
Efficiency of uncertainty propagation methods for moment estimation of uncertain 

model outputs 

Samira Mohammadi, Selen Cremaschi* 

Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States  

*Corresponding Author: selen-cremaschi@auburn.edu 

 

Abstract 

Uncertainty quantification and propagation play a crucial role in designing and operating chemical 

processes. This study computationally evaluates the performance of commonly used uncertainty 

propagation methods based on their ability to estimate the first four statistical moments of model outputs 

with uncertain inputs. The metric used to assess the performance is the minimum number of model 

evaluations required to reach a certain confidence level for the moment estimates. The methods considered 

include Monte-Carlo simulation, numerical integration, and expansion-based methods. The ‘true’ values of 

the moments were calculated by high-density sampling with Monte-Carlo simulations. Ninety-five 

functions with different characteristics were used in the computational experiments. The results reveal that, 

despite their accuracy, numerical integration methods’ performance deteriorates quickly with increases in 

the number of uncertain inputs. The Monte-Carlo simulation methods converge to the moments’ true values 

with the minimum number of model evaluations if model characteristics are not considered or known.  
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Nomenclature 

Symbol Description 

𝑌𝑌 Model output 

𝑋𝑋𝑖𝑖 𝑖𝑖𝑡𝑡ℎ uncertain input 

𝑔𝑔(𝑋𝑋) Model 

𝜇𝜇𝑖𝑖 𝑖𝑖𝑡𝑡ℎ statistical moment 

𝑚𝑚 Number of samples 

𝑛𝑛 Number of uncertain inputs 

𝛿𝛿 Number of nodes in each dimension 

𝑠𝑠𝑗𝑗 Order of primitive polynomial for 𝑗𝑗𝑡𝑡ℎ component of the Sobol series 

𝑎𝑎1,𝑗𝑗 …𝑎𝑎𝑠𝑠𝑗𝑗−1,𝑗𝑗 Binary coefficients of primitive polynomial for 𝑗𝑗𝑡𝑡ℎ component of the Sobol series 

𝛽𝛽𝑘𝑘 𝑘𝑘𝑡𝑡ℎdigit from right when 𝛽𝛽 is written in binary 

𝑣𝑣𝑘𝑘,𝑗𝑗 Direction number for 𝑘𝑘𝑡𝑡ℎ component of the Sobol series 

𝑝𝑝(k) 𝑘𝑘𝑡𝑡ℎ selected arbitrary prime number 

𝑡𝑡0 … 𝑡𝑡𝑟𝑟 Coefficients of expansions via prime number 𝑝𝑝(k) with a maximum order of r 

𝑓𝑓(𝑋𝑋) The joint density function of uncertain inputs 

𝓌𝓌𝑗𝑗𝑘𝑘 
Weight of 𝑘𝑘𝑡𝑡ℎ point for 𝑗𝑗𝑡𝑡ℎ component of the quadrature in  full factorial numerical 

integration 

𝑔𝑔𝑗𝑗�𝑋𝑋𝑗𝑗� 𝑗𝑗𝑡𝑡ℎ univariate function  

𝑔𝑔�(𝑋𝑋) Approximated model 



𝑀𝑀𝑿𝑿𝒋𝒋′
 Mean value of uncertain input 𝑋𝑋𝑗𝑗′   

𝑔𝑔(𝑀𝑀𝑋𝑋) Model with uncertain inputs fixed at their average value 

𝑝𝑝𝑠𝑠 Number of possible sample points for sparse grid method 

𝑈𝑈1
𝑖𝑖𝛼𝛼 𝑖𝑖𝛼𝛼𝑡𝑡ℎ one dimensional quadrature 

𝑤𝑤𝑙𝑙 Weight of 𝑙𝑙𝑡𝑡ℎ sample point for sparse grid method 

𝛤𝛤𝑝𝑝 Orthogonal polynomial of order 𝑝𝑝  

𝑐𝑐𝑖𝑖 𝑖𝑖𝑡𝑡ℎ coefficient of orthogonal polynomial 

𝜉𝜉𝑖𝑖(𝜃𝜃) Standard variable 

𝜓𝜓𝑖𝑖 𝑖𝑖𝑡𝑡ℎ component of the orthogonal polynomial 

 

1. Introduction 

With advances in computing systems and improved computational power, simulation models have 

become popular methods for assisting with decision-making in chemical process design and operation. 

Many uncertainties present in the simulation models, e.g., in the model inputs and/or parameters, model 

formulations, and numerical calculations, cause their outputs to be uncertain. In recent years, the uncertainty 

due to numerical calculations has reduced significantly with advanced computational power (Hüllen et al., 

2019). Therefore, the primary sources of uncertainty in simulation outputs are uncertain inputs, 

uncertain parameters, and model form uncertainty. This study investigates the uncertainty of simulation 

model outputs due to extrinsic uncertainty, which is the uncertainty resulting from a predefined number 

of uncertain inputs with known distribution parameters (Ankenman et al., 2008).  

Model uncertainty is studied and characterized using the uncertainty quantification (UQ) methods. 

The UQ methods are also used to reduce uncertainties in the systems to generate reliable output values and 

increase confidence in the models (Miller et al., 2014). Important steps of UQ are 1) identification of 

uncertainty sources, 2) characterization of the sources, 3) Uncertainty Propagation (UP), and 4) analyzing 



the uncertainties (Gel et al., 2013). Uncertainty propagation investigates the contribution of uncertain 

sources to the final uncertainty of the model. When only extrinsic uncertainty is considered, the UP methods 

propagate the uncertainty of the inputs (𝑋𝑋) to the model outputs (𝑌𝑌=𝑔𝑔(𝑋𝑋)) of the model 𝑔𝑔(. ) (Lee and 

Chen, 2009). For propagating extrinsic uncertainty to outputs, UP methods first require selecting the 

appropriate statistical representation for the uncertain input variables. Next, the UP is carried out for the 

model to make statistical inferences regarding the outputs. Statistical inferences regarding the uncertain 

outputs are generally carried out through estimating three main statistical concepts: the probability density 

function of the outputs, statistical moments of the outputs, and the probability of a certain outcome, such 

as failure, based on output distribution (Yang et al., 2017).  

There are many challenges in UQ and UP, such as discontinuous response surfaces, selection of 

significant uncertain parameters for models with high dimensionality, highly complex physical/simulation 

models, and computational cost associated with UP. There are many UP methods in the literature addressing 

parts of these challenges. (Groen et al., 2014; Luo and Yang, 2017; Wang and Sheen, 2015).  

Uncertainty propagation methods are divided into two groups, intrusive and non-intrusive methods. In 

intrusive methods, the model formulation is needed and modified to propagate input uncertainty. The 

models are treated as black boxes for non-intrusive methods. Lee and Chen (2009) categorized the non-

intrusive UP methods into five groups, 1) simulation-based methods, e.g., Monte Carlo (MC) simulations, 

2) local expansion based methods, 3) most probable point-based methods, 4) functional expansion–based 

methods, e.g., polynomial chaos expansion (PCE), and 5) numerical integration-based methods. It has been 

established that the moment estimates obtained using local expansion-based UP methods are significantly 

different from the true values for models with high nonlinearities (Jia et al., 2019; Lee and Chen, 2009). 

Most probable point-based UP methods are typically used for reliability applications and do not provide 

accurate estimates of higher statistical moments (Arakere et al., 2010; Padulo et al., 2007). In addition to 

these five categories, response-surface-based methods have been used in recent years, where the models of 

interest are represented through surrogate models (Murcia et al., 2018; Sofi et al., 2020; Tripathy et al., 



2016). The response-surface-based methods encompass the fourth category, which is functional expansion-

based methods.  

Most UP methods require the evaluation of complex simulation models and many model runs (Liu 

and Gupta, 2007). Carrying out UP for complex or high fidelity models that are computationally expensive 

to evaluate could be prohibitive for achieving accurate results with some UP methods (Rajabi, 2019). 

Hence, selecting the appropriate UP method is crucial for efficient and accurate UP.  

Multiple studies compared the performance of different UP techniques in terms of accuracy and 

efficiency to guide selecting an appropriate UP method. Several of these studies compare simulation-based 

methods to other categories of UP methods. For instance, Klavetter et al. (2012) compared perturbation, 

Taylor series expansion, and Monte Carlo methods in propagating the uncertainty in slug length and liquid 

entrainment in gas core to the outputs of a multiphase flow model. The results stated that Taylor series 

expansion overestimated variance for most outputs, and the other two methods yielded comparable 

estimates. However, the perturbation method may not provide reasonable uncertainty estimates for models 

that are not monotonically increasing or decreasing, and it does not provide confidence levels (Klavetter et 

al., 2012).  

Several studies investigated simulation-based methods versus functional expansion-based methods. 

Safta et al. (2017) and Hunt et al. (2015) compared the accuracy and efficiency of MC simulations, PCE, 

and Quasi-Monte Carlo (QMC) simulation methods. Both studies concluded that the PCE required fewer 

model evaluations to converge to the true value of the output mean for the test functions. Aleti et al. (2018) 

studied the efficiency of MC simulation and PCE methods based on the number of sample points used to 

estimate the output distribution accurately. The results revealed that the PCE was 90% more efficient than 

MC methods in terms of the number of numerical calculations.  

Jia et al. (2019) evaluated the performance of MC simulation and the numerical integration 

approaches, including Sparse grid numerical integration (SG), Univariate dimension reduction (UDR), and 

extended sparse grid methods. They concluded that the SG methods were the most efficient in estimating 

the first four moments of the output requiring the fewest model evaluations. Allen and Camberos (2009) 



compared simulation-based methods to response surface approaches to estimate the output probability 

density function and calculate the probability of failure, defined as the probability of an event that the output 

value exceeds a specific critical level, using the probability density function. They employed two models 

as case studies, one with high nonlinearity and one with high dimension. The results were evaluated based 

on the number of required model evaluations to predict the desired uncertainty metrics. They concluded 

that response-surface methods, specially polynomial chaos expansion, accurately estimated the probability 

of failure with the lowest number of samples compared to other methods. One other conclusion was that 

accurate output distribution estimates required many samples from the uncertain input space and many 

model evaluations.  

Some studies only considered different simulation-based methods and compared their performances. 

Both Burhenne et al. (2011) and Hou et al. (2019) studied MC and QMC methods by employing different 

sampling techniques. The performance was assessed based on accuracy and efficiency in estimating the 

output mean for a set of test functions in both studies and standard deviation in Hou et al. (2019). The 

results suggested that QMC methods are efficient and outperform MC methods in most cases. 

Other studies investigated the difference in the performance of other UP method categories. Padulo et 

al. (2007) employed local expansion and most probable point-based approaches in their study. First- and 

third-order Taylor series expansion and Sigma point methods were used to estimate output uncertainty for 

four different test functions. Sigma point methods provided better estimates of the output mean and standard 

deviation for input distributions with high variance. Sigma point methods do not require derivatives, which 

gives them a computational advantage over Taylor series expansion for functions with expensive derivative 

calculations. Rajabi (2019) and Tardioli et al. (2016) investigated different response surface-based methods. 

Rajabi (2019) compared PCE to Gaussian Process Emulation (GPE). The study suggested that although 

GPE had lower normalized Root Mean Square Error (nRMSE) in estimating the response surface, PCE 

estimated output mean, standard deviation, and probability density function tails with higher accuracy. In 

addition, PCE tended to have lower statistical dispersion with noisier input probability distributions. 

Tardioli et al. (2016) compared PCE, Tchebycheff expansions with sparse grids, kriging (Gaussian process 



modeling), and high dimensional model representation (HDMR) methods. The performance was evaluated 

based on the methods’ ability to represent the response surface of the test models at different sample sizes 

using RMSE as the metric. Tchebycheff expansion was concluded to be efficient due to its use of sparse 

grids and required a lower number of sample points to get to the desired accuracy. The performance of PCE 

was observed to be inconsistent, and HDMR provided very close results to the Tchebycheff expansion 

method requiring a lower number of samples to converge to the desired accuracy for all test models. 

Compared to the other methods, kriging required a high number of model evaluations and had a higher 

RMSE for all the case studies. 

Two papers compared more than two main categories of UP methods. Lee and Chen (2009) and Fahmi 

and Cremaschi (2016) included MC, Full Factorial Numerical Integration (FFNI), UDR, and PCE methods 

in a comparative analysis. Fahmi and Cremaschi (2016) also studied different sampling schemas of random, 

Halton sequences, and Latin Hypercube sampling (LHS) for both MC and PCE. The number of function 

evaluations used for the analysis was fixed in both studies. The methods were compared in terms of their 

ability to estimate the four statistical moments of the model outputs. Lee and Chen (2009) concluded that 

the performance of the methods depended on the model characteristics, such as nonlinearity and uncertain 

variable interactions. The results from Fahmi and Cremaschi (2016) revealed that simulation-based methods 

were more sensitive to existing nonlinearities in the test functions than other methods.  

The UP method comparisons carried out in the literature demonstrate the importance of the UP method 

selection for efficiently propagating the extrinsic uncertainty for obtaining accurate estimates of the output 

uncertainty and allude to the correlation between the accuracy and efficiency of the UP methods and the 

model characteristics the method is applied to. The goal of this paper is to establish systematic guidelines 

for selecting an accurate and efficient UP method considering several important factors: 1) model 

characteristics, 2) the number of uncertain input variables, 3) uncertainty distribution of the input variables, 

and 4) performance evaluation for higher-order moments like skewness and kurtosis. The current 

comparison literature does not consider one or more of these factors in their analysis, and none provides 

rules of thumb for selecting an appropriate UP method that will efficiently, i.e., with the lowest number of 



model evaluations, estimate the output uncertainty. This study aims to fill this gap by thoroughly evaluating 

the popular methods considering all key factors. Characterizing the impact of the extrinsic uncertainties on 

the outputs will result in higher confidence in model predictions, which will aid the efficient and robust 

design and operation of the systems these models represent.  

In this study, we compare seven non-intrusive UP methods based on their ability to estimate the first 

four statistical moments of the outputs of models with uncertain inputs. The methods considered are Monte 

Carlo simulation using Sobol sequences (Sobol’, 1967), Halton series (Halton, 1960), and LHS (McKay et 

al., 1979), FFNI (Duffy et al., 1998), UDR (Rahman and Xu, 2004), SG (Smolyak, 1963), and PCE 

(Ghanem and Spanos, 1991). An extensive set of test functions were employed to study the effects of 1) 

nonlinearities, 2) the number of uncertain inputs, and 3) different input uncertainty distributions for 

establishing guidelines for selecting efficient UP methods. The efficiency of the methods was evaluated 

using the minimum number of model evaluations required by each method to converge to a preset gap 

around the true value of the first four statistical moments. Finally, the guidelines were utilized to determine 

the most appropriate UP method for two case studies. Section 2 briefly explains the UP methods used in 

this study. Computational experiments are described in Section 3, followed by results and discussion in 

Section 4. Section 5 summarizes the concluding remarks and outlines future directions.  

2. Uncertainty Propagation Methods 

In this study, uncertainty propagation is conducted by estimating the first four statistical moments of 

the model output 𝑌𝑌 =  𝑔𝑔(𝑋𝑋) (Figure 1). The distribution for the uncertain input vector 𝑋𝑋 is assumed to be 

known for each model (𝑔𝑔(. )). The estimated mean, standard deviation, skewness, and kurtosis are the 

extracted information of the output uncertainty. 



 

Figure 1. Propagation of uncertain inputs to the simulation output via four statistical moments. 

 

2.1. Monte Carlo simulation-based methods 

For Monte Carlo simulation (MCS) based methods, the method of moments (Hansen, 1982) is used to 

estimate the statistical moments. The 𝑖𝑖𝑡𝑡ℎ  moment (µ𝑖𝑖) is calculated by Eq. 1, 

𝜇𝜇𝑖𝑖 = 𝐸𝐸�𝑔𝑔(𝑋𝑋)𝑖𝑖� ≈  
1
𝑚𝑚
�𝑔𝑔(𝑋𝑋𝑗𝑗)𝑖𝑖
𝑚𝑚

𝑗𝑗=1

 (1) 

where 𝑔𝑔(𝑋𝑋𝑗𝑗) is the model value at 𝑗𝑗𝑡𝑡ℎ sample point 𝑋𝑋𝑗𝑗 from input distribution(s), and 𝑚𝑚 is the number of 

sample points. Three methods, LHS (McKay et al., 1979), Sobol sequences (Sobol’, 1967), and Halton 

series (Halton, 1960), are implemented as sampling techniques for determining uncertain input space 

sample locations and calculating the corresponding model outputs for propagating input uncertainty. These 

three sampling methods are space-filling sampling techniques (Crombecq et al., 2011), which spread out 

the sample points evenly throughout the input space. LHS, Sobol sequence, and Halton series sampling 

schemes are used to generate samples between zero and one. Then, the samples between zero and one are 

transferred to the original input distribution space using the appropriate reverse cumulative distribution 

functions. Moreover, Sobol and Halton series are sequential sampling methods (Hou et al., 2019), allowing 

previous sample points and model evaluations to be reutilized if additional sample points are collected.  

2.1.1. Latin Hypercube Sampling (LHS) 

In the LHS method (McKay et al., 1979), the range for each uncertain variable is divided into 𝑚𝑚 bins 

with equal probability, where 𝑚𝑚 is the number of required sample points. Then, a sample is randomly 



selected from each bin for each uncertain variable. Next, the samples of different uncertain variables are 

randomly matched and result in an 𝑚𝑚 × 𝑛𝑛 sample matrix, where 𝑛𝑛 is the number of uncertain inputs. The 

initial binning enables LHS to cover the space of each uncertain parameter better than MCS with random 

sampling. However, the random matching of the samples from different dimensions could cause clusters in 

the design space and lead to a poor space-filling attribute. Latin Hypercube sampling is not a sequential 

sampling method because the binning of the uncertain parameters is a function of the number of sample 

points, and it changes as the value of 𝑚𝑚 is modified (Fahmi and Cremaschi, 2016).  

2.1.2. Sobol sequences 

Sobol sequences are low-discrepancy pseudo-random series (Sobol’, 1967). These sequences are 

constructed for generating samples as uniformly as possible over the sampling space (Saltelli et al., 2010). 

Every new sample point is generated based on the location of the existing points, which helps with avoiding 

clusters and gaps (Burhenne et al., 2011). According to Joe and Kuo (Joe and Kuo, 2008), for the generation 

of the 𝑗𝑗𝑡𝑡ℎ component of Sobol samples, a primitive polynomial of order 𝑠𝑠𝑗𝑗, must be selected (Eq. 2). 

𝑥𝑥𝑠𝑠𝑗𝑗 +  𝑎𝑎1,𝑗𝑗𝑥𝑥𝑠𝑠𝑗𝑗−1 +  𝑎𝑎2,𝑗𝑗𝑥𝑥𝑠𝑠𝑗𝑗−2 + ⋯+ 𝑎𝑎𝑠𝑠𝑗𝑗−1,𝑗𝑗𝑥𝑥 + 1 (2) 

The coefficients  𝑎𝑎1,𝑗𝑗,𝑎𝑎2,𝑗𝑗 , . . . ,𝑎𝑎𝑠𝑠𝑗𝑗−1,𝑗𝑗 in Eq. 2 are binary values. The 𝑗𝑗𝑡𝑡ℎcomponent of the 𝛽𝛽𝑡𝑡ℎ point 

in Sobol series, 𝑥𝑥𝛽𝛽,𝑗𝑗, is calculated by Eq. 3, 

𝑥𝑥𝑖𝑖,𝑗𝑗 =    𝛽𝛽1𝑣𝑣1,𝑗𝑗 ⊕  𝛽𝛽2𝑣𝑣2,𝑗𝑗  ⊕ · · ·  (3) 

where 𝛽𝛽𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ digit from the right when 𝛽𝛽 is written in binary 𝛽𝛽 = (. . . 𝛽𝛽3𝛽𝛽2𝛽𝛽1)2 and ⊕ is the bit-by-

bit exclusive-or operator. The parameters 𝑣𝑣𝑘𝑘,𝑗𝑗  are called the direction numbers (Eq. 4), where 𝑞𝑞𝑘𝑘,𝑗𝑗  are 

positive integers calculated in Eq. 5. 

𝑣𝑣𝑘𝑘,𝑗𝑗 =
𝑞𝑞𝑘𝑘,𝑗𝑗

2𝑘𝑘
 

𝑞𝑞𝑘𝑘,𝑗𝑗 = 2𝑎𝑎1,𝑗𝑗𝑞𝑞𝑘𝑘−1,𝑗𝑗 ⊕   22𝑎𝑎2,𝑗𝑗𝑞𝑞𝑘𝑘−2,𝑗𝑗 ⊕ … ⊕  𝑞𝑞𝑘𝑘−𝑠𝑠𝑗𝑗,𝑗𝑗 

(4) 

(5) 



2.1.3. Halton series  

Halton sequences (Halton, 1960) are low-discrepancy series used for sampling. Given n number of 

uncertain inputs, the 𝑖𝑖𝑡𝑡ℎ sample point obtained using Halton series is given by Eq. 6,  

�Φ𝑝𝑝(1)(𝑖𝑖 − 1),Φ𝑝𝑝(2)(𝑖𝑖 − 1), … ,Φ𝑝𝑝(𝑛𝑛)(𝑖𝑖 − 1)� (6) 

where 𝑝𝑝(n) is a selected arbitrary prime number, which is subject to 𝑝𝑝(1) < 𝑝𝑝(2) < ⋯ < 𝑝𝑝(𝑛𝑛 − 1). The 

variable Φ𝑝𝑝(𝑖𝑖) is defined in Eq. 7 (Wong et al., 2005).  

Φ𝑝𝑝(𝑖𝑖) =
𝑡𝑡0
𝑝𝑝1

+
𝑡𝑡1
𝑝𝑝2

+
𝑡𝑡2
𝑝𝑝3

+ ⋯+
𝑡𝑡𝑟𝑟
𝑝𝑝𝑟𝑟+1

 (7) 

In Eq. 7, 𝑡𝑡𝑟𝑟 is an integer in [0,𝑝𝑝 − 1] that follows Eq. 8, which shows the expansion of integer 𝑖𝑖 with the 

maximum order of 𝑟𝑟, where 𝑟𝑟 is any positive integer value, via prime base 𝑝𝑝 (Wong et al., 2005). 

𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1𝑝𝑝 + 𝑎𝑎2𝑝𝑝2 + ⋯+ 𝑎𝑎𝑟𝑟𝑝𝑝𝑟𝑟 (8) 

2.2. Numerical integration methods 

The output moments of a model with uncertain inputs are defined in Eq. 9, which gives the integral 

for the ith moment, 𝜇𝜇𝑖𝑖 (Grimmett and Stirzaker, 2001). This integral can be computed using an appropriate 

numerical integration method.  

𝜇𝜇𝑖𝑖 =  � 𝑔𝑔(𝑋𝑋)𝑖𝑖𝑓𝑓(𝑋𝑋)𝑑𝑑𝑑𝑑
∞

−∞

 (9) 

In Eq. 9, 𝑓𝑓(𝑋𝑋) is the joint density function of the uncertain input variables, 𝑋𝑋, for the model 𝑔𝑔(𝑋𝑋). Here, 

we utilize FFNI, UDR, and SG, which are popular numerical integration methods. 

2.2.1. Full factorial numerical integration 

Full factorial numerical integration (FFNI) employs a weighted sum of the model output values at 

specified input values (Duffy et al., 1998). For estimating the statistical moments of model output with 

uncertain inputs, the model is evaluated at 𝑚𝑚 = 𝛿𝛿𝑛𝑛 specific input values, which can also be referred to as 

sample locations, where 𝑛𝑛 is the number of uncertain inputs and 𝛿𝛿 is the number of nodes from each of 



these inputs. The weights (𝓌𝓌𝑘𝑘𝑗𝑗), and sample locations (𝑥𝑥𝑘𝑘𝑗𝑗) for the 𝑘𝑘th point of 𝑗𝑗th dimension are determined 

by implementing Gauss-Hermite, Gauss-Legendre, or Gauss-Laguerre quadratures based on the distribution 

of each uncertain input variable (Abramowitz et al., 1988). Then, the desired moments are calculated by 

Eq. 10. 

𝜇𝜇𝑖𝑖 =  𝐸𝐸�𝑔𝑔(𝑋𝑋)𝑖𝑖� = � 𝓌𝓌𝑘𝑘1

𝛿𝛿

𝑘𝑘1=1
… � 𝓌𝓌𝑘𝑘𝑛𝑛

𝛿𝛿

𝑘𝑘𝑛𝑛=1
 × [𝑔𝑔(𝑥𝑥𝑘𝑘1, … ,𝑥𝑥𝑘𝑘𝑛𝑛)]𝑖𝑖 (10) 

2.2.2. Univariate dimension reduction (UDR) 

In the UDR method, the multivariate function, 𝑔𝑔(𝑋𝑋), is approximated to 𝑔𝑔�(𝑋𝑋) using the summation 

of several univariate functions (Rahman and Xu, 2004). Each of these univariate functions, 𝑔𝑔𝑗𝑗�𝑋𝑋𝑗𝑗�, are 

similar to the original one, but each one is only a function of one variable with the remaining variables set 

to their mean values (𝑀𝑀𝑿𝑿𝒋𝒋′
) (Eq. 11). Then, the original model output is approximated by the additive 

decomposition of the model (Eq. 12), 

𝑔𝑔𝑗𝑗�𝑋𝑋𝑗𝑗� = 𝑔𝑔 �𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑗𝑗′ = 𝑀𝑀𝑿𝑿𝒋𝒋′
�    ∀𝑗𝑗, 𝑗𝑗′ ∈ {1,2, … ,𝑛𝑛}, 𝑗𝑗 ≠ 𝑗𝑗′ (11) 

𝑔𝑔(𝑋𝑋) ≈ 𝑔𝑔�(𝑋𝑋) = �𝑔𝑔𝑗𝑗�𝑋𝑋𝒋𝒋�
𝑛𝑛

𝑗𝑗=1

− (𝑛𝑛 − 1)𝑔𝑔(𝑀𝑀𝑋𝑋) (12) 

where 𝑔𝑔(𝑀𝑀𝑋𝑋) is the model output value with all uncertain input variables set at their mean values. The 

moments of the output function (𝑔𝑔(𝑋𝑋)) are calculated using the estimated model outputs, 𝑔𝑔�(𝑋𝑋), and the 

quadrature formula (Eq. 13), similar to the FFNI method. Employing univariate quadrature formula with 

𝑚𝑚  nodes, the number of model evaluations is equal to 𝑚𝑚 = 𝛿𝛿𝛿𝛿 + 1 , since 𝑛𝑛  univariate models are 

calculated at 𝛿𝛿 different nodes, and one extra model evaluation is performed with all variables set to their 

mean values.  

𝜇𝜇𝑖𝑖 =  𝐸𝐸�𝑔𝑔(𝑋𝑋)𝑖𝑖� ≈ 𝐸𝐸�𝑔𝑔�(𝑋𝑋)𝑖𝑖� = 𝐸𝐸���𝑔𝑔𝑗𝑗�𝑥𝑥𝑗𝑗� − (𝑛𝑛 − 1)
𝑛𝑛

𝑗𝑗=1
𝑔𝑔(𝑀𝑀𝑥𝑥)�

𝑖𝑖

� (13) 



2.2.3. Sparse grid numerical integration 

Sparse Grid (SG) (Smolyak, 1963) is a numerical integration method that uses quadrature formulas, 

similar to FFNI, for estimating integrals (such as Eq. 9 and Eq. 10). The sample points and the weights are 

determined using Eq. 14 and Eq. 15, respectively (Xiong et al., 2010). 

𝑈𝑈��⃗ 𝑛𝑛𝑘𝑘 = � 𝑈𝑈1
𝑖𝑖1⨂ 𝑈𝑈1

𝑖𝑖2 . . .⨂ 𝑈𝑈1
𝑖𝑖𝑛𝑛  

𝑘𝑘+1≤|𝑖𝑖|≤𝑘𝑘+𝑛𝑛

 (14) 

𝑤𝑤𝑙𝑙 = (−1)𝑘𝑘+𝑛𝑛−|𝑖𝑖| �
𝑛𝑛 − 1

𝑘𝑘 + 𝑛𝑛 − |𝑖𝑖|
� �𝑤𝑤𝑗𝑗1

𝑖𝑖1 …𝑤𝑤𝑗𝑗𝑛𝑛
𝑖𝑖𝑛𝑛� (15) 

where 𝑈𝑈��⃗ 𝑛𝑛𝑘𝑘, is 𝑃𝑃𝑠𝑠 × 𝑛𝑛 array of all sample points with an accuracy of 𝑘𝑘, 𝑛𝑛 denotes the number of dimensions, 

and 𝑃𝑃𝑠𝑠  is the number of resulting possible sample points given 𝑘𝑘 + 1 ≤ |𝑖𝑖| ≤ 𝑘𝑘 + 𝑑𝑑 . The operation ⨂ 

corresponds to the tensor product of arrays. The variables 𝑈𝑈1
𝑖𝑖1 , … ,𝑈𝑈1

𝑖𝑖𝑛𝑛   are one-dimensional quadrature points 

for each dimension, and 𝑖𝑖𝛼𝛼 is the number of nodes in dimension 𝛼𝛼. Variable |𝑖𝑖| is the summation of the 

multi-indices (|𝑖𝑖| = 𝑖𝑖1 + ⋯+ 𝑖𝑖𝑛𝑛). In Eq. 15, 𝑤𝑤𝑙𝑙 is the weight for the 𝑙𝑙𝑡𝑡ℎ sample point  𝑋𝑋𝑙𝑙����⃗ = �𝑋𝑋𝑗𝑗1
𝑖𝑖1 , … ,𝑋𝑋𝑗𝑗𝑛𝑛

𝑖𝑖𝑛𝑛� ∈

𝑈𝑈��⃗ 𝑛𝑛𝑘𝑘  , where 𝑗𝑗𝛼𝛼 ∈ {1, … , 𝑖𝑖𝛼𝛼} . The parameter 𝑤𝑤𝑗𝑗𝑖𝑖1
𝑖𝑖1  is the weight for the sample sets of one-dimensional 

quadrature. The 𝑖𝑖𝑡𝑡ℎ moment (𝜇𝜇𝑖𝑖) is calculated using Eq. 16.  

𝜇𝜇𝑖𝑖 =  𝐸𝐸�𝑔𝑔(𝑋𝑋)𝑖𝑖� = �𝑤𝑤𝑙𝑙

𝑃𝑃𝑠𝑠

𝑙𝑙=1
 𝑔𝑔(𝑋𝑋𝑙𝑙����⃗ )

𝑖𝑖
 (16) 

2.3.  Functional expansion–based methods 

In functional expansion-based methods, the model output is approximated by a polynomial 

function. This approximate simpler model is used in conjunction with UP methods to estimate the statistical 

moments. In this study, PCE is selected as a representative functional expansion–based method. 

2.3.1. Polynomial chaos expansion (PCE) 

Polynomial chaos expansion (Wiener, 1938) approximates the model output using orthogonal 

polynomials. It projects the output variable as a function of random variables with a specific distribution 

based on orthogonal stochastic polynomials (Anthony, 2013; Crestaux et al., 2009). The statistical moments 



of the output are calculated using the projected polynomial expansion. The general form of the PCE of a 

random variable, 𝑢𝑢(𝜃𝜃), can be written as Eq. 17 (Crestaux et al., 2009).  

𝑢𝑢(𝜃𝜃) = 𝑐𝑐0𝛤𝛤0 + � 𝑐𝑐𝑖𝑖1

∞

𝑖𝑖1=1

𝛤𝛤1 �𝜉𝜉𝑖𝑖1(𝜃𝜃)� + � � 𝑐𝑐𝑖𝑖1𝑖𝑖2𝛤𝛤2 �𝜉𝜉𝑖𝑖1(𝜃𝜃), 𝜉𝜉𝑖𝑖2(𝜃𝜃)� + ⋯
𝑖𝑖1

𝑖𝑖2=1

∞

𝑖𝑖1=1

 (17) 

In Eq. 17, 𝛤𝛤𝑝𝑝  are the orthogonal polynomials of order p. Different orthogonal polynomials are used 

depending on the distribution of the random variable  𝜃𝜃 . For example, Hermite and Legendre are the 

polynomial basis for normal and uniform distributions, respectively. 𝜉𝜉𝑖𝑖(𝜃𝜃) is the standard variable, e.g., 

standard normal variable if the distribution for input(s) is normal, and 𝑐𝑐𝑖𝑖’s are deterministic coefficients. 

Eq. 17 can be approximated using Eq. 18: 

𝑢𝑢(𝜃𝜃) = 𝑢𝑢(𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑛𝑛) ≈�𝑏𝑏𝑗𝑗𝜓𝜓𝑗𝑗(𝜉𝜉(𝜃𝜃))
∞

𝑗𝑗=0

 (18) 

𝑦𝑦 = 𝑔𝑔(𝜉𝜉) ≈ � 𝑏𝑏𝑗𝑗𝜓𝜓𝑗𝑗(𝜉𝜉)

(𝑝𝑝+𝑛𝑛)!
𝑝𝑝!𝑛𝑛! −1

𝑗𝑗=0

 (19) 

𝑏𝑏𝑖𝑖 =  
𝐸𝐸[𝑦𝑦𝜓𝜓𝑗𝑗(𝜉𝜉)]
𝐸𝐸[𝜓𝜓𝑗𝑗2(𝜉𝜉)]

 (20) 

where 𝜓𝜓𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ component of the orthogonal polynomials. In Eq. 18, 𝑏𝑏𝑗𝑗 correspond to 𝑐𝑐𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑝𝑝’s and 

are calculated based on Eq. 20. The output (𝑦𝑦) for the models with multiple input variables, 𝑔𝑔(𝜉𝜉), can be 

approximated using n-dimensional PCE with an order of 𝑝𝑝 (Eq. 19). For inputs not distributed normally, 

either specific polynomials are used, or the transformation of the variables to the standard normal variables 

is carried out. 

3. Computational experiments 

For computational experiments, all UP methods are implemented for propagating input uncertainty 

to the outputs of a set of test functions with known analytical forms. Numerous test functions and input 

distributions are considered in the experiments for studying the impacts of functional forms, the number of 



uncertain inputs, and distributions on the performance of the UP methods. The test function names, their 

formulas, and the input distributions are summarized in the Supplementary Materials. The uncertainty 

propagation is carried out by calculating the first four statistical moments of the function outputs. The 

computational experiments start with three function evaluations and terminate at 1 × 106 function calls. At 

each increment, four moments are estimated using all applicable UP methods. 

In the PCE method, the polynomials are truncated at the order of 𝑝𝑝. In this study, four different 

values of 𝑝𝑝, 𝑝𝑝 = {2,3,4,5}, are considered to observe the impact of the polynomial truncation order. Also, 

we use three methods, Sobol sequence (PCE-S), Halton series (PCE-H), and FFNI (PCE-F), for estimating 

the numerator of Eq. 20.  

The quality is defined as the minimum number of function evaluations required for a statistical 

moment to reach and remain within the desired error gap. To ensure that the estimated value stays within 

the 5% error gap, we started the search for the minimum number of function calls from the highest value 

then decreased until the estimation violated the 5% error gap of the true moment value. The error gap is a 

band with a width equal to a pre-determined error percentage of the ‘true’ moment value. Four different 

error gaps, 2%, 5%, 10%, and 20%, were considered in the computational experiments. Most methods did 

not yield estimates within 2% error gap given the maximum budget. On the other hand, the trends for 

different UP methods were similar for 5%, 10%, and 20% error gaps; hence, the 5% error gap results are 

shown and analyzed in this paper. The ‘true’ values of the moments are obtained using Monte Carlo 

simulation with 5 × 106 function evaluations. Experiments are implemented in Python 3.6. The packages 

Sobol_seq (Naught101, 2017) and Chaospy (Feinberg and Langtangen, 2015) are utilized for the Sobol 

series and PCE, respectively. 

Four different cases are considered for assessing the performance of the UP methods. In each case, 

the effects of a specific factor are studied. The functions implemented in each case are included in Table 

S3 in Supplementary Materials. 



3.1. Impact of nonlinearity 

The performance of UP methods for various nonlinear functions is studied using two groups of 

functions. The first group contains twenty different nonlinear functions with one uniformly distributed 

input. The source of nonlinearity stems from exponential and trigonometric functions and the absolute value 

operator. The second group contains one-dimensional power functions, in which the input is uniformly 

distributed. The UP methods are evaluated for power functions with exponent values ranging from one to 

five to investigate the accuracy and efficiency of their estimates for increasing nonlinearity in a model. 

3.2. Impact of the number of uncertain inputs 

The effects of the number of uncertain inputs on the UP methods are studied by changing the 

dimensions of G (Surjanovic and Bingham, 2013) and Ackley (Surjanovic and Bingham, 2013) functions. 

It is assumed that all inputs are uncertain and uniformly distributed. The number of inputs is increased from 

one to five for the G function and to eleven for the Ackley function.   

3.3. Impact of the uncertain input distribution 

The impact of input distributions is investigated via two test sets. In the first set, UP methods are 

implemented and evaluated for different one-dimensional functions with both uniform and lognormal 

distributions. The second set includes the Ackley function with varying input dimensions (from one to 

eleven) and different distributions, uniform, normal, and lognormal.  

3.4. General performance 

As the final case, we consider all the 95 different test functions with various properties to assess 

the general performance of the UP methods. The results are studied to observe and deduct general trends 

for each UP method. 

3.5. Application of the UP methods to Borehole and Steel Column models 

The Borehole and Steel Column models (Surjanovic and Bingham, 2013), Eq. 21 and Eqs. 22-24, 

respectively, are used as problems to test the trends and the resulting recommendations generated using the 



computational experiments. The Borehole model has eight input variables and calculates the flow rate in a 

borehole given its specifications. Table 1 lists the inputs with their distributions. The Steel Column model 

is nine-dimensional, and the input distributions are listed in Table 2. This model evaluates the reliability of 

a steel column based on the limit state function shown in Eq. 22, Eq. 23, and Eq. 24, which is a criterion of 

failure.  

𝑔𝑔(𝑥𝑥) =  
2𝜋𝜋𝑇𝑇𝑢𝑢(𝐻𝐻𝑢𝑢 − 𝐻𝐻𝑙𝑙)

ln�𝑟𝑟 𝑟𝑟𝑤𝑤� ��1 + 2𝐿𝐿𝑇𝑇𝑢𝑢
ln�𝑟𝑟 𝑟𝑟𝑤𝑤� �  𝑟𝑟𝑤𝑤2 𝐾𝐾𝑤𝑤

�+ 𝑇𝑇𝑢𝑢
𝑇𝑇𝑙𝑙

 
(21) 

𝑔𝑔(𝑥𝑥) = 𝐹𝐹𝑠𝑠 − 𝑃𝑃 �
1

2𝐵𝐵𝐵𝐵
+

𝐹𝐹0𝐸𝐸𝑏𝑏
𝐵𝐵𝐵𝐵𝐵𝐵(𝐸𝐸𝑏𝑏 − 𝑃𝑃)�

 (22) 

𝑃𝑃 =  𝑃𝑃1 +  𝑃𝑃2 + 𝑃𝑃3 (23) 

𝐸𝐸𝑏𝑏 =
𝜋𝜋2𝐸𝐸𝐸𝐸𝐸𝐸𝐻𝐻2

2𝐿𝐿2
 (24) 

Table 1. Distribution of uncertain inputs for Borehole function 

Variable Distribution 

radius of borehole (m) rw ~ N (μ=0.10, σ=0.0161812) 

radius of influence (m) r ~ Lognormal (μ=7.71, σ=1.0056)    

transmissivity of upper aquifer (m2/y) Tu ~ Uniform [63070, 115600] 

potentiometric head of upper aquifer (m) Hu ~ Uniform [990, 1110] 

transmissivity of lower aquifer (m2/yr) Tl ~ Uniform [63.1, 116] 

potentiometric head of lower aquifer (m) Hl ~ Uniform [700, 820] 

length of borehole (m) L ~ Uniform [1120, 1680] 

hydraulic conductivity of borehole (m/yr) Kw ~ Uniform [9855, 12045] 

 

Table 2. Distribution of uncertain inputs for Steel function 

Variable Distribution 

yield stress (MPa) Fs ~ Lognormal(mean=400, standard deviation=35) 

deadweight load (N) P1 ~ N(μ=500000, σ=50000) 

variable load (N) P2 ~ Gumbel(mean=600000, standard deviation=90000)    

variable load (N) P3 ~ Gumbel(mean=600000, standard deviation=90000) 



flange breadth (mm) B ~ Lognormal(mean=300, standard deviation=3) 

flange thickness (mm) D ~ Lognormal(mean=20, standard deviation=2) 

profile height (mm) H ~ Lognormal(mean=300, standard deviation=5) 

initial deflection (mm) F0 ~ N(μ=30, σ=10) 

Young's modulus (MPa) E ~ Weibull(mean=210000, standard deviation=4200)    

 

4. Results and discussion 

4.1. Impact of nonlinearity on the performance of uncertainty propagation methods 

Figures 2 and 3 include boxplots for the minimum number of function evaluations required to 

converge to a 5% error gap for each of the first four moments for the first group of nonlinearity test 

functions. In the graphs, P(i)-F stands for the 𝑖𝑖𝑡𝑡ℎ order PCE where the integral was estimated using FFNI, 

P(i)-S using Sobol, and P(i)-H using Halton. The variables, n1, n2, n3, and n4, are the number of functions 

for which the method did not yield results within the 5% error gap of the true mean, standard deviation, 

skewness, and kurtosis values, respectively, with one million function evaluations. The plots do not depict 

results for UDR and SG because all test functions are one-dimensional, and for these functions, the UDR 

and SG revert to FFNI.  

Figure 2 reveals that FFNI and P(i)-F required the lowest number of function evaluations, on 

average, to yield estimates that are within the 5% error envelope of the true mean and standard deviation. 

Their interquartile ranges and range of whisker values were the smallest for both mean and standard 

deviation estimations in comparison to all the methods (Figure 2). The outlier values for FFNI and P(i)-F 

were lower than the average outlier value of other UP methods. The use of MCS-based methods in PCEs 

resulted in PCE requiring, on average, a higher number of function evaluations than FFNI and P(i)-F to 

yield mean and standard deviation estimates within the 5% error gap. For PCE using Sobol (P(i)-S) and 

Halton (P(i)-H) sampling, the average number of function evaluations required and the interquartile range 

decreased with an increase in the PCE order. This behavior suggests that the higher-order polynomials aided 

in representing the nonlinearity in the test functions. However, PCEs with the lower orders, specially 𝑝𝑝 =



2, did not yield estimates within the 5% error gap of the true standard deviation for a large number of the 

test functions. The number of test functions, for which the standard deviation estimate was within the 5% 

error gap, increased as the order of the PCEs grew larger. The MCS-based methods, Sobol and Halton 

sampling, and LHS, needed more function evaluations to estimate the mean and standard deviation (Figure 

2). Although the whiskers range was largest for MCS-based methods, the interquartile range was smaller 

than lower-order P(i)-S and P(i)-H suggesting a peaked distribution for the minimum number of function 

evaluations in comparison to the PCE methods with approximately same whisker range but larger 

interquartile ranges. 

FFNI required the fewest number of function evaluations to estimate skewness and kurtosis (Figure 

3) within the 5% error gap of the true values for all the functions. Both interquartile and whiskers ranges 

were smaller than other methods. Higher-order PCE where FFNI is used to calculate the integral (P(i)-F) 

estimated these two moments with a low number of function calls. However, they did not converge to a 5% 

error gap for all of the functions. The two lower-order P(i)-Fs did not converge to the error gap for more 

than 60% of the functions. Sampling using Sobol and Halton sequences and LHS yielded skewness and 

kurtosis estimates within the 5% error gap for all test functions; however, they required more function calls 

than FFNI and higher-order P(i)-F on average. The interquartile range of MC-based methods was 

significantly larger than that obtained by FFNI but smaller than what higher-order P(i)-S and P(i)-H 

methods yielded. The skewness and kurtosis estimates of PCEs were still not within the 5% error gap at the 

maximum allowed function evaluations for most functions, especially when lower-order PCEs were used 

(Figure 3). However, the number of functions where the estimates were not within 5% decreased as the 

order increased, suggesting that higher-order polynomials are necessary for estimating higher-order 

moments of the outputs for Sobol and Halton based PCEs. On the other hand, this is not true for PCEs based 

on FFNI, since FFNI is very efficient in estimating the moments for one-dimensional models, which leads 

to quick convergence to the desired error gap even with lower order polynomials. The number of outliers 

in estimating skewness and kurtosis is larger than the number observed when estimating the mean and 

standard deviation for all the methods.  



 

 

Figure 2. The minimum number of function evaluations for estimating mean, standard deviation within 5% of their 
true values for the test functions to study the impact of nonlinearity. n1 and n2 are the numbers of functions for which 
the method did not yield an estimate within a 5% gap of the true values for mean (Mean) and standard deviation (Std), 
respectively. 



 

Figure 3. The minimum number of function evaluations for estimating skewness and kurtosis within 5% of their 
true values for test functions to study the impact of nonlinearity. n3 and n4 are the numbers of functions for which the 
method did not yield an estimate within a 5% gap of the true values for skewness (Skew) and kurtosis (Kurt), 
respectively. 

 

 



Figure 4 summarizes the results for the second group of test functions for evaluating the effect of 

nonlinearity, where different exponent values are used in the power function. Each figure demonstrates the 

minimum number of required function evaluations for each UP method to converge to a 5% error gap 

around the moment for Power functions with different exponent values. Based on Figure 4, MCS-based 

methods required a higher number of function evaluations to generate accurate estimates of both mean and 

standard deviation compared to the other methods. Furthermore, the number increased as the value of the 

exponent rose. The number of function evaluations required by FFNI and PCE where FFNI is used to 

estimate the integral (P(i)-F) did not change significantly for estimating the mean when the exponent value 

increased, and the change was the lowest for estimating standard deviation compared to the other methods. 

PCEs with second-order polynomials with integral estimates carried out using either Sobol or Halton 

sampling methods, P2-S and P2-H, needed more function calls than the higher-order PCEs for estimating 

mean and standard deviation of the output for power function with the large exponent values.  

Monte Carlo simulation-based methods required more function evaluations to estimate skewness and 

kurtosis with increases in the exponent (Figure 4). The required function evaluations were the lowest, in 

general, for LHS for estimating skewness and kurtosis among the three sampling schemas. FFNI needed a 

significantly lower number of function evaluations than the MCS-based methods for accurate estimation of 

the skewness and kurtosis for the power function with all considered values of exponents. Furthermore, the 

change in the number of function calls as the power value rose was minimal compared to MCS-based 

methods. All PCEs with orders of two and three did not yield third- and fourth-moment estimates within 

the 5% error gap for the power function with an exponent of five due to high nonlinearity. As a result, 

higher orders of PCEs must be used when predicting higher moments.  

 



 

Figure 4. The minimum number of function evaluations for estimating mean (Mean), standard deviation (Std), 
skewness (Skew), and kurtosis (Kurt) within 5% of their true values for the power function with different exponents. 



4.2. Impact of the number of uncertain inputs on the performance of uncertainty propagation 

methods 

Figures 5 and 6 plot the minimum number of function evaluations needed by each method to achieve 

mean, standard deviation, skewness, and kurtosis estimates within the 5% error gap for G and Ackley 

functions. These plots show the impact of increasing the number of uncertain inputs on the performance of 

the UP methods. The plots reveal that the minimum number of required function calls to estimate the first 

four moments increases for all UP methods as the number of uncertain inputs increases. The increase is 

about an order of magnitude or more function evaluations for each input increment, and it is more significant 

for FFNI, SG, and P(i)-F for estimating all moments. This result is not surprising because the number of 

samples required increases exponentially with the number of uncertain inputs for these methods. The impact 

can be seen clearly for FFNI for the number of inputs above four in both functions. According to the plots 

(Figures 5 and 6), either the number of function calls to estimate all the moments using FFNI is above 105 

or FFNI did not converge to the error gap for dimensions larger than four. However, SG converged to a 5% 

error gap for all moments of the G function and for the mean of the Ackley function for all dimensions 

within the maximum number of allowed function calls.  

The UDR converged to the 5% error gap only up to five and three dimensions for the Ackley function 

(Figure 6) in estimating the mean and standard deviation, respectively, and did not yield accurate estimates 

of the other three moments for any of the dimensions. The results for high dimensional functions, especially 

estimation of higher moments, agree with the expected performance from UDR. The accuracy of the linear 

combination of univariate functions in representing the test function drop quickly for high dimensions, since 

a higher number of relations between the variables are overlooked by this method. In addition, higher 

moments have larger nonlinearity associated with them which is not well captured by univariate functions. 

Consequently, moment estimates obtained using these approximations did not converge to the error gap 

within the allowed number of function evaluations. The UDR is not applicable for G function (and hence 

is not included in Figure 5) because the univariate functions are equal to zero when G function is 



approximated as the linear combination of the univariate functions (these formulas are given in 

Supplementary Materials). 

Although the MCS-based methods required higher function evaluations, specially for lower 

dimensions, to estimate the moments, the number of function calls varied less with changes in the number 

of uncertain inputs compared to other methods. The results demonstrated the MCS-based methods as 

reliable approaches for estimating the moments as they yielded estimates of all four moments within the 

error envelope for all the functions with different dimensions. The PCEs where the integrals were 

approximated using Sobol and Halton sampling methods, in general, converged to the 5% gap of the true 

mean with a lower number of function evaluations compared to numerical integration methods and the 

PCEs associated with them. This is because the number of samples does not increase exponentially using 

the low-discrepancy series, unlike the quadrature-based methods. Furthermore, the rate of increase in 

required evaluations was slow as the dimension increased. The plots also reveal that, as a general trend, the 

number of required function evaluations increases as the polynomial order increases for PCEs (e.g., mean 

plot in Figure 6). According to Eq. 19, as the order and dimension of the polynomials for PCEs increase, 

the number of coefficients, 𝑏𝑏𝑖𝑖, increase, and based on Eq. 20, a larger number of samples provides more 

accurate estimates of these coefficients. The number of function evaluations required by PCEs is dependent 

on two factors, the order of the polynomial and the number of uncertain inputs of the model. Figure 6 

illustrates that P2-S and P2-H did not yield estimates within the gap for any number of uncertain inputs for 

the Ackley function; however, the higher-order polynomials estimated the skewness and kurtosis within the 

5% error gap, suggesting that lower-order polynomials were not representing the nonlinearity of functions 

with higher-order moments accurately.  The MCS-based PCEs did not converge to the desired gap of the 

standard deviation for the G function with a higher number of uncertain inputs and almost none of the 

dimensions for estimating the skewness and kurtosis (Figure 5). We think the main reason for these results 

is the high nonlinearity in the G function due to several interaction terms of different uncertain inputs and 

absolute value function, and added nonlinearity for calculating the second to fourth moments of the output, 

which is making it difficult for the PCEs to capture the response surface of the G functions accurately.  



 

Figure 5. The minimum number of function evaluations for estimating mean (Mean), standard deviation (Std), 
skewness (Skew), and kurtosis (Kurt) within 5% of their true values for the case with the impact of dimensionality in 
G functions. 



 

Figure 6. The minimum number of function evaluations for estimating mean (Mean), standard deviation (Std), 
skewness (Skew), and kurtosis (Kurt) within 5% of their true values for the case with the impact of dimensionality in 
Ackley functions. 



 

4.3. Impact of the input distribution on the performance of uncertainty propagation methods 

Figures 7 and 8 show the box plots of the minimum number of function evaluations to yield an accurate 

estimate of mean and standard deviation, and skewness and kurtosis, respectively, of the output for the one-

dimensional test functions with input distributed uniformly and lognormally. The average number of 

function calls needed by each UP method is noticeably larger for the lognormal distribution than the uniform 

one, suggesting that input distribution is an important affecting factor. Additionally, the interquartile ranges 

increased for lognormal distribution in estimating all the moments with at least one order of magnitude for 

all methods, and the increase was the maximum for the MCS-based methods. However, the average was 

located far from the interquartile range for the lognormal distribution case, suggesting the effect of the 

outliers on the final value of the average and indicating that not all the functions require considerably higher 

function evaluations to converge to the error gap. Different nonlinear one-dimensional functions were used 

in the first test group, and similar to the results of the first case study group in Section 4.1, the MCS-based 

methods were the ones with the highest variability in results for both input distributions with the largest 

interquartile and whiskers ranges. Based on Figures 7 and 8, the MCS-based methods, on average, required 

the highest number of function evaluations in both uniform and lognormal distributions to converge to a 

5% error gap of all moments, and the values were higher for the latter distribution.  

The FFNI had the minimum median and average number of function calls to estimate all moments 

within the desired error gap for both input distributions. The change in average required function calls 

between two distributions was the lowest among all the methods. Different quadratures are used for 

selecting the nodes in FFNI, and the impact from the distributions is mitigated by the use of appropriate 

quadratures. The P(i)-F methods had comparable performance to the FFNI method in estimating the mean 

of the function outputs for both distributions. However, as the moment order increased, the number of 

function calls for the ones converged to the error gap and the number of functions for which the P(i)-F 

methods failed to converge to a 5% error gap for the last three moments increased (Figure 7 and 8). There 



were no significant differences in the P(i)-F methods estimate quality between uniform or lognormal 

distributions, possibly due to the same reason for FFNI. 

 
Figure 7. The minimum number of function evaluations for estimating mean (Mean) and standard deviation 

(Std) within 5% of their true values for case with impact of uniform distribution. 𝑛𝑛1 and 𝑛𝑛2are the number of functions 
which did not converge to 5% gap of the true values for mean and standard deviation of uniform case study, 



respectively. 𝑛𝑛1′  and 𝑛𝑛2′    are the number of functions which did not converge to 5% gap of the true values for mean 
and standard deviation of lognormal  case study, respectively. 

 
. 

 

Figure 8. The minimum number of function evaluations for estimating skewness and kurtosis within 5% of their 
true values for case with impact of uniform distribution. 𝑛𝑛3 and 𝑛𝑛4  are the number of functions which did not converge 
to 5% gap of the true values for mean and standard deviation, respectively. 



 

Lower order PCEs with integral approximated using MCS with Sobol and Halton sampling did not 

yield moments within the error gap of the true values for a large number of functions. Higher-order PCEs 

were better in estimating mean and skewness, where the plots (Figures 7 and 8) do not demonstrate a 

considerable fluctuation in the number of function evaluations needed by these methods between two 

different input distributions. The average number of function evaluations required increased significantly 

for lognormal distribution in estimating the standard deviation and kurtosis. The trends and performance of 

the UP methods for both distributions were in agreement with the ones observed in Section 4.1. suggesting 

that those results can be extended to different distributions.  

 



Figure 9. The minimum number of function evaluations for estimating mean (Mean), standard deviation (Std) 
within 5% of their true values for the case with the impact of distributions in Ackley functions. NC (Not Converged) 

indicates the methods which were not able to converge to the desired gap within 106 function evaluations. 

 

Figure 10. The minimum number of function evaluations for estimating skewness (Skew) and kurtosis (Kurt) within 
5% of their true values for the case with the impact of distributions in Ackley functions. NC (Not Converged) 

indicates the methods which were not able to converge to the desired gap within 106 function evaluations. 

In the second case study on the impact of input distributions, the minimum number of function calls to 

estimate the four moments for Ackley function with three different distributions for the inputs are shown 

in Figures 9 and 10. According to the figures, for the number of dimensions above 2, FFNI demonstrates 

large changes in the number of function evaluations to estimate the output moments among different 

distributions. The number of function calls does not change drastically for the UDR method in estimating 

the mean of the Ackley function. However, UDR was not able to converge to the error gap for most cases 

with higher moment orders. The performance of the MCS-based methods varies less, i.e., the required 



number of function evaluations does not change significantly, in comparison to other methods. The PCEs 

based on Sobol and Halton sampling are not affected by the distribution of the input variables and require 

the same number of function evaluations for cases that converged to a 5% error gap of each moment.  

4.4. Comparison of the performance of uncertainty propagation methods for all test functions - 

Overall performance analysis 

Figure 11 shows box plots of the minimum number of function evaluations required to estimate the 

mean and standard deviation within the 5% error gap of true moment values for all the test functions 

considered in this study. The results are important for problems where not all the characteristics of the 

models are known or given.  

The plots in Figure 11 demonstrate that MSC-based methods outperformed the other methods in four 

aspects. First, they converged to the 5% error gap in estimating both mean and standard deviation for almost 

all the functions. Second, the median and the average number of required function evaluations are lower 

than the other UP methods. Third, the interquartile and whiskers ranges are the smallest in comparison to 

other methods converging to the error gap for the majority of the functions. Finally, the number of outliers 

is the lowest in comparison to any other method. The two prohibiting factors in estimating the moments, 

which are the dimensionality curse for numerical integration methods and the ability to represent the 

nonlinearity of the systems using PCEs, do not apply to MCS-based methods. Hence, they are more efficient 

in terms of the required number of function evaluations compared to all the other ones in this study.  

Numerical integration methods and P(i)-F are deemed to be the least efficient UP methods as the 

minimum number of required function evaluations to estimate the mean and standard deviation using these 

methods is strongly affected by the number of uncertain inputs and grows quickly. There were many test 

functions with more than one uncertain input. As a result, FFNI, UDR, and P(i)-F were not able to yield 

accurate estimates of the first two moments for a larger number of the test functions, more than 10%, in 

comparison to other methods. However, among the numerical integration methods, SG converged to the 

error gap within the allowed number of function evaluations for a higher number of functions, and the 



medians of the number of function calls were less than the medians of MCS-based methods. As the order 

of the moments increased, the number of functions for which the estimation of standard deviation through 

SG was unsuccessful grew larger.  

 

Figure 11. The minimum number of function evaluations for estimating mean, standard deviation within 5% of their 
true values for the case of general performance. 𝑛𝑛1 and 𝑛𝑛2  are the numbers of functions that did not converge to a 

5% gap of the true values for mean (Mean) and standard deviation (Std), respectively. 



 

According to Figure 11, the function calls required by the P(i)-S and P(i)-H to converge to the desired 

error gap of mean does not have decreasing trend as the order of the polynomials increases, which we 

assume was due to the low order of the mean as the first moment where the degree of nonlinearity is lower 

than other moments. On the other hand, the change in the number of functions that these methods did not 

converge to the error gap of standard deviation, 𝑛𝑛2, is notable as the order of the polynomial rises in value. 

The P5-H and P5-S managed to make estimations of the standard deviation within a 5% error gap for more 

than 90% of the test functions, which is larger than 75% of the functions, which were estimated using the 

second-order PCEs. The mean number of function calls used for the first two moment approximations by 

P(i)-S and P(i)-H were lower than numerical integration methods and P(i)-Fs, but it was significantly larger 

than MCS-based methods. PCEs do not guarantee convergence as the number of function calls increases, 

whereas, with MCS-based models, the estimation converges to the desired value at some point if the number 

of function calls is large enough. If the PCE with chosen order does not represent the nonlinearity 

accurately, then increasing the number of function evaluations would give accurate estimates of the built 

PCE, which is not necessarily representative of the desired function. On the other hand, MCS-based 

methods, using space-filling or low discrepancy sampling methods, cover larger amounts of the input(s) 

space as the number of samples and consequently the number of function evaluations increase and yield 

more accurate estimates of the moments as a result of the higher number of data.  

Figure 12 illustrates the box plots of minimum required function calls to estimate the skewness and 

kurtosis within a 5% error bound of the true values for all the 95 test functions used in this paper. MCS-

based methods estimated the third and fourth moments accurately for more than 90% of the test functions. 

Thus, they were the most reliable methods in terms of converging to the desired error gap. FFNI and SG 

predicted skewness and kurtosis of a larger number of functions, more than 65% and 75%, respectively, in 

comparison to the UDR and P(i)-F, which was less than 50% for estimating both skewness and kurtosis. 

The median of the number of required function calls for the functions the numerical integrations methods 

were able to converge to the desired error gap was lower than the median for MCS-based methods, 



suggesting that if the numerical integrations are an appropriate method for the function characteristics, they 

are more likely to be efficient in estimating all moments accurately. Similar conclusions can be drawn for 

PCEs as well. For the cases in which PCEs converged to the 5% error gap of the true values of the moments, 

the mean and median of the number of the demanded function calls are less than the MCS-based methods. 

Hence, for the cases where the PCEs can approximate the nonlinearity of the model, the number of function 

evaluations is not large. Even though the performance of the PCEs was comparable to the MCS-based 

methods for estimating the mean, the performance significantly deteriorated for the higher moments, 

skewness and kurtosis, as can be seen with the higher values of n3 and n4 for PCEs versus MCS-based 

methods in Figure 12. The increase in the order of the polynomials improved the performance of the PCEs 

in converging to the error bound for a larger number of functions since the higher orders were able to 

represent the nonlinearity of the functions with better accuracy. The second-order PCEs had the highest 

number, more than 80%, of functions for which the convergence to the 5% error gap was not achieved. 

Therefore, based on Figure 12, they are not recommended to estimate the skewness and kurtosis. 

4.5. Results for the application of the UP methods to Borehole and Steel Column models 

Based on all the previous case studies, it is expected that MCS-based methods to be reliable methods 

and converge to the 5% error gap of all moments for both Steel and Borehole models and be one of the 

methods with a lower number of required model evaluations. Due to the high number of uncertain inputs 

for both models, SG among numerical integration methods is expected to have the best performance and 

require lower numbers of model calls if converged to the error gap. PCE-based methods are expected to 

have better or the same performance as MCS-based methods if they converge to the desired error gap of 

the true values of the moment, and the number of model evaluations should increase as the order of PCE 

gets larger.  

 



 

Figure 12. The minimum number of function evaluations for estimating skewness and kurtosis within 5% of their 
true values for the case of general performance. 𝑛𝑛3 and 𝑛𝑛4are the numbers of functions that did not converge to a 

5% gap of the true values for skewness (Skew) and kurtosis (Kurt), respectively. 

 

The mean-standard deviation and skewness-kurtosis estimation for Steel and Borehole models are 

plotted in Figures 13 and 14, respectively. The figures show the minimum number of required model calls 



used to converge to a 5% error gap of the moments. MCS-based methods were able to converge to the 

desired error gap of the mean with the lowest number of function evaluations. However, lower-order (2 and 

3) PCEs that employed Sobol and Halton sampling also needed relatively low function evaluations to reach 

5% of the true values. The number of function evaluations increased as the order increased, and for the 

Steel model, the PCE with orders of 4 and 5 did not converge to the chosen error gap, which suggests that 

these polynomials were not able to represent the nonlinearity of the Steel model. SG had the best 

performance among all the numerical integration methods with the lowest number of model evaluations to 

estimate all the moments within the 5% error gap of their true values. FFNI and the PCEs associated with 

it required a higher number of function calls due to the relatively high number of uncertain inputs in the 

models. 

 

Figure 13. The minimum number of function evaluations for estimating mean, standard deviation within 5% of their 
true values for Steel and Borehole models. 



For the Borehole model, none of the PCEs estimated the skewness and kurtosis within the desired error 

gap. The MCS-based methods and FFNI performed the best for this model, requiring the lowest number of 

function evaluations. On the other hand, PCEs converged to the desired gap with the number of function 

evaluations very close to the Sobol, Halton, and LHS for Steel model. There was an increasing trend for 

the required function evaluations of PCEs as the order got larger. The results for the Steel and Borehole 

models agree with the observations and conclusions drawn from the earlier case studies. 

 

Figure 16. The minimum number of function evaluations for estimating skewness, kurtosis within 5% of their true 
values for Steel and Borehole models. 

 

5. Conclusions and Future Directions 

One important factor impacting the operation, design, and optimization of engineering processes is 

the uncertainties in the systems. The uncertainty propagation methods are used to quantify the uncertainty 



of the system output, resulting from the uncertainty of inputs. This paper studied the performance of seven 

methods from three common groups of uncertainty propagation (UP) methods, including Monte Carlo 

simulation-based methods, numerical integration methods, and functional expansion-based methods, using 

computational experiments. The methods were Monte-Carlo method using Sobol series, Halton series, and 

Latin Hypercube sampling (LHS), numerical integration methods of Full Factorial Numerical Integration 

(FFNI), Univariate Dimension Reduction (UDR), and Sparse Grids (SG), and Polynomial Chaos Expansion 

(PCE) as the function expansion-based method. The study evaluated the impact of model characteristics, 

such as the number of uncertain inputs, non-linearity of the model, and uncertainty distribution type using 

95 different test functions. The uncertainty propagation methods were compared based on the accuracy of 

the output estimates and the methods’ efficiency in yielding these estimates. The accuracy was assessed 

using the first four statistical moments of the model output, and the efficiency was assessed using the 

minimum number of model calls required to reach and remain within the 5% error gap of the true values of 

these moments.  

The efficiencies of the FFNI and PCEs that utilized FFNI had a strong dependence on the number 

of uncertain inputs. PCEs generally estimated the first two statistical moments accurately but did not 

converge to the desired error gap for skewness and kurtosis (third and fourth moments) for most test 

functions. The performance of Monte-Carlo simulation-based method was considerably impacted by the 

nonlinearity in the test functions compared to the other methods irrespective of the sampling technique 

used, and they required a higher number of model evaluations for complex functions. However, these 

methods were the most reliable UP methods and converged to the chosen error gap of all the moments for 

most (88%) test functions.  

In light of our computational experiments, we constructed the following guidelines for selecting 

the UP method based on the characteristics of the model of interest: For models with less than five uncertain 

inputs regardless of the nonlinearity, FFNI is generally the most efficient method to estimate the first four 

moments. SG is a better choice among numerical integration methods, when the number of uncertain inputs 

is higher than five. As the number of uncertain inputs increases, for the models with high nonlinearities, 



such as models that contain high power values, logarithmic, and trigonometric functions with possibly 

interacting terms, higher-order PCEs can be used to estimate the mean and standard deviation. However, 

higher-order PCEs are not the most reliable methods for estimating higher-order moments, such as 

skewness and kurtosis, because they did not converge to the error gap for most test functions. Although 

higher order PCEs may capture the nonlinearity of the model, it has to be noted that increase in order results 

in a higher number of coefficients that need to be estimated. This, in turn, translates into a lower efficiency 

for the PCE methods. There is a trade-off between the accuracy and efficiency with higher order PCEs. 

Finally, Monte Carlo simulation-based methods are recommended for models with high number of 

uncertain inputs and are reliable for estimating all four statistical moments of these models. The results 

from this study did not yield clear guidelines based on the distribution type as the trends observed were not 

consistent for the test functions.  

Propagating the uncertainty of inputs and, potentially, parameters to stochastic high-fidelity 

simulation outputs is a potential area for utilizing the findings of this paper. In future work, we plan to select 

efficient uncertainty propagation methods using these guidelines for quantifying the uncertainty of 

stochastic surrogate models representing high fidelity stochastic simulation outputs.  
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