
PRESTO: Predictive REcommendation of Surrogate models to approximate and Optimize

Bianca Williams1, Joannah Otashu2, Simon Leyland2, Mario R. Eden1, Selen Cremaschi1*

1Department of Chemical Engineering, Auburn University, Auburn, AL

2Siemens Process Systems Engineering Inc.

*selen-cremaschi@auburn.edu

Abstract

Surrogate models are used to map input data to output data when the actual relationship between

the two is unknown or computationally expensive to evaluate. Many techniques exist for surrogate

modeling; however, selecting suitable techniques for a given application remains an open

challenge. This work describes PRESTO, a Random Forest classifier-based tool, to recommend

appropriate surrogate modeling techniques for a given dataset for surface approximation and

surrogate-based optimization, using attributes calculated only using the input and output data. The

tool identifies the techniques for surface approximation with an accuracy of 91% and a precision

of 90% and for surrogate-based optimization with an accuracy of 98% and a precision of 99%.

PRESTO was tested on data generated from a high fidelity process model of the cumene

production. Its performance was comparable to the training data. PRESTO enables computational

time savings for selecting surrogate model forms by avoiding expensive trial-and-error methods.

Keywords: model selection, surface approximation, surrogate-based optimization, meta-learning

1. Introduction

Several chemical engineering applications, including process design and process synthesis,

operations, and supply chain management, involve complex, high-fidelity simulations and/or

physical experiments, requiring significant resources in terms of both cost and time. High resource

requirements can present considerable challenges for modeling these complex processes, as the

computational and monetary costs of collecting the necessary data may become prohibitive. In

addition, optimization using traditional gradient-based methods may be impractical for these

applications because gradient information is not readily available, or approximating gradients is

infeasible due to the required expense for multiple simulation evaluations or experiments. To

overcome these challenges, cheaper surrogates that mimic the simulations’ overall behavior can

be constructed and used in their place for both surface approximation and surrogate-based

optimization purposes.

Surrogate models, also known as response surfaces, black-box models, metamodels, or

emulators, are simplified approximations of more complex, higher-order models. These models

map input data to output data when the actual relationship between the two is unknown or

computationally expensive to evaluate (Han and Zhang, 2012). Various techniques have been

developed for constructing surrogate models for both regression and classification tasks (Breiman,

2001; Cozad et al., 2014; Drucker et al., 2002; Rasmussen and Williams, 2005). The current

common practice for choosing a model form from the many available techniques relies on process-

specific expertise or expensive trial-and-error methods. When selecting a surrogate model with

user expertise, only a small subset of the many possible techniques that the user is most familiar

with may be considered as candidates. This selection method, as well as trial and error, which is

limited by computational resources, may fail to exploit the large pool of surrogate modeling

techniques available and lead to a sub-optimal model selection. A systematic, automated procedure

for selecting the appropriate surrogate model for a given application would avoid this issue.

Recent advances in automating the surrogate model selection process include the

development of the tool Concurrent Surrogate Model Selection (COSMOS), which uses a genetic

search algorithm with sequential k-fold cross-validation to identify the best model for an

application (Mehmani et al., 2018). While this method allows users to explore a wide range of

candidate surrogates to select the best one, it still involves a considerable computational expense

for training multiple models. Progress has been made in recent works in generalizing the process

for selecting a surrogate model to approximate a surface by using meta-learning approaches to

build selection frameworks, avoiding expensive trial-and-error methods (Cui et al., 2016; Garud

et al., 2018). These meta-learning approaches rely on the knowledge pyramid, where the selection

framework learns how to best select surrogate models based on past modeling computational

experiments results (Vilalta and Drissi, 2002). These frameworks provide “best” recommendations

for surrogate modeling techniques based on characteristics, or attributes, calculated from the

modeled data. Furthermore, the framework developed by Garud et al. (2018) gives a ranking of all

the considered surrogate models based on the predicted accuracy of the model. However, neither

framework takes model complexity into account, which can lead to overfitting, or considers that

multiple models might perform similarly to the one identified as best in terms of their accuracies.

The selection of surrogate models for surrogate-based optimization remains an open challenge.

 This work aims to develop a framework to automatically select the set of surrogate models

that will perform the best for a particular set of data based on the characteristics of the data and

the application that the surrogate model would be used for. Our previous work comparing surrogate

model performance demonstrated that there is a link between the characteristics of the dataset and

how well different surrogate modeling techniques will perform for it for both surface

approximation and surrogate-based optimization (Williams and Cremaschi, 2021). To achieve our

aim, we developed PRESTO (Predictive REcommendation of Surrogate models to approximate

and Optimize), a random forest-based surrogate model selection tool. Given a set of data, PRESTO

classifies each surrogate modeling technique in a set of candidate models as either recommended

or not recommended based on the application, surface approximation or surrogate-based

optimization. The set of candidate surrogate modeling techniques considered by PRESTO includes

Automated Learning of Algebraic Models using Optimization (ALAMO), single hidden layer

feed-forward Artificial Neural Networks (ANN), Extreme Learning Machines (ELM), Gaussian

Process Regression (GPR), Multivariate Adaptive Regression Splines (MARS), Radial Basis

Function Networks (RBFN), Random Forests (RF), and Support Vector Machine Regression

(SVR). The tool provides these recommendations without training any of the models, avoiding

much computational expense.

The rest of the paper is organized as follows: Section 2 describes the data sets used to train

surrogate models for constructing PRESTO and the computational experiments performed.

Section 3 describes the feature engineering and extracted data attributes from the computational

experiments used to train PRESTO’s random forest classifier-based framework. Section 4 provides

details on training PRESTO, a brief overview of random forest model structures, and metrics used

for its performance evaluation. Section 5 discusses the results for how PRESTO performed on

providing surrogate model recommendations for the data used to train the tool. Section 6 presents

a case study using PRESTO to select surrogate models for surface approximation for data

generated from different unit operations of a cumene production simulation. Section 7 draws

conclusions and discusses future research directions.

2. Surrogate Modeling Experiments

2.1 Dataset Generation

Datasets were generated for training surrogate models from a suite of optimization test

functions (Surjanovic and Bingham, 2013). The functions with two, four, six, eight, ten, fifteen,

and twenty input dimensions were utilized, resulting in 127 test functions. The test functions are

grouped by their underlying functional shape. In this analysis, we have considered five shape

categories: bowl-shaped, plate-shaped, valley-shaped, multi-local-minima-shaped, and other-

shaped. Full descriptions of the characteristics of each shape category are provided in Williams

and Cremaschi (2021). Input-output pairs were generated from each test function to create datasets

at seven different sample sizes (50, 100, 400, 800, 1200, and 1600 samples) using Sobol sequence

sampling (Joe and Kuo, 2008), a quasi-random low discrepancy sequence, and resulting in 791

generated datasets. Detailed information on the choice of sample sizes and sampling methods is in

Williams and Cremaschi (2021).

2.2 Candidate Surrogate Models

The generated datasets were used to train surrogate models using each of the eight

candidate surrogate modeling techniques. The eight techniques are Automated Learning of

Algebraic Models using Optimization (ALAMO), single hidden layer feed-forward Artificial

Neural Networks (ANNs), Extreme Learning Machines (ELMs), Gaussian Process Regression

(GPR), Multivariate Adaptive Regression Splines (MARS), Radial Basis Function Networks

(RBFNs), Random Forests (RFs), and Support Vector Machine Regression (SVR). These

techniques were chosen as candidates to represent a variety of modeling methods with different

functional forms and include some of the more popular techniques in the literature.

ALAMO uses a linear summation of nonlinear transformations of the input data to predict

output values (Cozad et al., 2014). ANN models attempt to mimic the behavior of neurons in the

brain. The artificial neurons have weights and biases that create a network between the layers, with

the activation function in the hidden layer determining whether or not a neuron will ‘fire’ (Haykin,

2009). ELM models are ANNs where input-to-hidden layer weights are randomly assigned, and

hidden layer-to-output weights are estimated using regression (Huang et al., 2006). RBFN models

are ANNs where the activation function of the nodes in the hidden layer is a radial basis function

(Gomm and Yu, 2000). GPR uses a kernel function to measure similarity between points to predict

the value for an unseen point from the training data (Rasmussen and Williams, 2005). MARS

models are made up of a linear summation of basis functions, which include constants, a hinge

function (or “spline”), or a product of two or more hinge functions (Friedman, 1991). RFs are

machine learning models that make output predictions by combining outcomes from a sequence

of regression decision trees, called forests (Breiman, 2001). Finally, SVR models transform input

data into m-dimensional space and attempt to construct a set of hyperplanes so that the distance

from it to the nearest data point on each side of the plane is maximized using kernel functions

(Drucker et al., 2002).

2.3 Surrogate Model Training

A model was trained using each of the eight surrogate modeling techniques for each of the

generated datasets, resulting in 6328 trained models. Each technique has a unique set of

hyperparameters that was optimized while training the models for each dataset to construct the

best possible surrogate model without overfitting. More details on the surrogate model

hyperparameter optimization are discussed in (Williams and Cremaschi, 2021). After the models

were trained for each dataset and sampling method, 100,000 input-output pairs were generated

from the test functions using the Sobol sequence sampling method to test the accuracy of the

surrogate models’ predictions. To evaluate the performance of the surrogate models for surrogate-

based optimization, the optimization models to determine the global minimum of each trained

surrogate model were constructed in Pyomo (version 5.6), a Python-based optimization language

(Hart et al., 2017; Hart et al., 2011). The resulting optimization problems were solved with a global

solver most appropriate for the form of the problem (MINLP, MILP, or NLP) (Williams and

Cremaschi, 2021). Computations were carried out on the Auburn University Hopper HPC Cluster

(Lenovo System X HPC Cluster) using Intel E5-2650 V3, 2.3 GHz 20 core processors and

implemented in Python 3.7 and MATLAB 2017b (for RBFN surrogate models).

3. Feature Engineering and Attribute Extraction for Training PRESTO

 Attributes calculated based only on the input and output values of each dataset were used

as inputs for PRESTO’s surrogate model recommendation classification. For surface

approximation, the performance metric used to determine if a model would be considered

recommended or not is the estimated adjusted R-squared for the model (Eq. 1). The adjustments

used for each surrogate modeling technique are listed in (Williams and Cremaschi, 2021). The

performance metric used to make recommendations for surrogate-based optimization is the

normalized Mahalanobis distance between the optimum point(s) estimated by the surrogate models

and the actual optimum location of the underlying test function used to generate the model (Eq.

2).

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝑁𝑁 − 1

𝑁𝑁 − (𝑘𝑘 + 1)� (1)

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑜𝑜�
𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖,𝑗𝑗

𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
 (2)

In Eq. (1), 𝑅𝑅2 is the R-squared regression coefficient, 𝑁𝑁 is the number of data points in the

training set, and 𝑘𝑘 is the number of model parameters (or hyperparameters). In Eq. (2), 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗

are points in the domain space of the dataset, 𝑀𝑀 is the Mahalanobis distance (De Maesschalck et

al., 2000) between the location of the global minimum of a test function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜, and the location

estimated using a trained surrogate model, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑜𝑜. 𝑀𝑀 is normalized by the maximum Mahalanobis

distance between any two points (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) in the dataset (Eq. 3). Mahalanobis distance is the distance

between two points in multivariate space. This distance between two objects, 𝑥𝑥 and 𝑦𝑦, can be

calculated as

𝑀𝑀(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝑦𝑦)𝑇𝑇𝐶𝐶−1(𝑥𝑥 − 𝑦𝑦) (3)

where 𝐶𝐶−1 is the sample covariance matrix. It has an advantage over Euclidean distance as it

considers correlations in the dataset, and large scaling differences between the dimensions,

because the distances are normalized with variance. The Mahalanobis distance is thus unitless and

scale-invariant (De Maesschalck et al., 2000).

3.1 Dataset Attributes

The attributes are used to capture the overall behavior of the datasets using numeric

measures. A total of 38 attributes were defined for the datasets. Twenty of the attributes were

previously defined and described in detail in Garud et al. (2018). These include attributes related

to estimated gradients and curvatures, attributes related to the distribution of the outputs (such as

the first four moments of the output value distribution), and attributes related to the dataset’s

extreme minimum and maximum values.

An additional 18 new attributes are defined in this work. LEAPS2, the model selection

framework described in (Garud et al., 2018), was only trained to select models for surface

approximation. In addition, there were no attributes directly related to the distributions of the

inputs in the dataset. These additional attributes were constructed to include information about the

arrangement of the inputs for the datasets and provide characteristics of the data that may have a

larger effect on the optimization performance.

3.1.1 Input Related Attributes

In Eqs. (3) – (5), M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is the Mahalanobis distance between any two points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in the

domain space. Let 𝐷𝐷 be equal to the number of input dimensions in the dataset and 𝑁𝑁 be equal to

the total number of datapoints.

Minimum Mahalanobis distance: This is the minimum Mahalanobis distance between any two

points in the input space (Eq. 4).

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = min
𝑖𝑖,𝑗𝑗

M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (4)

Maximum Mahalanobis distance: This is the maximum Mahalanobis distance between any two

points in the input space (Eq. 5).

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖,𝑗𝑗

M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (5)

Average Mahalanobis distance: This is the average Mahalanobis distance between any two

points in the input space (Eq. 6).

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑁𝑁2�M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (6)

Euclidean to Mahalanobis distance ratio: This ratio of the average pairwise Euclidean distance

to the average Mahalanobis distance estimates the level of correlation, if any, between the dataset

inputs and the magnitude of variance. When there is no correlation between the variables, the

covariance matrix used to calculate the Mahalanobis distance becomes the identity covariance

matrix, and the Euclidean and Mahalanobis distances become equal to each other, which makes

the value of this one. The average Euclidean distance is calculated as

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑁𝑁2��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� (7)

where �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� is the Euclidean distance between any two points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗. The Euclidean to

Mahalanobis distance ratio can then be estimated by

𝑅𝑅𝐸𝐸/𝑀𝑀 =
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎
𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎

(8)

3.1.2 Gradient-Based Attributes

From Garud et al. (2018), for any point in the data set, 𝑥𝑥(𝑖𝑖), let , 𝑥𝑥(𝑗𝑗) be its nearest neighbor based

on the Euclidean distance and 𝑦𝑦(𝑖𝑖) be its response. Then, the gradient vector of the response, 𝑔𝑔(𝑖𝑖),

at 𝑥𝑥(𝑖𝑖) can be estimated using Eq. (9), where 𝑥𝑥𝑑𝑑
(𝑖𝑖) is the value of input dimension 𝑑𝑑 for point 𝑥𝑥(𝑖𝑖),

and 𝑒𝑒 is a small number related to the precision of the numbers in the dataset. These gradient-based

attributes were added to the attribute set because the gradients indicate the overall shape of the

surface, and previous studies have shown that surrogate-based optimization performance is

dependent on the underlying shape of the surface being modeled (Williams and Cremaschi, 2021).

𝑔𝑔(𝑖𝑖) = �𝑔𝑔𝑑𝑑
(𝑖𝑖) =

�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑗𝑗)� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)�

𝑚𝑚𝑚𝑚𝑚𝑚 �𝑒𝑒, �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)��
� 𝑑𝑑 = 1,2, … ,𝐷𝐷�

(9)

In Eq. (9), the sign function is defined as

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)� = �1, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗) ≥ 0
−1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(10)

Average magnitude of gradient vector: This attribute (Eq. 11), which is the average value of the

magnitude of the gradient vector 𝑔𝑔(𝑖𝑖), across all sample points, aims to provide a measure of the

average steepness of the surface being modeled.

𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑁𝑁
��𝑔𝑔(𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

(11)

Standard deviation of gradient vector magnitudes: The standard deviation of the magnitude of

the gradient vector 𝑔𝑔(𝑖𝑖) across all sample points gives an estimate of the non-linearity of the

surface (Eq. 12).

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = �
1

𝑁𝑁 − 1
��|𝑔𝑔(𝑖𝑖)| − 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎�

2
𝑁𝑁

𝑖𝑖=1

(12)

Minimum and maximum gradient vector magnitudes: These attributes describe the minimum

(Eq. 13) and maximum (Eq. 14) values for the magnitudes of the gradient vectors for sample points

in the data set.

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = min
𝑁𝑁

𝑔𝑔(𝑖𝑖) (13)

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑁𝑁

𝑔𝑔(𝑖𝑖) (14)

Ratios of gradient vector magnitudes: These attributes aim to capture the average “bumpiness”

or noisiness of the surface by measuring how sharply the gradients change on average throughout

the surface (Eqs. 15-17). Higher values of these ratios indicate a noisier surface.

𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚

 (15)

𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚

 (16)

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚

 (17)

Skewness of gradient vector magnitudes: The skewness of the gradient magnitudes estimates a

measure of the asymmetry of the distribution of the gradient vector magnitudes (Eq. 18).

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ ��𝑔𝑔(𝑖𝑖)� − 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎�

3𝑁𝑁
𝑖𝑖=1

𝑁𝑁(𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠)3 (18)

3.1.3 Response (Output)-Based Attributes

These response-based attributes were developed and added to the attribute set to provide insights

into how concentrated (or sparse) the output values are distributed at the extreme high and low

output values. Data that is concentrated in certain areas and not well-distributed over the entire

possible output space may produce models whose predictions do not generalize well over the

space. However, if data is concentrated at extreme values, a trained model may be better able to

closely locate the optimum for the dataset.

Upper and lower tail average: These attributes calculate the average value of the response values

in the top 5% and bottom 5% of responses.

Upper and lower tail relative size: This is the ratio of the number of output responses in the top

(Eq. 19) and bottom (Eq. 20) 5% of values to the total number of data points. These attributes aim

to estimate how well distributed the response values are over the range of responses. In Eqs. (19)

and (20), 𝑁𝑁𝑢𝑢 and 𝑁𝑁𝑙𝑙 represent the number of output responses in the top 5% and bottom 5% of

values, respectively.

𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑁𝑁𝑢𝑢
𝑁𝑁

 (19)

𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑁𝑁𝑙𝑙
𝑁𝑁

 (20)

Ratio of lower to upper tail size: This ratio (Eq. 21) describes how evenly the output responses

are distributed between the upper and lower extremes of the output values.

𝑟𝑟𝑙𝑙/𝑢𝑢 =
𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (21)

3.1.4 Other Attributes

Average local convex deviation: This deviation (Eq. 27) aims to estimate the convexity of the

function from which the input-output data was generated. We hypothesize that this metric may be

important for determining the appropriate surrogate modeling technique for surrogate-based

optimization.

Let 𝑐𝑐(𝑚𝑚),𝑚𝑚 = 1,2, … ,𝑀𝑀 be some sample points generated on the input domain of the dataset using

Latin hypercube sampling.

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = min
𝑚𝑚≠𝑛𝑛

�𝑐𝑐(𝑚𝑚) − 𝑐𝑐(𝑛𝑛)� (22)

We can construct a hypersphere of diameter 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (Eq. 22) around each point 𝑐𝑐(𝑚𝑚) to create a local

“neighborhood” of dataset points 𝑥𝑥(𝑖𝑖) around each center, where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚is the minimum distance

between 𝑐𝑐(𝑚𝑚) and any other generated sample point, 𝑐𝑐(𝑛𝑛). Then, we define the convex difference

for each point in the neighborhood as in Eq. (23),

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚) = �𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(𝑖𝑖) � (23)

and the average convex difference in the neighborhood is given in Eq. (24),

𝐶𝐶𝑑̅𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑚𝑚) =

1
𝐾𝐾
�𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(𝑖𝑖),(𝑚𝑚)
𝐾𝐾

𝑖𝑖=1

(24)

where 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑖𝑖) is the response of a known convex function (Eq. (25))

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑖𝑖) = 0.1�𝑥𝑥(𝑖𝑖)�

4
 (25)

for the input 𝑥𝑥(𝑖𝑖). Figure 1 illustrates the process for calculating 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚).

The local convex deviation in each neighborhood can then be calculated as in Eq. (26)

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑
(𝑚𝑚) = �

1
𝐾𝐾 − 1

��𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚) − 𝐶𝐶𝑑̅𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(𝑚𝑚) �
2

𝐾𝐾

𝑖𝑖=1

(26)

where 𝐾𝐾 is the number of points from the dataset in the neighborhood 𝑚𝑚. The average local convex

deviation is given in Eq. (27).

𝐶𝐶𝑑̅𝑑𝑑𝑑𝑑𝑑 =
1
𝑀𝑀
�𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑

(𝑚𝑚)
𝑀𝑀

𝑖𝑖=1

(27)

Figure 1. Steps for generating neighborhoods for convex difference calculations.

4. PRESTO Construction and Performance Evaluation

4.1 PRESTO Framework Construction

Random forest classification models were trained for each surrogate modeling technique

to predict whether the surrogate should be recommended or not recommended for a dataset.

Random forests are surrogate models that make output predictions based on inputs by combining

predictions from a collection of decision trees. Each tree in a random forest model is constructed

independently and depends on a random vector sampled from the input data, with all the trees in

the forest having the same distribution (Brieman, 2001). Random forests have successfully been

used for both regression and classification tasks, performing with high prediction accuracy for both

small sample sizes and high dimensional data.

Separate classification models were trained for surface approximation and surrogate-based

optimization. The calculated attributes were used as inputs, and the assigned recommendation

classes (“recommended” or “not recommended”) were used as outputs. To assign recommendation

classes for a dataset, the highest or lowest value out of all the eight surrogate techniques for 𝑅𝑅�2

and 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜, respectively, were assigned as “recommended”, as they had the “best” performance for

that dataset. Then, surrogate models with performance metric values within 1% of those best

values were also assigned as “recommended.” Any surrogate models with metric values outside of

the 1% range was assigned a recommendation class of “not recommended.”

The built-in feature selection method of random forest models was performed to determine

which attributes had the most influence on the predicted recommendation class for each surrogate

modeling technique. Input features are assigned an importance value in random forest models

based on how much they reduce the Gini impurity (Menze et al., 2009) at each decision node in

the forest. The Gini impurity measures how well the decision threshold separates the training

samples into the two classes at a particular node (Menze et al., 2009). The feature importances of

all the input features (in this case, the attributes) sum to 100%. Attributes were ranked from highest

to lowest feature importance. The attributes were added to the input feature set starting with the

highest importance up to a sum of 90% of the total importance to reduce the attribute set for the

classification model for each surrogate modeling technique. Here, the goal is to consider the

attributes with the highest impact on the classification model outcome in the random forest

classifier model. The remaining features in the lower 10% of the importance sum were discarded.

Figure 2 summarizes the PRESTO construction steps. PRESTO is available for testing in the

Cremaschi research group GitHub repository (https://github.com/CremaschiLab/PRESTO).

https://github.com/CremaschiLab/PRESTO

Figure 2. Summary of PRESTO construction (FS = Feature Selection, Approx = Surface

Approximation, Opt = Surrogate-based optimization, PM = Classification Performance Metrics)

4.2 PRESTO Performance Evaluation Criteria

 The performance of PRESTO was evaluated using three performance metrics: accuracy,

precision, and hit ratio. These metrics are calculated based on the classification confusion matrix

(Sokolova and Lapalme, 2009) (Figure 3), which describes the quality of classifications made by

a classification model.

Figure 3. Classification confusion matrix (TP = true positive, TN = true negative, FP = false

positive, FN = false negative).

The accuracy (Eq. 28) measures the percentage of recommendation classifications made

by PRESTO that is correct. The precision (Eq. 29) is the probability that a model classified as

recommended should actually be recommended and will perform well for a dataset. The hit ratio

(Eq. 30) is the percentage of models that will perform well for a dataset that PRESTO is

recommending.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (28)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (29)

𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (30)

Figure 4 provides a flowchart depicting how the performance metrics were calculated for

evaluating PRESTO’s performance. The first step is similar to how a user would use PRESTO,

where input-output data is generated and passed to PRESTO. PRESTO then provides

recommendations for which surrogate modeling techniques to employ. For the second step in the

analysis, all eight of the candidate surrogate modeling techniques were used to train models, and

their performance metrics were calculated. These metrics of actual performance were compared to

the recommendations for models PRESTO predicted would perform well for the data to evaluate

the quality of PRESTO’s recommendations. Training all of the models as was done in this analysis

is not necessary for a PRESTO user. In practice, a user could train as few or as many of the

recommended models as desired.

Figure 4. Summary of PRESTO performance evaluation.

5. PRESTO Model Selection Performance Results

5.1 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques

 The numbers of attributes selected for classifying the eight candidate surrogate modeling

techniques as being recommended or not recommended for surface approximation and surrogate-

based optimization are given in Table 1. For example, for surface approximation, 21 attributes out

of the initial set of 38 were selected as inputs for the classifier trained to make predictions regarding

ALAMO. Based on these results, the random forest classifier required approximately 39 - 55% of

the attributes for making recommendations. There were no significant differences between the

number of attributes selected for each surrogate modeling technique or application.

Table 1. Number of attributes selected for recommendation predictions

 Attributes Selected
 Surface

Approximation
Surrogate-Based

Optimization
ALAMO 21 21
ANN 20 19
ELM 19 20
GPR 21 20
MARS 21 20
RBFN 20 20
RF 15 21
SVR 21 21

 Tables 2 and 3 list the five highest important attributes selected for surface approximation

and surrogate-based optimization, respectively. Attributes related to the dataset inputs, including

the average, minimum, and maximum Mahalanobis distances between input data points, were

selected frequently for the majority of the surrogate modeling techniques for both surface

approximation and surrogate-based optimization performance predictions. Other commonly

selected features include those related to the distributions of output values, specifically the relative

size of the output distribution tails and the output distribution skewness and kurtosis. These results

suggest that the distribution and location of the sample points and the relative steepness and

smoothness of the surface have a high level of influence on how well each of the surrogate models

can approximate that surface and locate the optimum of the underlying function.

Attributes related to the distributions of the input and output locations were commonly

selected among all of the candidate techniques. These attributes may affect surface approximation

performance as having data unevenly concentrated (or sparse) at the extreme values may skew

models to predict more accurately in areas of data concentration and less so for other areas of the

design space. For example, in the case of RF models, uneven tails could cause decision nodes in

the model trees to split more frequently at the extremes of the output values while more finely split

partitions were really needed elsewhere, such as where the gradients were steep. For the neural

network-based models, the on-off nature of the hidden layer nodes may make them more suitable

for making accurate predictions for surfaces where large areas of the design space have similar

output values, creating flat or nearly flat areas, similar to the plate-shaped functions.

For surface approximation, the attributes of the empirical mean of fractional local

fluctuations and the empirical standard deviation in fractional local fluctuations were also

frequently selected in the top five attributes. These attributes measure the average bumpiness and

non-linearity variations, respectively, of the surface being modeled (Garud et al., 2018) and can

be considered to give a measure of the noisiness of the surface. The noise level has a significant

effect on some models’ ability to fit a surface. For example, for SVR model performance, the

support vectors fitted in the model construction can easily become sensitive to noise as they are

only dependent on a small set of the data used to train the model (Sabzekar et al., 2011).

Table 2. Five highest important attributes selected for surface approximation

ALAMO

Attribute Importance
Euclidean to Mahalanobis ratio 11.1%
Skewness of outputs 8.7%
Kurtosis of outputs 7.2%
Upper tail average 5.8%
Coefficient of variation of
outputs 5.4%

ANN
Attribute Importance

Coefficient of variation of
outputs 10.4%
Upper tail average 9.3%
Average Mahalanobis distance 6.6%
Average gradient cosine direction 6.0%
Kurtosis of outputs 5.5%

ELM
Attribute Importance

Average Mahalanobis distance 12.2%
Minimum Mahalanobis distance 12.0%
Input dimensions 9.7%
Empirical standard deviation in
fractional local fluctuations 8.9%
Kurtosis of outputs 6.6%

GPR

Attribute Importance
Upper tail average 7.6%
Coefficient of variation of outputs 7.6%
Empirical mean of fractional local
fluctuations 6.4%
Skewness of outputs 6.3%
Empirical standard deviation in
fractional local fluctuations 5.7%

MARS

Attribute Importance
Kurtosis of outputs 11.5%
Empirical standard deviation in
fractional local fluctuations 7.6%
Skewness of outputs 7.1%
Relative size of upper tail 6.7%
Upper tail average 5.0%

RBFN

Attribute Importance
Average Mahalanobis distance 10.4%
Minimum Mahalanobis distance 9.2%
Empirical mean of fractional local
fluctuations 7.0%
Empirical standard deviation in
fractional local fluctuations 7.0%
Skewness of outputs 5.5%

RF

Attribute Importance
Empirical standard deviation in
fractional local fluctuations 21.3%
Empirical mean of fractional
local fluctuations 15.6%
Coefficient of variation of
gradient magnitudes 7.3%
Average Mahalanobis distance 7.1%
Minimum Mahalanobis distance 7.0%

SVR

Attribute Importance
Skewness of outputs 8.0%
Empirical mean of fractional local
fluctuations 7.7%
Kurtosis of outputs 6.3%
Empirical standard deviation in
fractional local fluctuations 5.7%
Skewness of gradient magnitudes 5.1%

Table 3. Five highest important attributes selected for surrogate-based optimization

ALAMO

Attribute Importance
Upper tail average 9.3%
Coefficient of variation of
outputs 9.2%
Skewness of outputs 8.0%
Lower tail relative size 6.2%
Average Mahalanobis distance 5.8%

ANN

Attribute Importance
Input dimensions 12.3%
Average Mahalanobis distance 12.1%
Maximum Mahalanobis distance 9.3%
Minimum Mahalanobis distance 7.7%
Kurtosis of outputs 7.7%

ELM
Attribute Importance

Average Mahalanobis distance 18.6%
Maximum Mahalanobis distance 12.9%
Minimum Mahalanobis distance 10.7%
Input dimensions 10.0%
Coefficient of variation of
outputs 4.4%

GPR

Attribute Importance
Input dimensions 9.5%
Average Mahalanobis distance 9.1%
Coefficient of variation of outputs 7.0%
Maximum Mahalanobis distance 6.6%
Skewness of outputs 6.5%

MARS

Attribute Importance
Input dimensions 13.8%
Average Mahalanobis distance 13.0%
Minimum Mahalanobis distance 8.0%
Maximum Mahalanobis distance 6.2%
Kurtosis of outputs 5.2%

RBFN

Attribute Importance
Minimum Mahalanobis distance 13.9%
Average Mahalanobis distance 10.4%
Input dimensions 10.3%
Maximum Mahalanobis distance 6.6%
Skewness of outputs 4.8%

RF

Attribute Importance
Average Mahalanobis distance 8.8%
Minimum Mahalanobis distance 6.4%
Input dimensions 6.3%
Maximum Mahalanobis distance 5.7%
Euclidean to Mahalanobis ratio 5.6%

SVR

Attribute Importance
Skewness of outputs 11.0%
Upper tail average 8.8%
Coefficient of variation of
outputs 8.0%
Average Mahalanobis distance 5.3%
Kurtosis of outputs 5.2%

For surrogate-based optimization, although not selected as one of the top five important

attributes, the average local convex deviation, and attributes related to the estimated gradients were

selected frequently in the set of important attributes. The convexity of a model has a significant

effect on the relative “ease” of finding its global minimum. Gradient information is also crucial in

the application of gradient-based methods for optimization. The complete listing of all attributes

selected is available in the supplemental materials of the paper.

5.2 PRESTO Recommendation Classification Results

The selected attributes were used as inputs to train random forest classification models for

the eight techniques to classify each technique as being “recommended” or “not recommended”

for a given dataset. Separate classifiers were trained for surface approximation and surrogate-based

optimization. This recommendation scheme allows for multiple similarly performing surrogate

modeling techniques to be suggested for use. The performance metrics were calculated using

Monte Carlo cross-validation with 75 Monte Carlo trials. Each trial had a test set size of 20% of

the total dataset.

PRESTO identified which techniques should be recommended for the simulated datasets

for surface approximation with an accuracy of 91%. The precision, or the probability that a

recommended technique should actually be recommended, was 90%. The hit ratio, the percentage

of the surrogate models that should have been recommended for surface approximation that

PRESTO successfully captured, was 87%.

For surrogate-based optimization, PRESTO recommended surrogate modeling techniques

with an accuracy of 98% and a precision of 99%. This result indicates that if PRESTO identifies a

model as being recommended for a dataset, there is a 99% probability that the model will

accurately locate the global optimum of the underlying model for the dataset. The hit ratio for

surrogate-based optimization was 98%.

6. Performance Evaluation of PRESTO for a Chemical Engineering Application - Cumene

Production Case Study

 A simulation model of the cumene production process was employed to test the

performance of PRESTO’s recommendations for a chemical engineering application and on

datasets that were not used for its training. The entire process for cumene production was simulated

in gPROMS Process. Input-output datasets were generated for a subset of the unit operations in

the flowsheet, using the gPROMS Global System Analysis capabilities. PRESTO was used to

provide surrogate modeling technique recommendations to predict each output for surface

approximation. Then, surrogate models were trained for each output using the eight candidate

surrogate modeling techniques, and the corresponding adjusted R-squared values were calculated

using Monte Carlo cross-validation (Xu et al., 2004) with a test set size of 20% of the dataset and

50 Monte Carlo trials. The adjusted R-squared results were compared to the recommendation

classifications made by PRESTO for surface approximation.

6.1 Process and Simulation Description for Cumene Production

 The process to produce cumene, a petrochemical used in the production of several

chemicals, involves the reaction of benzene with propylene to form cumene and the undesirable

reaction of cumene with propylene to form p-diisopropyl benzene (PDIB) (Luyben, 2011). The

flowsheet for the process is given in Figure 5. The case study focuses on the cooled tubular reactor

(Reactor) and two distillation columns (C1 and C2). These are the three most complex unit-level

models in the overall flowsheet, meaning that replacing them with surrogate models will have the

greatest impact on improving computational speed. In the process, the liquid fresh feed streams

are combined with a benzene recycle stream, vaporized, preheated to 360 °C, and fed to the cooled

tubular reactor. The first distillation column, C1, produces a mostly benzene distillate, which is

recycled back to the reactor. This recycle stream is necessary to keep benzene from exiting in the

bottoms product and affecting the purity of the cumene product in the distillate of the second

column, C2. Column C2 is designed to attain high-purity cumene in the distillate and minimize

the loss of cumene in the bottoms (Luyben, 2011).

Figure 5. Flowsheet for cumene production case study.

The entire process was simulated in gPROMS Process, where the data for the three

complex unit operations was generated. Data was generated for a total of 27 outputs, with seven

outputs for the reactor, 11 outputs for the first distillation column (C1), and nine outputs for the

second distillation column (C2). Outputs for the distillation columns include heat duties and top

and bottoms product compositions. Outputs for the reactor include outlet temperatures and reaction

product compositions. For each output, data was randomly selected at 4 different sample sizes

(100, 300, 1000, and 3000 samples) for a total of 108 case study datasets for evaluating PRESTO’s

performance. The input values for each dataset are operating specifications for a fixed design of

the respective unit operations, such as inlet temperatures and inlet compositions. All inputs and

outputs for each dataset and all the case study data are provided in the supplementary materials.

6.2 PRESTO Performance

 Table 4 lists the performance metrics for PRESTO on the case study data compared to the

metrics for the data that PRESTO was trained on, or the PRESTO data. Performance metrics were

calculated for both to compare how well PRESTO performed on the simulated data from the test

functions to how it performed on data from a real-world application. PRESTO’s performance on

the cumene case study data was similar to that of the tool training data for accuracy and precision.

However, the hit ratio was slightly lower. The lower hit ratio for the case study data indicates that

PRESTO was not identifying all the possible models that could be recommended, only a subset of

them, which also resulted in a higher precision. These results suggest that PRESTO may

successfully identify a set of surrogate models that will perform well for approximating the

behavior of a data set for some relevant cases without the need for expensive trial-and-error

methods.

The lower hit ratio may be due to the fact that the values for the Mahalanobis distances

between the data points for the case study data were outside the ranges of the distances for the data

that the tool was trained on. For example, the maximum value for the PRESTO data for the

maximum Mahalanobis distance between data points is approximately 6.7, while both the average

and maximum value of that same attribute for the case study data are higher at 6.8 and 7.1,

respectively. The simulated data was generated using the same space-filling method, while the

inputs for the case study data were generated randomly. We can conclude that the position of the

sample points, or the distances between them, are critical in providing accurate recommendations

as features related to the Mahalanobis distances were selected as important for almost all of the

classification models that were trained. The performance of PRESTO could be improved by adding

datasets that use a variety of sampling methods in order to provide better ranges for the attributes

related to data point distribution.

In addition, all of the datasets in the PRESTO data were created using relatively smooth,

continuous functions. Data from real applications may not share the same characteristics. An

example of this difference in behavior can be seen in the average local convex deviation attribute.

The average value for this attribute is 2.66x106 for the PRESTO data and several orders of

magnitude higher for the case study data at 9.1x1012. The recommendations of PRESTO for real

data could be enhanced by the addition of real datasets to the PRESTO training data. However,

with a 94% precision for the case study data, PRESTO’s predictions for which surrogate models

to use are still accurate. All of the compiled results for adjusted R-squared and recommended

models for the case study data are available in the supplementary materials.

Table 4. PRESTO case study performance comparison

 Case Study
Data

PRESTO
Data

Accuracy 89% 91%

Precision 94% 90%

Hit Ratio 76% 87%

 PRESTO did not recommend any candidate surrogate models for two process outputs: the

bottom product temperature and top liquid recovery of cumene. These classifications of “not

recommended” for all the surrogates were correct, as when the models were trained, none of the

techniques could successfully approximate these outputs with an adjusted R-squared above 0.7.

Our previous work demonstrates that there are some test functions that were used to train PRESTO,

for which none of the surrogate modeling techniques were able to approximate the surface

(Williams and Cremaschi, 2021). In these instances, alternative modeling strategies, such as

ensemble modeling, deep learning algorithms, or another surrogate modeling technique not

included in the candidate set, may be considered. It should be noted that when PRESTO does not

recommend any surrogate modeling techniques, it could also indicate that the current data set size

is too small for them to model the input-output relationship accurately. We observed that for some

datasets, increasing its size also increased the number of recommended models. Hence, we also

recommend increasing the dataset size and re-running PRESTO. The case study results reveal that

PRESTO can capture the qualities of datasets that would make them unsuitable for modeling with

the eight candidate techniques studied.

7. Conclusions and Future Work

 Selecting an appropriate surrogate modeling technique depends on the characteristics of

the dataset being modeled and the application domain of the surrogate model, surface

approximation vs. optimization. We identified attributes of datasets appropriate for selecting

surrogate models for both surface approximation and surrogate-based optimization. Using these

attributes, a recommendation tool, PRESTO, was constructed to recommend surrogate modeling

techniques for approximating a dataset with 91% accuracy and 90% precision and for performing

surrogate based-optimization with 98% accuracy and 99% precision. Although PRESTO could not

capture the full set of models that could be recommended on a set of test data generated from a

cumene production process simulation, the recommended models did provide higher values of

adjusted R-squared and better predictions for the outputs. Future work on PRESTO will include

adding more real datasets to the training data for the tool, focusing on using a wider variety of

sampling methods, not just space-filling ones, and incorporating the impact of noisy data.

Acknowledgments

This work was partially funded by NSF grant #1743445 and RAPID Manufacturing Institute, USA.

The authors would also like to acknowledge the Auburn HPC cluster for support on this work.

References

Breiman, L., 2001. Random forests. Machine Learning 45, 5-32.

Cozad, A., Sahinidis, N.V., Miller, D.C., 2014. Learning surrogate models for simulation-based
optimization. Aiche Journal 60, 2211-2227.

Cui, C., Hu, M.Q., Weir, J.D., Wu, T., 2016. A recommendation system for meta-modeling: A
meta-learning based approach. Expert Systems with Applications 46, 33-44.

De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L., 2000. The Mahalanobis distance.
Chemometrics and Intelligent Laboratory Systems 50, 1-18.

Drucker, H., Shahrary, B., Gibbon, D.C., 2002. Support vector machines: relevance feedback and
information retrieval. Information Processing & Management 38, 305-323.

Friedman, J.H., 1991. Multivariate Adaptive Regression Splines - Rejoinder. Annals of Statistics
19, 123-141.

Garud, S.S., Karimi, I.A., Kraft, M., 2018. LEAPS2: Learning based Evolutionary Assistive
Paradigm for Surrogate Selection. Computers & Chemical Engineering 119, 352-370.

Gomm, J.B., Yu, D.L., 2000. Selecting radial basis function network centers with recursive
orthogonal least squares training. Ieee Transactions on Neural Networks 11, 306-314.

Han, Z., Zhang, K., 2012. Surrogate-Based Optimization, in: Roeva, O. (Ed.), Real-World
Applications of Genetic Algorithms. InTech Open, Rijeka, Croatia, pp. 343-362.

Hart, W.E., Laird, C.D., Watson, J.-P., Woodruff, D., L., Hackebail, G.A., Nicholson, B.L., Siirola,
J.D., 2017. Pyomo - Optimization Modeling in Python, 2 ed. Springer, Boston, MA.

Hart, W.E., Watson, J.-P., Woodruff, D.L., 2011. Pyomo: modeling and solving mathematical
programs in Python. Mathematical Programming Computation 3, 219 - 260.

Haykin, S., 2009. Neural Networks and Learning Machines, 3rd ed. Pearson Education, Inc.,
Upper Saddle River, New Jersey.

Huang, G.B., Zhu, Q.Y., Siew, C.K., 2006. Extreme learning machine: Theory and applications.
Neurocomputing 70, 489-501.

Joe, S., Kuo, F.Y., 2008. Constructing Sobol' Sequences with Better Two-Dimensional
Projections. Siam Journal on Scientific Computing 30, 2635-2654.

Luyben, W., 2011. Design and Control of the Cumene Process, Principles and Case Studies of
Simultaneous Design. John Wiley & Sons, Inc, Hoboken, NJ, pp. 135-158.

Mehmani, A., Chowdhury, S., Meinrenken, C., Messac, A., 2018. Concurrent surrogate model
selection (COSMOS): optimizing model type, kernel function, and hyper-parameters. Structural
and Multidisciplinary Optimization 57, 1093-1114.

Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht,
F.A., 2009. A comparison of random forest and its Gini importance with standard chemometric
methods for the feature selection and classification of spectral data. Bmc Bioinformatics 10.

Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning, 1-247.

Sabzekar, M., Yazdi, H.S., Naghibzadeh, M., 2011. Relaxed constraints support vector machines
for noisy data. Neural Computing & Applications 20, 671-685.

Sokolova, M., Lapalme, G., 2009. A systematic analysis of performance measures for
classification tasks. Information Processing & Management 45, 427-437.

Surjanovic, S., Bingham, D., 2013. Virtual Library of Simulation Experiments, Simon Fraser
University.

Vilalta, R., Drissi, Y., 2002. A perspective view and survey of meta-learning. Artificial
Intelligence Review 18, 77-95.

Williams, B., Cremaschi, S., 2021. Selection of surrogate modeling techniques for surface
approximation and surrogate-based optimization. Chemical Engineering Research & Design 170,
76-89.

Xu, Q.S., Liang, Y.Z., Du, Y.P., 2004. Monte Carlo cross-validation for selecting a model and
estimating the prediction error in multivariate calibration. Journal of Chemometrics 18, 112-120.

	Abstract
	1. Introduction
	2. Surrogate Modeling Experiments
	2.1 Dataset Generation
	2.2 Candidate Surrogate Models
	2.3 Surrogate Model Training

	3. Feature Engineering and Attribute Extraction for Training PRESTO
	3.1 Dataset Attributes
	3.1.1 Input Related Attributes
	3.1.2 Gradient-Based Attributes
	3.1.3 Response (Output)-Based Attributes
	3.1.4 Other Attributes

	4. PRESTO Construction and Performance Evaluation
	4.1 PRESTO Framework Construction
	4.2 PRESTO Performance Evaluation Criteria

	5. PRESTO Model Selection Performance Results
	5.1 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques
	5.2 PRESTO Recommendation Classification Results

	6. Performance Evaluation of PRESTO for a Chemical Engineering Application - Cumene Production Case Study
	6.1 Process and Simulation Description for Cumene Production
	6.2 PRESTO Performance

	7. Conclusions and Future Work
	Acknowledgments
	References

