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Abstract

Surrogate models are used to map input data to output data when the actual relationship between
the two is unknown or computationally expensive to evaluate. Many techniques exist for surrogate
modeling; however, selecting suitable techniques for a given application remains an open
challenge. This work describes PRESTO, a Random Forest classifier-based tool, to recommend
appropriate surrogate modeling techniques for a given dataset for surface approximation and
surrogate-based optimization, using attributes calculated only using the input and output data. The
tool identifies the techniques for surface approximation with an accuracy of 91% and a precision
of 90% and for surrogate-based optimization with an accuracy of 98% and a precision of 99%.
PRESTO was tested on data generated from a high fidelity process model of the cumene
production. Its performance was comparable to the training data. PRESTO enables computational

time savings for selecting surrogate model forms by avoiding expensive trial-and-error methods.
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1. Introduction
Several chemical engineering applications, including process design and process synthesis,

operations, and supply chain management, involve complex, high-fidelity simulations and/or



physical experiments, requiring significant resources in terms of both cost and time. High resource
requirements can present considerable challenges for modeling these complex processes, as the
computational and monetary costs of collecting the necessary data may become prohibitive. In
addition, optimization using traditional gradient-based methods may be impractical for these
applications because gradient information is not readily available, or approximating gradients is
infeasible due to the required expense for multiple simulation evaluations or experiments. To
overcome these challenges, cheaper surrogates that mimic the simulations’ overall behavior can
be constructed and used in their place for both surface approximation and surrogate-based

optimization purposes.

Surrogate models, also known as response surfaces, black-box models, metamodels, or
emulators, are simplified approximations of more complex, higher-order models. These models
map input data to output data when the actual relationship between the two is unknown or
computationally expensive to evaluate (Han and Zhang, 2012). Various techniques have been
developed for constructing surrogate models for both regression and classification tasks (Breiman,
2001; Cozad et al., 2014; Drucker et al., 2002; Rasmussen and Williams, 2005). The current
common practice for choosing a model form from the many available techniques relies on process-
specific expertise or expensive trial-and-error methods. When selecting a surrogate model with
user expertise, only a small subset of the many possible techniques that the user is most familiar
with may be considered as candidates. This selection method, as well as trial and error, which is
limited by computational resources, may fail to exploit the large pool of surrogate modeling
techniques available and lead to a sub-optimal model selection. A systematic, automated procedure

for selecting the appropriate surrogate model for a given application would avoid this issue.



Recent advances in automating the surrogate model selection process include the
development of the tool Concurrent Surrogate Model Selection (COSMOS), which uses a genetic
search algorithm with sequential k-fold cross-validation to identify the best model for an
application (Mehmani et al., 2018). While this method allows users to explore a wide range of
candidate surrogates to select the best one, it still involves a considerable computational expense
for training multiple models. Progress has been made in recent works in generalizing the process
for selecting a surrogate model to approximate a surface by using meta-learning approaches to
build selection frameworks, avoiding expensive trial-and-error methods (Cui et al., 2016; Garud
et al., 2018). These meta-learning approaches rely on the knowledge pyramid, where the selection
framework learns how to best select surrogate models based on past modeling computational
experiments results (Vilalta and Drissi, 2002). These frameworks provide “best” recommendations
for surrogate modeling techniques based on characteristics, or attributes, calculated from the
modeled data. Furthermore, the framework developed by Garud et al. (2018) gives a ranking of all
the considered surrogate models based on the predicted accuracy of the model. However, neither
framework takes model complexity into account, which can lead to overfitting, or considers that
multiple models might perform similarly to the one identified as best in terms of their accuracies.

The selection of surrogate models for surrogate-based optimization remains an open challenge.

This work aims to develop a framework to automatically select the set of surrogate models
that will perform the best for a particular set of data based on the characteristics of the data and
the application that the surrogate model would be used for. Our previous work comparing surrogate
model performance demonstrated that there is a link between the characteristics of the dataset and
how well different surrogate modeling techniques will perform for it for both surface

approximation and surrogate-based optimization (Williams and Cremaschi, 2021). To achieve our



aim, we developed PRESTO (Predictive REcommendation of Surrogate models to approximate
and Optimize), a random forest-based surrogate model selection tool. Given a set of data, PRESTO
classifies each surrogate modeling technique in a set of candidate models as either recommended
or not recommended based on the application, surface approximation or surrogate-based
optimization. The set of candidate surrogate modeling techniques considered by PRESTO includes
Automated Learning of Algebraic Models using Optimization (ALAMO), single hidden layer
feed-forward Artificial Neural Networks (ANN), Extreme Learning Machines (ELM), Gaussian
Process Regression (GPR), Multivariate Adaptive Regression Splines (MARS), Radial Basis
Function Networks (RBFN), Random Forests (RF), and Support Vector Machine Regression
(SVR). The tool provides these recommendations without training any of the models, avoiding

much computational expense.

The rest of the paper is organized as follows: Section 2 describes the data sets used to train
surrogate models for constructing PRESTO and the computational experiments performed.
Section 3 describes the feature engineering and extracted data attributes from the computational
experiments used to train PRESTO’s random forest classifier-based framework. Section 4 provides
details on training PRESTO, a brief overview of random forest model structures, and metrics used
for its performance evaluation. Section 5 discusses the results for how PRESTO performed on
providing surrogate model recommendations for the data used to train the tool. Section 6 presents
a case study using PRESTO to select surrogate models for surface approximation for data
generated from different unit operations of a cumene production simulation. Section 7 draws

conclusions and discusses future research directions.



2. Surrogate Modeling Experiments

2.1 Dataset Generation

Datasets were generated for training surrogate models from a suite of optimization test
functions (Surjanovic and Bingham, 2013). The functions with two, four, six, eight, ten, fifteen,
and twenty input dimensions were utilized, resulting in 127 test functions. The test functions are
grouped by their underlying functional shape. In this analysis, we have considered five shape
categories: bowl-shaped, plate-shaped, valley-shaped, multi-local-minima-shaped, and other-
shaped. Full descriptions of the characteristics of each shape category are provided in Williams
and Cremaschi (2021). Input-output pairs were generated from each test function to create datasets
at seven different sample sizes (50, 100, 400, 800, 1200, and 1600 samples) using Sobol sequence
sampling (Joe and Kuo, 2008), a quasi-random low discrepancy sequence, and resulting in 791
generated datasets. Detailed information on the choice of sample sizes and sampling methods is in

Williams and Cremaschi (2021).

2.2 Candidate Surrogate Models

The generated datasets were used to train surrogate models using each of the eight
candidate surrogate modeling techniques. The eight techniques are Automated Learning of
Algebraic Models using Optimization (ALAMO), single hidden layer feed-forward Artificial
Neural Networks (ANNSs), Extreme Learning Machines (ELMs), Gaussian Process Regression
(GPR), Multivariate Adaptive Regression Splines (MARS), Radial Basis Function Networks
(RBFNs), Random Forests (RFs), and Support Vector Machine Regression (SVR). These
techniques were chosen as candidates to represent a variety of modeling methods with different

functional forms and include some of the more popular techniques in the literature.



ALAMO uses a linear summation of nonlinear transformations of the input data to predict
output values (Cozad et al., 2014). ANN models attempt to mimic the behavior of neurons in the
brain. The artificial neurons have weights and biases that create a network between the layers, with
the activation function in the hidden layer determining whether or not a neuron will ‘fire’ (Haykin,
2009). ELM models are ANNs where input-to-hidden layer weights are randomly assigned, and
hidden layer-to-output weights are estimated using regression (Huang et al., 2006). RBFN models
are ANNs where the activation function of the nodes in the hidden layer is a radial basis function
(Gomm and Yu, 2000). GPR uses a kernel function to measure similarity between points to predict
the value for an unseen point from the training data (Rasmussen and Williams, 2005). MARS
models are made up of a linear summation of basis functions, which include constants, a hinge
function (or “spline”), or a product of two or more hinge functions (Friedman, 1991). RFs are
machine learning models that make output predictions by combining outcomes from a sequence
of regression decision trees, called forests (Breiman, 2001). Finally, SVR models transform input
data into m-dimensional space and attempt to construct a set of hyperplanes so that the distance
from it to the nearest data point on each side of the plane is maximized using kernel functions

(Drucker et al., 2002).

2.3 Surrogate Model Training

A model was trained using each of the eight surrogate modeling techniques for each of the
generated datasets, resulting in 6328 trained models. Each technique has a unique set of
hyperparameters that was optimized while training the models for each dataset to construct the
best possible surrogate model without overfitting. More details on the surrogate model
hyperparameter optimization are discussed in (Williams and Cremaschi, 2021). After the models

were trained for each dataset and sampling method, 100,000 input-output pairs were generated



from the test functions using the Sobol sequence sampling method to test the accuracy of the
surrogate models’ predictions. To evaluate the performance of the surrogate models for surrogate-
based optimization, the optimization models to determine the global minimum of each trained
surrogate model were constructed in Pyomo (version 5.6), a Python-based optimization language
(Hart et al., 2017; Hart et al., 2011). The resulting optimization problems were solved with a global
solver most appropriate for the form of the problem (MINLP, MILP, or NLP) (Williams and
Cremaschi, 2021). Computations were carried out on the Auburn University Hopper HPC Cluster
(Lenovo System X HPC Cluster) using Intel E5-2650 V3, 2.3 GHz 20 core processors and

implemented in Python 3.7 and MATLAB 2017b (for RBFN surrogate models).

3. Feature Engineering and Attribute Extraction for Training PRESTO

Attributes calculated based only on the input and output values of each dataset were used
as inputs for PRESTO’s surrogate model recommendation -classification. For surface
approximation, the performance metric used to determine if a model would be considered
recommended or not is the estimated adjusted R-squared for the model (Eq. 1). The adjustments
used for each surrogate modeling technique are listed in (Williams and Cremaschi, 2021). The
performance metric used to make recommendations for surrogate-based optimization is the
normalized Mahalanobis distance between the optimum point(s) estimated by the surrogate models
and the actual optimum location of the underlying test function used to generate the model (Eq.
2).

~ N-1
R =1- 08 [ )
_ M(xopt')?opt)

D.. =
opt n%sgx M(xl-, x]-)

(2)



In Eq. (1), R? is the R-squared regression coefficient, N is the number of data points in the

training set, and k is the number of model parameters (or hyperparameters). In Eq. (2), x; and x;

are points in the domain space of the dataset, M is the Mahalanobis distance (De Maesschalck et

al., 2000) between the location of the global minimum of a test function, x,,,, and the location
estimated using a trained surrogate model, X,,;. M is normalized by the maximum Mahalanobis
distance between any two points (x;, X;) in the dataset (Eq. 3). Mahalanobis distance is the distance

between two points in multivariate space. This distance between two objects, x and y, can be

calculated as

M(x,y) = (x = y)TC(x —y) (3)
where C~1 is the sample covariance matrix. It has an advantage over Euclidean distance as it
considers correlations in the dataset, and large scaling differences between the dimensions,
because the distances are normalized with variance. The Mahalanobis distance is thus unitless and

scale-invariant (De Maesschalck et al., 2000).

3.1 Dataset Attributes

The attributes are used to capture the overall behavior of the datasets using numeric
measures. A total of 38 attributes were defined for the datasets. Twenty of the attributes were
previously defined and described in detail in Garud et al. (2018). These include attributes related
to estimated gradients and curvatures, attributes related to the distribution of the outputs (such as
the first four moments of the output value distribution), and attributes related to the dataset’s

extreme minimum and maximum values.

An additional 18 new attributes are defined in this work. LEAPS2, the model selection

framework described in (Garud et al., 2018), was only trained to select models for surface



approximation. In addition, there were no attributes directly related to the distributions of the
inputs in the dataset. These additional attributes were constructed to include information about the
arrangement of the inputs for the datasets and provide characteristics of the data that may have a

larger effect on the optimization performance.

3.1.1 Input Related Attributes

In Egs. (3) — (), M(xi, x]-) is the Mahalanobis distance between any two points x; and x; in the

domain space. Let D be equal to the number of input dimensions in the dataset and N be equal to

the total number of datapoints.

Minimum Mahalanobis distance: This is the minimum Mahalanobis distance between any two

points in the input space (Eq. 4).

Mpin = nll’ljn M(xl" xf)

4)
Maximum Mahalanobis distance: This is the maximum Mahalanobis distance between any two

points in the input space (Eq. 5).

Mpox = n}z}x M(xi,xj)

)
Average Mahalanobis distance: This is the average Mahalanobis distance between any two

points in the input space (Eq. 6).

1
Mang = 377 ) M) ©)
Euclidean to Mahalanobis distance ratio: This ratio of the average pairwise Euclidean distance
to the average Mahalanobis distance estimates the level of correlation, if any, between the dataset
inputs and the magnitude of variance. When there is no correlation between the variables, the

covariance matrix used to calculate the Mahalanobis distance becomes the identity covariance



matrix, and the Euclidean and Mahalanobis distances become equal to each other, which makes

the value of this one. The average Euclidean distance is calculated as

1
Eqvg = mznxl - x]'“ (7)

where ||xi — xj|| is the Euclidean distance between any two points x; and x;. The Euclidean to

Mahalanobis distance ratio can then be estimated by

Eavg
Rem = 22
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3.1.2 Gradient-Based Attributes

From Garud et al. (2018), for any point in the data set, x(®, let , x() be its nearest neighbor based
on the Euclidean distance and y® be its response. Then, the gradient vector of the response, g,
at x(® can be estimated using Eq. (9), where xg) is the value of input dimension d for point x®,
and e is a small number related to the precision of the numbers in the dataset. These gradient-based
attributes were added to the attribute set because the gradients indicate the overall shape of the
surface, and previous studies have shown that surrogate-based optimization performance is
dependent on the underlying shape of the surface being modeled (Williams and Cremaschi, 2021).

o =) sion -0
o

g9 =g d=12,...D

e e 7] 0

In Eq. (9), the sign function is defined as
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-1, otherwise (10)



Average magnitude of gradient vector: This attribute (Eq. 11), which is the average value of the

magnitude of the gradient vector g, across all sample points, aims to provide a measure of the

average steepness of the surface being modeled.

1 N
Yavg = NZlg(i)l
i=1

Standard deviation of gradient vector magnitudes: The standard deviation of the magnitude of

(11)

the gradient vector g© across all sample points gives an estimate of the non-linearity of the

surface (Eq. 12).

N
1 ) 2
Istda = mZ(lg(l)l - gavg)
=1 (12)

Minimum and maximum gradient vector magnitudes: These attributes describe the minimum
(Eq. 13) and maximum (Eq. 14) values for the magnitudes of the gradient vectors for sample points

in the data set.
= minag®
Imin = Ming (13)
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Ratios of gradient vector magnitudes: These attributes aim to capture the average “bumpiness”

or noisiness of the surface by measuring how sharply the gradients change on average throughout

the surface (Eqgs. 15-17). Higher values of these ratios indicate a noisier surface.
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Imin
Skewness of gradient vector magnitudes: The skewness of the gradient magnitudes estimates a
measure of the asymmetry of the distribution of the gradient vector magnitudes (Eq. 18).
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3.1.3 Response (Output)-Based Attributes

These response-based attributes were developed and added to the attribute set to provide insights
into how concentrated (or sparse) the output values are distributed at the extreme high and low
output values. Data that is concentrated in certain areas and not well-distributed over the entire
possible output space may produce models whose predictions do not generalize well over the
space. However, if data is concentrated at extreme values, a trained model may be better able to

closely locate the optimum for the dataset.

Upper and lower tail average: These attributes calculate the average value of the response values

in the top 5% and bottom 5% of responses.

Upper and lower tail relative size: This is the ratio of the number of output responses in the top
(Eq. 19) and bottom (Eq. 20) 5% of values to the total number of data points. These attributes aim
to estimate how well distributed the response values are over the range of responses. In Egs. (19)
and (20), N,, and N, represent the number of output responses in the top 5% and bottom 5% of

values, respectively.

=| =

(19)
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lsize = N (20)

Ratio of lower to upper tail size: This ratio (Eq. 21) describes how evenly the output responses

are distributed between the upper and lower extremes of the output values.

l.:
T = size 1)

size

3.1.4 Other Attributes

Average local convex deviation: This deviation (Eq. 27) aims to estimate the convexity of the
function from which the input-output data was generated. We hypothesize that this metric may be
important for determining the appropriate surrogate modeling technique for surrogate-based

optimization.

Letc™,m = 1,2,..., M be some sample points generated on the input domain of the dataset using

Latin hypercube sampling.
dmin = min||c™ — c®| (22)
m+n
We can construct a hypersphere of diameter d,,;,, (Eq. 22) around each point ¢(™ to create a local
“neighborhood” of dataset points x(Y) around each center, where d,,;,is the minimum distance

between ¢(™ and any other generated sample point, c™. Then, we define the convex difference

for each point in the neighborhood as in Eq. (23),

®,(m) _ ' ®
Cdiff = y(l) ~ Yconvex (23)

and the average convex difference in the neighborhood is given in Eq. (24),
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where yc(?nvex is the response of a known convex function (Eq. (25))
. 4
Veonver = 0-1(x®) (25)
for the input x(®. Figure 1 illustrates the process for calculating C c(ig,’](cm).
The local convex deviation in each neighborhood can then be calculated as in Eq. (26)
1 K 2
(m) _ (D),(m) ~(m)
Caer = mz (Cdiff - Cdiff)
=1 (26)

where K is the number of points from the dataset in the neighborhood m. The average local convex

deviation is given in Eq. (27).

1 M
C_'dev = Mz Cc(zrer:;)
i=1 (27)
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Figure 1. Steps for generating neighborhoods for convex difference calculations.



4. PRESTO Construction and Performance Evaluation

4.1 PRESTO Framework Construction

Random forest classification models were trained for each surrogate modeling technique
to predict whether the surrogate should be recommended or not recommended for a dataset.
Random forests are surrogate models that make output predictions based on inputs by combining
predictions from a collection of decision trees. Each tree in a random forest model is constructed
independently and depends on a random vector sampled from the input data, with all the trees in
the forest having the same distribution (Brieman, 2001). Random forests have successfully been
used for both regression and classification tasks, performing with high prediction accuracy for both
small sample sizes and high dimensional data.

Separate classification models were trained for surface approximation and surrogate-based
optimization. The calculated attributes were used as inputs, and the assigned recommendation
classes (“recommended” or “not recommended”) were used as outputs. To assign recommendation
classes for a dataset, the highest or lowest value out of all the eight surrogate techniques for R?
and D,p, respectively, were assigned as “recommended”, as they had the “best” performance for
that dataset. Then, surrogate models with performance metric values within 1% of those best
values were also assigned as “recommended.” Any surrogate models with metric values outside of
the 1% range was assigned a recommendation class of “not recommended.”

The built-in feature selection method of random forest models was performed to determine
which attributes had the most influence on the predicted recommendation class for each surrogate
modeling technique. Input features are assigned an importance value in random forest models
based on how much they reduce the Gini impurity (Menze et al., 2009) at each decision node in

the forest. The Gini impurity measures how well the decision threshold separates the training



samples into the two classes at a particular node (Menze et al., 2009). The feature importances of
all the input features (in this case, the attributes) sum to 100%. Attributes were ranked from highest
to lowest feature importance. The attributes were added to the input feature set starting with the
highest importance up to a sum of 90% of the total importance to reduce the attribute set for the
classification model for each surrogate modeling technique. Here, the goal is to consider the
attributes with the highest impact on the classification model outcome in the random forest
classifier model. The remaining features in the lower 10% of the importance sum were discarded.
Figure 2 summarizes the PRESTO construction steps. PRESTO is available for testing in the

Cremaschi research group GitHub repository (https://github.com/CremaschilLab/PRESTO).



https://github.com/CremaschiLab/PRESTO

PRESTO

FS
Attributes

Opt FS

Calculate

Generate Data Train Models Metrics

Figure 2. Summary of PRESTO construction (FS = Feature Selection, Approx = Surface

Approximation, Opt = Surrogate-based optimization, PM = Classification Performance Metrics)

4.2 PRESTO Performance Evaluation Criteria

The performance of PRESTO was evaluated using three performance metrics: accuracy,

precision, and hit ratio. These metrics are calculated based on the classification confusion matrix



(Sokolova and Lapalme, 2009) (Figure 3), which describes the quality of classifications made by

a classification model.

Predicted Recommendation

Not

Recommended Recommended

TP

Actual Recommended
Recommendation
Not
Recommended

Figure 3. Classification confusion matrix (TP = true positive, TN = true negative, FP = false

positive, FN = false negative).

The accuracy (Eq. 28) measures the percentage of recommendation classifications made
by PRESTO that is correct. The precision (Eq. 29) is the probability that a model classified as
recommended should actually be recommended and will perform well for a dataset. The hit ratio
(Eq. 30) is the percentage of models that will perform well for a dataset that PRESTO is

recommending.

TP+TN

= 28
Accuracy = rp I TN ¥ FP + FN 8)
TP
P - 29
Precision TP+ FP (29)
TP
Hit ratio = ——— (30)

TP+ FN



Figure 4 provides a flowchart depicting how the performance metrics were calculated for

evaluating PRESTO’s performance. The first step is similar to how a user would use PRESTO,

where input-output data is generated and passed to PRESTO. PRESTO then provides

recommendations for which surrogate modeling techniques to employ. For the second step in the

analysis, all eight of the candidate surrogate modeling techniques were used to train models, and

their performance metrics were calculated. These metrics of actual performance were compared to

the recommendations for models PRESTO predicted would perform well for the data to evaluate

the quality of PRESTO’s recommendations. Training all of the models as was done in this analysis

is not necessary for a PRESTO user. In practice, a user could train as few or as many of the

recommended models as desired.
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Figure 4. Summary of PRESTO performance evaluation.
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5. PRESTO Model Selection Performance Results

5.1 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques

The numbers of attributes selected for classifying the eight candidate surrogate modeling
techniques as being recommended or not recommended for surface approximation and surrogate-
based optimization are given in Table 1. For example, for surface approximation, 21 attributes out
of the initial set of 38 were selected as inputs for the classifier trained to make predictions regarding
ALAMO. Based on these results, the random forest classifier required approximately 39 - 55% of
the attributes for making recommendations. There were no significant differences between the

number of attributes selected for each surrogate modeling technique or application.

Table 1. Number of attributes selected for recommendation predictions

Attributes Selected

Surface Surrogate-Based
Approximation Optimization
ALAMO 21 21
ANN 20 19
ELM 19 20
GPR 21 20
MARS 21 20
RBFN 20 20
RF 15 21
SVR 21 21

Tables 2 and 3 list the five highest important attributes selected for surface approximation
and surrogate-based optimization, respectively. Attributes related to the dataset inputs, including
the average, minimum, and maximum Mahalanobis distances between input data points, were
selected frequently for the majority of the surrogate modeling techniques for both surface
approximation and surrogate-based optimization performance predictions. Other commonly

selected features include those related to the distributions of output values, specifically the relative



size of the output distribution tails and the output distribution skewness and kurtosis. These results
suggest that the distribution and location of the sample points and the relative steepness and
smoothness of the surface have a high level of influence on how well each of the surrogate models

can approximate that surface and locate the optimum of the underlying function.

Attributes related to the distributions of the input and output locations were commonly
selected among all of the candidate techniques. These attributes may affect surface approximation
performance as having data unevenly concentrated (or sparse) at the extreme values may skew
models to predict more accurately in areas of data concentration and less so for other areas of the
design space. For example, in the case of RF models, uneven tails could cause decision nodes in
the model trees to split more frequently at the extremes of the output values while more finely split
partitions were really needed elsewhere, such as where the gradients were steep. For the neural
network-based models, the on-off nature of the hidden layer nodes may make them more suitable
for making accurate predictions for surfaces where large areas of the design space have similar

output values, creating flat or nearly flat areas, similar to the p/ate-shaped functions.

For surface approximation, the attributes of the empirical mean of fractional local
fluctuations and the empirical standard deviation in fractional local fluctuations were also
frequently selected in the top five attributes. These attributes measure the average bumpiness and
non-linearity variations, respectively, of the surface being modeled (Garud et al., 2018) and can
be considered to give a measure of the noisiness of the surface. The noise level has a significant
effect on some models’ ability to fit a surface. For example, for SVR model performance, the
support vectors fitted in the model construction can easily become sensitive to noise as they are

only dependent on a small set of the data used to train the model (Sabzekar et al., 2011).



Table 2. Five highest important attributes selected for surface approximation

ALAMO ANN
Attribute Importance Attribute Importance
Euclidean to Mahalanobis ratio 11.1% Coefficient of variation of
Skewness of outputs 8.7% outputs 10.4%
Kurtosis of outputs 7.2% Upper tail average 9.3%
Upper tail average 5.8% Average Mahalanobis distance 6.6%
Coefficient of variation of Average gradient cosine direction 6.0%
outputs 5.4% Kurtosis of outputs 5.5%
ELM GPR
Attribute Importance Attribute Importance
Average Mahalanobis distance 12.2% Upper tail average 7.6%
Minimum Mahalanobis distance 12.0% Coefficient of variation of outputs 7.6%
Input dimensions 9.7% Empirical mean of fractional local
fluctuations 6.4%

Empirical standard deviation in

fractional local fluctuations 8.9% Skewqess of outputs C 6.3%
. e Empirical standard deviation in
Kurtosis of outputs 6.6% fractional local fluctuations 5.7%
MARS RBFN
Attribute Importance Attribute Importance
Kurtosis of outputs 11.5% Average Mahalanobis distance 10.4%
Empirical standard deviation in Minimum Mahalanobis distance 9.2%
fractional local fluctuations 76% Empirical mean of fractional local
Skewness of outputs 10 fluctuations 7.0%
. . P . 7.1% Empirical standard deviation in
Relative Size of upper tail 6.7% fractional local fluctuations 7.0%
Upper tail average 5.0% Skewness of outputs 5.5%
RF SVR
Attribute Importance Attribute Importance
Empirical standard deviation in Skewness of outputs 8.0%
fractional local fluctuations 21.3% Empirical mean of fractional local
Empirical mean of fractional fluctuations 779
local fluctuations 15.6% . e
) Kurtosis of outputs 6.3%

Coefficient of variation of .. S
gradient magnitudes 73% Empirical standard deviation in

Average Mahalanobis distance 7.1% fractional local fluctuations 5.7%
Minimum Mahalanobis distance 7.0% Skewness of gradient magnitudes 5.1%



Table 3. Five highest important attributes selected for surrogate-based optimization

ALAMO ANN
Attribute Importance Attribute Importance
Upper tail average 9.3% Input dimensions 12.3%
Coefficient of variation of Average Mahalanobis distance 12.1%
outputs 9.2% Maximum Mahalanobis distance 9.3%
Skewness of outputs 8.0% Minimum Mahalanobis distance 7.7%
Lower tail relative size 6.2% Kurtosis of outputs 7.7%
Average Mahalanobis distance 5.8%
ELM GPR
Attribute Importance Attribute Importance
Average Mahalanobis distance 18.6% Input dimensions 9.5%
Maximum Mahalanobis distance 12.9% Average Mahalanobis distance 9.1%
Minimum Mahalanobis distance 10.7% Coefficient of variation of outputs 7.0%
Input dimensions 10.0% Maximum Mahalanobis distance 6.6%
Coefficient of variation of Skewness of outputs 6.5%
outputs 4.4%
MARS RBFN
Attribute Importance Attribute Importance
Input dimensions 13.8% Minimum Mahalanobis distance 13.9%
Average Mahalanobis distance 13.0% Average Mahalanobis distance 10.4%
Minimum Mahalanobis distance 8.0% Input dimensions 10.3%
Maximum Mahalanobis distance 6.2% Maximum Mahalanobis distance 6.6%
Kurtosis of outputs 5.2% Skewness of outputs 4.8%
RF SVR
Attribute Importance Attribute Importance
Average Mahalanobis distance 8.8%, Skewness of outputs 11.0%
Minimum Mahalanobis distance 6.4% Upper tail average 8.8%
Input dimensions 6.3% Coefficient of variation of
Maximum Mahalanobis distance 5.7% outputs 8.0%
Euclidean to Mahalanobis ratio 5.6% Average Mahalanobis distance 5.3%
Kurtosis of outputs 5.2%

For surrogate-based optimization, although not selected as one of the top five important

attributes, the average local convex deviation, and attributes related to the estimated gradients were

selected frequently in the set of important attributes. The convexity of a model has a significant



effect on the relative “ease” of finding its global minimum. Gradient information is also crucial in
the application of gradient-based methods for optimization. The complete listing of all attributes

selected is available in the supplemental materials of the paper.

5.2 PRESTO Recommendation Classification Results

The selected attributes were used as inputs to train random forest classification models for
the eight techniques to classify each technique as being “recommended” or “not recommended”
for a given dataset. Separate classifiers were trained for surface approximation and surrogate-based
optimization. This recommendation scheme allows for multiple similarly performing surrogate
modeling techniques to be suggested for use. The performance metrics were calculated using
Monte Carlo cross-validation with 75 Monte Carlo trials. Each trial had a test set size of 20% of

the total dataset.

PRESTO identified which techniques should be recommended for the simulated datasets
for surface approximation with an accuracy of 91%. The precision, or the probability that a
recommended technique should actually be recommended, was 90%. The hit ratio, the percentage
of the surrogate models that should have been recommended for surface approximation that

PRESTO successfully captured, was 87%.

For surrogate-based optimization, PRESTO recommended surrogate modeling techniques
with an accuracy of 98% and a precision of 99%. This result indicates that if PRESTO identifies a
model as being recommended for a dataset, there is a 99% probability that the model will
accurately locate the global optimum of the underlying model for the dataset. The hit ratio for

surrogate-based optimization was 98%.



6. Performance Evaluation of PRESTO for a Chemical Engineering Application - Cumene
Production Case Study

A simulation model of the cumene production process was employed to test the
performance of PRESTO’s recommendations for a chemical engineering application and on
datasets that were not used for its training. The entire process for cumene production was simulated
in gPROMS Process. Input-output datasets were generated for a subset of the unit operations in
the flowsheet, using the gPROMS Global System Analysis capabilities. PRESTO was used to
provide surrogate modeling technique recommendations to predict each output for surface
approximation. Then, surrogate models were trained for each output using the eight candidate
surrogate modeling techniques, and the corresponding adjusted R-squared values were calculated
using Monte Carlo cross-validation (Xu et al., 2004) with a test set size of 20% of the dataset and
50 Monte Carlo trials. The adjusted R-squared results were compared to the recommendation

classifications made by PRESTO for surface approximation.

6.1 Process and Simulation Description for Cumene Production

The process to produce cumene, a petrochemical used in the production of several
chemicals, involves the reaction of benzene with propylene to form cumene and the undesirable
reaction of cumene with propylene to form p-diisopropyl benzene (PDIB) (Luyben, 2011). The
flowsheet for the process is given in Figure 5. The case study focuses on the cooled tubular reactor
(Reactor) and two distillation columns (C1 and C2). These are the three most complex unit-level
models in the overall flowsheet, meaning that replacing them with surrogate models will have the
greatest impact on improving computational speed. In the process, the liquid fresh feed streams
are combined with a benzene recycle stream, vaporized, preheated to 360 °C, and fed to the cooled

tubular reactor. The first distillation column, C1, produces a mostly benzene distillate, which is



recycled back to the reactor. This recycle stream is necessary to keep benzene from exiting in the
bottoms product and affecting the purity of the cumene product in the distillate of the second
column, C2. Column C2 is designed to attain high-purity cumene in the distillate and minimize

the loss of cumene in the bottoms (Luyben, 2011).

Heat Exchanger

Heater1 Reactor
Fresh propane
and propylene
Y 342 tubes
Vaporizer
Fresh Heater2
benzene
stream P Benzene recycle stream
Gas "’
Cumene product
C1
Flashitank §<—
‘
Stages =15 Stages =20
Operating Operating
pressure = 1 bar pressure = 1 bar
Column diameter Column diameter
=1.36m =1.26m

Figure 5. Flowsheet for cumene production case study.

The entire process was simulated in gPROMS Process, where the data for the three
complex unit operations was generated. Data was generated for a total of 27 outputs, with seven
outputs for the reactor, 11 outputs for the first distillation column (C1), and nine outputs for the
second distillation column (C2). Outputs for the distillation columns include heat duties and top
and bottoms product compositions. Outputs for the reactor include outlet temperatures and reaction
product compositions. For each output, data was randomly selected at 4 different sample sizes
(100, 300, 1000, and 3000 samples) for a total of 108 case study datasets for evaluating PRESTO’s

performance. The input values for each dataset are operating specifications for a fixed design of



the respective unit operations, such as inlet temperatures and inlet compositions. All inputs and

outputs for each dataset and all the case study data are provided in the supplementary materials.

6.2 PRESTO Performance

Table 4 lists the performance metrics for PRESTO on the case study data compared to the
metrics for the data that PRESTO was trained on, or the PRESTO data. Performance metrics were
calculated for both to compare how well PRESTO performed on the simulated data from the test
functions to how it performed on data from a real-world application. PRESTO’s performance on
the cumene case study data was similar to that of the tool training data for accuracy and precision.
However, the hit ratio was slightly lower. The lower hit ratio for the case study data indicates that
PRESTO was not identifying all the possible models that could be recommended, only a subset of
them, which also resulted in a higher precision. These results suggest that PRESTO may
successfully identify a set of surrogate models that will perform well for approximating the
behavior of a data set for some relevant cases without the need for expensive trial-and-error

methods.

The lower hit ratio may be due to the fact that the values for the Mahalanobis distances
between the data points for the case study data were outside the ranges of the distances for the data
that the tool was trained on. For example, the maximum value for the PRESTO data for the
maximum Mahalanobis distance between data points is approximately 6.7, while both the average
and maximum value of that same attribute for the case study data are higher at 6.8 and 7.1,
respectively. The simulated data was generated using the same space-filling method, while the
inputs for the case study data were generated randomly. We can conclude that the position of the
sample points, or the distances between them, are critical in providing accurate recommendations

as features related to the Mahalanobis distances were selected as important for almost all of the



classification models that were trained. The performance of PRESTO could be improved by adding
datasets that use a variety of sampling methods in order to provide better ranges for the attributes

related to data point distribution.

In addition, all of the datasets in the PRESTO data were created using relatively smooth,
continuous functions. Data from real applications may not share the same characteristics. An
example of this difference in behavior can be seen in the average local convex deviation attribute.
The average value for this attribute is 2.66x10° for the PRESTO data and several orders of
magnitude higher for the case study data at 9.1x10'2. The recommendations of PRESTO for real
data could be enhanced by the addition of real datasets to the PRESTO training data. However,
with a 94% precision for the case study data, PRESTO’s predictions for which surrogate models
to use are still accurate. All of the compiled results for adjusted R-squared and recommended

models for the case study data are available in the supplementary materials.

Table 4. PRESTO case study performance comparison

Case Study PRESTO
Data Data
Accuracy 89% 91%
Precision 94% 90%
Hit Ratio 76% 87%

PRESTO did not recommend any candidate surrogate models for two process outputs: the
bottom product temperature and top liquid recovery of cumene. These classifications of “not
recommended” for all the surrogates were correct, as when the models were trained, none of the
techniques could successfully approximate these outputs with an adjusted R-squared above 0.7.

Our previous work demonstrates that there are some test functions that were used to train PRESTO,



for which none of the surrogate modeling techniques were able to approximate the surface
(Williams and Cremaschi, 2021). In these instances, alternative modeling strategies, such as
ensemble modeling, deep learning algorithms, or another surrogate modeling technique not
included in the candidate set, may be considered. It should be noted that when PRESTO does not
recommend any surrogate modeling techniques, it could also indicate that the current data set size
is too small for them to model the input-output relationship accurately. We observed that for some
datasets, increasing its size also increased the number of recommended models. Hence, we also
recommend increasing the dataset size and re-running PRESTO. The case study results reveal that
PRESTO can capture the qualities of datasets that would make them unsuitable for modeling with

the eight candidate techniques studied.

7. Conclusions and Future Work

Selecting an appropriate surrogate modeling technique depends on the characteristics of
the dataset being modeled and the application domain of the surrogate model, surface
approximation vs. optimization. We identified attributes of datasets appropriate for selecting
surrogate models for both surface approximation and surrogate-based optimization. Using these
attributes, a recommendation tool, PRESTO, was constructed to recommend surrogate modeling
techniques for approximating a dataset with 91% accuracy and 90% precision and for performing
surrogate based-optimization with 98% accuracy and 99% precision. Although PRESTO could not
capture the full set of models that could be recommended on a set of test data generated from a
cumene production process simulation, the recommended models did provide higher values of
adjusted R-squared and better predictions for the outputs. Future work on PRESTO will include
adding more real datasets to the training data for the tool, focusing on using a wider variety of

sampling methods, not just space-filling ones, and incorporating the impact of noisy data.
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