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Abstract— Pricing mechanisms are commonly advocated as
a main tool to shape customers’ demand in societal scale
networked infrastructure such as power or transportation
systems. Given that the price response function of each user
is generally considered private and unknown, most existing
algorithms rely on protocols that explicitly or implicitly solicit
this information in order to design prices. However, approaches
that rely solely on learning the price response through repeated
interactions are more practical and gaining traction. In this
paper, we model each customer’s price response by an unknown
parameter vector and we design a resource pricing mechanism
to manage demand in order to maximize total welfare while
ensuring that a set of linear constraints on the consumption are
satisfied at all time steps with high probability. We propose an
algorithm to address this problem that utilizes the well known
principle of optimism in the face of uncertainty (OFU), while
simultaneously being pessimistic with respect to constraint
violation. Our analysis of this algorithm shows that, with high
probability, it will not violate the constraints and will achieve
O(log(T)VT) regret. Numerical experiments validate these
results and demonstrate how our algorithm can be applied to
demand response management in power distribution systems.

I. INTRODUCTION

As optimization and learning expands in to safety-critical
settings, there is a need for algorithms that can ensure that
safety constraints are not violated, while maintaining good
performance. Accordingly, various safe learning problems
have been posed in recent years, including those that give
the learner access to noisy observations (bandit feedback)
of the optimization objective and/or the constraints (e.g. [1],
[2], and [3]). In particular, online safe learning problems,
such as those in [2] and [4], are especially relevant to many
real-world settings as they guarantee good performance for
the entire time horizon via regret analysis.

Although online safe learning algorithms are applica-
ble to various real-world settings, here we are particularly
motivated by applications in cyber-physical systems (CPS)
with humans in the loop (e.g. power grid, transportation
networks). In these systems, the automation algorithm often
interacts with humans via pricing (e.g. electricity prices, road
tolls). Through the choice of prices, these algorithms seek
to achieve high social welfare while satisfying the physical
constraints of the system. This fits well in to the online safe
learning paradigm given that the price response of the users
is initially unknown, but can be learned by posting prices
and observing the response of the users.
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One traditional approach for these types of CPS-related
problems utilizes the network utility maximization (NUM)
framework [5], [6], [7]. With utility maximization problems
in general, the objective is to optimally allocate limited
resources to m users in order maximize the total utility that
these users derive from the resource. In many scenarios,
however, it is not feasible to allocate the resources directly
because the utility function of each user is private. Through
dual decomposition [8], the NUM framework allows for the
utility to be maximized by observing the resource consump-
tion of each user and updating the dual variables (which
equate to the resource prices) at each iteration. Although this
approach has been applied to several types of CPS, including
the coordination of generation and demand in power grids
[5], and managing congestion in transportation networks [7],
existing algorithms cannot ensure that the constraints will
be satisfied at each time step prior to convergence. As such,
in safety-critical CPS such as power systems, they are only
used as a negotiation protocol to find the optimal operational
point and cannot be implemented without prior coordination
between the users and the system operator. This motivates
the work here, where we aim to develop distributed resource
allocation algorithms that operate online and satisfy safety
constraints at each time step.

The contributions of this work are:

« We pose a novel distributed resource allocation problem
where the price response of each users is paramaterized
by an unknown vector. At each time step, the learner
posts a price and then receives bandit feedback of
the price response. The objective is to maximize the
utility, which is a known function of the price response,
while ensuring with high probability that a set of linear
constraints are satisfied for all time steps.

« We propose a linear bandit-inspired algorithm for the
stated problem that, with high probability, guarantees
constraint satisfaction at each iteration. We then prove
that the proposed algorithm achieves O(log(T)v/T)
regret with high probability.

o Our numerical experiments provide empirical validation
of the theoretical results and demonstrate how this
algorithm can be implemented in a power distribution
network with price responsive users.

Related work: This work is related to literature in the
fields of (1) safe learning, (2) NUM and (3) linear stochastic
bandits.

1) Safe learning: In general, safe learning requires that
the learner satisfy constraints at each time step. One class
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of these problems are optimization problems in which the
learner is only given access to bandit feedback of the objec-
tive and constraints, and is required to satisfy the constraints
at each iteration [1], [4], [9], [10]. In another direction,
there has been work that models the unknown objective as
a Gaussian process and uses the corresponding confidence
region to ensure safety [3], [11]. There is also existing work
addressing safety in linear stochastic bandits. For example,
[12] and [13] study settings where there are constraints on
the costs or rewards received at each round. The work in
[2] addresses a safe linear bandit problem that has some
similarities to the one discussed here. In particular, we use
multiple linear constraints that jointly apply to mulitple users
(or equivalently, multiple bandits), while [2] considers one
constraint for a single bandit that is bilinear with respect to
the action and the unknown variable. This necessitates the
distinct approach that we propose here.

2) NUM: The framework of NUM allows for layering of
an optimization problem through dual and primal decompo-
sitions [8]. This layering allows for a network-based problem
to be modularized and solved in a distributed fashion [14]. It
has been successfully applied to various network problems,
notably congestion control for internet networks [15], [16],
[17]. Most relevantly, NUM has also been applied to the
control of CPS with humans in the loop [5], [6], [7].

3) Linear Stochastic Bandits: Bandit problems are a class
of online learning problems where the learner chooses an
action at each round from a decision set and observes
a reward according to the action taken [18]. With linear
stochastic bandits, the reward is an unknown linear function
of the action plus some additive noise [19]. In the problem
presented here, we use a similar parameterization and noise
model for the price response. One prominent approach for
solving linear stochastic bandit problems is optimism in
the face of uncertainty (OFU), from which linear upper
confidence bound (LUCB) algorithms have emerged [20].
For our algorithm, we adopt the OFU approach as well. We
also utilize least squares confidence regions that have been
developed for LUCB in [21]. Additionally, we draw on the
regret analysis of LUCB, such as in [21], [22] to establish
regret guarantees for our algorithm.

Paper Organization: The problem is stated in Section II.
An algorithm designed to address this problem is presented
in Section III, and the analysis of this algorithm is discussed
in Section IV. Lastly, Section V describes a numerical
experiment that demonstrates how the algorithm might be
applied to demand response management in power systems.

Notations: We use ||z|| to refer to the Euclidean norm of
z and ||z||4 to refer to V2T Az for = € R™ and positive
definite A € R™*™_ For vectors z; and 2o, z; < 29 means
that each element of z; is less than or equal to z5. The
set {1,2,...,n} is referred to by [n], where n is a positive
integer. For a vector z € R™ and ¢ € [m], [2]; refers to the
ith element of z. The zero vector is denoted with 0. The
positive reals and non-negative reals are referred to as R |
and R respectively.

II. PROBLEM SETUP

We consider a distributed resource allocation problem
where a central coordinator and n users work together
to find a solution over 7' time steps, while satisfying all
p resource constraints at each time step. Each user, time
step and constraint are indexed by ¢ € [n], ¢ € [T] and
j € [p] respectively. The central coordinator interacts with
the users at each time step by broadcasting prices to each
of them. After receiving the price, each user responds with
a consumption level as specified by the The Individual User
Problem in Section II-A. In turn, the central coordinator
observes a noisy version of the consumption of each user
and chooses the price for the next time step as discussed in
the Central Coordinator’s Problem in Section 1I-B.

A. The Individual User Problem

With this problem, we formalize the way users determine
their resource consumption in response to prices. At time step
t, user i receives the price v} from the central coordinator.
User 4’s consumption, xf, is defined according to the user’s
individual price response function:

hi(7v))"6;. (1)

The parameter vector 67 € R’ is unknown to the central
coordinator, while h; R — RT is a known function
that is continuous and non-increasing. It follows from the
definitions of 6 and h; that z;(-) is positive non-increasing,
which is expected given that the consumption of a resource
will typically not increase as the resource price increases.
In the following assumption, we assume that h; and 0 are
bounded, and that there exists a high enough price such that
all elements of h; are zero.

z = zi(vi; 07) =

Assumption 1. The following applies for all i € [n]. There
exists positive constants S and L such that ||0}|| < S and
[[hi(vi)ll < L for all v; € R. Additionally, there exists a
non-negative constant y such that h;(y) = 0.

Due to random variation in the user’s behavior or cor-
ruption of the measurement and communication system, the
central coordinator observes the noisy consumption:

T =@ 2)

where p! is a conditionally subgaussian random variable as
follows.

Assumption 2. Let F! = (v}, v}, vith uk, p2, . 1)

be the history at round t for user i. For all t and i, pt is
conditionally o-subgaussian such that E[ut|Fi~'] = 0 and

B[ FE 1] < exp(22), VA € R.

The noise model characterized by Assumption 2 is com-
monly used in the literature (e.g. [2], [4], [21]). Next, we
define the central coordinator’s problem.

B. The Central Coordinator’s Problem

The central coordinator is assumed to be a welfare maxi-
mizing entity. Specifically, its goal is to choose the prices

o= [yt A4 ... AL],Vt, to maximize the users’ welfare
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from consuming resources within the physical capacity of
the system. To mathematically define the central coordi-
nator’s objective, various goals could be considered. One
approach which is particularly suitable for societal-scale
CPS that serve basic needs of users is to ensure fairness
in how resources are allocated. For example, underserved
communities should not be charged high prices or, large
commercial users should not block access to resources for
smaller residential users that share the same network. To
ensure this, the central coordinator can design appropriate
utility functions for different classes of users. The properties
of different utility functions has been studied in the literature
(e.g. [15], [23], [24]) and is not a focus of this work.

We use the function f; : R — R to specify the utility
function assigned to user 7’s consumption. Therefore, the
utility at time step ¢ is given by Y., fi(«}). Furthermore,
we assume that each of the utility functions are Lipschitz
continuous.

Assumption 3. The utility function f; is M -Lipschitz contin-
uous for all i € [n), such that | f;(y1) — fi(y2)| < M|y1 —ya|
Vy1, y2.

The physical limits of the system are specified by a set of
linear constraints on the consumptions of the users

S ajmi(vh0) <, VieplvieT], ()
i=1

where a;; € Ry and cg € R, are known to the central
coordinator. Since the a;;s are non-negative, these constraints
represent capacity limits on the network (e.g. in demand re-
sponse this would be transformer capacities, wire capacities).
Also note that cz- is allowed to vary with time. This could be
used to capture varying network conditions on a daily basis
(e.g., more renewable generation at certain nodes that must
be consumed locally). Given the utility functions and the
constraints, the central coordinator would choose the prices
at time ¢ as follows if the #;s were known:

5t € arg maxz fil@i(vi;67))

vER™ 54
n
S.t. Zaji:vi(’yi;ef) < c§7 Vj € [p]7
=1

Yi > Fi7 Vi € [TL],

“4)

where v = [y1 Y2 ... Vn), and T; is a lower bound on the price
for user ¢. This lower bound might be useful for restricting
the price in some applications, but if it’s not applicable, then
it can be set low enough to not impact the solution of (4). We
let ¥t = [z1(%;07) ... z.(FL;05)] be the optimal resource
consumption vector in response to the optimal prices.
Since 6’s are assumed to be private to the users and
unknown by the central coordinator, it cannot solve (4) to
find 5¢ exactly. However, the central coordinator observes
the noisy resource consumption vector Z7 = [Z] Z§ ... Z]]
at each time step 7, and therefore, at time ¢, it has access
to the noisy consumption vectors of the users {Z” =1 in

T=1

response to the prices {'yT}tT;ll. Since the price response
model (1) is also known by the central coordinator, it can
exploit this historical data to estimate 6’s in some way in
order to choose ~¢. How well the central coordinator does in
this task is measured by the difference in total utility between
the optimal choice of prices in (4) and the actual choice of
prices. This is referred to as the regret, which can be stated
as:

T n
R =Y Y [filwi() — fi=h)], S
t=1 i=1
In addition to ensuring low regret, the central coordinator
also needs to ensure that the constraints in (3) are satisfied
with high probability for all time steps. The reason that
the central coordinator is not required to ensure constraint
satisfaction with probability one is because under the noise
model in Assumption 2, the exact price response cannot
be known in general. Therefore, the best that the central
coordinator can do is to ensure that the constraints are
satisfied with high probability. To this end, in the next section
we propose a safe pricing algorithm that achieves sublinear
regret and satisfies the constraints at each time step with high
probability.

III. SAFE PRICE RESPONSE ALGORITHM

The goal of the safe pricing algorithm given by Algo-
rithm 1 is to encourage utility-maximizing demand while
ensuring safety in terms of the constraints. Given that in
(4), the 6’s are the only information the central coordinator
lacks in order to determine the prices optimally and safely,
an estimation of possible 0;’s is crucial for the design of
an efficient and safe algorithm. To do so, the algorithm
relies on building confidence regions in which the users’
unknown parameter vectors 6 lie in with high probability.
These confidence regions are essential for two reasons when
we design the prices: 1) to implement the principle of OFU to
efficiently trade-off exploration and exploitation; 2) to ensure
safety with respect to the constraints (3) (in a pessimistic
sense).

To define the confidence sets we use a modified version
of the confidence region specified in [21]. We first give the
least-squares estimator of #; with regularization paramater
v >0,

t
0; = V17 hi(r)®, Vi€ [n], V€ [T],  (6)

s=1

where
t
Vi=vI+Y hi(y))hi(y)", Vi€ ], vt € [T]. (D)
s=1

The confidence set then follows.

Theorem 1. (Theorem 2 in [21] for multiple users) Let
Assumptions 1 and 2 hold, fix § € (0,1) and let

2
VB = o [mlog (H;/Z/”) LVES,®)
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Algorithm 1 Safe Price Response Algorithm

Input: Initialize basis functions &; for all 7, confidence level
§, confidence set C? = {0, € R™ : ||0;]| < S} for all
1, horizon T, noise bound o, price limit I'; for all i,
constraints {aj; }v;, {C§}Vj,t, and bounds L and S.

1. fort=1to T do

2 Calculate ¢ with (10).

3 Find a 7} that satisfies (11) for all i.

4: Broadcast 'yt to users.

5

6

7.

Observe noisy consumption Z°.
Update confidence set C’f for all 7 with (9).
end for

then 0} is in

CH={0; € R™ : [|0; — 0Ll < /B, 6] < S,0; > 0}
' )
for all i € [n] and t > 1 with probability at least 1 — 0.

Proof:  Given Assumptions 1 and 2, we can use
Theorem 2 in [21] for each user. We then apply union
bound to substitute in §/n. Using the fact that §; > 0 and
Assumption 1 to restrict the confidence set completes the
proof. [ ]

In order to design an effective pricing algorithm, we
use this confidence region to both balance exploration and
exploitation via the OFU principle, and maintain safety. In
the field of online learning, the OFU principle states that
the learner should behave as though the unknown (e.g. the
unknown paramater) is as favorable as reasonably possi-
ble given what has been learned so far [18]. In problems
where the unknown is a parameter, OFU-type algorithms
use confidence regions to define what parameter values are
reasonably possible. These algorithms then find the point
in the confidence region that is most favorable and use it
to choose the next action. The OFU principle has been
successful for a variety of bandit settings (e.g. [2], [20], [21]).
Our algorithm implements the OFU principle by finding an
optimistic consumption vector ! at each time step; that is,
the algorithm finds the consumption vector z;(y;;6;) that
maximizes the utility subject to the resource constraints (as
in (4)), while 6; is allowed to take any value in C?. This
will naturally select the §; € C! that is most favorable, hence
accomplishing OFU. However, the algorithm can only choose
prices—not consumption—and therefore cannot assign the
consumption #' to the users directly. To maintain safety
while still being optimistic, the algorithm chooses prices
pessimistically with respect to the safety constraints such
that, when 6; € Cf is as unfavorable as possible for
constraint violation, the consumption will be Zt. In doing so,
our algorithm utilizes the benefits of OFU, while maintaining
safety.

Next, we explain specifically how the optimistic consump-
tion vector #' is calculated. For time step ¢, the algorithm
uses the confidence region from time step ¢ — 1 to find the

optimistic consumption vector:

7' =arg maxz filzy)

we]Rn

=1

S.t. Zajixi < C§-7 V] S [p]7 (10)
i=1
0<z; < max hi(F,-)THi, Vi € [Tl]

g;ect™t

This equation finds an optimistic consumption vector because
it maximizes utility subject to the safety constraints, while al-
lowing x to take all possible values of z;(v;; 0;) = h;(74)10;
for 0, € C’f_l and v; > T';. To see this, note that h;
is element-wise non-increasing so h;(I';) > h;(~;) for all
v; > I';. Also note from Assumption 1 that there exists a
y € R™ such that h;(y) = 0. It follows that h;(v;)”6; can
take any value in [0, h;(I';)76;] for any 6; € R'". Therefore,
restricting 0; to C!~! establishes the range for x; given
in the last constraint of (10). The optimization problem in
(10) implements OFU because it maximizes utility while
constraining x; to the range of possible values of x;(7;;6;)
for 0; € C’f ~1. therefore, it will implicitly choose the most
favorable 0; € C/ ™.

The solution to (10), Z¢, is optimistic and satisfies the
safety constraints. However, the central coordinator can not
directly allocate Z* to the users (which would ensure safety),
but instead has to determine prices that are both safe and
will result in low regret. Accordingly, we next explain how
the algorithm chooses the prices pessimistically given the
confidence region and #*. A pessimistic choice implies that in
the worst-case scenario, the constraints will not be violated.
Since all of the aj;s in (3) are non-negative and Z! satisfies
the constraints, constraint violation can be avoided by mak-
ing sure that ¢ < #! for all i € [n]. Therefore, the algorithm
ensures safety by choosing 7/ such that z;(v};6;) < z! for
all possible 6; € C?. That is, at time step ¢ and for all i € [n],
the algorithm chooses a 7! that satisfies

(1)

max hi(vH)T0; = &t
0,€Ct™
The above equation implies that the maximum possible
resource consumption of user ¢ in response to price ! should
be equal to Z. For later use, let 6% be the maximizer of the
left hand side of (11), and 0; = arg max e hi(Ti)76;.
It needs to be shown that a solution to (11') aiways exists.

Proposition 1. Let Assumption 1 hold. Then, there exists a
vt that satisfies (11) for all i.

Proof: Let £;(i) = max, ¢t h (7:)T0;. From (10),
we know that Z! can take any value in D; = [0, hi(T)70;).
We show that 1) ¢; can attain the maximum and minimum
elements of D;, and 2) ¢; is continuous:

1) From Assumption 1, we have that there exists y such
that [h;(y)]x = O for all & € [m]. This implies that there
exists y such that ¢;(y) = 0. Additionally, it is clear that
¢;(T;) = hy(T;)T6;. Therefore, ¢; can attain the minimum
and maximum elements of D).
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Fig. 1. Distribution network with nodes representing users and edge labels
indicating capacity.

2) First, consider the support function of Cffl:
Sct—l(y) = max_.ce- 1(yT'z) where y € R™. Note that
Sct 1(y) is finite because C'~' is bounded. Then, the
function Set- 1(y) is continuous because support functions
are convex f25] and a convex function that is finite on all
R™ is continuous [26]. We have that £;(v;) = Sc;c—l (hi(i))-
Since the composition of continuous functions is continuous,
¢; is continuous as well.

By the intermediate value theorem, it follows that ¢; can
attain any value in D;. The proof is completed by noting that
everything stated previously applies to all ¢ in [n]. [ ]

We have now established the three main building blocks
of Algorithm 1: 1) Building the confidence region C?! given
by (9) that contains 6} with high probability for all i € [n]
(Step 6), 2) determining the optimistic resource consumption
vector Z¢ as the solution of (10) (Step 2), and 3) choosing
the prices v' such that (11) holds for all i € [n] (Step 3).
In the next section, we prove that the prices produced by
Algorithm 1 induce safe resource consumption vectors that
satisfy the constraints at all time steps and achieve a sublinear
regret.

IV. SAFETY AND REGRET ANALYSIS

In this section, we will prove that the prices set by
Algorithm 1 induce resource consumption vectors that 1)
satisfy the constraints for all ¢ € [T], and 2) achieve
O(log(T)V/T) regret after T time steps. Since regret is a
well-defined metric only when the solutions are feasible
(otherwise an infeasible solution can have a higher objective
value and negative regret), we will first prove the safety of
the algorithm. Building on the intuition established in the
previous section, we formally state the safety guarantee:

Theorem 2. Let Assumptions 1 and 2 hold. Then Algorithm
I will ensure that

t
E aﬂm <cj

with probablllty at least 1 — 4.

Proof:  From (11), 7! = max ¢ e v hi(vHT0;.
Then with probability at least 1 — §, it follows that
&t > hi(v})T0; = x!. Since all aj;s are non-negative, we
have that Y 7" | ajiz < 370 aj@; < cb. This completes
the proof. [ ]

vjelpl, vtelT], (12)

1.0 4

— goly)
91(y)
0.5 1 — ga(y)
— g3(y)
0.0 T T T T T T
0 2 4 6 8 10

Fig. 2. Each element of basis function g.

According to Theorem 2, the prices set by Algorithm 1
guarantee that the users consume feasible amount of re-
sources at all time steps, i.e., the algorithm produces safe
prices. Therefore, regret is a valid metric of performance.
We next prove that the regret incurred by the prices set by
Algorithm 1 is sublinear in 7T'.

Theorem 3. Let Assumptions 1,2 and 3 hold. Then, the
cumulative regret of Algorithm 1 satisfies

TL?
Rp <nM max(LS,1)/8Tmlog [ 1+ —
my

x (o\/mlog<5(1—|—TL)> +fs>

with probability at least 1 — 6.

13)

Proof outline: We first use the Lipschitz assumption on
fi’s to put the regret in terms of the resource consump-
tion. Then the analysis proceeds similar to linear bandit
analysis such as in [21]. However, unlike the bandit case,
our algorithm is optimistic in the fotal utility of all users,
ie. S fi(&) > S0 fi(#h). As a result, our analysis
requires careful handling of the regret due to each user.

The complete proof is given in Appendix A. Accord-
ing to Theorem 3, the regret incurred by Algorithm 1 is
O(nmlog(Tn)v/T). Note that the factor of n in the regret
bound is due to the fact that the definition of regret is the
difference in total utility across all users. In fact, the average
regret over the users (Rp/n) is O(mlog(Tn)VT).

V. NUMERICAL EXPERIMENT

To validate the algorithm and demonstrate how it can
be applied, we simulate the algorithm choosing electricity
prices for the users of a small power distribution system. The
architecture of the distribution network is shown in Fig. 1.

We assume that the grid operator does not know enough
about each user to assign different h;’s to each one. There-
fore, we make the basis functions the same for all users, such
that g = h; for all 7. We use logistic-type functions for the
elements of g:

1
1+ exp((y — t)/dy)’
We use four different functions (m = 4) that represent the

price response of different classes of appliances that users
might use. These functions are shown in Fig. 2 which are

9k (Y3 tr, di,) = Vk e [m]. (14)
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Fig. 3. The cumulative regret of the Safe Price Response Algorithm
choosing electricity prices for a simulated power distribution system. The
data is averaged over 100 trials with the 95% confidence interval shown.

defined with ¢ = {9,4,4,0} and d = {0.5,0.1,1.5,1.5}.
The following list explains what the different elements of g
represent.

e go: critical appliances (basic heating, lighting, cooking)

¢ g1: non-critical appliances that will be on either entirely
or not at all (electric vehicle charging)

e go: non-critical appliances that can be used in variable
quantities (additional heating, cooling)

o g3: luxury appliances (television, gaming)

Note that each of these functions don’t represent the price
response of each appliance in isolation, rather they represent
the additional price response of that appliance given that the
more fundamental appliances are in use.

The utility functions are chosen as shifted log functions:

fz(xl) = q; log(xi + 01) Vi (15)

The shift is to ensure that the functions are Lipschitz
continuous. The value of each «; is sampled uniformly:
a; ~ UJ0.5, 1] iid Vi. The 6;s are chosen as [6}];, ~ U[0.5,1]
iid Vi, k. Also, I'; = 0.1 for all i. The noise variable
ut ~ N(0,0?) iid Vi, t, where 02 = 0.2.

Next, we discuss how the algorithm is implemented in
the simulation. First, note that f; in (15) is concave, so
(10) is convex and can be solved efficiently with any con-
vex solver (we use CVXPY [27], [28]). Additionally, note
that the price update equation in (11) can be formulated
as a scalar root-finding problem (i.e. it seeks the ~! that
yields r(v}) = maxy, i1 hi(vH)T6; — &t = 0). Since
max, i1 hi(7)T6; is a convex optimization problem,
r(7f) can be evaluated by solving a convex optimization
problem. Therefore, we calculate (11) by using a scalar root-
finding solver on 7(7!) (we use Scikit-learn [29]), and using
a convex optimization solver (we use CVXPY [27], [28]) to
evaluate 7(~}) each time it’s called by the root-finding solver.

One hundred simulations were run for 800 time steps
with different realizations of {u!}y;, for each simulation.

From these trials, there were zero constraint violations. The
average cumulative regret and a 95% confidence interval over
all simulations is shown in Fig. 3.

VI. CONCLUSION

In this work, we posed a novel safe price design problem
motivated by applications in cyber-physical systems with
humans in the loop. To address this problem, we proposed an
algorithm that first finds an optimistic consumption level and
then finds a price that will achieve that consumption level in
the worst case in terms of safety. Analysis shows that, with
high probability, this algorithm maintains safety and achieves
regret O(log(T)v/T). Additionally, a numerical experiment
demonstrates how this algorithm can be applied to a demand
response management problem for a power distribution net-
work. The numerical results from this experiment agree with
the safety analysis and regret analysis.
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APPENDIX

A. Proof of Theorem 3

Given that (10) is optimistic and Assumption 3, we have
with probability at least 1 — § that

We can then bound R/, using the standard linear stochastic
bandit analysis.

= |hs(7})(0F = 07)) (23)

= R0 = 07" + 6,71 = 0))) (24)
< s ey 18— 07 4 07— 07 s 25)
< ||hi(’Yf)||[V;*1]—

x (165 = 0, Iy + 1051 = 07 lye)
§2||hi(7§)||[vjt*1]—1 p-t

To use the bandit analysis, we need a trivial bound on 77 ;.
We know that ||h;(7})|| < L, which implies

(26)

27)

0 < hi(v)) 07 < [haCINGF I < LS, (28)
0 < hi(v})"0; < IR (YD)INIGE] < LS, (29)

so we have the trivial bound on 7} ;:
= |hi(v))"0; = (YO < LS (30)

Therefore, assuming that 7" is large enough such that 57 > 1
(for simplicity), we have that

ri < min(2)lhi(3) |2 VBT, LS) 31)
< 2max(L8, 1) min(hs() -y VB 1) (32
< 2max(LS, )VET min(Ih: ()l 101) 63
r” < 4max(L?S?,1)B" min(||h; (%)H[Vt 1]_1,1) (34)

We can use the so-called elliptical potential lemma to
bound this.

Lemma 1. (Lemma 11 from [21]) Let Assumption 1 hold.
Then,

T
S min(hi() 2,01, 1. 1) < 2mlog(L + TL/(mv))
t=1 ‘

re = Z[fz<x%(%)) — fi(a})] (16) 15
i=1 ( )
- Then, we can apply Cauchy-Schwarz on R/, to get the
< Z[fz( z) - fz(xi)] (17) bound for RT: T
n . n n T
< ) fil@) = fi(ws)] (18) Ry < MZR/Tz < MZ TZ’"Q% (36)
i=1 i=1 i=1 t=1
<M Z |Z; — x| (19) Plugging in (34) and (8) completes the proof.
i=1
=M |hi(v)"0; — hi(v})"0; (20)
i=1
Let rj; = [hi(y})" (6] — 07)] and Rip; = 32,y 7. Note
that
T n
Rr <MY Y r; @
t=1 i=1
=M> Ry, (22)
i=1
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