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ABSTRACT
Sparsity regularized loss minimization problems play an important

role in various fields including machine learning, data mining, and

modern statistics. Proximal gradient descent method and coordi-

nate descent method are the most popular approaches to solving the

minimization problem. Although existing methods can achieve im-

plicit model identification, aka support set identification, in a finite

number of iterations, these methods still suffer from huge compu-

tational costs and memory burdens in high-dimensional scenarios.

The reason is that the support set identification in these methods

is implicit and thus cannot explicitly identify the low-complexity

structure in practice, namely, they cannot discard useless coeffi-

cients of the associated features to achieve algorithmic acceleration

via dimension reduction. To address this challenge, we propose

a novel accelerated doubly stochastic gradient descent (ADSGD)

method for sparsity regularized loss minimization problems, which

can reduce the number of block iterations by eliminating inactive

coefficients during the optimization process and eventually achieve

faster explicit model identification and improve the algorithm ef-

ficiency. Theoretically, we first prove that ADSGD can achieve a

linear convergence rate and lower overall computational complex-

ity. More importantly, we prove that ADSGD can achieve a linear

rate of explicit model identification. Numerically, experimental re-

sults on benchmark datasets confirm the efficiency of our proposed

method.
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tion; • Mathematics of computing → Convex optimization.
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1 INTRODUCTION
Many popular statistical learning models, such as Lasso [27], group

Lasso [32], sparse logistic regression [20], Sparse-Group Lasso [26],

elastic net [35], sparse Support Vector Machine (SVM) [34], etc, have
been developed and achieved great success for both regression and

classification tasks in machine learning, data mining, and modern

statistics. Given design matrix 𝐴 ∈ ℜ𝑛×𝑑
with 𝑛 observations

and 𝑑 features, these models can be formulated as regularized loss

minimization problems:

min

𝑥∈ℜ𝑑
P(𝑥) := F (𝑥) + 𝜆Ω(𝑥), (1)

where F (𝑥) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑎⊤𝑖 𝑥) is the data-fitting loss, Ω(𝑥) is the

block-separable regularizer that encourages the property of the

model parameters, 𝜆 is the regularization parameter, and 𝑥 is the

model parameter. Let G be a partition of the coefficients, we have

Ω(𝑥) = ∑𝑞
𝑗=1

Ω 𝑗 (𝑥G𝑗
).

Proximal gradient descent (PGD) method was proposed in [5, 16]

to solve Problem (1). However, at each iteration, PGD requires gra-

dient evaluation of all the samples, which is computationally ex-

pensive. To address this issue, stochastic proximal gradient (SPG)

method is proposed in [8], which only relies on the gradient of

a sample at each iteration. However, SPG only achieves a sublin-

ear convergence rate due to the gradient variance introduced by

random sampling. Further, proximal stochastic variance-reduced

gradient methods, such as ProxSVRG [30] and ProxSAGA [7], were

proposed to achieve a linear convergence rate for strongly convex

functions.

On the other hand, coordinate descent method has received

increasing attention due to its efficiency. Randomized block coor-

dinate descent (RBCD) method is proposed in [23, 24], which only

updates a single block of coordinate at each iteration. However, it

is still expensive because the gradient evaluation at each iteration

depends on all the data points. Further, doubly stochastic gradient

methods are proposed in [6, 25]. Among them, [6], called stochas-

tic randomized block coordinate descent (SRBCD), computes the

partial derivative on one coordinate block with respect to a sam-

ple. However, SRBCD can only achieve a sublinear convergence

rate due to the variance of stochastic gradients. Further, acceler-

ated mini-batch randomized block coordinate descent (MRBCD)

method [29, 33] was proposed to achieve a linear convergence rate

by reducing the gradient variance.

https://doi.org/10.1145/3511808.3557234
https://doi.org/10.1145/3511808.3557234
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Table 1: Comparison between existing methods and our ADSGD method. “Stochasticity” represents whether the method is
stochastic on samples or coordinates.

Method Stochasticity Sample Scalablity Low Per-iteration Cost Model Identification Identification Rate
PGD-type Method [16, 30] ✓ ✓ ✗ Implicit −

Screening [1, 10] ✗ ✗ ✓ Explicit −
ADSGD (Ours) ✓ ✓ ✓ Implicit & Explicit 𝑂 (log( 1

𝜖 𝑗
))

However, all the existing methods still suffer from huge compu-

tational costs and memory usage in the practical high-dimensional

scenario. The reason is that these methods require the traversal

of all the features and correspondingly the overall complexity in-

creases linearly with feature size. The pleasant surprise is that the

non-smooth regularizer usually promotes the model sparsity and

thus the solution of Problem (1) has only a few non-zero coefficients,

aka the support set. In high-dimensional problems, model identifi-

cation, aka support set identification, is a key property that can be

used to speed up the optimization. If we can find these non-zero

features in advance, Problem (1) can be easily solved by restricted

to the support set with a significant computational gain without

any loss of accuracy.

Model identification can be achieved in two ways: implicit and

explicit identification. In terms of the implicit model identification,

PGD can identify the support set after a finite number of iterations𝑇

[13–15], which means, for some finite 𝐾 > 0, we have supp(𝑥𝑘 ) =
supp(𝑥∗) holds for any 𝑘 > 𝐾 . Other popular variants of PGD

[15, 21] also have such an implicit identification property. However,

these results can only show the existence of 𝑇 and cannot give any

useful estimate without the knowledge of 𝜃∗ [13, 14], which makes

it implicit and impossible to explicitly discard the coefficients that

must be zero at the optimum in advance. In terms of the explicit

model identification, screening can identify the zero coefficients and

discard these features directly [1, 3, 10]. By achieving dimension

reduction, the algorithm only needs to solve a sub-problem and

save much useless computation. However, first, existing works

[1, 3, 10, 18, 22] mainly focus on the existence of identification but

fail to show how fast we can achieve explicit model identification.

Besides, existing works on explicit model identification [19] are

limited to the deterministic setting. Therefore, accelerating the

model training by achieving fast explicit model identification is

promising and sorely needed for high-dimensional problems in the

stochastic setting.

To address the challenges above, in this paper, we propose a

novel Accelerated Doubly Stochastic Gradient Descent (ADSGD)

method for sparsity regularized loss minimization problems, which

can significantly improve the training efficiency without any loss

of accuracy. On the one hand, ADSGD computes the partial de-

rivative on one coordinate block with respect to a mini-batch of

samples to simultaneously enjoy the stochasticity on both samples

and features and thus achieve a low per-iteration cost. On the other

hand, ADSGD not only enjoys implicit model identification of the

proximal gradient method, but also enjoys explicit model identi-

fication by eliminating the inactive features. Specifically, ADSGD

has two loops. We first eliminate the inactive blocks at the main

loop. Within the inner loop, we only estimate the gradient over a

selected active block with a mini-batch of samples. To reduce the

gradient variance, we adjust the estimated gradient with the exact

gradient over the selected block. Theoretically, by addressing the

difficulty of the uncertainty of double stochasticity, we establish the

analysis for the convergence of ADSGD. Moreover, by linking the

sub-optimality gap and duality gap, we provide theoretical analysis

for fast explicit model identification. Finally, based on the results of

the convergence and explicit model identification ability, we estab-

lish the theoretical analysis of the overall complexity of ADSGD.

Empirical results show that ADSGD can achieve a significant com-

putational gain than existing methods. Both the theoretical and the

experimental results confirm the superiority of our method. Table 1

summarizes the advantages of our ADSGD over existing methods.

Contributions.We summarize themain contributions of this paper

as follows:

• We propose a novel accelerated doubly stochastic gradient

descent method for generalized sparsity regularized problems

with lower overall complexity and faster explicit model iden-

tification rate. To the best of our knowledge, this is the first

work of doubly stochastic gradient method to achieve a linear

model identification rate.

• We derive rigorous theoretical analysis for our ADSGDmethod

for both strongly and nonstrongly convex functions. For strongly

convex function, ADSGD can achieve a linear convergence

rate𝑂 (log( 1𝜖 )) and reduce the per-iteration cost from𝑂 (𝑑) to
𝑂 (𝑠) where 𝑠 ≪ 𝑑 , which improves existing methods with a

lower overall complexity𝑂 (𝑠 (𝑛 + 𝑇𝜇 ) log(
1

𝜖 )). For nonstrongly
convex function, ADSGD can also achieve a lower overall

complexity 𝑂 (𝑠 (𝑛 + 𝑇
𝜖 ) log(

1

𝜖 )).
• We provide the theoretical guarantee of the iteration num-

ber 𝑇 to achieve explicit model identification. We rigorously

prove our ADSGD algorithm can achieve the explicit model

identification at a linear rate 𝑂 (log( 1

𝜖 𝑗
)).

2 PRELIMINARY
2.1 Notations and Background
For norm Ω(·), Ω𝐷 (·) is the dual norm and defined as Ω𝐷 (𝑢) =

maxΩ (𝑧 )≤1⟨𝑧,𝑢⟩ for any 𝑢 ∈ ℜ𝑑
if 𝑧 ∈ ℜ𝑑

. Denote 𝜃 as the dual

solution and Δ𝐴 as the feasible space of 𝜃 , the dual formulation

D(𝜃 ) of Problem (1) can be written as:

max

𝜃 ∈Δ𝐴

D(𝜃 ) := − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 ∗𝑖 (−𝜃𝑖 ). (2)

The dualD(𝜃 ) is strongly concave for Lipschitz gradient continuous
F (𝑥) (see Proposition 3.2 in [11]).
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For Problem (1), based on the subdifferential [12, 17], Fermat’s

conditions (see [4] for Proposition 26.1) holds as:

1

𝑛
𝐴⊤
𝑗 𝜃

∗ ∈ 𝜆𝜕Ω 𝑗 (𝑥∗G𝑗
) . (3)

The optimality conditions of Problem (1) can be read from (3) as:

1

𝑛
Ω𝐷𝑗 (𝐴

⊤
𝑗 𝜃

∗) = 𝜆, if 𝑥∗G𝑗
≠ 0; (4)

1

𝑛
Ω𝐷𝑗 (𝐴

⊤
𝑗 𝜃

∗) ≤ 𝜆, if 𝑥∗G𝑗
= 0. (5)

2.2 Definitions and Assumptions
One key property of our method is to achieve explicit model iden-

tification, which means we can explicitly find the Equicorrelation

Set in Definition 1 of the solution.

Definition 1. (Equicorrelation Set (see [28])) Suppose 𝜃∗ is the
dual optimal, the equicorrelation set is defined as

S∗
:= { 𝑗 ∈ {1, 2, . . . , 𝑞} : 1

𝑛
Ω𝐷𝑗 (𝐴

⊤
𝑗 𝜃

∗) = 𝜆}. (6)

Assumption 1. Given the partition {G1, . . . ,G𝑞}, all ∇G𝑗
𝑓𝑖 (𝑥) =

[∇𝑓𝑖 (𝑥)]G𝑗
are block-wise Lipschitz continuous with constant 𝐿𝑖 ,

whichmeans that for any𝑥 and𝑥 ′, there exists a constant 𝐿 = max𝑖 𝐿𝑖 ,
we have

∥∇G𝑗
𝑓𝑖 (𝑥) − ∇G𝑗

𝑓𝑖 (𝑥 ′)∥ ≤ 𝐿∥𝑥G𝑗
− 𝑥 ′G𝑗

∥. (7)

Assumption 2. F (𝑥) and Ω(𝑥) are proper, convex and lower-
semicontinuous.

Assumptions 1 and 2 are commonly used in the convergence

analysis of the RBCD method [29, 33], which are standard and satis-

fied by many regularized loss minimization problems. Assumption

1 implies that there exists a constant 𝑇 ≤ 𝑞𝐿, for any 𝑥 and 𝑥 ′, we
have

∥∇𝑓𝑖 (𝑥) − ∇𝑓𝑖 (𝑥 ′)∥ ≤ 𝑇 ∥𝑥 − 𝑥 ′∥, (8)

i.e., ∇𝑓𝑖 (𝑥) is Lipschitz continuous with constant 𝑇 .

3 PROPOSED METHOD
In this section, we will introduce the accelerated doubly stochastic

gradient descent (ADSGD) method with discussions.

To achieve the model identification, a naive implementation of

the ADSGD method is summarized in Algorithm 1. The ASGD al-

gorithm can reduce the size of the original optimization problem

and the variables during the training process. Thus, the latter prob-

lem has a smaller size and fewer variables for training, which is a

sub-problem of the problem from the previous step, but generates

the same optimal solution.

We denote the original problem as P0 and subsequent sub-

problem as P𝑘−1 at the 𝑘-th iteration in the main loop of ASGD.

Moreover, we define the active set at the 𝑘-th iteration of the main

loop as S𝑘−1. Thus, in the main loop of ASGD, we compute 𝜃𝑘−1
with the active set S𝑘−1 from the previous iteration as

𝜃𝑘−1 =
−∇F (𝑥𝑘−1)

max(1,Ω𝐷 (𝐴⊤
S𝑘−1

∇F (𝑥𝑘−1))/𝜆)
. (9)

Then we compute the intermediate duality gap

Gap(𝑥𝑘−1, 𝜃𝑘−1) := P𝑘−1 (𝑥𝑘−1) − D𝑘−1 (𝜃𝑘−1), (10)

for the screening test. In step 6, we obtain new active set S𝑘 from

S𝑘−1 by the screening conducted on all 𝑗 ∈ S𝑘−1 as
1

𝑛
Ω𝐷𝑗 (𝐴

⊤
𝑗 𝜃𝑘−1) +

1

𝑛
Ω𝐷𝑗 (𝐴 𝑗 )𝑟

𝑘−1 < 𝜆 ⇒ 𝑥∗G𝑗
= 0, (11)

where the safe region is chosen as spheres R = B(𝜃𝑘−1, 𝑟𝑘−1)
[1, 18].

With obtained active set S𝑘 , we update the design matrix 𝐴

and the related parameter variables 𝑥0, 𝑥 in step 7. In the inner

loop, we conduct all the operations on S𝑘 . To make the algorithm

scale well with the sample size, we only randomly sample a mini-

batch I ∈ {1, 2, . . . , 𝑛} of samples at each iteration to evaluate the

gradients.

Algorithm 1 The ASGD method

Input: 𝑥0.
1: for 𝑘 = 1, 2, . . . do
2: 𝑥𝑘−1 = 𝑥𝑘−1.
3: 𝑥0

𝑘−1 = 𝑥𝑘−1.
4: Compute 𝜃𝑘−1 by (9).

5: 𝑟𝑘−1 =
√︁
2𝑇 Gap(𝑥𝑘−1, 𝜃𝑘−1).

6: Update S𝑘 ⊂ S𝑘−1 by (11).

7: Update 𝐴S𝑘
, 𝑥0
𝑘
, 𝑥𝑘 with S𝑘 .

8: for 𝑡 = 1, 2, . . . ,
𝑚𝑞𝑘
𝑞 do

9: Randomly pick I ⊂ {1, 2, . . . , 𝑛}.
10: 𝑥𝑡

𝑘
= prox𝜂,𝜆 (𝑥𝑡−1𝑘

− 𝜂∇FI (𝑥𝑡−1𝑘
)).

11: end for
12: 𝑥𝑘 = 1

𝑚𝑘

∑𝑚𝑘

𝑡=1
𝑥𝑡
𝑘
.

13: end for
Output: Coefficient 𝑥𝑘 .

Property 1. Let 𝑥G𝑗
be the 𝑗-th block of 𝑥 in Algorithm 1, ∀𝑗 ∈

{1, 2, . . . , 𝑞}, 𝑥G𝑗
discarded by ASGD is guaranteed to be 0 at the

optimum.

Remark 1. Property 1 shows that ASGD is guaranteed to be safe
not only for the current iteration but also for the whole training
process. The safety of the screening is the foundation of the analysis
of convergence and explicit model identification rate in the following
part.

Remark 2. Property 1 also shows that discarding inactive variables
can either decrease or make no changes to the objective function.

Doubly Stochastic Gradient Update. Since ASGD is only singly

stochastic on samples, the gradient evaluation is still expensive be-

cause it depends on all the coordinates at each iteration. Thus, we

randomly select a coordinate block 𝑗 from S𝑘 to enjoy the stochas-

ticity on features. Specifically, ADSGD only computes the partial

derivative ∇G𝑗
FI (𝑥𝑡−1𝑘

) on one coordinate block with respect to a

sample each time, which yields a much lower per-iteration compu-

tational cost. The proximal step is computed as:

prox
𝑗

𝜂,𝜆
(𝑥 ′G𝑗

) = argmin

𝑥G𝑗

1

2𝜂
∥𝑥 ′G𝑗

− 𝑥G𝑗
∥2 + 𝜆Ω 𝑗 (𝑥G𝑗

) . (12)

Therefore, ADSGD is doubly stochastic and can scale well with

both the sample size and feature size.
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Algorithm 2 The ADSGD method

Input: 𝑥0.
1: for 𝑘 = 1, 2, . . . do
2: 𝑥𝑘−1 = 𝑥𝑘−1.
3: 𝜇̃𝑘−1 = ∇F (𝑥𝑘−1).
4: 𝑥0

𝑘−1 = 𝑥𝑘−1.
5: Compute 𝜃𝑘−1 by (9).

6: 𝑟𝑘−1 =
√︁
2𝑇 Gap(𝑥𝑘−1, 𝜃𝑘−1).

7: Update S𝑘 ⊂ S𝑘−1 by (11).

8: Update 𝐴S𝑘
, 𝑥0
𝑘
, 𝑥𝑘 , 𝜇̃𝑘 with S𝑘 .

9: for 𝑡 = 1, 2, . . . ,
𝑚𝑞𝑘
𝑞 do

10: Randomly pick I ⊂ {1, 2, . . . , 𝑛}.
11: Randomly pick 𝑗 from S𝑘 .
12: 𝜇𝑘 = ∇G𝑗

FI (𝑥𝑡−1𝑘
) − ∇G𝑗

FI (𝑥𝑘 ) + 𝜇̃G𝑗 ,𝑘 .

13: 𝑥𝑡
𝑘,G𝑗

= prox
𝑗

𝜂,𝜆
(𝑥𝑡−1
𝑘,G𝑗

− 𝜂𝜇𝑘 ).
14: end for
15: 𝑥𝑘 = 1

𝑚𝑘

∑𝑚𝑘

𝑡=1
𝑥𝑡
𝑘

16: end for
Output: Coefficient 𝑥𝑘 .

Variance Reduction on the Selected Blocks.However, the gradi-
ent variance introduced by stochastic sampling does not converge

to zero. Hence, a decreasing step size is required to ensure the

convergence. In that case, even for strongly convex functions, we

can only obtain a sublinear convergence rate. Thanks to the full

gradient we computed in step 3, we can adjust the partial gradi-

ent estimation over the selected block G𝑗 to reduce the gradient

variance with almost no additional computational costs as:

𝜇𝑘 = ∇G𝑗
FI (𝑥𝑡−1𝑘

) − ∇G𝑗
FI (𝑥𝑘 ) + 𝜇̃G𝑗 ,𝑘 . (13)

It can guarantee that the variance of stochastic gradients asymptot-

ically goes to zero. Thus, a constant step size can be used to achieve

a linear convergence rate if P is strongly convex.

The algorithmic framework of the ADSGD method is presented

in Algorithm 2. ADSGD can identify inactive blocks and thus only

active blocks are updated in the inner loop, which can make more

progress for training rather than conduct useless updates for in-

active blocks. Thus, fewer inner loops are required for each main

loop and correspondingly huge computational time is saved.

Suppose we have 𝑞𝑘 active blocks for the inner loop at the 𝑘-th

iteration, we only do𝑚𝑘 =
𝑚𝑞𝑘
𝑞 iterations in the inner loop for the

current outer iteration, which means the number of the inner loops

continues decreasing in our algorithm. The output for each iteration

is the average result of the inner loops. As the algorithm converges,

the duality gap converges to zero and thus (11) can eliminate more

inactive blocks and thus save the computational costs to a large

extent.

Remarkably, the key step of the screening in Algorithm 2 is the

computation of the intermediate duality gap, which only imposes

extra𝑂 (𝑞𝑘 ) costs to the original algorithm at the𝑘-th iteration. Note

the extra complexity of screening is much less than𝑂 (𝑑) in practice,
which would not affect the complexity analysis of the algorithm.

Further, at the 𝑘-th iteration, our Algorithm 2 only requires the

computation over S𝑘 , which could be much smaller than the origi-

nal model over the full parameter set. Hence, in high-dimensional

regularized problems, the computation costs are promising to be

effectively reduced with the constantly decreasing active set S𝑘 .
On the one hand, ADSGD enjoys the implicit model identification

of the proximal gradient method. On the other hand, discarding the

inactive variables can further speed up the identification rate. Thus,

ADSGD is promising to achieve a fast identification rate by simul-

taneously enjoying the implicit and explicit model identification to

yield a lower per-iteration cost.

4 THEORETICAL ANALYSIS
In this section, we first give several useful lemmas and then provide

theoretical analysis on the convergence, explicit model identifica-

tion, and overall complexity. Detailed proof can be found in [2].

4.1 Useful Lemmas
Lemma 1. Define 𝑣I = 1

| I |
∑
𝑖∈I (∇𝑓𝑖 (𝑥𝑡−1) − ∇𝑓𝑖 (𝑥)) + ∇F (𝑥),

𝑥 = prox𝜂 (𝑥𝑡−1 − 𝜂∇F (𝑥𝑡−1)), 𝑥I = prox𝜂 (𝑥𝑡−1 − 𝜂𝑣I ) and
prox𝜂 (𝑥 ′) = argmin𝑥

1

2𝜂 ∥𝑥
′ − 𝑥 ∥2 + Ω(𝑥), we have

EI (𝑣I − ∇F (𝑥𝑡−1))⊤ (𝑥∗ − 𝑥I ) ≤ 𝜂EI ∥𝑣I − ∇F (𝑥𝑡−1)∥2 . (14)

Proof. We can first prove

EI (𝑣I − ∇F (𝑥𝑡−1))⊤ (𝑥∗ − 𝑥I )
= EI [(𝑣I − ∇F (𝑥𝑡−1))⊤ (𝑥 − 𝑥I )]

and then prove

EI (𝑣I − ∇F (𝑥𝑡−1))⊤ (𝑥∗ − 𝑥I )
= 𝜂EI ∥𝑣I − ∇F (𝑥𝑡−1)∥2 . (15)

to obtain Lemma 1 by using Cauchy-Schwarz inequality and the

non-expansiveness of the proximal operator. □

Lemma 2. (See [30]) Define 𝑣𝑖 = ∇𝑓𝑖 (𝑥𝑡−1) − ∇𝑓𝑖 (𝑥) + ∇F (𝑥),
conditioning on 𝑥𝑡−1, we have

E𝑖𝑣𝑖 = ∇F (𝑥𝑡−1),
and

E𝑖 ∥𝑣𝑖 − ∇F (𝑥𝑡−1)∥2
2
≤ 4𝑇 (P(𝑥𝑡−1) − P(𝑥∗) + P(𝑥) − P(𝑥∗)) .

Lemma 3. (See [33]) Define 𝛿 = (𝑥 − 𝑥)/𝜂 and 𝛿G𝑗
= (𝑥G𝑗

− 𝑥)/𝜂
where 𝑥 = prox𝜂 (𝑥 − 𝜂𝑣) and prox𝜂 (𝑥) = argmin𝑥 ′

1

2𝜂 ∥𝑥
′ − 𝑥 ∥2 +

Ω(𝑥 ′), we have
E𝑗𝛿G𝑗

= 𝛿/𝑞 and E𝑗 ∥𝛿G𝑗
∥2 = ∥𝛿 ∥2/𝑞.

Moreover, taking 𝜂 ≤ 1

𝐿
, we have

E𝑗 [(𝑥 − 𝑥∗)⊤𝛿G𝑗
+ 𝜂
2

∥𝛿G𝑗
∥2] (16)

≤ 1

𝑞
P(𝑥∗) + 𝑞 − 1

𝑞
P(𝑥) − E𝑗P(𝑥G𝑗

)

+ 1
𝑞
(𝑣 − ∇F (𝑥))⊤ (𝑥∗ − 𝑥),

where 𝑥∗ = argmin𝑥 P(𝑥).

4.2 Strongly Convex Functions
We establish the theoretical analysis of ADSGD for strongly convex

F here.
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4.2.1 Convergence Results.

Lemma 4. Suppose 𝑥𝑘 and 𝑥𝑘 are generated from the 𝑘-th iteration
of the main loop in Algorithm 2 and let |I | ≥ 𝑇

𝐿
and 𝜂 < 1

4𝐿
, we have

EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ) ≤ 𝜌𝑘 [P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )], (17)

where 𝜌𝑘 =
𝑞𝑘

𝜇𝜂 (1−4𝐿𝜂 )𝑚𝑘
+ 4𝐿𝜂 (𝑚𝑘+1)

(1−4𝐿𝜂 )𝑚𝑘
. We can choose |I | = 𝑇

𝐿
,

𝜂 = 1

16𝐿
, and𝑚 =

65𝑞𝐿
𝜇 to make 𝜌𝑘 < 2

3
.

Proof. At the 𝑘-th iteration of the main loop, all the updates in

the inner loop are conducted on sub-problem P𝑘 with the active

set S𝑘 . At the 𝑡-th iteration of the inner loop for the 𝑘-th main loop,

we randomly sample a mini-batch I and G𝑗 ⊆ S𝑘 .
Define 𝑣𝑖 = ∇𝑓𝑖 (𝑥𝑡−1𝑘

) − ∇𝑓𝑖 (𝑥𝑘 ) + ∇F (𝑥𝑘 ), based on Lemma 2,

conditioning on 𝑥𝑡−1
𝑘

, we have

E𝑖𝑣𝑖 = ∇F (𝑥𝑡−1
𝑘

),

and

E𝑖 ∥𝑣𝑖 − ∇F (𝑥𝑡−1
𝑘

)∥2
2
≤ 4𝑇 (P(𝑥𝑡−1

𝑘
) − P(𝑥∗

𝑘
) + P(𝑥𝑘 ) − P(𝑥∗

𝑘
)) .

Define 𝛿 = (𝑥𝑘 − 𝑥𝑘 )/𝜂 and 𝛿G𝑗
= (𝑥G𝑗 ,𝑘 − 𝑥𝑘 )/𝜂 where 𝑥𝑘 =

prox𝜂 (𝑥𝑘 − 𝜂𝑣), based on Lemma 3, we have

E𝑗𝛿G𝑗
= 𝛿/𝑞𝑘 and E𝑗 ∥𝛿G𝑗

∥2 = ∥𝛿 ∥2/𝑞𝑘 .

Moreover, taking 𝜂 ≤ 1

𝐿
, we have

E𝑗 [(𝑥𝑘 − 𝑥∗𝑘 )
⊤𝛿G𝑗

+ 𝜂
2

∥𝛿G𝑗
∥2]

≤ 1

𝑞𝑘
P𝑘 (𝑥∗𝑘 ) +

𝑞𝑘 − 1

𝑞𝑘
P𝑘 (𝑥𝑘 ) − E𝑗P𝑘 (𝑥G𝑗 ,𝑘 ) (18)

+ 1

𝑞𝑘
(𝑣 − ∇F (𝑥𝑘 ))⊤ (𝑥∗𝑘 − 𝑥𝑘 ) . (19)

Define 𝛿I,G𝑗
= (𝑥𝑡

𝑘
− 𝑥𝑡−1

𝑘
)/𝜂 and 𝑥𝑘,I = prox𝜂 (𝑥𝑡−1𝑘

− 𝜂𝑣I ),
based on Lemma 1, Lemma 2, Lemma 3 and the fact that EI𝑣I is

the unbiased estimator of ∇F (𝑥𝑡−1
𝑘

) and

EI ∥𝑣I − ∇F (𝑥𝑡−1
𝑘

)∥2
2
=

1

|I | E𝑖 ∥𝑣𝑖 − ∇F (𝑥𝑡−1
𝑘

)∥2
2
, (20)

we can prove

EI, 𝑗 ∥𝑥𝑡𝑘 − 𝑥
∗
𝑘
∥2 − ∥𝑥𝑡−1

𝑘
− 𝑥∗

𝑘
∥2

= EI, 𝑗 ∥𝑥𝑡−1𝑘
+ 𝜂𝛿I,G𝑗

− 𝑥∗
𝑘
∥2 − ∥𝑥𝑡−1

𝑘
− 𝑥∗

𝑘
∥2 (21)

= EI [2𝜂 (𝑥𝑡−1𝑘
− 𝑥∗

𝑘
)⊤E𝑗 [𝛿I,G𝑗

] + 𝜂2E𝑗 ∥𝛿I,G𝑗
∥2] (22)

≤ 2𝜂

𝑞𝑘
EI [(𝑣I − ∇F (𝑥𝑡−1

𝑘
))⊤ (𝑥∗

𝑘
− 𝑥𝑘,I )] (23)

+2𝜂EI [
1

𝑞𝑘
P𝑘 (𝑥∗𝑘 ) +

𝑞𝑘 − 1

𝑞𝑘
P𝑘 (𝑥𝑡−1𝑘

) − E𝑗P𝑘 (𝑥G𝑗 ,𝑘,I )]

≤ −2𝜂 [EI, 𝑗P𝑘 (𝑥G𝑗 ,𝑘,I ) − P𝑘 (𝑥∗𝑘 )] (24)

+2𝜂𝑞𝑘 − 1

𝑞𝑘
(P𝑘 (𝑥𝑡−1𝑘

) − P𝑘 (𝑥∗𝑘 ))

+ 8𝑇𝜂2

𝑞𝑘 |I |
(P𝑘 (𝑥𝑡−1𝑘

) − P𝑘 (𝑥∗𝑘 ) + P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )). (25)

Note 𝑥0
𝑘
= 𝑥𝑘 and 𝑥𝑘 = 1

𝑚𝑘

∑𝑚𝑘

𝑡=1
𝑥𝑡
𝑘
, then based on the inequality

obtained by (25), we have

E∥𝑥𝑚𝑘

𝑘
− 𝑥∗

𝑘
∥2 − ∥𝑥0

𝑘
− 𝑥∗

𝑘
∥2 + 2𝜂

𝑚𝑘∑︁
𝑡=1

(EP𝑘 (𝑥𝑡𝑘 ) − P𝑘 (𝑥∗𝑘 ))

≤ 8𝑇𝜂2/|I| + 2𝜂 (𝑞𝑘 − 1)
𝑞𝑘

𝑚𝑘−1∑︁
𝑡=1

(EP𝑘 (𝑥𝑡𝑘 ) − P𝑘 (𝑥∗𝑘 ))

+8𝑇𝜂
2 (𝑚𝑘 + 1)
𝑞𝑘 |I |

(P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )) (26)

≤ 8𝑇𝜂2/|I| + 2𝜂 (𝑞𝑘 − 1)
𝑞𝑘

𝑚𝑘∑︁
𝑡=1

(EP𝑘 (𝑥𝑡𝑘 ) − P𝑘 (𝑥∗𝑘 ))

+8𝑇𝜂
2 (𝑚𝑘 + 1)
𝑞𝑘 |I |

(P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )) . (27)

Rearranging (27), note 𝑥0
𝑘
= 𝑥𝑘 , we have

2𝜂

(
1 − 4𝜂𝑇 /|I|

𝑞𝑘

) 𝑚𝑘∑︁
𝑡=1

[EP𝑘 (𝑥𝑡𝑘 ) − P𝑘 (𝑥∗𝑘 )] (28)

≤ ∥𝑥0
𝑘
− 𝑥∗

𝑘
∥2 + 8𝑇𝜂2 (𝑚𝑘 + 1)

𝑞𝑘 |I |
(P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ))

≤ 2

𝜇
(P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )) +

8𝑇𝜂2 (𝑚𝑘 + 1)
𝑞𝑘 |I |

(P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )) .

where the second inequality is obtained by the strong convexity of

P. Based on the convexity of P, we have

P𝑘 (𝑥𝑘 ) ≤
1

𝑚𝑘

𝑚𝑘∑︁
𝑡=1

P𝑘 (𝑥𝑡𝑘 ).

Thus, by (28), we can obtain

2𝜂

(
1 − 4𝜂𝑇 /|I|

𝑞𝑘

)
𝑚𝑘

[
EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )

]
≤

(
2

𝜇
+ 8𝑇𝜂2 (𝑚𝑘 + 1)

𝑞𝑘 |I |

) [
P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )

]
. (29)

Defining 𝜌𝑘 =

(
𝑞𝑘

𝜇𝜂 (1−4𝜂𝑇 /|I | )𝑚𝑘
+ 4𝜂𝑇 /|I | (𝑚𝑘+1)

(1−4𝜂𝑇 /|I | )𝑚𝑘

)
, we have

EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ) ≤ 𝜌𝑘
[
P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )

]
. (30)

Choosing |I | = 𝑇
𝐿
, we have

EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ) (31)

≤
(

𝑞𝑘

𝜇𝜂 (1 − 4𝐿𝜂)𝑚𝑘
+ 4𝐿𝜂 (𝑚𝑘 + 1)
(1 − 4𝐿𝜂)𝑚𝑘

) [
P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )

]
.

Considering𝑚𝑘 =
𝑚𝑞𝑘
𝑞 , we can choose 𝜂 = 1

16𝐿
, and𝑚 =

65𝑞𝐿
𝜇 to

make 𝜌𝑘 < 2

3
, which completes the proof.

□

Remark 3. Lemma 4 shows that the overall inner loop of Algorithm
2 can decrease the expected objective function with a factor 𝜌𝑘 at the
𝑘-th iteration.

Theorem 1. Suppose 𝑥𝑘 be generated from the 𝑘-th iteration of
the main loop in Algorithm 2 and let |I | ≥ 𝑇

𝐿
and 𝜂 < 1

4𝐿
, we have

EP𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 𝜌𝑘 [P(𝑥) − P(𝑥∗)] . (32)
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We can choose |I | = 𝑇
𝐿
, 𝜂 = 1

16𝐿
, and𝑚 =

65𝑞𝐿
𝜇 to make 𝜌 < 2

3
.

Proof. Considering each sub-problem P𝑘 , based on Lemma 4,

for each main loop, we have

EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ) ≤ 𝜌𝑘
[
P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )

]
. (33)

Since the eliminating in the ADSGD algorithm is safe, the optimal

solution of all the sub-problems are the same. Thus, we have

P𝑘 (𝑥∗𝑘 ) = P𝑘−1 (𝑥∗𝑘−1) . (34)

Then, the coefficients eliminated at the 𝑘-th iteration of the main

loop must be zeroes at the optimal, which means the eliminating

stage at the 𝑘-th iteration of the main loop actually minimizes the

sub-problem P𝑘−1 over the eliminated variables. Thus, we have

P𝑘 (𝑥𝑘 ) ≤ P𝑘−1 (𝑥𝑘−1).
Moreover, considering P𝑘−1 (𝑥𝑘−1) = P𝑘−1 (𝑥𝑘−1), we have

P𝑘 (𝑥𝑘 ) ≤ P𝑘−1 (𝑥𝑘−1). (35)

Combining above, we have

EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ) ≤ 𝜌𝑘
[
P𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 )

]
(36)

≤ 𝜌𝑘
[
P𝑘−1 (𝑥𝑘−1) − P𝑘−1 (𝑥∗𝑘−1)

]
.(37)

We can choose |I | = 𝑇
𝐿
, 𝜂 = 1

16𝐿
, and𝑚 =

65𝑞𝐿
𝜇 to make ∀𝑘, 𝜌𝑘 < 2

3
.

Thus, ∃𝜌 < 2

3
, applying the above inequality recursively, we obtain

EP𝑘 (𝑥𝑘 ) − P𝑘 (𝑥∗𝑘 ) ≤ 𝜌𝑘
[
P0 (𝑥S0

) − P0 (𝑥∗S0

)
]
.

From (34), we have

P𝑘 (𝑥∗𝑘 ) = P𝑘−1 (𝑥∗𝑘−1) = · · · = P0 (𝑥∗S0

) . (38)

Note P0 = P and S0 is the universe set for all the variables blocks,

we have

EP𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 𝜌𝑘
[
P(𝑥) − P(𝑥∗)

]
, (39)

which completes the proof. □

Remark 4. Theorem 1 shows that ADSGD converges linearly to
the optimal with the convergence rate 𝑂 (log 1

𝜌
( 1𝜖 )).

4.2.2 Explicit Model Identification.

Lemma 5. lim𝑘→+∞ 𝜃𝑘 = 𝜃∗ if lim𝑘→+∞ 𝑥𝑘 = 𝑥∗.

Proof. Define 𝛼𝑘 = max

(
1,Ω𝐷

(
𝐴⊤
S𝑘

∇F (𝑥𝑘 )
)
/𝜆

)
, We have

𝜃𝑘 − 𝜃∗

2 =





∇F (𝑥𝑘 )
𝛼𝑘

− ∇F (𝑥∗)





2

(40)

≤
����1 − 1

𝛼𝑘

���� ∥∇F (𝑥𝑘 )∥2 +


∇F (𝑥𝑘 ) − ∇F (𝑥∗)




2
.

Considering the right term, if lim𝑘→+∞ 𝑥𝑘 = 𝑥∗, we have

𝛼𝑘 → max

(
1,Ω𝐷

(
𝐴⊤
S∗∇F (𝑥∗)

)
/𝜆

)
= 1,

and 

∇F (𝑥𝑘 ) − ∇F (𝑥∗)



2
→ 0.

Thus, the right term converges to zero, which completes the proof.

□

Remark 5. Lemma 5 shows the convergence of the dual solution
is guaranteed by the convergence of the primal solution.

Lemma 6. ∃𝑢 ∈ 𝜕Ω𝐷 (𝐴⊤
S𝑘
𝜃𝑘 ), for all 𝑠 ∈ [0, 1], we have

P𝑘 (𝑥𝑘 ) − P(𝑥∗) ≥ 𝑠 Gap(𝑥𝑘 , 𝜃𝑘 ) −
𝑇𝑠2

2

∥𝐴S𝑘
(𝑢 − 𝑥𝑘 )∥2 . (41)

Proof. From the smoothness of F , we have:

F (𝑥𝑘 ) − F (𝑥𝑘 + 𝑠 (𝑢 − 𝑥𝑘 ))

≥ −𝑠 ⟨∇F (𝑥𝑘 ), 𝐴S𝑘
(𝑢 − 𝑥𝑘 )⟩ −

𝑠2𝑇

2

∥𝐴S𝑘
(𝑢 − 𝑥𝑘 )∥2 . (42)

By the convexity of Ω, we have:

Ω(𝑥𝑘 ) − Ω(𝑥𝑘 + 𝑠 (𝑢 − 𝑥𝑘 )) ≥ 𝑠 (Ω(𝑥𝑘 ) − Ω(𝑢)) . (43)

Moreover, we have

Ω(𝑥𝑘 ) − Ω(𝑢) − ⟨∇F (𝑥𝑘 ), 𝐴S𝑘
(𝑢 − 𝑥𝑘 )⟩

= Ω(𝑥𝑘 ) + Ω𝐷 (𝐴⊤
S𝑘
𝜃𝑘 ) + ⟨∇F (𝑥𝑘 ), 𝐴S𝑘

𝑥𝑘 ⟩ (44)

= Ω(𝑥𝑘 ) + Ω𝐷 (𝐴⊤
S𝑘
𝜃𝑘 ) + F (𝑥𝑘 ) + F ∗ (−𝜃𝑘 ) (45)

= Gap(𝑥𝑘 , 𝜃𝑘 ), (46)

where the first equality comes from

Ω(𝑢) = ⟨𝑢,𝐴⊤
S𝑘
𝜃𝑘 ⟩ − Ω𝐷 (𝐴⊤

S𝑘
𝜃𝑘 ),

and the third equality comes from

F (𝑥𝑘 ) = ⟨∇F (𝑥𝑘 ), 𝐴S𝑘
𝑥𝑘 ⟩ − F ∗ (−𝜃𝑘 ).

Therefore, for any 𝑥𝑘 and 𝑢, we have:

P(𝑥𝑘 ) − P(𝑥∗) (47)

≥ P(𝑥𝑘 ) − P(𝑥𝑘 + 𝑠 (𝑢 − 𝑥𝑘 )) (48)

= Ω(𝑥𝑘 ) − Ω(𝑥𝑘 + 𝑠 (𝑢 − 𝑥𝑘 )) + F (𝑥𝑘 ) − F (𝑥𝑘 + 𝑠 (𝑢 − 𝑥𝑘 ))

≥ 𝑠 Gap(𝑥𝑘 , 𝜃𝑘 ) −
𝑠2

2

𝑇 ∥𝐴S𝑘
(𝑢 − 𝑥𝑘 )∥2, (49)

where the second equality comes from (42) and (43), which com-

pletes the proof.

□

Remark 6. The difficulty to analyze themodel identification rate of
ADSGD is that the screening is conducted on the duality gap while the
convergence of the algorithm is analyzed based on the sub-optimality
gap. Note the sub-optimality gap at the 𝑘-th iteration of the main loop
is computed as P𝑘 (𝑥𝑘 ) − P(𝑥∗), Lemma 6 links the sub-optimality
gap and the duality gap at the 𝑘-th iteration.

Theorem 2. Define Δ 𝑗 ≜
𝑛𝜆−Ω𝐷

𝑗
(𝐴⊤

𝑗 𝜃
∗ )

2Ω𝐷
𝑗
(𝐴 𝑗 )

, denote 𝜎2
𝐴
as the spectral

norm of 𝐴, suppose Ω has a bounded support within a ball of radius
𝑀 , given any 𝛾 ∈ (0, 1), any block that 𝑗 ∉ S∗ are correctly identified
by ADSGD at iteration log 1

𝜌
( 1

𝜖 𝑗
) with at least probability 1−𝛾 where

𝜌 is from Theorem 1 and 𝜖 𝑗 = 1

32

Δ4

𝑗𝛾

𝑇 3𝜎2

𝐴
𝑀2 (P (𝑥 )−P (𝑥∗ ) ) .

Proof. Based on the screening condition, any variable block 𝑗

can be identified at the 𝑘-th iteration when

1

𝑛
Ω𝐷𝑗 (𝐴

⊤
𝑗 𝜃

∗) ≤ 1

𝑛
Ω𝐷𝑗 (𝐴

⊤
𝑗 𝜃

∗) + 2

𝑛
Ω𝐷𝑗 (𝐴 𝑗 )𝑟

𝑘 < 𝜆. (50)

Thus, we have that variable block 𝑗 can be identified when

𝑟𝑘 <
𝜆 − 1

𝑛Ω
𝐷
𝑗
(𝐴⊤
𝑗
𝜃∗)

2

𝑛Ω
𝐷
𝑗
(𝐴 𝑗 )

≜ Δ 𝑗 .
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Considering 𝑥𝑘 = 𝑥𝑘 and 𝑟𝑘 =
√︁
2𝑇 Gap(𝑥𝑘 , 𝜃𝑘 ), we have that any

variable block 𝑗 can be identified at the 𝑘-th iteration when

Gap(𝑥𝑘 , 𝜃𝑘 ) <
Δ2

𝑗

2𝑇
. (51)

For 𝑢𝑘 ∈ 𝜕Ω𝐷 (𝐴⊤
S𝑘
𝜃𝑘 ), considering Ω has a bounded support

within a ball of radius𝑀 , we have

∥𝐴(𝑢𝑘 − 𝑥𝑘 )∥ ≤ 2𝜎𝐴𝑀.

Based on Lemma 6, we have

Gap(𝑥𝑘 , 𝜃𝑘 ) ≤
1

𝑠
(P𝑘 (𝑥𝑘 ) − P(𝑥∗)) + 2𝑇𝜎2𝐴𝑀

2𝑠 .

Minimizing the right term over 𝑠 , we have

Gap(𝑥𝑘 , 𝜃𝑘 ) ≤
√︃
8𝑇𝜎2

𝐴
𝑀2 (P𝑘 (𝑥𝑘 ) − P(𝑥∗)) . (52)

Thus, we can make√︃
8𝑇𝜎2

𝐴
𝑀2 (P𝑘 (𝑥𝑘 ) − P(𝑥∗)) ≤

Δ2

𝑗

2𝑇
, (53)

to ensure the screening condition (51) holds. Since (53) can be

reformulated as

P𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 1

32

Δ4

𝑗

𝑇 3𝜎2
𝐴
𝑀2

, (54)

if ∃𝑘 ∈ N+
, we have (54) hold, we can ensure the screening condi-

tion hold at the 𝑘-iteration.

From Theorem 1, we have

EP𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 𝜌𝑘 [P(𝑥) − P(𝑥∗)] . (55)

Thus, if we let (P(𝑥) − P(𝑥∗))𝜌𝑘 ≤ 1

32

Δ4

𝑗

𝑇 3𝜎2

𝐴
𝑀2
, we have

EP𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 1

32

Δ4

𝑗

𝑇 3𝜎2
𝐴
𝑀2

. (56)

By Markov inequality and Theorem 1, we have

P

(
P𝑘 (𝑥𝑘 ) − P(𝑥∗) ≥ 1

32

Δ4

𝑗

𝑇 3𝜎2
𝐴
𝑀2

)
≤

32𝑇 3𝜎2
𝐴
𝑀2

Δ4

𝑗

(EP𝑘 (𝑥𝑘 ) − P(𝑥∗)) (57)

≤
32𝑇 3𝜎2

𝐴
𝑀2

Δ4

𝑗

𝜌𝑘 (P(𝑥𝑘 ) − P(𝑥∗)). (58)

Denote 𝜖 𝑗 =
1

32

Δ4

𝑗𝛾

𝑇 3𝜎2

𝐴
𝑀2 (P (𝑥 )−P (𝑥∗ ) ) , if we choose 𝑘 ≥ log 1

𝜌
( 1

𝜖 𝑗
),

we have

P

(
P𝑘 (𝑥𝑘 ) − P(𝑥∗) ≥ 1

32

Δ4

𝑗

𝑇 3𝜎2
𝐴
𝑀2

)
≤

32𝑇 3𝜎2
𝐴
𝑀2

Δ4

𝑗

𝜖 𝑗 (P(𝑥𝑘 ) − P(𝑥∗)) = 𝛾 . (59)

Thus, for 𝑘 ≥ log 1

𝜌
( 1

𝜖 𝑗
), we have

P𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 1

32

Δ4

𝑗

𝑇 3𝜎2
𝐴
𝑀2

, (60)

with at least probability 1−𝛾 , which means any variable that 𝑗 ∉ S∗

are correctly detected and successfully eliminated by the ADSGD

algorithm at iteration log 1

𝜌
( 1

𝜖 𝑗
) with at least probability 1−𝛾 , which

completes the proof. □

Remark 7. Theorem 2 shows that the equicorrelation set S∗ can
be identified by ADSGD at a linear rate 𝑂 (log 1

𝜌
( 1

𝜖 𝑗
)) with at least

probability 1 − 𝛾 . We use the Lipschitzing trick in [9] to restrict the
function Ω within a bounded support.

4.2.3 Overall Complexity.

Corollary 1. Suppose the size of the active features in set S𝑘 is
𝑑𝑘 and 𝑑∗ is the size of the active features in S∗, given any 𝛾 ∈ (0, 1),
let 𝐾𝑚 = 𝑂 (log 1

𝜌
( 1

𝜖 𝑗
)), we have 𝑑𝑘 is decreasing and 𝑑𝐾𝑚 equals to

𝑑∗ with at least probability 1 −𝛾 . Define 𝑠 = 1

𝐾𝑐

∑𝐾𝑐

𝑘=1
𝑑𝑘 where 𝐾𝑐 =

𝑂 (log 1

𝜌
( 1𝜖 )), the overall complexity of ADSGD is𝑂 ((𝑛+ 𝑇𝜇 )𝑠 log(

1

𝜖 )).

Proof. The first part of Corollary 1 is the direct result of The-

orem 2. For the second part, Theorem 1 shows that the ADSGD

method converges to the optimalwith the convergence rate𝑂 (log 1

𝜖 ).
For each main loop, the algorithm runs 𝑚𝑘 inner loops. Thus,

since 𝑚 =
65𝑞𝐿
𝜇 and 𝑚𝑘 =

𝑚𝑞𝑘
𝑞 , the ADSGD algorithm takes

𝑂 ((1 + 𝑞𝑘𝐿
𝜇 ) log 1

𝜖 ) iterations to achieve 𝜖 error.

For the computational complexity, considering the 𝑘-th iteration

of the main loop, the algorithm is solving the sub-problem P𝑘 and

the complexity of the outer loop is 𝑂 (𝑛𝑑𝑘 ). Within the inner loop,

the complexity of each iteration is
𝑑𝑘 | I |
𝑞𝑘

. Thus, the complexity of

the inner loop is 𝑚𝑘
𝑑𝑘 | I |
𝑞𝑘

. Let |I | = 𝑇
𝐿
, define 𝑠 = 1

𝐾𝑐

∑𝐾𝑐

𝑘=1
𝑑𝑘

where 𝐾𝑐 = 𝑂 (log 1

𝜌
( 1𝜖 )), the overall complexity for the ADSGD

algorithm is 𝑂 ((𝑛 + 𝑇
𝜇 )𝑠 log

1

𝜖 ), which completes the proof.

□

Remark 8. Please note the difference between the number of fea-
tures as 𝑑𝑘 and the number of blocks as 𝑞𝑘 at the 𝑘-th iteration. In
the high-dimensional setting, we have 𝑑∗ ≪ 𝑑 and 𝑠 ≪ 𝑑 . Thus,
Corollary 1 shows that ADSGD can simultaneously achieve linear
convergence rate and low per-iteration cost, which improves Prox-
SVRG and MRBCD with the overall complexity 𝑂 ((𝑛 + 𝑇

𝜇 )𝑑 log(
1

𝜖 ))
at a large extent in practice.

4.3 Nonstrongly Convex Functions
For nonstrongly convex F , we can use a perturbation approach to

establishing the convergence analysis here.

Suppose 𝑥0 is the initial input and 𝜇𝑝 is a positive parameter,

adding a perturbation term 𝜇𝑝 ∥𝑥 − 𝑥0∥2 to Problem (1), we have:

min

𝑥∈ℜ𝑑
F (𝑥) + 𝜇𝑝 ∥𝑥 − 𝑥0∥2 + Ω(𝑥). (61)

If we solve (61) with ADSGD, since we can treat F (𝑥) +𝜇𝑝 ∥𝑥 −𝑥0∥2
as the data-fitting loss, we know the loss is 𝜇𝑝 -strongly convex, we

can obtain the convergence result for (61) as 𝑂 ((𝑛 + 𝑇
𝜇𝑝

)𝑠 log( 1𝜖 )).
Suppose 𝑥𝑘 be generated from the 𝑘-th iteration of the main loop in
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Figure 1: Convergence results of different algorithms for Lasso on different datasets.
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Figure 2: Convergence results of different algorithms for Lasso on different datasets.

Algorithm 2 where 𝑘 = 𝑂 ((𝑛 + 𝑇
𝜇𝑝

)𝑠 log 2

𝜖 ) and ®𝑥∗ is the optimum

solution of (61), let |I | ≥ 𝑇
𝐿
and 𝜂 < 1

4𝐿
, we obtain:

EP𝑘 (𝑥𝑘 ) +𝐶𝑝 − P(®𝑥∗) − 𝜇𝑝 ∥ ®𝑥∗ − 𝑥0∥2 ≤ 𝜖

2

, (62)

where 𝐶𝑝 is the expectation of the perturbation term, which is

always positive. Thus, we have

EP𝑘 (𝑥𝑘 ) ≤ 𝜖

2

+ P(®𝑥∗) + 𝜇𝑝 ∥ ®𝑥∗ − 𝑥0∥2 (63)

≤ 𝜖

2

+ P(𝑥∗) + 𝜇𝑝 ∥𝑥∗ − 𝑥0∥2 (64)

where the second inequality is obtained because ®𝑥∗ is the optimum

solution of (61).

If we set 𝜇𝑝 = 𝜖
2∥𝑥∗−𝑥0 ∥2 , we have

EP𝑘 (𝑥𝑘 ) − P(𝑥∗) ≤ 𝜖.

Since 2∥𝑥∗−𝑥0∥2 is a constant, the overall complexity of Algorithm

1 for nonstrongly convex function is 𝑘 = 𝑂 ((𝑛+ 𝑇𝜖 )𝑠 log(
1

𝜖 )), which
also improves ProxSVRG and MRBCD with the overall complexity

𝑂 ((𝑛 + 𝑇
𝜖 )𝑑 log(

1

𝜖 )) for nonstrongly convex function.

5 EXPERIMENTS
5.1 Experimental Setup
Design of Experiments:We perform extensive experiments on

real-world datasets for two popular sparsity regularized models

Lasso shown as

min

𝑥∈ℜ𝑑

1

𝑛

𝑛∑︁
𝑖=1

1

2

(𝑦𝑖 − 𝑥⊤𝑖 𝑥)
2 + 𝜆∥𝑥 ∥1, (65)

and sparse logistic regression as

min

𝑥∈ℜ𝑑

1

𝑛

𝑛∑︁
𝑖=1

(−𝑦𝑖𝑎⊤𝑖 𝑥 + log(1 + exp(𝑎⊤𝑖 𝑥))) + 𝜆∥𝑥 ∥1 . (66)

respectively to demonstrate the superiority of our ADSGD w.r.t. the
efficiency.

To validate the efficiency of ADSGD, we compare the conver-

gence results of ADSGD w.r.t the running time with competitive

algorithms ProxSVRG [30] and MRBCD [29, 33] under different

setups. We do not include the results of ASGD because the naive

implementation is very slow. The batch size of ADSGD is chosen

as 10 and 20 respectively.

Datasets: Table 2 summarizes the benchmark datasets used in our

experiments. Protein, Real-sim, Gisette, Mnist, and Rcv1.binary

datasets are from the LIBSVM repository, which is available at
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Figure 3: Convergence results of different algorithms for sparse logistic regression on different datasets.

Table 2: The descriptions of the datasets.

Dataset Samples Features

PlantGO 978 3091

Protein 17766 357

Real-sim 72309 20958

Gisette 6000 5000

Mnist 60000 780

Rcv1.binary 20242 47236

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. PlantGO

is from [31], which is available at http://www.uco.es/kdis/mllresources/.

Note Mnist is the binary version of the original ones by classifying

the first half of the classes versus the left ones.

Implementation Details: All the algorithms are implemented in

MATLAB. We compare the average running CPU time of different

algorithms. The experiments are evaluated on a 2.30 GHz machine.

For the convergence results of Lasso and sparse logistic regression,

we present the results with 𝜆1 = 𝜆max/2 and 𝜆2 = 𝜆max/4. Notably,
𝜆max is a parameter that, for all 𝜆 ≥ 𝜆max, 𝑥

∗
must be 0. Specifically,

we have 𝜆max = 1

𝑛 ∥𝐴
⊤𝑦∥∞ for Lasso and 𝜆max = 1

𝑛 ∥𝐴
⊤𝐺 (0)∥∞

for sparse logistic regression where 𝐺 (𝜃 ) ≜ 𝑒𝜃

1+𝑒𝜃 − 𝑦. Please note,
for each setting, all the compared algorithms share the same hy-

perparameters for a fair comparison. We set the mini-batch size as

10 for the compared algorithms. The coordinate block number is

set as 𝑞 = 10. Other hyperparameters include the initial inner loop

number𝑚 and step size 𝜂, which are selected to achieve the best

performance. For Lasso, we perform the experiments on PlantGO,

Protein, and Real-sim. For sparse logistic regression, we perform

the experiments on Gisette, Mnist, and Rcv1.binary.

5.2 Experimental Results
5.2.1 Lasso Regression. Figures 1(a)-(c) provide the results of the
convergence results for Lasso on three datasets with 𝜆 = 𝜆1. Figures

2(a)-(c) provide the convergence results with 𝜆 = 𝜆2. The results

confirm that ADSGD always converges much faster than MRBCD

and ProxSVRG under different setups, even when 𝑛 ≫ 𝑑 for Protein.

This is because, as the variables are discarded, the optimization pro-

cess is mainly conducted on a sub-problemwith a much smaller size

and thus requires fewer inner loops. Meanwhile, the screening step

imposes almost no additional costs on the algorithm. Thus, ADSGD

can achieve a lower overall complexity, compared to MRBCD and

ProxSVRG conducted on the full model.

5.2.2 Sparse Logistic Regression. Figures 3(a)-(c) provide the con-
vergence results for sparse logistic regression on three datasets

with 𝜆 = 𝜆1. The results also show that ADSGD spends much less

running time than MRBCD and ProxSVRG for all the datasets, even

when 𝑛 ≫ 𝑑 for Mnist dataset. This is because our method solves

the models with a smaller size and the screening step imposes

almost no additional costs for the algorithm.

6 CONCLUSION
In this paper, we proposed an accelerated doubly stochastic gradient

descent for sparsity regularized minimization problem with linear

predictors, which can save much useless computation by constantly

identifying the inactive variables without any loss of accuracy.

Theoretically, we proved that our ADSGDmethod can achieve lower

overall computational complexity and linear rate of explicit model

identification. Extensive experiments on six benchmark datasets

for popular regularized models demonstrated the efficiency of our

method.
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