas of high suitability within the southern interior of 
the southern island (Fig. 3B). Soil suborder possessed the highest per-
mutation importance, with suitability being highest within cambisol 
soils.

Predictions for S. brunneicornis revealed high suitability 
throughout Tazmania (Fig. 3C), with mean diurnal range (bio02), 
minimum temperature of the coldest month (bio06), isothermality 
(bio03), proportion of clay particles, and precipitation of the driest 
month (bio14) possessing the highest permutation importance. 
Response curves revealed positive and negative linear relationships 
with suitability.

Predictions of Z. angusticollis and Z. nevadensis (Stolotermitidae) 
possessed substantial overlap in suitability along the coasts of north-
west California, Oregon, Washington, and British Columbia (Fig. 4A 
and B). Annual mean temperature (bio01), and soil suborder pos-
sessed high permutation importance within optimal models of both 
species, with response curves exhibiting positive linear relationships. 

Zootermopsis angusticollis possessed high variability in soil sub-
order, with suitability being highest within Calcicols, Histols, 
Lixisols, Luvisols, Phaeozems, and Planosols, while suitability was 
highest in leptosols for Z. nevadensis. Mean diurnal range (bio02), 
precipitation of the driest month (bio14), and pH in H20, also pos-
sessed the high permutation importance within Z. angusticollis, with 
response curves exhibiting positive and negative linear relationships. 
Precipitation of the wettest month (bio13), and precipitation sea-
sonality (bio15) possessed high permutation importance within Z. 
nevadensis, with response curves exhibiting positive and weak nega-
tive linear relationships with suitability (Table 3).

Predictions for Z. laticeps revealed high suitability within 
southern Arizona, New Mexico, and northern Mexico (Fig. 4C). Soil 
pH, soil suborder, volumetric fraction of coarse particles, precipita-
tion of the driest month (bio14), and isothermality (bio03) possessed 
the highest permutation importance, with response curves exhibiting 
positive and negative linear relationships; suitability was highest 
within Gleysol and Podzol soils (Table 3).

Predictions of P. adamsoni and S. victoriensis (Mastotermitidae) 
possessed signi!cant overlap in suitability along southeast Australia, 
and Tazmania (overlapping with S. brunneicornis) (Fig. 5A and 
B). Mean diurnal range possessed high permutation importance 
within both species’ optimal models, with response curves exhib-
iting a negative linear relationship with suitability. Precipitation of 
the driest month (bio14), proportion of silt particles, pH in H20, 
minimum temperature of the coldest month (bio06), and volumetric 
fraction of coarse particles possessed high permutation import-
ance within P. adamsoni, with response curves exhibiting positive 
quadratic, and negative hinge relationships with suitability (Table 
3). Precipitation of the driest month (bio14), proportion of clay 

Fig. 2. Termite SDM predictions for species located within South Africa (top and bottom), and Argentina (right) for A. Porotermes planiceps (Stolotermitidae) B. 
Microhodotermes viator (Hodotermitidae), and C. Porotermes quadricollis. Final model predictions were generated using our thinned occurrence dataset and 
final set of uncorrelated environmental variables for each species, with 10 bootstrap replicates with ‘cloglog’ outputs in which raw values are converted to a 
range of 0–1 to approximate a probability of occurrence (Cobos et al. 2019). Brighter shades indicate areas of higher suitability (higher probability of occurrence), 
while darker shades indicate areas of lower suitability (lower probability of occurrence).
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particles, soil suborder, and isothermality (bio03) possessed high 
permutation importance within S. victoriensis, with response curves 
exhibiting positive quadratic and negative linear relationships with 
suitability; suitability was highest within cambisol soils (Table 3).

Finally, Predictions for M. darwiniensis (Hodotermitidae) 
revealed high suitability within northern Australia (Fig. 5C). 
Precipitation seasonality (bio15), proportion of silt particles, 
isothermality (bio03), proportion of clay particles, and annual mean 
temperature (bio01), possessed the highest permutation importance, 
with response curves exhibiting positive quadratic, and positive and 
negative linear relationships with suitability (Table 3).

Although the data for some species is presently limited due to 
lack of occurrences, the results were generally robust, with most spe-
cies possessing at least 0.70 AUCtest, and 10% omission less than 0.1. 
Species which possessed low AUCtest (<0.70) include S. ru!ceps, and 
Z. laticeps. Even though the true geographic extent of S. ru!ceps is 
well known (i.e., it is endemic to New Zealand), occurrences were 
low for this species (n = 8), and there was unequal sampling across 
both islands, which may explain why the model possesses an omis-
sion rate equal to zero. Zootermopsis laticeps possessed higher oc-
currence records (n = 27), however, the lack of knowledge about 
the true geographic range of the species potentially resulted in an 
under!t model, explaining the low AUCtest and no 10% omission; 
the same can be said for P. quadricollis. Omission rates "uctuate 
more readily in low occurrence models since fewer data points can 
dictate the 10% threshold of omission regardless of the spatial par-
tition involved (Radosavljevic and Anderson 2014). Preliminary 
data in which occurrence points for S. ru!ceps, Z. laticeps, and P. 
quadricollis were partitioned using the ‘jackknife’ method revealed 
more complex models and 10% omission rates closer to 0.1, sug-
gesting our models are over!tting due to the lack of knowledge 
about the species’ ranges or lack of occurrence records. In general, 
these species are not common in collections, but if collection infor-
mation from multiple museums were incorporated this could po-
tentially be overcome if that data was accessible. A potential pitfall 
for termite species is the lack of taxonomic knowledge for proper 

species identi!cation by community scientists, as well as spatial un-
certainty of occurrences, which may slow down the accumulation of 
research grade occurrences (Araújo et al. 2019).

The presence of simple feature classes, combined with high AICc 
values suggests under!tting of several species’ models (Phillips and 
Dudík 2008, Warren and Seifert 2011, Radosavljevic and Anderson 
2014). Optimal models for H. mossambicus, P. adamsoni, Z. 
angusticollis, and Z. nevadensis were explained by either linear or 
hinge feature classes and high degrees of regularization suggesting 
heavy penalization on overcomplexity, combined with high AICc 
values indicates overly simple models (Warren and Seifert 2011). 
Over!tting is also apparent within the models for S. ru!ceps, Z. 
laticeps, P. quadricollis, and P. planiceps. Even though the AICc values 
for the three species are minimal (163 - 590), this may be an arti-
fact due to the small sample sizes of occurrence data. Furthermore, 
all three species models are explained by simple feature classes and 
high regularization, but low numbers of coef!cients (1–8 param-
eters) (Table 2). High numbers of coef!cients in a model suggest high 
degrees of variable contribution among multiple variables resulting 
in high regularization to reduce the noise of multiple variables 
(Phillips and Dudík 2008, Warren and Seifert 2011, Radosavljevic 
and Anderson 2014). However, fewer coef!cients and high regu-
larization results in a handful of variables dictating the model, 
increasing chances for over!tting. Under!tting is further supported 
by the prediction rasters produced. Predictions for H. mossambicus, 
S. ru!ceps, Z. laticeps, P. quadricollis, and P. planiceps possess large 
areas of intermediate suitability, with minimal areas of distinct high 
or low suitability indicative of a generalist model (Phillips and Dudík 
2008, Warren and Seifert 2011, Radosavljevic and Anderson 2014) 
(Figs. 2A, C, 3A,B, and 4C). Optimal models for S. brunneicornis are 
explained by simple linear or hinge feature classes, however, their 
AICc values and coef!cients are very low, suggesting less over!tting 
(Warren and Seifert 2011). Predictions for S. brunneicornis possess 
more distinct boundaries of areas of high or lower suitability (Fig. 
3C). Finally, optimal models for M. darwiniensis, M. viator, and S. 
victoriensis, possess linear quadratic feature classes, low degrees of 

Table 1. Termite species chosen for analysis, with sample size of occurrence localities before and after spatial thinning by 5 km, and geo-
graphic range of species

Species No. occurrences Thinned occurrences Countries 

Archotermopsidae

  Hodotermes mossambicus 139 108 South Africa, Namibia, Botswana, Angola, Zimbabwe, Mozambique

Hodotermitidae

  Mastotermes darwiniensis 277 173 Northern Territory, Queensland, Western Australia

Mastotermitidae

  Microhodotermes viator 203 89 South Africa

  Porotermes adamsoni 147 98 New South Wales, Victoria, Queensland

  Porotermes planiceps 15 8 South Africa

  Porotermes quadricollis 14 10 Chile, Argentina

  Stolotermes brunneicornis 51 28 Tazmania

  Stolotermes ru!ceps 23 14 New Zealand

  Stolotermes victoriensis 45 31 Victoria, New South Wales, Queensland

Stolotermitidae

  Zootermopsis angusticollis 466 234 Baja, California, Oregon, Washington, British Columbia

  Zootermopsis laticeps 92 27 Arizona, New Mexico, Chihuahua

  Zootermopsis nevadensis 56 50 Baja, California, Oregon, Washington, British Columbia
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7Insect Systematics and Diversity, 2022, Vol. 6, No. 4

regularization, and high parameters, and intermediate AICc values 
suggesting a balance between over and under!tting.

Termite niche modeling suggested interesting drivers of habitat 
suitability, including temperature. Temperature is hypothesized to 
be a main factor driving termite distributions (Cancello et al. 2014), 
and has been hypothesized as the main driver for their distribution 
being purely restricted to the tropics and subtropics (Eggleton et 
al. 1994, Eggleton 2000, Cerezer et al. 2020). Furthermore, current 
research suggests that increases in termite species richness towards 
the equator are the result of increases in average and extreme tem-
perature gradients (Cerezer et al. 2020). Response curves from our 
analyses seem to partly support previous research in which habitat 
suitability for some termite species increased with increases in tem-
perature variables which exhibited high importance in modeling, 
however other species sampled expressed negative relationships in 
suitability with temperature "uctuations and extremes. Even though 

termite species exhibited a litany of environmental variables which 
exhibited high permutation importance within modeling, the most 
common temperature variables present were annual mean tem-
perature (bio01), mean diurnal range (bio02), and isothermality 
(bio03). All species which possessed mean annual temperature as 
a variable of high importance (M. darwiniensis, Z. angusticollis, 
Z. nevadensis) expressed positive linear relationships with suit-
ability. Stolotermes brunneicornis also expressed negative rela-
tionships with minimum temperature of the coldest month (bio06) 
suggesting that yearly and monthly temperatures were associated 
with increased suitability. The only species which expressed nega-
tive relationships with increasing temperature was H. mossambicus, 
in which suitability decreased with increases in temperature of the 
warmest month (bio05). Since occurrences for H. mossambicus ex-
tend over 30°C latitude, we hypothesize that temperature of the 
warmest month might have in"ated permutation importance due to 

Fig. 3. Termite SDM predictions for species located within Argentina and Chile (top left), New Zealand (top right), and Tazmania (bottom) for A. Porotermes 
quadricollis (Stolotermitidae) and B. Stolotermes ruficeps, and C. Stolotermes brunneicornis. Final model predictions were generated using our thinned 
occurrence dataset and final set of uncorrelated environmental variables for each species, with 10 bootstrap replicates with ‘cloglog’ outputs in which raw 
values are converted to a range of 0–1 to approximate a probability of occurrence (Cobos et al. 2019). Brighter colors indicate areas of higher suitability (higher 
probability of occurrence), while darker colors indicate areas of lower suitability (lower probability of occurrence).
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8 Insect Systematics and Diversity, 2022, Vol. 6, No. 4

occurrences closer to the tropics possessing less temperature "uctu-
ation than South Africa.

It is interesting that all species which had mean diurnal range 
as a predictor expressed negative relationships with suitability, 
while isothermality expressed both positive and linear relationships 
with suitability across taxa. Annual mean diurnal range is a metric 
for determining relevance of temperature "uctuation on a species 
by determining the average range of temperature across months 
(monthly maximum temperature—monthly minimum temperature) 
(O’Donnell and Ignizio 2012). Isothermality determines if species 
distribution is affected by "uctuations within a month relative to 
a year by quantifying how large day-to-night temperatures differ 
relative to summer-to-winter temperatures. Isothermal values close 
to 100 indicate daily temperature ranges match annual temperature 

ranges (O’Donnell and Ignizio 2012). Species models which pos-
sessed isothermality exhibited negative linear relationships with suit-
ability include H. mossambicus, M. darwiniensis, and S. victoriensis, 
while P. quadricollis and S. brunneicornis expressed positive linear 
relationships. We hypothesize that our termite species exhibit higher 
suitability for lower monthly temperature extremes but express plas-
ticity in resilience to large yearly temperature "uctuations. Previous 
research has suggested that termites possess narrower thermal niches 
within the tropics (Cerezer et al. 2020). However, no discernable 
patterns of variable importance pertaining to temperature are shared 
among related species (i.e, among the species of Zootermopsis), 
or species sharing geographic overlap (i.e., Australian species of 
Stolotermes and Porotermes), suggesting temperature thresholds 
and suitability are species speci!c. A caveat to this hypothesis is 

Fig. 4. Termite SDM predictions for species located within Eastern United States and Canada for A. Zootermopsis nevadensis (Stolotermitidae)(left) B. 
Zootermopsis angusticollis (right), and C. Zootermopsis laticeps (bottom). Final model predictions were generated using our thinned occurrence dataset and 
final set of uncorrelated environmental variables for each species, with 10 bootstrap replicates with ‘cloglog’ outputs in which raw values are converted to a 
range of 0 - 1 to approximate a probability of occurrence (Cobos et al. 2019). Brighter colors indicate areas of higher suitability (higher probability of occurrence), 
while darker colors indicate areas of lower suitability (lower probability of occurrence).
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9Insect Systematics and Diversity, 2022, Vol. 6, No. 4

that these variables are for the land surface. Since termite mounds 
constructed by species Microhodotermes and Hodotermes possess 
constant temperature and circulation for optimal thermoregulation 
(Korb 2003), further research is required to understand the degree of 
temperature "uctuation above and below ground.

Precipitation is also hypothesized to affect termite community 
composition, diversity, and distribution, with termite species richness 
increasing with increasing rainfall (Eggleton et al. 1994, Eggleton 
2000, Gathorne-Hardy and Eggleton 2001, Davies et al. 2015, Korb 
et al. 2019, Clement et al. 2021). Buxton (1981) found that African 
termite foraging behavior was most common during rainy seasons; 
since foraging behavior involves termites leaving their colonies to 
search for food in their habitat, this behavior results in termites 
being observed by humans and collected for databases such as those 
used here. This response to rainfall may not be universal across the 
taxon, however, by contrast, recent work by (Clement et al. 2021) 
suggests that rainfall does not shape species richness for Australian 
termites; this study only included Neoisopteran taxa, however, and 
none of the species included in the present study were evaluated in 
their work. Permutation analyses revealed that precipitation vari-
ables pertaining to moisture (i.e., wettest and driest) possessed the 
highest importance in species maxent models across regions. Most of 
the species possessed bioclimatic variables 13 and 14 (precipitation 
of the wettest and driest months respectively) as a variable of high 

importance. Porotermes mossambicus possessed positive relation-
ships with precipitation of the wettest month while Z. nevadensis ex-
pressed a negative relationship. Stolotermes victoriensis expressed a 
positive quadratic relationship with precipitation of the driest month 
while S. brunneicornis, Z. angusticollis, and Z. laticeps expressed 
negative linear relationships. Precipitation seasonality (bio15) also 
expressed a positive quadratic relationship within M. darwiniensis, 
and a positive relationship within Z. nevadensis. Due to the lack of 
discernible patterns of precipitation variables among taxa sampled, 
we hypothesize that precipitation extremes and variability is more 
species speci!c.

Previous research has suggested that termite abundance and 
habitat suitability are highest within tropical dry ecosystems as op-
posed to tropical rainforests within Australia (Davies et al. 2013, 
Clement et al. 2021). Studies have indicated that termite abundance 
in Queensland across a precipitation gradient increases at savanna 
sites, coining an Australian termite diversity anomaly (Clement 
et al. 2021), which is part of the global termite functional diver-
sity anomaly. Response curves for Australian termite species (M. 
darwiniensis, S. victoriensis) indicated increased suitability with in-
creases in precipitation. Stolotermes brunneicornis also expressed 
decreased suitability with increases in precipitation of the driest 
month, supporting the hypothesis that Southern Australian termite 
species prefer drier climates at least for three of the four Australian 
species sampled. Even though distributions for M. darwiniensis 
overlap with termite species collected within (Clement et al. 2021), 
M. darwiniensis was not sampled within their analysis. Furthermore, 
(Clement et al. 2021)sampled the feeding guild which was not a vari-
able considered within our analysis. Habitat suitability modeling of 
more Australian termite species is required to support or refute the 
Australian termite diversity anomaly.

Termites spend much of their lifetime burrowing, tunneling, 
foraging, and in some families eating soil; combined with their high 
abundance makes them one of the main animals in"uencing soil 
chemical, physical, and biological function (Wood 1988, Holt and 
Lepage 2000). Conversely, the properties of soil could also drastic-
ally affect the distribution of termite species (Calaby and Gay 1959). 
Soil properties including class, moisture, particle size, nutrient avail-
ability, and amount of clay have been extensively studied in subterra-
nean and soil-consuming termites within the family Rhinotermitidae, 
and Termitidae (Fall et al. 2001; Jouquet et al. 2002; Cornelius and 
Osbrink 2010, 2011; Wang and Henderson 2014; Bourguignon et al. 
2015). Among the species sampled, no overall patterns of soil type in 
regard to silt, sand, or clay proportions were discovered, suggesting 
soil preference is species speci!c, yet parsing af!nity to soil as op-
posed to vegetation within termites is an area of little study (Calaby 
and Gay 1959).

Studies of soil preferences on ‘lower’ Australian termites such as 
Porotermes, Stolotermes, and Mastotermes are sparser, restricted to 
a few dissertations and natural history observations (Mensa-Bonsu 
1976, Nkunika 1988). In our analyses, the optimal model for M. 
darwiniensis expressed positive quadratic relationships with the pro-
portions of silt and clay particles suggesting an optimal proportion 
of water retention and porosity when it comes to soil suitability. M. 
darwiniensis are most found within dead logs but possess runaway 
tunnels to and from foraging sites which may be affected by soil type 
(Hill 1942). Stolotermes victoriensis displayed the highest suitability 
within Cambisol soils which are classi!ed as having high sand and 
silt content, which may explain why S. victoriensis also displayed 
negative relationships with proportion of clay particles. Interestingly, 
S. brunneicornis expressed the opposite pattern in which suitability 
increased with increases in the proportion of clay. Although the 

Fig. 5. Termite SDM predictions for species located within Southern Australia 
for A. Porotermes adamsoni (Stolotermitidae)(left) and B. Stolotermes 
victoriensis (right), and C. Mastotermes darwiniensis (Mastotermitidae). Final 
model predictions were generated using our thinned occurrence dataset and 
final set of uncorrelated environmental variables for each species, with 10 
bootstrap replicates with ‘cloglog’ outputs in which raw values are converted 
to a range of 0 - 1 to approximate a probability of occurrence (Cobos et al. 
2018). Brighter colors indicate areas of higher suitability (higher probability 
of occurrence), while darker colors indicate areas of lower suitability (lower 
probability of occurrence)..
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biology of S. victoriensis and S. africanus overlap (Coaton 1949, 
Coaton and Sheasby 1979), no studies explore habitat preferences 
of S. brunneicornis. Porotermes adamsoni expressed a positive quad-
ratic relationship to the proportion of silt particles and soil pH. 
Despite their overlap in substrate type (decaying logs on the forest 
"oor) both species expressed differences in soil importance. We hy-
pothesize these differences could be due to P. adamsoni being an 
invasive species and possessing physiological differences to soil type 
(Evans et al. 2013).

Although the North American ‘lower’ termite genera 
Zootermopsis feeds on unhealthy trees and dead branches, recent 
studies noted soil particles in their hindguts suggesting a closer as-
sociation with soil microbial communities than previously thought 
(Mullins et al. 2021). Within our studies, Z. angusticollis, and Z. 
laticeps, and Z. nevadensis expressed different correlations wit for 
soil type with Z. angusticollis exhibiting highest suitability for 6 
soil suborders. Zootermopsis angusticollis is an invasive species, 
which may explain their generalist preferences for soil type (Evans 
et al. 2013). Zootermopsis laticeps expressed positive relation-
ships with volumetric fraction of coarse particles suggesting more 
coarse-grained soils correlate with suitability, indicative of the arid 
and desert regions it inhabits.

Substrate use of southern African species of termites dif-
fers greatly, ranging from above ground mounds (Heuweltjies) 
within Microhodotermes, to underground colonies in the northern 
Savannahs within Hodotermes. Microhodotermes viator and H. 
mossambicus prefer rainfall between 125 - 750  mm explaining 
their increases in suitability with increases in the proportion of silt, 
due to silt soils not retaining water (Coaton 1949). Furthermore, 
M. viator expressed a positive quadratic relationship with the volu-
metric fraction of coarse particles. Since M. viator do not build 
nests in soils of higher rock content (Coaton and Sheasby 1979), 
the species might possess an optimal soil grain size for colony 
establishment.

Materials and Methods

Occurrence Records
We acquired occurrence records of non-Kalotermitidae non-
neoisopteran species from the GBIF and iNaturalist. Recently, col-
leagues assessed the suitability of iNaturalist termite records for 
MaxEnt analyses for the over 6,000 records of termites in their 
database (Hochmair et al. 2020), !nding that the records plus mu-
seum data can provide useful insights for geographic range studies. 
We selected occurrences possessing preserved museum samples and 
research grade observations which are occurrences possessing veri-
!ed latitude and longitude coordinates, a photograph of the sighting, 
date, and ⅔ agreement on species identi!cation by the community. 
Further occurrence !ltering consisted of removing sightings with 
erroneous localities (middle of the ocean, locations of large mu-
seums). Additional localities were acquired from uncatalogued 
specimens of species housed within the AMNH termite collection. 
We used gazetteers to acquire coordinates for museum specimens 
lacking latitude and longitude data but speci!c enough locality in-
formation. In total, 12 species were selected for species distribu-
tion modeling; these had suf!cient (n > 5)(Raxworthy et al. 2007) 
and veri!able (research grade) occurrence records and were in the 
genera Hodotermes, Mastotermes, Microhodotermes, Porotermes, 
Stolotermes, and Zootermopsis (Table 1). These taxa span several 
continents in their combined geographic ranges. Brie"y, Hodotermes 
has an African distribution, Mastotermes an Australian distribution, 
Microhodotermes has an African distribution, Porotermes has an 
African, Australian, and Neotropical distribution, Stolotermes has 
an African and Australian distribution, and Zootermopsis has a 
Nearctic distribution.

Environmental Data
All modeling and environmental raster collection was conducted 
using the statistical program R v. 4.0 with the packages ENMeval 

Table 2. SDM Model performance and parameters chosen as optimal for each termite species. Settings shown are the p-value for the par-
tial Receiver Operating Characteristic (pROC), feature classes, and regularization (rm). Statistics show are AUC of testing data (AUCtest), 
omission rate for 10 percentile training values, number of nonzero coefficients (parameters), and Akaike criterion for small sample sizes 
(AICc) and delta AICc

Species p-value (ROC) Feature rm AUCtest delta.AICc AICc Omission (10%) Parameters (nparam) 

Archotermopsidae

  Hodotermes mossambicus 0 H 5 0.81 0 4117.7 0.04 24

Hodotermitidae

  Mastotermes darwiniensis 0 LQ 1 0.82 0 2666.2 0.09 15

Mastotermitidae

  Microhodotermes viator 0 LQ 1 0.95 0 1562.30 0.08 18

  Porotermes planiceps 0 H 5 0.76 0 163.10 0.00 3

  Porotermes quadricollis 0 Q 5 0.67 0 219.30 0.33 2

  Stolotermes brunneicornis 0 L 4 0.86 0 485.01 0.06 6

  Stolotermes ru!ceps 0 L 3 0.69 0 274.50 0.00 1

  Stolotermes victoriensis 0 LQ 1 0.94 0 629.50 0.10 9

  Porotermes adamsoni 0 H 4 0.91 0 2037.70 0.10 24

Stolotermitidae

  Zootermopsis angusticollis 0 L 1 0.94 0 4482.80 0.09 22

  Zootermopsis laticeps 0 L 4 0.62 0 590.80 0.00 8

  Zootermopsis nevadensis 0 H 5 0.89 0 1082.60 0.09 20
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11Insect Systematics and Diversity, 2022, Vol. 6, No. 4

Table 3. Species used in maxent modeling, environmental variables which expressed the top five highest permutation importance within 
each species’ optimal maxent model, permutation importance of each environmental variable, and the resultant response curve behavior 
expressed with that variable in relation to suitability, or soil type which expressed the highest suitability. Maxent calculates permutation im-
portance by changing the values of each environmental variable at random, then calculating the difference using the AUC from the ‘training 
data’. The values of each environmental variable are randomly permuted within the training presence and background data, the resultant 
drop in training AUC is calculated, then normalized to percentages. Response curves show how each environmental variable individually 
affects the maxent prediction in terms of increasing or decreasing suitability. Behavior of response curve is dictated by model complexity 
(feature classes and regularization multipliers). Variables follow Worldclim v2

Species Environmental variable Permutation (%) Response behavior/Soil suborder 

Archotermopsidae

  Hodotermes mossambicus Precipitation of Wettest Month (bio13) 34.1 Negative linear

isothermality (bio03) 31 Negative linear

pH in H20 16.6 Positive hinge

Proportion of silt particles 8.2 Positive hinge

Max Temperature of Warmest Month (bio05) 4.2 Negative linear

Hodotermitidae

  Mastotermes darwiniensis Precipitation Seasonality (bio15) 64.3 Positive quadratic

Proportion of silt particles 9.6 Positive quadratic

isothermality (bio03) 9.4 Negative linear

Proportion of clay particles 7.5 Positive quadratic

Annual Mean Temperature (bio01) 2.9 Positive linear

  Microhodotermes viator Volumetric fraction of coarse particles 63.1 Positive quadratic

Mean Diurnal Range (bio02) 27 Negative linear

Soil suborder 8.4 Cambisols, greysols, plinthosols

pH in H20 5.8 Negative linear

Proportion of silt particles 5.3 Positive linear

  Porotermes planiceps Mean Diurnal Range (bio02) 98.5 Negative linear

Proportion of clay particles 1.2 Negative linear

pH in H20 0.3 Negative linear

  Porotermes quadricollis isothermality (bio03) 64.4 Positive linear

Soil suborder 35.6 Cambisol

  Stolotermes brunneicornis Mean Diurnal Range (bio02) 50.5 Negative linear

Min Temperature of Coldest Month (bio06) 24.1 Negative linear

isothermality (bio03) 21 Positive linear

Proportion of clay particles 2.8 Positive linear

Precipitation of Driest Month (bio14) 1.6 Negative linear

  Stolotermes ru!ceps Soil suborder 100 Cambisol

  Stolotermes victoriensis Precipitation of Driest Month (bio14) 82.6 Positive quadratic

Mean Diurnal Range (bio02) 5.5 Negative linear

Proportion of clay particles 4.4 Negative linear

Soil suborder 3.8 Cambisol

isothermality (bio03) 3.7 Negative linear

  Porotermes adamsoni Mean Diurnal Range (bio02) 92 Negative linear

Proportion of silt particles 3.9 Positive quadratic

pH in H20 1.5 Positive quadratic

Min Temperature of Coldest Month (bio06) 0.8 Negative Hinge

Volumetric fraction of coarse particles 0.6 Negative Hinge
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12 Insect Systematics and Diversity, 2022, Vol. 6, No. 4

v2.0 (Kass et al. 2021) and Wallace v.1.9. (Kass et al. 2018). We 
acquired environmental rasters at 2.5 arc-second resolution 
(~5 km at the equator) from the WorldClim 2.0 database (Fick 
and Hijmans 2017). We downloaded the long-term bioclimatic 
dataset (1970–2000) consisting of 19 bioclimatic variables ex-
trapolated from monthly Min and Max temperature, humidity, 
mean, and coef!cient of variation of annual solar radiation. 
Variables follow Worldclim v2: BIO1 = Annual Mean Temperature, 
BIO2 = Mean Diurnal Range (Mean of monthly (maximum tem-
perature—minimum temperature)), BIO3 = Isothermality (BIO2/
BIO7) (×100), BIO4 = Temperature Seasonality (standard devi-
ation × 100), BIO5 = Maximum Temperature of Warmest Month, 
BIO6 = Min Temperature of Coldest Month, BIO7 = Temperature 
Annual Range (BIO5–BIO6), BIO8 = Mean Temperature of 
Wettest Quarter, BIO9 = Mean Temperature of Driest Quarter, 
BIO10 = Mean Temperature of Warmest Quarter, BIO11 = Mean 
Temperature of Coldest Quarter, BIO12 = Annual Precipitation, 
BIO13 = Precipitation of Wettest Month, BIO14 = Precipitation 
of Driest Month, BIO15 = Precipitation Seasonality (Coef!cient 
of Variation), BIO16 = Precipitation of Wettest Quarter, 
BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation 
of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter. 
Although occurrence records for termite species range from the 
past 100 yr, we considered the broad patterns observed within these 
long-term datasets as suf!cient to accurately represent the environ-
mental conditions for the termite taxa. We omitted four layers from 
the bioclimatic variables (bio08, bio09, bio18, bio19) due to their 
known spatial artifacts (Moo-Llanes et al. 2021). We also acquired 
environmental variables from the Global Soil Information Facilities 
(GSIF) SoilGrids database at 250 m resolution at 0–5 cm (Hengl et al. 
2017). We included soil pH in H20, proportion of sand (>0.05 mm), 
silt (≥0.002 mm and ≤0.05 mm), and clay (<0.002 mm) particles in 
the !ne earth fraction (g/100 g), Volumetric fraction of coarse frag-
ments (>2.0 mm)(cm3/100 cm3 (vol%)), and a categorical raster of 
the United States Department of Agriculture (USDA) Soil Taxonomy 
Suborders (67 soil classes). Species in the genera Stolotermes, 
Zootermopsis, and Porotermes are damp or deadwood burrowers, 

while species in the genera Microhodotermes and Hodotermes con-
struct above ground dumps and conical mounds. We chose to in-
clude soil variables for all species as soil can express both direct 
effects on mound construction, or indirect effects on decay of rotten 
logs (Holt and Lepage 2000).

Termite Species Distribution Modeling
Before modeling, we processed our occurrences to account for sam-
pling bias, delineated a study extent to sample background records, 
and omitted highly correlated environmental variables. We spatially 
thinned occurrence records by 5 km to prevent spatial autocorrel-
ation and pseudoreplication of the same termite mound (Krishna 
et al. 2013a, b; Aiello-Lammens et al. 2015) (Table 1). We investi-
gated collinearity among our environmental variables within each 
species using the ‘vifcor’ and ‘vifstep’ functions in the usdm package 
(Naimi 2017). The ‘vifcor’ function !nds the pair of variables which 
possesses the highest linear correlation, then excludes the variable 
having the highest variance in"ation factor (VIF). This process is re-
peated until no variables remain with correlations higher than the 
correlation threshold. The ‘vifstep’ function calculates the VIF for all 
variables, then excludes any with a VIF higher than the threshold. 
We set our correlation threshold at 0.9, and VIF threshold at 10 
(Dohoo et al. 1997, Lin 2008). We sampled 25,000 random back-
ground points over a study extent de!ned as the minimum convex 
polygon around all localities for each species buffered by 555 km 
(approx. 5 °C). We chose this study extent to include areas within 
the species’ dispersal limitations (Krishna et al. 2013a, b), as well as 
hypothesized regions currently under sampled.

Results
A total of 300 candidate models were built for our termite’s species 
(25 per species). Settings varied considerably among statistically sig-
ni!cant optimal species models, spanning from simple models with 
few feature classes, low regularization, and low parameters to rela-
tively complex with multiple feature classes, high regularization, and 

Species Environmental variable Permutation (%) Response behavior/Soil suborder 

Stolotermitidae

  Zootermopsis angusticollis Annual Mean Temperature (bio01) 45 Positive linear

Mean Diurnal Range (bio02) 18.6 Negative linear

Precipitation of Driest Month (bio14) 13.9 Negative linear

pH in H20 13.3 Negative linear

Soil suborder 2.8 Calcicols, Histols, Lixisols, 
Luvisols, Phaeozems, Planosols

  Zootermopsis laticeps pH in H20 28.9 Negative linear

Soil suborder 26 Gleysols, Podzols

Volumetric fraction of coarse particles 22.9 Positive linear

Precipitation of Driest Month (bio14) 16.6 Negative linear

isothermality (bio03) 4.3 Negative linear

  Zootermopsis nevadensis Precipitation of Wettest Month (bio13) 41.3 Positive linear

Precipitation Seasonality (bio15) 33 Positive linear

Soil suborder 14.7 Leptosols

Annual Mean Temperature (bio01) 7.7 Positive linear

Proportion of clay particles 3.3 Weak negative linear

Table 3. Continued
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high parameters; however, no pattern of model complexity was iden-
ti!ed among species or families (Table 2). All optimal models pos-
sessed partial ROC p-values and delta AICc values of 0. AUC values 
of the testing data (AUCtest) ranged from 0.62 to 0.95, 10% omission 
rate ranged from 0.00 to 0.33, and AICc values ranged from 274 
to 4117, and the number of parameters retained in optimal models 
ranged from 1 to 24. Response curves for variables of high permuta-
tion importance revealed predominantly simple positive and negative 
linear or hinge-loss relationships of suitability (suitability remains 
constant after a variable threshold), with Microhodotermes viator, 
Mastotermes darwiniensis, Stolotermes victoriensis, and Porotermes 
adamsoni expressing positive quadratic relationships (Table 3). All 
occurrence records, environmental data, candidate models, calibra-
tion results, !nal models, and R code to generate models can be 
accessed via dryad digital repository (https://datadryad.org/stash/
share/X475eeVQ8cVb1WzC2U1Pkc9GAN1y1f-dmspozGfphcs).

Discussion
In recent years, community science databases (i.e., iNaturalist) have 
provided an alternate option for !lling gaps in occurrence data for 
data-poor species with great potential for habitat suitability modeling 
for endangered or lesser-known arthropods (Coxen et al. 2017, 
Bradter et al. 2018, Hochmair et al. 2020). However, such modeling 
has for the most part been only applied to vertebrate species with re-
search into lesser-known arthropod species lagging (Silva et al. 2013, 
2016; Wang et al. 2018). The sparse models using insect occurrence 
data have been used to estimate migration routes (Menchetti et al. 
2019, Kass et al. 2020), range shift responses (Urbani et al. 2017), 
and expansion of invasive species ranges including native and in-
vasive termites (Maynard et al. 2015, Hill et al. 2017, Hyseni and 
Garrick 2019). Here, we presented the !rst suite of modeled poten-
tial distributions for a diversity of basal termite genera of economic 
importance, utilizing randomly sampled occurrence data.

Conclusion
This study marks the !rst attempt to create habitat suitability maps 
of basal termite genera. Although models of species were less ro-
bust than others, more occurrence data is constantly being acquired 
through a litany of scienti!c and public sources, community science 
databases, and digitization of museum collections. Species sampled 
in this analysis hold importance for their evolutionary history as well 
as their importance as pests such as M. darwiniensis which used to 
have a pandemic distribution and is considered one of the most de-
structive in their region (Watson and Gay 1970, Watson and Abbey 
1993, Thistleton et al. 2007). These maps will be useful for termite 
biologists working in !eld settings to collect and observe these spe-
cies. Future studies could utilize our models as a baseline for pre-
dictions of future habitat suitability of species in the face of habitat 
destruction such as forest !res or used in conjunction with paleo-
climates to understand past changes in distribution patterns of these 
basal termite species.

Supplementary Data
Supplementary data are available at Insect Systematics and Diversity online.
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