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AbstractÐ Pricing mechanisms are commonly advocated as
a main tool to shape customers’ demand in societal scale
networked infrastructure such as power or transportation
systems. Given that the price response function of each user
is generally considered private and unknown, most existing
algorithms rely on protocols that explicitly or implicitly solicit
this information in order to design prices. However, approaches
that rely solely on learning the price response through repeated
interactions are more practical and gaining traction. In this
paper, we model each customer’s price response by an unknown
parameter vector and we design a resource pricing mechanism
to manage demand in order to maximize total welfare while
ensuring that a set of linear constraints on the consumption are
satisfied at all time steps with high probability. We propose an
algorithm to address this problem that utilizes the well known
principle of optimism in the face of uncertainty (OFU), while
simultaneously being pessimistic with respect to constraint
violation. Our analysis of this algorithm shows that, with high
probability, it will not violate the constraints and will achieve

O(log(T )
√
T ) regret. Numerical experiments validate these

results and demonstrate how our algorithm can be applied to
demand response management in power distribution systems.

I. INTRODUCTION

As optimization and learning expands in to safety-critical

settings, there is a need for algorithms that can ensure that

safety constraints are not violated, while maintaining good

performance. Accordingly, various safe learning problems

have been posed in recent years, including those that give

the learner access to noisy observations (bandit feedback)

of the optimization objective and/or the constraints (e.g. [1],

[2], and [3]). In particular, online safe learning problems,

such as those in [2] and [4], are especially relevant to many

real-world settings as they guarantee good performance for

the entire time horizon via regret analysis.

Although online safe learning algorithms are applica-

ble to various real-world settings, here we are particularly

motivated by applications in cyber-physical systems (CPS)

with humans in the loop (e.g. power grid, transportation

networks). In these systems, the automation algorithm often

interacts with humans via pricing (e.g. electricity prices, road

tolls). Through the choice of prices, these algorithms seek

to achieve high social welfare while satisfying the physical

constraints of the system. This fits well in to the online safe

learning paradigm given that the price response of the users

is initially unknown, but can be learned by posting prices

and observing the response of the users.
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One traditional approach for these types of CPS-related

problems utilizes the network utility maximization (NUM)

framework [5], [6], [7]. With utility maximization problems

in general, the objective is to optimally allocate limited

resources to n users in order maximize the total utility that

these users derive from the resource. In many scenarios,

however, it is not feasible to allocate the resources directly

because the utility function of each user is private. Through

dual decomposition [8], the NUM framework allows for the

utility to be maximized by observing the resource consump-

tion of each user and updating the dual variables (which

equate to the resource prices) at each iteration. Although this

approach has been applied to several types of CPS, including

the coordination of generation and demand in power grids

[5], and managing congestion in transportation networks [7],

existing algorithms cannot ensure that the constraints will

be satisfied at each time step prior to convergence. As such,

in safety-critical CPS such as power systems, they are only

used as a negotiation protocol to find the optimal operational

point and cannot be implemented without prior coordination

between the users and the system operator. This motivates

the work here, where we aim to develop distributed resource

allocation algorithms that operate online and satisfy safety

constraints at each time step.

The contributions of this work are:

• We pose a novel distributed resource allocation problem

where the price response of each users is paramaterized

by an unknown vector. At each time step, the learner

posts a price and then receives bandit feedback of

the price response. The objective is to maximize the

utility, which is a known function of the price response,

while ensuring with high probability that a set of linear

constraints are satisfied for all time steps.

• We propose a linear bandit-inspired algorithm for the

stated problem that, with high probability, guarantees

constraint satisfaction at each iteration. We then prove

that the proposed algorithm achieves O(log(T )
√
T )

regret with high probability.

• Our numerical experiments provide empirical validation

of the theoretical results and demonstrate how this

algorithm can be implemented in a power distribution

network with price responsive users.

Related work: This work is related to literature in the

fields of (1) safe learning, (2) NUM and (3) linear stochastic

bandits.

1) Safe learning: In general, safe learning requires that

the learner satisfy constraints at each time step. One class
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of these problems are optimization problems in which the

learner is only given access to bandit feedback of the objec-

tive and constraints, and is required to satisfy the constraints

at each iteration [1], [4], [9], [10]. In another direction,

there has been work that models the unknown objective as

a Gaussian process and uses the corresponding confidence

region to ensure safety [3], [11]. There is also existing work

addressing safety in linear stochastic bandits. For example,

[12] and [13] study settings where there are constraints on

the costs or rewards received at each round. The work in

[2] addresses a safe linear bandit problem that has some

similarities to the one discussed here. In particular, we use

multiple linear constraints that jointly apply to mulitple users

(or equivalently, multiple bandits), while [2] considers one

constraint for a single bandit that is bilinear with respect to

the action and the unknown variable. This necessitates the

distinct approach that we propose here.

2) NUM: The framework of NUM allows for layering of

an optimization problem through dual and primal decompo-

sitions [8]. This layering allows for a network-based problem

to be modularized and solved in a distributed fashion [14]. It

has been successfully applied to various network problems,

notably congestion control for internet networks [15], [16],

[17]. Most relevantly, NUM has also been applied to the

control of CPS with humans in the loop [5], [6], [7].

3) Linear Stochastic Bandits: Bandit problems are a class

of online learning problems where the learner chooses an

action at each round from a decision set and observes

a reward according to the action taken [18]. With linear

stochastic bandits, the reward is an unknown linear function

of the action plus some additive noise [19]. In the problem

presented here, we use a similar parameterization and noise

model for the price response. One prominent approach for

solving linear stochastic bandit problems is optimism in

the face of uncertainty (OFU), from which linear upper

confidence bound (LUCB) algorithms have emerged [20].

For our algorithm, we adopt the OFU approach as well. We

also utilize least squares confidence regions that have been

developed for LUCB in [21]. Additionally, we draw on the

regret analysis of LUCB, such as in [21], [22] to establish

regret guarantees for our algorithm.

Paper Organization: The problem is stated in Section II.

An algorithm designed to address this problem is presented

in Section III, and the analysis of this algorithm is discussed

in Section IV. Lastly, Section V describes a numerical

experiment that demonstrates how the algorithm might be

applied to demand response management in power systems.

Notations: We use ∥z∥ to refer to the Euclidean norm of

z and ∥z∥A to refer to
√
zTAz for z ∈ R

m and positive

definite A ∈ R
m×m. For vectors z1 and z2, z1 ≤ z2 means

that each element of z1 is less than or equal to z2. The

set {1, 2, ..., n} is referred to by [n], where n is a positive

integer. For a vector z ∈ R
m and i ∈ [m], [z]i refers to the

ith element of z. The zero vector is denoted with 0. The

positive reals and non-negative reals are referred to as R++

and R+ respectively.

II. PROBLEM SETUP

We consider a distributed resource allocation problem

where a central coordinator and n users work together

to find a solution over T time steps, while satisfying all

p resource constraints at each time step. Each user, time

step and constraint are indexed by i ∈ [n], t ∈ [T ] and

j ∈ [p] respectively. The central coordinator interacts with

the users at each time step by broadcasting prices to each

of them. After receiving the price, each user responds with

a consumption level as specified by the The Individual User

Problem in Section II-A. In turn, the central coordinator

observes a noisy version of the consumption of each user

and chooses the price for the next time step as discussed in

the Central Coordinator’s Problem in Section II-B.

A. The Individual User Problem

With this problem, we formalize the way users determine

their resource consumption in response to prices. At time step

t, user i receives the price γt
i from the central coordinator.

User i’s consumption, xt
i, is defined according to the user’s

individual price response function:

xt
i = xi(γ

t
i ; θ

∗
i ) = hi(γ

t
i )

T θ∗i . (1)

The parameter vector θ∗i ∈ R
m
+ is unknown to the central

coordinator, while hi : R → R
m
+ is a known function

that is continuous and non-increasing. It follows from the

definitions of θ∗i and hi that xi(·) is positive non-increasing,

which is expected given that the consumption of a resource

will typically not increase as the resource price increases.

In the following assumption, we assume that hi and θ∗i are

bounded, and that there exists a high enough price such that

all elements of hi are zero.

Assumption 1. The following applies for all i ∈ [n]. There

exists positive constants S and L such that ∥θ∗i ∥ ≤ S and

∥hi(γi)∥ ≤ L for all γi ∈ R. Additionally, there exists a

non-negative constant y such that hi(y) = 0.

Due to random variation in the user’s behavior or cor-

ruption of the measurement and communication system, the

central coordinator observes the noisy consumption:

x̄t
i = xt

i + µt
i, (2)

where µt
i is a conditionally subgaussian random variable as

follows.

Assumption 2. Let F t
i = σ(γ1

i , γ
1
i , ..., γ

t+1
i , µ1

i , µ
2
i , ..., µ

t
i)

be the history at round t for user i. For all t and i, µt
i is

conditionally σ-subgaussian such that E[µt
i|F t−1

i ] = 0 and

E[eλµ
t

i |F t−1
i ] ≤ exp(λ

2σ2

2 ), ∀λ ∈ R.

The noise model characterized by Assumption 2 is com-

monly used in the literature (e.g. [2], [4], [21]). Next, we

define the central coordinator’s problem.

B. The Central Coordinator’s Problem

The central coordinator is assumed to be a welfare maxi-

mizing entity. Specifically, its goal is to choose the prices

γt = [γt
1 γt

2 ... γt
n], ∀t, to maximize the users’ welfare
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from consuming resources within the physical capacity of

the system. To mathematically define the central coordi-

nator’s objective, various goals could be considered. One

approach which is particularly suitable for societal-scale

CPS that serve basic needs of users is to ensure fairness

in how resources are allocated. For example, underserved

communities should not be charged high prices or, large

commercial users should not block access to resources for

smaller residential users that share the same network. To

ensure this, the central coordinator can design appropriate

utility functions for different classes of users. The properties

of different utility functions has been studied in the literature

(e.g. [15], [23], [24]) and is not a focus of this work.

We use the function fi : R → R to specify the utility

function assigned to user i’s consumption. Therefore, the

utility at time step t is given by
∑n

i=1 fi(x
t
i). Furthermore,

we assume that each of the utility functions are Lipschitz

continuous.

Assumption 3. The utility function fi is M -Lipschitz contin-

uous for all i ∈ [n], such that |fi(y1)−fi(y2)| ≤ M |y1−y2|
∀y1, y2.

The physical limits of the system are specified by a set of

linear constraints on the consumptions of the users

n
∑

i=1

ajixi(γ
t
i ; θ

∗
i ) ≤ ctj , ∀j ∈ [p], ∀t ∈ [T ], (3)

where aji ∈ R+ and ctj ∈ R+ are known to the central

coordinator. Since the ajis are non-negative, these constraints

represent capacity limits on the network (e.g. in demand re-

sponse this would be transformer capacities, wire capacities).

Also note that ctj is allowed to vary with time. This could be

used to capture varying network conditions on a daily basis

(e.g., more renewable generation at certain nodes that must

be consumed locally). Given the utility functions and the

constraints, the central coordinator would choose the prices

at time t as follows if the θ∗i s were known:

γ̆t ∈ argmax
γ∈Rn

n
∑

i=1

fi(xi(γi; θ
∗
i ))

s.t.

n
∑

i=1

ajixi(γi; θ
∗
i ) ≤ ctj , ∀j ∈ [p],

γi ≥ Γi, ∀i ∈ [n],

(4)

where γ = [γ1 γ2 ... γn], and Γi is a lower bound on the price

for user i. This lower bound might be useful for restricting

the price in some applications, but if it’s not applicable, then

it can be set low enough to not impact the solution of (4). We

let x̆t = [x1(γ̆
t
1; θ

∗
1) . . . xn(γ̆

t
n; θ

∗
n)] be the optimal resource

consumption vector in response to the optimal prices.

Since θ∗i ’s are assumed to be private to the users and

unknown by the central coordinator, it cannot solve (4) to

find γ̆t exactly. However, the central coordinator observes

the noisy resource consumption vector x̄τ = [x̄τ
1 x̄τ

2 ... x̄τ
n]

at each time step τ , and therefore, at time t, it has access

to the noisy consumption vectors of the users {x̄τ}t−1
τ=1 in

response to the prices {γτ}t−1
τ=1. Since the price response

model (1) is also known by the central coordinator, it can

exploit this historical data to estimate θ∗i ’s in some way in

order to choose γt. How well the central coordinator does in

this task is measured by the difference in total utility between

the optimal choice of prices in (4) and the actual choice of

prices. This is referred to as the regret, which can be stated

as:

RT =

T
∑

t=1

n
∑

i=1

[fi(xi(γ̆
t
i ))− fi(x

t
i)], (5)

In addition to ensuring low regret, the central coordinator

also needs to ensure that the constraints in (3) are satisfied

with high probability for all time steps. The reason that

the central coordinator is not required to ensure constraint

satisfaction with probability one is because under the noise

model in Assumption 2, the exact price response cannot

be known in general. Therefore, the best that the central

coordinator can do is to ensure that the constraints are

satisfied with high probability. To this end, in the next section

we propose a safe pricing algorithm that achieves sublinear

regret and satisfies the constraints at each time step with high

probability.

III. SAFE PRICE RESPONSE ALGORITHM

The goal of the safe pricing algorithm given by Algo-

rithm 1 is to encourage utility-maximizing demand while

ensuring safety in terms of the constraints. Given that in

(4), the θ∗i ’s are the only information the central coordinator

lacks in order to determine the prices optimally and safely,

an estimation of possible θ∗i ’s is crucial for the design of

an efficient and safe algorithm. To do so, the algorithm

relies on building confidence regions in which the users’

unknown parameter vectors θ∗i lie in with high probability.

These confidence regions are essential for two reasons when

we design the prices: 1) to implement the principle of OFU to

efficiently trade-off exploration and exploitation; 2) to ensure

safety with respect to the constraints (3) (in a pessimistic

sense).

To define the confidence sets we use a modified version

of the confidence region specified in [21]. We first give the

least-squares estimator of θ∗i with regularization paramater

ν > 0,

θ̂ti = [V t
i ]

−1
t
∑

s=1

hi(γ
s
i )x̄

s
i , ∀i ∈ [n], ∀t ∈ [T ], (6)

where

V t
i = νI +

t
∑

s=1

hi(γ
s
i )hi(γ

s
i )

T , ∀i ∈ [n], ∀t ∈ [T ]. (7)

The confidence set then follows.

Theorem 1. (Theorem 2 in [21] for multiple users) Let

Assumptions 1 and 2 hold, fix δ ∈ (0, 1) and let

√

βt = σ

√

m log
(1 + tL2/ν

δ/n

)

+
√
νS, (8)
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Algorithm 1 Safe Price Response Algorithm

Input: Initialize basis functions hi for all i, confidence level

δ, confidence set C0
i = {θi ∈ R

m : ∥θi∥ ≤ S} for all

i, horizon T , noise bound σ, price limit Γi for all i,
constraints {aji}∀j,i, {ctj}∀j,t, and bounds L and S.

1: for t = 1 to T do

2: Calculate x̃t with (10).

3: Find a γt
i that satisfies (11) for all i.

4: Broadcast γt to users.

5: Observe noisy consumption x̄t.

6: Update confidence set Ct
i for all i with (9).

7: end for

then θ∗i is in

Ct
i = {θi ∈ R

m : ∥θi − θ̂ti∥V t

i

≤
√

βt, ∥θi∥ ≤ S, θi ≥ 0}
(9)

for all i ∈ [n] and t ≥ 1 with probability at least 1− δ.

Proof: Given Assumptions 1 and 2, we can use

Theorem 2 in [21] for each user. We then apply union

bound to substitute in δ/n. Using the fact that θi ≥ 0 and

Assumption 1 to restrict the confidence set completes the

proof.

In order to design an effective pricing algorithm, we

use this confidence region to both balance exploration and

exploitation via the OFU principle, and maintain safety. In

the field of online learning, the OFU principle states that

the learner should behave as though the unknown (e.g. the

unknown paramater) is as favorable as reasonably possi-

ble given what has been learned so far [18]. In problems

where the unknown is a parameter, OFU-type algorithms

use confidence regions to define what parameter values are

reasonably possible. These algorithms then find the point

in the confidence region that is most favorable and use it

to choose the next action. The OFU principle has been

successful for a variety of bandit settings (e.g. [2], [20], [21]).

Our algorithm implements the OFU principle by finding an

optimistic consumption vector x̃t at each time step; that is,

the algorithm finds the consumption vector xi(γi; θi) that

maximizes the utility subject to the resource constraints (as

in (4)), while θi is allowed to take any value in Ct
i . This

will naturally select the θi ∈ Ct
i that is most favorable, hence

accomplishing OFU. However, the algorithm can only choose

pricesÐnot consumptionÐand therefore cannot assign the

consumption x̃t to the users directly. To maintain safety

while still being optimistic, the algorithm chooses prices

pessimistically with respect to the safety constraints such

that, when θi ∈ Ct
i is as unfavorable as possible for

constraint violation, the consumption will be x̃t. In doing so,

our algorithm utilizes the benefits of OFU, while maintaining

safety.

Next, we explain specifically how the optimistic consump-

tion vector x̃t is calculated. For time step t, the algorithm

uses the confidence region from time step t − 1 to find the

optimistic consumption vector:

x̃t = argmax
x∈Rn

n
∑

i=1

fi(xi)

s.t.

n
∑

i=1

ajixi ≤ ctj , ∀j ∈ [p],

0 ≤ xi ≤ max
θi∈Ct−1

i

hi(Γi)
T θi, ∀i ∈ [n].

(10)

This equation finds an optimistic consumption vector because

it maximizes utility subject to the safety constraints, while al-

lowing x to take all possible values of xi(γi; θi) = hi(γ
t
i )

T θi
for θi ∈ Ct−1

i and γi ≥ Γi. To see this, note that hi

is element-wise non-increasing so hi(Γi) ≥ hi(γi) for all

γi ≥ Γi. Also note from Assumption 1 that there exists a

y ∈ R
m such that hi(y) = 0. It follows that hi(γi)

T θi can

take any value in [0, hi(Γi)
T θi] for any θi ∈ R

m
+ . Therefore,

restricting θi to Ct−1
i establishes the range for xi given

in the last constraint of (10). The optimization problem in

(10) implements OFU because it maximizes utility while

constraining xi to the range of possible values of xi(γi; θi)
for θi ∈ Ct−1

i ; therefore, it will implicitly choose the most

favorable θi ∈ Ct−1
i .

The solution to (10), x̃t, is optimistic and satisfies the

safety constraints. However, the central coordinator can not

directly allocate x̃t to the users (which would ensure safety),

but instead has to determine prices that are both safe and

will result in low regret. Accordingly, we next explain how

the algorithm chooses the prices pessimistically given the

confidence region and x̃t. A pessimistic choice implies that in

the worst-case scenario, the constraints will not be violated.

Since all of the ajis in (3) are non-negative and x̃t satisfies

the constraints, constraint violation can be avoided by mak-

ing sure that xt
i ≤ x̃t

i for all i ∈ [n]. Therefore, the algorithm

ensures safety by choosing γt
i such that xi(γ

t
i ; θi) ≤ x̃t

i for

all possible θi ∈ Ct
i . That is, at time step t and for all i ∈ [n],

the algorithm chooses a γt
i that satisfies

max
θi∈Ct−1

i

hi(γ
t
i )

T θi = x̃t
i. (11)

The above equation implies that the maximum possible

resource consumption of user i in response to price γt
i should

be equal to x̃t
i. For later use, let θ̃ti be the maximizer of the

left hand side of (11), and θ̄i = argmaxθi∈Ct−1

i

hi(Γi)
T θi.

It needs to be shown that a solution to (11) always exists.

Proposition 1. Let Assumption 1 hold. Then, there exists a

γt
i that satisfies (11) for all i.

Proof: Let ℓi(γi) = maxθi∈C
t−1

i

hi(γi)
T θi. From (10),

we know that x̃t
i can take any value in Di = [0, hi(Γi)

T θ̄i].
We show that 1) ℓi can attain the maximum and minimum

elements of Di, and 2) ℓi is continuous:

1) From Assumption 1, we have that there exists y such

that [hi(y)]k = 0 for all k ∈ [m]. This implies that there

exists y such that ℓi(y) = 0. Additionally, it is clear that

ℓi(Γi) = hi(Γi)
T θ̄i. Therefore, ℓi can attain the minimum

and maximum elements of Di.
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Fig. 1. Distribution network with nodes representing users and edge labels
indicating capacity.

2) First, consider the support function of Ct−1
i :

SCt−1

i

(y) = maxz∈Ct−1

i

(yT z) where y ∈ R
m. Note that

SC
t−1

i

(y) is finite because Ct−1
i is bounded. Then, the

function SCt−1

i

(y) is continuous because support functions

are convex [25] and a convex function that is finite on all

R
m is continuous [26]. We have that ℓi(γi) = SCt−1

i

(hi(γi)).
Since the composition of continuous functions is continuous,

ℓi is continuous as well.

By the intermediate value theorem, it follows that ℓi can

attain any value in Di. The proof is completed by noting that

everything stated previously applies to all i in [n].
We have now established the three main building blocks

of Algorithm 1: 1) Building the confidence region Ct
i given

by (9) that contains θ∗i with high probability for all i ∈ [n]
(Step 6), 2) determining the optimistic resource consumption

vector x̃t as the solution of (10) (Step 2), and 3) choosing

the prices γt such that (11) holds for all i ∈ [n] (Step 3).

In the next section, we prove that the prices produced by

Algorithm 1 induce safe resource consumption vectors that

satisfy the constraints at all time steps and achieve a sublinear

regret.

IV. SAFETY AND REGRET ANALYSIS

In this section, we will prove that the prices set by

Algorithm 1 induce resource consumption vectors that 1)

satisfy the constraints for all t ∈ [T ], and 2) achieve

O(log(T )
√
T ) regret after T time steps. Since regret is a

well-defined metric only when the solutions are feasible

(otherwise an infeasible solution can have a higher objective

value and negative regret), we will first prove the safety of

the algorithm. Building on the intuition established in the

previous section, we formally state the safety guarantee:

Theorem 2. Let Assumptions 1 and 2 hold. Then Algorithm

1 will ensure that

n
∑

i=1

ajix
t
i ≤ ctj ∀j ∈ [p], ∀t ∈ [T ], (12)

with probability at least 1− δ.

Proof: From (11), x̃t
i = maxθi∈Ct−1

i

hi(γ
t
i )

T θi.
Then with probability at least 1 − δ, it follows that

x̃t
i ≥ hi(γ

t
i )

T θ∗i = xt
i. Since all ajis are non-negative, we

have that
∑n

i=1 ajix
t
i ≤ ∑n

i=1 ajix̃
t
i ≤ ctj . This completes

the proof.

Fig. 2. Each element of basis function g.

According to Theorem 2, the prices set by Algorithm 1

guarantee that the users consume feasible amount of re-

sources at all time steps, i.e., the algorithm produces safe

prices. Therefore, regret is a valid metric of performance.

We next prove that the regret incurred by the prices set by

Algorithm 1 is sublinear in T .

Theorem 3. Let Assumptions 1,2 and 3 hold. Then, the

cumulative regret of Algorithm 1 satisfies

RT ≤nM max(LS, 1)

√

8Tm log

(

1 +
TL2

mν

)

×
(

σ

√

m log

(

n

δ

(

1 +
TL2

ν

)

)

+
√
νS

) (13)

with probability at least 1− δ.

Proof outline: We first use the Lipschitz assumption on

fi’s to put the regret in terms of the resource consump-

tion. Then the analysis proceeds similar to linear bandit

analysis such as in [21]. However, unlike the bandit case,

our algorithm is optimistic in the total utility of all users,

i.e.
∑n

i=1 fi(x̃
t
i) ≥ ∑n

i=1 fi(x̆
t
i). As a result, our analysis

requires careful handling of the regret due to each user.

The complete proof is given in Appendix A. Accord-

ing to Theorem 3, the regret incurred by Algorithm 1 is

O(nm log(Tn)
√
T ). Note that the factor of n in the regret

bound is due to the fact that the definition of regret is the

difference in total utility across all users. In fact, the average

regret over the users (RT /n) is O(m log(Tn)
√
T ).

V. NUMERICAL EXPERIMENT

To validate the algorithm and demonstrate how it can

be applied, we simulate the algorithm choosing electricity

prices for the users of a small power distribution system. The

architecture of the distribution network is shown in Fig. 1.

We assume that the grid operator does not know enough

about each user to assign different hi’s to each one. There-

fore, we make the basis functions the same for all users, such

that g = hi for all i. We use logistic-type functions for the

elements of g:

gk(y; tk, dk) =
1

1 + exp((y − tk)/dk)
, ∀k ∈ [m]. (14)

We use four different functions (m = 4) that represent the

price response of different classes of appliances that users

might use. These functions are shown in Fig. 2 which are
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Fig. 3. The cumulative regret of the Safe Price Response Algorithm
choosing electricity prices for a simulated power distribution system. The
data is averaged over 100 trials with the 95% confidence interval shown.

defined with t = {9, 4, 4, 0} and d = {0.5, 0.1, 1.5, 1.5}.

The following list explains what the different elements of g
represent.

• g0: critical appliances (basic heating, lighting, cooking)

• g1: non-critical appliances that will be on either entirely

or not at all (electric vehicle charging)

• g2: non-critical appliances that can be used in variable

quantities (additional heating, cooling)

• g3: luxury appliances (television, gaming)

Note that each of these functions don’t represent the price

response of each appliance in isolation, rather they represent

the additional price response of that appliance given that the

more fundamental appliances are in use.

The utility functions are chosen as shifted log functions:

fi(xi) = αi log(xi + 0.1) ∀i (15)

The shift is to ensure that the functions are Lipschitz

continuous. The value of each αi is sampled uniformly:

αi ∼ U [0.5, 1] iid ∀i. The θis are chosen as [θ∗i ]k ∼ U [0.5, 1]
iid ∀i, k. Also, Γi = 0.1 for all i. The noise variable

µt
i ∼ N(0, σ2) iid ∀i, t, where σ2 = 0.2.

Next, we discuss how the algorithm is implemented in

the simulation. First, note that fi in (15) is concave, so

(10) is convex and can be solved efficiently with any con-

vex solver (we use CVXPY [27], [28]). Additionally, note

that the price update equation in (11) can be formulated

as a scalar root-finding problem (i.e. it seeks the γt
i that

yields r(γt
i ) = maxθi∈Ct−1

i

hi(γ
t
i )

T θi − x̃t
i = 0). Since

maxθi∈Ct−1

i

hi(γ
t
i )

T θi is a convex optimization problem,

r(γt
i ) can be evaluated by solving a convex optimization

problem. Therefore, we calculate (11) by using a scalar root-

finding solver on r(γt
i ) (we use Scikit-learn [29]), and using

a convex optimization solver (we use CVXPY [27], [28]) to

evaluate r(γt
i ) each time it’s called by the root-finding solver.

One hundred simulations were run for 800 time steps

with different realizations of {µt
i}∀i,t for each simulation.

From these trials, there were zero constraint violations. The

average cumulative regret and a 95% confidence interval over

all simulations is shown in Fig. 3.

VI. CONCLUSION

In this work, we posed a novel safe price design problem

motivated by applications in cyber-physical systems with

humans in the loop. To address this problem, we proposed an

algorithm that first finds an optimistic consumption level and

then finds a price that will achieve that consumption level in

the worst case in terms of safety. Analysis shows that, with

high probability, this algorithm maintains safety and achieves

regret O(log(T )
√
T ). Additionally, a numerical experiment

demonstrates how this algorithm can be applied to a demand

response management problem for a power distribution net-

work. The numerical results from this experiment agree with

the safety analysis and regret analysis.
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APPENDIX

A. Proof of Theorem 3

Given that (10) is optimistic and Assumption 3, we have

with probability at least 1− δ that

rt =

n
∑

i=1

[fi(xi(γ̆
t
i ))− fi(x

t
i)] (16)

≤
n
∑

i=1

[fi(x̃i)− fi(x
t
i)] (17)

≤
n
∑

i=1

|fi(x̃i)− fi(x
t
i)| (18)

≤ M

n
∑

i=1

|x̃i − xt
i| (19)

= M

n
∑

i=1

|hi(γ
t
i )

T θ̃i − hi(γ
t
i )

T θ∗i | (20)

Let r′t,i = |hi(γ
t
i )

T (θ̃ti − θ∗i )| and R′
T,i =

∑T
t=1 r

′
t,i. Note

that

RT ≤ M

T
∑

t=1

n
∑

i=1

r′t,i (21)

= M

n
∑

i=1

R′
T,i (22)

We can then bound R′
T,i using the standard linear stochastic

bandit analysis.

r′t,i = |hi(γ
t
i )(θ̃

t
i − θ∗i )| (23)

= |hi(γ
t
i )(θ̃

t
i − θ̂t−1

i + θ̂t−1
i − θ∗i )| (24)

≤ ∥hi(γ
t
i )∥[V t−1

i
]−1∥θ̃ti − θ̂t−1

i + θ̂t−1
i − θ∗i ∥V t−1

i

(25)

≤ ∥hi(γ
t
i )∥[V t−1

i
]−1

× (∥θ̃ti − θ̂t−1
i ∥V t−1

i

+ ∥θ̂t−1
i − θ∗i ∥V t−1

i

)
(26)

≤ 2∥hi(γ
t
i )∥[V t−1

i
]−1

√

βt−1 (27)

To use the bandit analysis, we need a trivial bound on r′t,i.
We know that ∥hi(γ

t
i )∥ ≤ L, which implies

0 ≤ hi(γ
t
i )

T θ∗i ≤ ∥hi(γ
t
i )∥∥θ∗i ∥ ≤ LS, (28)

0 ≤ hi(γ
t
i )

T θ̃ti ≤ ∥hi(γ
t
i )∥∥θ̃ti∥ ≤ LS, (29)

so we have the trivial bound on r′t,i:

r′t,i = |hi(γ
t
i )

T θ̃ti − hi(γ
t
i )

T θ∗i | ≤ LS (30)

Therefore, assuming that T is large enough such that βT ≥ 1
(for simplicity), we have that

r′t,i ≤ min(2∥hi(γ
t
i )∥[V t−1

i
]−1

√

βt−1, LS) (31)

≤ 2max(LS, 1)min(∥hi(γ
t
i )∥[V t−1

i
]−1

√

βt−1, 1) (32)

≤ 2max(LS, 1)
√

βT min(∥hi(γ
t
i )∥[V t−1

i
]−1 , 1) (33)

r′2t,i ≤ 4max(L2S2, 1)βT min(∥hi(γ
t
i )∥2[V t−1

i
]−1

, 1) (34)

We can use the so-called elliptical potential lemma to

bound this.

Lemma 1. (Lemma 11 from [21]) Let Assumption 1 hold.

Then,

T
∑

t=1

min(∥hi(γ
t
i )∥2[V t−1

i
]−1

, 1) ≤ 2m log(1 + TL2/(mν))

(35)

Then, we can apply Cauchy-Schwarz on R′
T,i to get the

bound for RT :

RT ≤ M

n
∑

i=1

R′
T,i ≤ M

n
∑

i=1

√

√

√

√T

T
∑

t=1

r′2t,i (36)

Plugging in (34) and (8) completes the proof.
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