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ABSTRACT

Sparsity regularized loss minimization problems play an important
role in various fields including machine learning, data mining, and
modern statistics. Proximal gradient descent method and coordi-
nate descent method are the most popular approaches to solving the
minimization problem. Although existing methods can achieve im-
plicit model identification, aka support set identification, in a finite
number of iterations, these methods still suffer from huge compu-
tational costs and memory burdens in high-dimensional scenarios.
The reason is that the support set identification in these methods
is implicit and thus cannot explicitly identify the low-complexity
structure in practice, namely, they cannot discard useless coeffi-
cients of the associated features to achieve algorithmic acceleration
via dimension reduction. To address this challenge, we propose
a novel accelerated doubly stochastic gradient descent (ADSGD)
method for sparsity regularized loss minimization problems, which
can reduce the number of block iterations by eliminating inactive
coefficients during the optimization process and eventually achieve
faster explicit model identification and improve the algorithm ef-
ficiency. Theoretically, we first prove that ADSGD can achieve a
linear convergence rate and lower overall computational complex-
ity. More importantly, we prove that ADSGD can achieve a linear
rate of explicit model identification. Numerically, experimental re-
sults on benchmark datasets confirm the efficiency of our proposed
method.
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1 INTRODUCTION

Many popular statistical learning models, such as Lasso [27], group
Lasso [32], sparse logistic regression [20], Sparse-Group Lasso [26],
elastic net [35], sparse Support Vector Machine (SVM) [34], etc, have
been developed and achieved great success for both regression and
classification tasks in machine learning, data mining, and modern
statistics. Given design matrix A € R4 with n observations
and d features, these models can be formulated as regularized loss
minimization problems:

min P(x) = F (x) + AQ(x), (1)
xeRd

where F(x) = % P f,-(a;'—x) is the data-fitting loss, Q(x) is the
block-separable regularizer that encourages the property of the
model parameters, A is the regularization parameter, and x is the
model parameter. Let G be a partition of the coefficients, we have
Q(x) = zjzl Qj(xg,).

Proximal gradient descent (PGD) method was proposed in [5, 16]
to solve Problem (1). However, at each iteration, PGD requires gra-
dient evaluation of all the samples, which is computationally ex-
pensive. To address this issue, stochastic proximal gradient (SPG)
method is proposed in [8], which only relies on the gradient of
a sample at each iteration. However, SPG only achieves a sublin-
ear convergence rate due to the gradient variance introduced by
random sampling. Further, proximal stochastic variance-reduced
gradient methods, such as ProxSVRG [30] and ProxSAGA [7], were
proposed to achieve a linear convergence rate for strongly convex
functions.

On the other hand, coordinate descent method has received
increasing attention due to its efficiency. Randomized block coor-
dinate descent (RBCD) method is proposed in [23, 24], which only
updates a single block of coordinate at each iteration. However, it
is still expensive because the gradient evaluation at each iteration
depends on all the data points. Further, doubly stochastic gradient
methods are proposed in [6, 25]. Among them, [6], called stochas-
tic randomized block coordinate descent (SRBCD), computes the
partial derivative on one coordinate block with respect to a sam-
ple. However, SRBCD can only achieve a sublinear convergence
rate due to the variance of stochastic gradients. Further, acceler-
ated mini-batch randomized block coordinate descent (MRBCD)
method [29, 33] was proposed to achieve a linear convergence rate
by reducing the gradient variance.
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Table 1: Comparison between existing methods and our ADSGD method. “Stochasticity” represents whether the method is

stochastic on samples or coordinates.

Method Stochasticity | Sample Scalablity | Low Per-iteration Cost | Model Identification | Identification Rate
PGD-type Method [16, 30] v v X Implicit -
Screening [1, 10] X X v Explicit -
ADSGD (Ours) v v v Implicit & Explicit O(log( %))

However, all the existing methods still suffer from huge compu-
tational costs and memory usage in the practical high-dimensional
scenario. The reason is that these methods require the traversal
of all the features and correspondingly the overall complexity in-
creases linearly with feature size. The pleasant surprise is that the
non-smooth regularizer usually promotes the model sparsity and
thus the solution of Problem (1) has only a few non-zero coefficients,
aka the support set. In high-dimensional problems, model identifi-
cation, aka support set identification, is a key property that can be
used to speed up the optimization. If we can find these non-zero
features in advance, Problem (1) can be easily solved by restricted
to the support set with a significant computational gain without
any loss of accuracy.

Model identification can be achieved in two ways: implicit and
explicit identification. In terms of the implicit model identification,
PGD can identify the support set after a finite number of iterations T
[13-15], which means, for some finite K > 0, we have supp(xk) =
supp(x*) holds for any k > K. Other popular variants of PGD
[15, 21] also have such an implicit identification property. However,
these results can only show the existence of T and cannot give any
useful estimate without the knowledge of 0 [13, 14], which makes
it implicit and impossible to explicitly discard the coefficients that
must be zero at the optimum in advance. In terms of the explicit
model identification, screening can identify the zero coefficients and
discard these features directly [1, 3, 10]. By achieving dimension
reduction, the algorithm only needs to solve a sub-problem and
save much useless computation. However, first, existing works
[1, 3, 10, 18, 22] mainly focus on the existence of identification but
fail to show how fast we can achieve explicit model identification.
Besides, existing works on explicit model identification [19] are
limited to the deterministic setting. Therefore, accelerating the
model training by achieving fast explicit model identification is
promising and sorely needed for high-dimensional problems in the
stochastic setting.

To address the challenges above, in this paper, we propose a
novel Accelerated Doubly Stochastic Gradient Descent (ADSGD)
method for sparsity regularized loss minimization problems, which
can significantly improve the training efficiency without any loss
of accuracy. On the one hand, ADSGD computes the partial de-
rivative on one coordinate block with respect to a mini-batch of
samples to simultaneously enjoy the stochasticity on both samples
and features and thus achieve a low per-iteration cost. On the other
hand, ADSGD not only enjoys implicit model identification of the
proximal gradient method, but also enjoys explicit model identi-
fication by eliminating the inactive features. Specifically, ADSGD
has two loops. We first eliminate the inactive blocks at the main
loop. Within the inner loop, we only estimate the gradient over a

selected active block with a mini-batch of samples. To reduce the
gradient variance, we adjust the estimated gradient with the exact
gradient over the selected block. Theoretically, by addressing the
difficulty of the uncertainty of double stochasticity, we establish the
analysis for the convergence of ADSGD. Moreover, by linking the
sub-optimality gap and duality gap, we provide theoretical analysis
for fast explicit model identification. Finally, based on the results of
the convergence and explicit model identification ability, we estab-
lish the theoretical analysis of the overall complexity of ADSGD.
Empirical results show that ADSGD can achieve a significant com-
putational gain than existing methods. Both the theoretical and the
experimental results confirm the superiority of our method. Table 1
summarizes the advantages of our ADSGD over existing methods.
Contributions. We summarize the main contributions of this paper
as follows:

e We propose a novel accelerated doubly stochastic gradient
descent method for generalized sparsity regularized problems
with lower overall complexity and faster explicit model iden-
tification rate. To the best of our knowledge, this is the first
work of doubly stochastic gradient method to achieve a linear
model identification rate.

o We derive rigorous theoretical analysis for our ADSGD method
for both strongly and nonstrongly convex functions. For strongly
convex function, ADSGD can achieve a linear convergence
rate O(log( é)) and reduce the per-iteration cost from O(d) to
O(s) where s < d, which improves existing methods with a
lower overall complexity O(s(n+ %) log(é)), For nonstrongly
convex function, ADSGD can also achieve a lower overall
complexity O(s(n + %) log(é)).

e We provide the theoretical guarantee of the iteration num-
ber T to achieve explicit model identification. We rigorously
prove our ADSGD algorithm can achieve the explicit model
identification at a linear rate O(log(sij)).

2 PRELIMINARY

2.1 Notations and Background

For norm Q(-), QP () is the dual norm and defined as QP (u) =
maxq (;)<1{2z u) for any u € R4 if z € RY. Denote 0 as the dual
solution and A4 as the feasible space of 0, the dual formulation
D(6) of Problem (1) can be written as:

1,
max D(0) =~ Zlf (=0:). )

The dual D (0) is strongly concave for Lipschitz gradient continuous
F(x) (see Proposition 3.2 in [11]).



An Accelerated Doubly Stochastic Gradient Method with Faster Explicit Model Identification

For Problem (1), based on the subdifferential [12, 17], Fermat’s
conditions (see [4] for Proposition 26.1) holds as:

1 5 %
;A}—Q € )Lan(xgj). (3)
The optimality conditions of Problem (1) can be read from (3) as:
1 D/ AT p*y\ _ % .
;Qj (A;07) = A, zfxgjio, (4)
l £ . £
;Q?(AJTQ )< A ifxg =0. (5)

2.2 Definitions and Assumptions

One key property of our method is to achieve explicit model iden-
tification, which means we can explicitly find the Equicorrelation
Set in Definition 1 of the solution.

DEFINITION 1. (Equicorrelation Set (see [28])) Suppose 0 is the
dual optimal, the equicorrelation set is defined as

S ={je{L2....q}: %Q]D(AJTH*) = ). ©)

AssUMPTION 1. Given the partition {G1, ..., Gq}, all ngf,-(x) =
[Vfi (x)]gj are block-wise Lipschitz continuous with constant L;,
which means that for any x and x’, there exists a constant L = max; L;,
we have

Vg, fi(x) = Vg, i)l < Llixg, - xg |- ™

ASSUMPTION 2. ¥ (x) and Q(x) are proper, convex and lower-
semicontinuous.

Assumptions 1 and 2 are commonly used in the convergence
analysis of the RBCD method [29, 33], which are standard and satis-
fied by many regularized loss minimization problems. Assumption
1 implies that there exists a constant T < gL, for any x and x’, we
have

IVfi(x) = V(DI < Tllx = ®

i.e., Vfi(x) is Lipschitz continuous with constant T.

3 PROPOSED METHOD

In this section, we will introduce the accelerated doubly stochastic
gradient descent (ADSGD) method with discussions.

To achieve the model identification, a naive implementation of
the ADSGD method is summarized in Algorithm 1. The ASGD al-
gorithm can reduce the size of the original optimization problem
and the variables during the training process. Thus, the latter prob-
lem has a smaller size and fewer variables for training, which is a
sub-problem of the problem from the previous step, but generates
the same optimal solution.

We denote the original problem as Py and subsequent sub-
problem as Py _; at the k-th iteration in the main loop of ASGD.
Moreover, we define the active set at the k-th iteration of the main
loop as Sg._1. Thus, in the main loop of ASGD, we compute ;4
with the active set Sg_; from the previous iteration as

_ =VF (F-1)
max(1, QD(Agqu?"—(fk—l))//l) .

9’(*1 (9)

Then we compute the intermediate duality gap

Gap(Xg_1, 0k —1) = Pr_1(Xk_1) — Dg_1(0k_1), (10)
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for the screening test. In step 6, we obtain new active set Sy from
Sk_1 by the screening conducted on all j € Sg_; as

1 1 _ -
;Q]D(AJTHk_l) + ;Q?(Aj)r’f ol xg, =0, (11)

where the safe region is chosen as spheres R = B(0;_1, rk=1)
(1, 18].

With obtained active set S, we update the design matrix A
and the related parameter variables x°, % in step 7. In the inner
loop, we conduct all the operations on S. To make the algorithm
scale well with the sample size, we only randomly sample a mini-
batch I € {1,2,...,n} of samples at each iteration to evaluate the
gradients.

Algorithm 1 The ASGD method

Input: x.
1: fork=1,2,...do
2: J~Ck_1 = f‘k—1~

3: xl(i—l = -7~Ck—1~

4 Compute 0;_; by (9).

5. k=l = \2T Gap(X—q, Ok—1)-

6:  Update S € Sp_; by (11).

7. Update Ag,, x]g, Xp with S.

8: fort=l,2,...,%do

9: Randomly pick 7 c {1,2,...,n}.
10: x]i = prox, ) (x]i_l -nVFr (xltc_l)).

11:  end for
A 1 m,
12: X = e Zt:kl xl’;.
13: end for
Output: Coefficient Xy.

PROPERTY 1. Let £g, be the j-th block of X in Algorithm 1,Vj €
{1,2,...,q}, fgj discarded by ASGD is guaranteed to be 0 at the
optimum.

REMARK 1. Property 1 shows that ASGD is guaranteed to be safe
not only for the current iteration but also for the whole training
process. The safety of the screening is the foundation of the analysis
of convergence and explicit model identification rate in the following
part.

REMARK 2. Property 1 also shows that discarding inactive variables
can either decrease or make no changes to the objective function.

Doubly Stochastic Gradient Update. Since ASGD is only singly
stochastic on samples, the gradient evaluation is still expensive be-
cause it depends on all the coordinates at each iteration. Thus, we
randomly select a coordinate block j from Si to enjoy the stochas-
ticity on features. Specifically, ADSGD only computes the partial
derivative Vg Fr (xli_l) on one coordinate block with respect to a
sample each time, which yields a much lower per-iteration compu-
tational cost. The proximal step is computed as:

j ’oN .1 ’ 2 X
prox}’7’/1(xgj) = ar%;1n5||xgj —xg; II” +2Q;(xg;). (12)
J

Therefore, ADSGD is doubly stochastic and can scale well with
both the sample size and feature size.
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Algorithm 2 The ADSGD method

Input: xo.
1: fork=1,2,...do
2: JZ'k—l = JACk_l.

3 ik = VF (K1)

4: xlg—l = J?k_l.

5. Compute 6;_1 by (9).

6 rkTl= V2T Gap(Xp_1, O _1)-

7. Update S € Sk_; by (11).

8:  Update As,, x](z, Xp, iy with S.

9: fortzl,Z,...,%do

10: Randomly pick 7 c {1,2,...,n}.
1 Randomly pick j from S.

12: pre = Vg, Fr(x71) = Vg, F1 (%) + fig, k-
13: xltc,g]- = profo (xltc_gl] — NHE)-

14:  end for
A 1 m,
15 R = g Sk xfc
16: end for
Output: Coefficient x.

Variance Reduction on the Selected Blocks. However, the gradi-
ent variance introduced by stochastic sampling does not converge
to zero. Hence, a decreasing step size is required to ensure the
convergence. In that case, even for strongly convex functions, we
can only obtain a sublinear convergence rate. Thanks to the full
gradient we computed in step 3, we can adjust the partial gradi-
ent estimation over the selected block G; to reduce the gradient
variance with almost no additional computational costs as:

e = Vg, Fr(x ") = Vg, Fr (%) + fig, k- (13)
It can guarantee that the variance of stochastic gradients asymptot-
ically goes to zero. Thus, a constant step size can be used to achieve
a linear convergence rate if P is strongly convex.

The algorithmic framework of the ADSGD method is presented
in Algorithm 2. ADSGD can identify inactive blocks and thus only
active blocks are updated in the inner loop, which can make more
progress for training rather than conduct useless updates for in-
active blocks. Thus, fewer inner loops are required for each main
loop and correspondingly huge computational time is saved.

Suppose we have g active blocks for the inner loop at the k-th
iteration, we only do my = % iterations in the inner loop for the
current outer iteration, which means the number of the inner loops
continues decreasing in our algorithm. The output for each iteration
is the average result of the inner loops. As the algorithm converges,
the duality gap converges to zero and thus (11) can eliminate more
inactive blocks and thus save the computational costs to a large
extent.

Remarkably, the key step of the screening in Algorithm 2 is the
computation of the intermediate duality gap, which only imposes
extra O(qy) costs to the original algorithm at the k-th iteration. Note
the extra complexity of screening is much less than O(d) in practice,
which would not affect the complexity analysis of the algorithm.
Further, at the k-th iteration, our Algorithm 2 only requires the
computation over S, which could be much smaller than the origi-
nal model over the full parameter set. Hence, in high-dimensional
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regularized problems, the computation costs are promising to be
effectively reduced with the constantly decreasing active set S.

On the one hand, ADSGD enjoys the implicit model identification
of the proximal gradient method. On the other hand, discarding the
inactive variables can further speed up the identification rate. Thus,
ADSGD is promising to achieve a fast identification rate by simul-
taneously enjoying the implicit and explicit model identification to
yield a lower per-iteration cost.

4 THEORETICAL ANALYSIS

In this section, we first give several useful lemmas and then provide
theoretical analysis on the convergence, explicit model identifica-
tion, and overall complexity. Detailed proof can be found in [2].

4.1 Useful Lemmas
LEMMA 1. Definevy = ﬁ Sier (VAT = V£i(X) + VF(R),
x = proxq(xt_1 - pVF (YY), X7 = prox,](xt_1 — nur) and
prox,](x’) = argmin,. %Hx' —x]|? + Q(x), we have
Er(or - VF (') T(x" -%7) < nBrllor - VF (D% (14)
ProoF. We can first prove
Er(vy - VF (")) T (x* -x7)
= Erl(or - VF ()T (x -%1)]
and then prove

Er(or = VF (') T (" ~%1)

= nEzlloy - VF & THI (15)
to obtain Lemma 1 by using Cauchy-Schwarz inequality and the
non-expansiveness of the proximal operator. O

LEMMA 2. (See [30]) Define v; = Vfi(x'™1) — V(%) + VF (%),
conditioning on xt71 we have

Ejo; = VF(x'™1),
and
Eillo; - VF(x' D2 < 4T(P(x'™) = P(x*) + P () — P (x")).
LEMMA 3. (See [33]) Define § = (x —x)/n andbg,; = (fgj -x)/n
where X = prox, (x — nv) and prox, (x) = argmin,, % lx" = x||? +
Q(x"), we have
E;jdg, =6/q and Ejl5g, |1 =1I511%/q.

Moreover, taking n < % we have

E;[(x ~x") "8, + 21155,I] (16)

IN

1 * -1 _
“p(x) + =P (x) ~ ;P (xg))
q q

+ 0= V7 (0) (" - 5),

where x* = arg min, P (x).

4.2 Strongly Convex Functions

We establish the theoretical analysis of ADSGD for strongly convex
F here.
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4.2.1 Convergence Results.

LEMMA 4. Suppose Xy and Xy are generated from the k-th iteration
of the main loop in Algorithm 2 and let |I'| > % andn < ﬁ, we have

EPy (%) — Pr(xp) < prlPr(Er) = Prl(xp)], (17)
— g 4Ln (my+1) _T
where pp. = #’I(l—‘fL’])mk (1—4Lr]k)mk' We can choose |I| = 1,

- 1 _ 85qL 2
N= 1, andm= 4 to make py. < 5.

PRrROOF. At the k-th iteration of the main loop, all the updates in
the inner loop are conducted on sub-problem %, with the active
set Sg. At the t-th iteration of the inner loop for the k-th main loop,
we randomly sample a mini-batch I and G; C Sk.

Define v; = Vf; (x,i_l) — Vfi(%) + VF (x), based on Lemma 2,

conditioning on x]i_l

, we have

Ejv; = VF (x; 1),
and

Eillo; — VF (x} I3 < 4T(P(xg 1) = Pxf) + P (5x) — P(x}).

Define § = (X, — xx)/n and dg, = (fgj,k — x)/n where X =
prox, (xg — nv), based on Lemma 3, we have

Ejdg, =8/qr and Ejllog,|I* = 1161°/qx-
Moreover, taking 1 < % we have

B [(xk = %) 8, + 2113, I

1 . -1 ,
S P+ P —EiPu(ig, 0 (9)
1 £
+—(v— V?‘_(xk))T(xk — Xp). (19)
qdk
Define 67 g, = (x,tc - xltc_l)/ﬂ and Xy 7 = prox”(xltc_1 - nor),

based on Lemma 1, Lemma 2, Lemma 3 and the fact that Eyo is
the unbiased estimator of V?‘_(x]tc_l) and

1 _
—Eillo; - VF (xf 115, (20)

Erllor - VF(xp IS = 7]

We€ can prove

¢ 2 -1 2
Erjllxg = xgl1® =l — xll

= Er It 40, - P - xt - X1 (21)
= Er[2n( " —x) E;[67,6,]1 + 1°EjllS7.g,1I°] (22)
< z—ZEI[m—W(x,i—l)f(x,t—xk,f)] (23)
+2nE; [qikv)k(xp + L (1) DB Py (36, k1))
< —ZU[EijDk(fg,-kI)—f"k(xZ)] (24)
opdk (Pk(xfC ) = Pr(xp)
8Tr]

q |I|(7’k( X1 = Pr(x) + Pre(Er) — Pr(xp). (25)
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Note xz =X and X} = L >

obtained by (25), we have

mp

P} k’ then based on the inequality

my
Ellx* = xcll* = [l — x 11 + 2n Z(Epk(x,i) - Pr(x;)

t=1
8T /|7 +2n(q - 1) "' .
< - k ; (EPy (xp) — Pr(x}))
8Tn? 1
%(Wfk) L) (26)
8T /17| +2n(q — 1) & .
< o £ ;@mxp—mxk))
8Tn? 1
%(ﬂ(@) ) (27)
Rearranging (27), note xg = X}, we have
—4anT/|T|\ K
o (2L ')Z [EPc(xL) - Px)] (29)
1
T
< -2 %(ﬂ(w PLD)
2
S 2P - P+ ST (mi + 1) (i (50) — Pr(x).

a7

where the second inequality is obtained by the strong convexity of
. Based on the convexity of P, we have

my
1
Pr(fr) < — > Pr(xh).
() < ; % (%t
Thus, by (28), we can obtain
1—4nT/|T| . N
2n (Z—k) my [EPx (Rk) — Pr(xp) ]

(2 8Tn?(my +1)
RV qxl 7|

Defining py. = (

) [P (%) = Pe(xp)] . (29

o AnT/IZ|(mict1)
L) we have

9k
pn (=4 /1T Dmy +

EP (fk) = Pr(x}) < pre | Pr (Fre) = Pre(x)] - (30)
Choosing |7| = +, we have
EPy (xk) - Pr(x) (31)
4Ln(my +1
(un(l i G ’1(4Lkn>m2) 17 50 =P
Considering my = % we can choose = 16L’ andm = GSZL to
make pg < %, which completes the proof.
[m]

REMARK 3. Lemma 4 shows that the overall inner loop of Algorithm
2 can decrease the expected objective function with a factor py. at the
k-th iteration.

THEOREM 1. Suppose Xy be generated from the k-th iteration of
the main loop in Algorithm 2 and let |T| > % andn < ﬁ, we have

EPy (%) — P(x) < p[P (%) - P(x)]. (32)
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_T _ 1 _ 65qL 2
Wecanchooselﬂ—f,n—m,andm—T to make p < £.

Proor. Considering each sub-problem #4, based on Lemma 4,
for each main loop, we have

EPy (%) — Pr(xp) < pi [Pre i) — Pre(xp)] - (33)

Since the eliminating in the ADSGD algorithm is safe, the optimal
solution of all the sub-problems are the same. Thus, we have

Pr(xp) = Pr—1(x5_)- (34)

Then, the coefficients eliminated at the k-th iteration of the main

loop must be zeroes at the optimal, which means the eliminating

stage at the k-th iteration of the main loop actually minimizes the
sub-problem P;._; over the eliminated variables. Thus, we have

Pr (%) < Pr—1(¥k-1)-

Moreover, considering Pr_1 (%x_1) = Pr—1(Xr_1), we have

Pr (k) < Pro1(Rx-1)- (35)
Combining above, we have
EP (%) = Pr(xp) < pie [Pre (Ga) = Pre(x)] (36)

IA

P [Pre—1(—-1) = Pk—l(x;:_l)] (37)

T 1 65gL 2
We can choose | 1| = £,1 = 777, and m = Tq to make Vk, pj < %.

Thus, 3p < %, applying the above inequality recursively, we obtain

BPk (%) - Pilxp) < o |Polis,) - Polxy,)|
From (34), we have
Pr(a) = P10 _y) =+ = Polxg,)- (38)

Note Py = P and Sy is the universe set for all the variables blocks,
we have

EPy () = P(x") < p* [P(3) - P ()], (39)
which completes the proof. O

REMARK 4. Theorem 1 shows that ADSGD converges linearly to
the optimal with the convergence rate O(log 1 (%))
3

4.2.2  Explicit Model Identification.
LEMMA 5. limp_, o O = 0% iflimp_, 4o X = x™.
Proor. Define o = max (1, Qb (A;kVT(fck)) /)L), We have
H VF (%)
ak

— VF(x") (40)

”9k - 9*“2

2

IA

‘1 - a—lk‘ IVF E)lly +[|VF (%) = VF ()|, -
Considering the right term, if limy_,,, X = X*, we have
o = max (1P (ALVF () /2) = 1,
and
||V7' (%) — Vf(x*)nz — 0.

Thus, the right term converges to zero, which completes the proof.
m]

REMARK 5. Lemma 5 shows the convergence of the dual solution
is guaranteed by the convergence of the primal solution.

Runxue Bao, Bin Gu, and Heng Huang

LEMMA 6. Ju € 8QD(Agk9k),for all s € [0,1], we have

R . R Ts? R
Pr (%) = P(x7) = s Gap(xg, Ok) — 7||Ask(u -&)lP. (1)

Proor. From the smoothness of #, we have:
F (&) = F (R +s(u - %))
> s(TF ). As, - 0) - LA - g0l 2)
By the convexity of Q, we have:
Q(xx) — QFg +s(u — %)) = s(QX) — Q(u)). (43)
Moreover, we have
Q(xp) — Qw) —(VF (%), As, (u — X))
= Q) +QP(AG 00) + (VF (). As %) (49)
= QG +QP(AL ) + F (k) + F7(<6k)  (45)
= Gap(%, Ok), (46)
where the first equality comes from
Qu) = (WA, ) — QP (A 6),
and the third equality comes from
F (%) = (VF (Zr), As Kie) — T (=0k).

Therefore, for any X and u, we have:

P (%) — P(x") (47)
> P(xp) P +s(u—xp)) (48)
= Q) — Qg +5s(u— %)) +F (Kp) — F (R +5(u — X))
§2
> sGap(%g, 0k) — ETHASk (u— %)% (49)

where the second equality comes from (42) and (43), which com-
pletes the proof.
[m]

REMARK 6. The difficulty to analyze the model identification rate of
ADSGD is that the screening is conducted on the duality gap while the
convergence of the algorithm is analyzed based on the sub-optimality
gap. Note the sub-optimality gap at the k-th iteration of the main loop
is computed as P (X)) — P(x*), Lemma 6 links the sub-optimality
gap and the duality gap at the k-th iteration.
nA-QP (A76%)

2Qj?(A )
norm of A, suppose Q has a bounded support within a ball of radius
M, given anyy € (0,1), any block that j ¢ S™ are correctly identified
by ADSGD at iteration log% (%) with at least probability 1 —y where

THEOREM 2. DefineA; = , denote 0'3‘ as the spectral

1 Ay
2 TEM (P -P)

p is from Theorem 1 and €; =
ProoF. Based on the screening condition, any variable block j
can be identified at the k-th iteration when
1 1 2
~QP(AT0") < QP (AT0") + =P )k < A (50)
n n n
Thus, we have that variable block j can be identified when

10D (AT p*
. A-iePulen
< 3o =
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Considering %), = %} and r¥ = 12T Gap (%, 0)), we have that any
variable block j can be identified at the k-th iteration when
AZ
G ,0 — 51
ap(Xg, Ok) < 2T (51)

For u;. € oQP (A;k 0y), considering Q has a bounded support
within a ball of radius M, we have

[A(ug — xp)|| < 204M.
Based on Lemma 6, we have
1
Gap (%, 0k) < < (Pr (i) = P(x")) + 2Ta Ms.

Minimizing the right term over s, we have

Gap(fx. O) < ABTOAM2(Pr () - P (x")). (52)

Thus, we can make

AZ
\/STU M2(Py(35) — P(x*)) < —; (53)

to ensure the screening condition (51) holds. Since (53) can be
reformulated as
4
P - Py < LT (54)
Rk " 327302 M2
if 3k € N'*, we have (54) hold, we can ensure the screening condi-
tion hold at the k-iteration.
From Theorem 1, we have

EP; (%) — P(x*) < pF[P(3) - P(x)]. (55)

A
Thus, if we let (P (%) — P(x*))p < 32 Tig zMz» we have
A4

7
BP0 =) < (56)
By Markov inequality and Theorem 1, we have
plpui Pz L
KT S R e

327304 M? i
— A (EPL () — P(x")) (57)

IA

2 IAT K P () - P(x)). (58)

Denote €j = = Ajy
7T R T M (P (R)-P(x%))’

if we choose k > logl(eij),
P
we have
A4
PP - P2 G
327304 M?
< A—ej(i”(xk) P(x")) = (59)
J

Thus, for k > log 1 (%), we have

P
A%

Pr (%) = P(x7) < (60)

J
32 T30% M?’
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with at least probability 1 —y, which means any variable that j ¢ S*

are correctly detected and successfully eliminated by the ADSGD

algorithm at iteration log 1 (é) with at least probability 1—y, which
P

completes the proof. O

REMARK 7. Theorem 2 shows that the equicorrelation set S* can
be identified by ADSGD at a linear rate O(log 1 (%)) with at least
P

probability 1 — y. We use the Lipschitzing trick in [9] to restrict the
function Q within a bounded support.

4.2.3  Overall Complexity.

CoROLLARY 1. Suppose the size of the active features in set S is
dy and d* is the size of the active features in S*, given anyy € (0, 1),
let Ky = O(log 1 (%)) we have dy. is decreasing and d, equals to

P

d* with at least probability 1 — y. Define s = KLC Zf;l dy where K, =
O(log% (%)), the overall complexity of ADSGD is O((n+ %)s log( %)).

Proor. The first part of Corollary 1 is the direct result of The-
orem 2. For the second part, Theorem 1 shows that the ADSGD
method converges to the optimal with the convergence rate O(log %)
For each main loop, the algorithm runs my inner loops. Thus,
since m = % and mp = % the ADSGD algorithm takes
o((1+ q';,—L) log é) iterations to achieve € error.

For the computational complexity, considering the k-th iteration
of the main loop, the algorithm is solving the sub-problem P and
the complexity of the outer loop is O(ndk) Within the inner loop,
q‘ l . Thus, the complexity of
f, define s = ITC Zlktl dy

where K, = O(log 1 (%)), the overall complexity for the ADSGD
P

the complexity of each iteration is

the inner loop is mk%. Let |7]| =

. . T 1 .
algorithm is O((n + ﬁ)s log 2 ), which completes the proof.
m]

REMARK 8. Please note the difference between the number of fea-
tures as di. and the number of blocks as qy. at the k-th iteration. In
the high-dimensional setting, we have d* < d and s < d. Thus,
Corollary 1 shows that ADSGD can simultaneously achieve linear
convergence rate and low per-iteration cost, which improves Prox-
SVRG and MRBCD with the overall complexity O((n + %)d log( %))

at a large extent in practice.

4.3 Nonstrongly Convex Functions

For nonstrongly convex ¥, we can use a perturbation approach to
establishing the convergence analysis here.

Suppose x¥ is the initial input and Up is a positive parameter,
adding a perturbation term pi[|x — x9||% to Problem (1), we have:

min 7 (x) + pp llx — x°[|? + Q(x). (61)
xeRd

If we solve (61) with ADSGD, since we can treat ¥ (x) +pip || x —x9)|2
as the data-fitting loss, we know the loss is ,up—strongly convex, we
can obtain the convergence result for (61) as O((n + %)s log(%)).

Suppose x; be generated from the k-th iteration of the main loop in



CIKM 22, October 17-21, 2022, Atlanta, GA, USA.

Runxue Bao, Bin Gu, and Heng Huang

— ProXSVRG
BCD
CD, batch=10
s SSBCD, balch=-20

Training Error
Training Error

— ProSVAG
BCD
BCD, batch=10
s SSBCD, batch=20

— PrOXSVRG

BCD

CD, batch=10
s SSBCD, baich-20

Training Error

400 500 600 600
Training Time (s)

0 100 200 300

(a) PlantGo

800

1000
Training Time (s)

(b) Protein

1200 1400 1600 1800 0 200 400 600 800

Training Time (s)

1000 1200 1400

(c) Real-sim

Figure 1: Convergence results of different algorithms for Lasso on different datasets.

w— ProxSVRG
s MRBCD

ADSGD, batch=10
e ADSGD, batch=20

Training Error
Training Error

e ProxSVRG
s MRBCD

w— ProxSVRG
— MRBCD

ADSGD, batch=10
e ADSGD, batch=20

ADSGD, batch=10
e ADSGD, batch=20

Training Error

0 10

20 30 40 50 60

Training Time (s)
(a) PlantGo

70 80 90 100 0

100

150

200

Training Time (s)

(b) Protein

250 300 350 400 0

100

200 300 400 500

Training Time (s)

600 700 800

(c) Real-sim

Figure 2: Convergence results of different algorithms for Lasso on different datasets.

Algorithm 2 where k = O((n + %)s log %) and X* is the optimum

solution of (61), let || > % and g < ﬁ, we obtain:

EPi(%x) + Cp = P() — pplI¥* = x°|I> < (62)

€
2

where Cp is the expectation of the perturbation term, which is
always positive. Thus, we have

EPy (%)

IA

+PE) +ppllX* =7 (63)

IN

+P(x") + ppllx” = |7 (64)

Nl m

where the second inequality is obtained because X* is the optimum
solution of (61).

If we set pp = we have

— €
PP
EPr (%) — P(x*) <e.

Since 2||x* —x°||? is a constant, the overall complexity of Algorithm
1 for nonstrongly convex functionis k = O((n+ %)s log(%)), which
also improves ProxSVRG and MRBCD with the overall complexity

O((n+ %)d log(%)) for nonstrongly convex function.

5 EXPERIMENTS
5.1 Experimental Setup

Design of Experiments: We perform extensive experiments on
real-world datasets for two popular sparsity regularized models
Lasso shown as

o1 1 T2
min — —(yi —x; x)° + Al|x||1, 65
i 2 a0l )
and sparse logistic regression as
l n
. T .

min — —y;a; x +log(1 +exp(a; x))) + Allx]||1. 66
xeRd n;( L g( p( i ) [l (66)

respectively to demonstrate the superiority of our ADSGD w.r.t. the
efficiency.

To validate the efficiency of ADSGD, we compare the conver-
gence results of ADSGD w.r.t the running time with competitive
algorithms ProxSVRG [30] and MRBCD [29, 33] under different
setups. We do not include the results of ASGD because the naive
implementation is very slow. The batch size of ADSGD is chosen
as 10 and 20 respectively.

Datasets: Table 2 summarizes the benchmark datasets used in our
experiments. Protein, Real-sim, Gisette, Mnist, and Rcv1.binary
datasets are from the LIBSVM repository, which is available at
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Figure 3: Convergence results of different algorithms for sparse logistic regression on different datasets.

Table 2: The descriptions of the datasets.

Dataset Samples Features
PlantGO 978 3091
Protein 17766 357
Real-sim 72309 20958
Gisette 6000 5000
Mnist 60000 780
Revl.binary 20242 47236

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. PlantGO

is from [31], which is available at http://www.uco.es/kdis/mllresources/.

Note Mnist is the binary version of the original ones by classifying
the first half of the classes versus the left ones.

Implementation Details: All the algorithms are implemented in
MATLAB. We compare the average running CPU time of different
algorithms. The experiments are evaluated on a 2.30 GHz machine.
For the convergence results of Lasso and sparse logistic regression,
we present the results with A1 = Apmax/2 and A2 = Amax/4. Notably,
Amax 18 a parameter that, for all A > Apmax, x™ must be 0. Specifically,
we have Apax = %||ATy||oo for Lasso and Amax = %HATG(O)HDQ

0

for sparse logistic regression where G(0) = ;75 — y. Please note,
for each setting, all the compared algorithms share the same hy-
perparameters for a fair comparison. We set the mini-batch size as
10 for the compared algorithms. The coordinate block number is
set as ¢ = 10. Other hyperparameters include the initial inner loop
number m and step size 5, which are selected to achieve the best
performance. For Lasso, we perform the experiments on PlantGO,
Protein, and Real-sim. For sparse logistic regression, we perform
the experiments on Gisette, Mnist, and Rev1.binary.

5.2 Experimental Results

5.2.1 Lasso Regression. Figures 1(a)-(c) provide the results of the
convergence results for Lasso on three datasets with A = A;. Figures
2(a)-(c) provide the convergence results with A = A5. The results
confirm that ADSGD always converges much faster than MRBCD
and ProxSVRG under different setups, even when n > d for Protein.

This is because, as the variables are discarded, the optimization pro-
cess is mainly conducted on a sub-problem with a much smaller size
and thus requires fewer inner loops. Meanwhile, the screening step
imposes almost no additional costs on the algorithm. Thus, ADSGD
can achieve a lower overall complexity, compared to MRBCD and
ProxSVRG conducted on the full model.

5.2.2  Sparse Logistic Regression. Figures 3(a)-(c) provide the con-
vergence results for sparse logistic regression on three datasets
with A = A5. The results also show that ADSGD spends much less
running time than MRBCD and ProxSVRG for all the datasets, even
when n > d for Mnist dataset. This is because our method solves
the models with a smaller size and the screening step imposes
almost no additional costs for the algorithm.

6 CONCLUSION

In this paper, we proposed an accelerated doubly stochastic gradient
descent for sparsity regularized minimization problem with linear
predictors, which can save much useless computation by constantly
identifying the inactive variables without any loss of accuracy.
Theoretically, we proved that our ADSGD method can achieve lower
overall computational complexity and linear rate of explicit model
identification. Extensive experiments on six benchmark datasets
for popular regularized models demonstrated the efficiency of our
method.
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