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Abstract—The Internet of Things (IoT) has been the key to
many advancements in next-generation technologies for the past
few years. With a conceptual grouping of ecosystem elements
such as sensors, actuators, and smart objects connected together,
complex operations like environmental monitoring, intelligent
transport systems, smart buildings, and smart cities are able to be
performed. Edge computing technology extends the reach/scope
of IoT ecosystems, offering robust and powerful computational
capabilities by connecting multiple devices through the Internet.
Unfortunately, this form of computation comes with a significant
drawback with strict energy constraints and low power efficiency,
which highly limits its potential and usage. In this paper, we
present some of the challenges in the planning of energy-efficient
IoT edge devices and discuss some of the recent research efforts
that proposed promising solutions that address these challenges.
Specifically, we first analyze the challenges and reasons for
improving the energy consumption of edge platforms and IoT
devices. Next, we perform case studies that outline the energy-
saving techniques in smart grids, smart cities, electric vehicles
(EV), smart home devices, and Virtual Reality and Augmented
Reality (VR/AR). We further discuss different approaches such
as computation offloading, edge devices hardware and software
designs, and a number of algorithms that help reduce energy
consumption. Finally, we outline possible future directions and
our vision of improving energy efficiency on edge platforms.

Index Terms—Energy Saving, Power Efficiency, Edge Comput-
ing, Internet of Things, Smart System

I. INTRODUCTION

Traditional cloud computing is becoming increasing insuf-
ficient to support the emerging applications and services such
as 5G network, IoT and embedded Artificial Intelligence (AI).
In recent years, edge computing [1] is proliferating in usage
and popularity with large amounts of edge devices such as
Electric Vehicles (EV) or smartphones in our daily lives. For
instance, recent surveys [2], [3] revealed that the number of
EVs worldwide in 2020 reached 6.8 million and the number
of mobile devices in 2020 was 14 billion. By integrating local
computing, storage, networking, and resource management
with applications, edge computing can effectively meet the
latest requirements, including real-time analytics, local control,
constrained network bandwidth, data security, etc.

Despite the benefits, there exist many unique challenges
for energy control and power efficiency in edge computing
compared to traditional cloud computing. First, the number
of existing edge devices is immense and rapidly expanding.
With new technologies, such as 5G deployment, the location
and number of edge servers are essential. Ideally, the number
of edge servers should be maximized to minimize the delay
of requests and handle spikes in network traffic, which often

introduce substantial energy usage and cost. Although the
energy usage of a single edge node is insignificant, the
overall consumption could be significant due to the scale
of the edge servers and nodes. Second, the utilization of
edges is usually low, but the energy consumption of edge
servers or nodes is non-negligible. For instance, the IoTs
deployed to control traffic lights are busy in the day while
idle at night, resulting in energy waste [4]. Additionally, the
demand for computing resources is inconsistently distributed
across the areas. Considering that deploying edge servers
typically cannot catch up with the changes of distribution
in computing resource requirements, efforts should focus on
server placement and optimization of instrument utilization
intelligently to reduce energy usage. Lastly, edge devices are
more diverse and complex in comparison to traditional cloud
computing. The runtime environment and data on each device
are different and fragmented, making it difficult to control the
energy consumption in edge scenarios. For instance, EVs and
smart buildings are complicated edge nodes that consume lots
of energy, while wearable devices and smart lights are simple
and their energy control policies could be easily deployed.
As various edge devices have their scenarios and structures,
flexible policy integrated with hardware and software should
be applied for energy efficiency.

To address the above challenges, there currently exist several
surveys analyzing edge computing and its energy efficiency.
Specifically, Khan et al. [5] performs a study discussing the
state-of-the-art in edge computing paradigm. Similarly, Abbas
et al. [6] performs a survey on mobile edge computing (MEC)
covering the entirety of edge computing and discuss topics
such as MEC advantages, architectures, and application areas.
Different from the above, this paper specifically focuses on
energy efficiency on edge computing, discussing topics includ-
ing current inefficiencies, case studies, and possible efficient
solutions. Similarly, other researchers like Jiang et al. [7]
have investigated energy-aware edge computing and provided
a systematic review on energy efficiency of edge devices and
edge servers. In comparison, the contribution of this research
provides a method for analyzing current inefficiencies and an
in-depth study of modern edge applications, and vision of
future directions in edge energy efficiency.

The rest of this paper is organized as follows. Section II
discusses with background information on edge computing and
the current limitations in energy saving on edges. Section III
performs case studies on energy efficiency of various edge
scenarios and Section IV presents in-depth discussions on en-
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ergy efficiency methods. Section V discusses future directions
and our vision of energy efficiency on edge computing, and
Section VI concludes this paper.

II. BACKGROUND

A. Edge Computing
Edge computing provides computing, storage, and network

resources at the location where the data is produced. The
traditional cloud has extensive computing power and storage
capacity and can support millions of applications and services.
However, due to resource constraints at the edge, cloud ser-
vices will inevitably be affected by high latency, bandwidth
issues, and network instability. By migrating some or all of
the processing to the edge, the impact on applications under
the cloud architecture and stress on networks can be reduced
significantly. For example, the Boeing 787 [8] produces
terabytes of sensor data each flight. If all of this data is
uploaded to the cloud, the latency and network inefficiencies
can impact decision-making and data processing. Conversely,
by deploying the computing on the edge, feedback can be
given in real-time. As most of the useless data can be filtered,
edge computing can effectively reduce the workload while
reducing resource consumption and protecting data privacy.

B. Energy Inefficiencies in Edge Computing
In recent years, there has been a significant increase in

the solutions to decentralize computing, communications, data
collection, and processing by moving from the cloud to the
edge. Therefore, power consumption and energy efficiency
become crucial factors for developing and deploying mod-
ern edge computing. However, we found that there lacks a
comprehensive study of energy efficiencies on edge platforms.
In this section, we survey existing energy optimization and
power efficiency efforts and summarize three aspects of energy
inefficiency in edge infrastructures: communicating with the
cloud, hardware, and software.

Cloud Communication Inefficiency. While edge comput-
ing is becoming increasingly powerful these years, certain
computations or tasks, such as Siri on iPhone or Alexa on
Amazon echo, are still needed to compute onto the cloud.
As a result, the transmission of data, as well as computation
between the edge and cloud, generates additional energy
consumption and inefficiencies. The first challenge faced by
edge computing is the task scheduling of the computation
offloading. Due to the geographical distribution of cloudlets,
which are small-scale cloud data centers located at the edge of
the internet, there exist difficulties when cloudlets need load
balancing while lacking centralized control. Second, due to the
variety of tasks performed by the edges and complex network
connection, including 3G, 4G, 5G, dedicated short-range com-
munication (DSRC), as shown in Figure 1, delivering the same
Quality-of-Service while controlling energy cost becomes dif-
ficult. As edge computing is distributed and interactive, trust
domains have been necessary for safe operation. To ensure
security and privacy, edge devices usually adopt encryption
technology to secure data before transmission. The necessary
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Fig. 1. The architecture of cloud edge systems

security requirement will also introduce additional computa-
tion and energy consumption to the edge platforms [9].

Hardware & Software Inefficiency. There exist many gaps
across the edge hardware and software stack. Many edge
devices, such as mobile phones, wearable devices, and EVs,
heavily rely on battery power. According to Moore’s Law, the
number of on-chip transistors doubles every eighteen months
while it might take ten years for battery manufacturers to
achieve similar growth. The traditional power optimization on
the cloud can also not be simply copied to edge computing
or IoT devices. The workloads on the cloud are usually
computation-intensive or I/O-intensive. Impertinent migration
from cloud to edge devices will widen the gap between the ser-
vice requirement and the insufficiency of edge resources. The
design principles and services of most modern applications
usually emphasize performance while ignoring energy effi-
ciency, especially for edge platforms. Despite numerous types
of hardware, there exist various software and configurations
in computing, storage, and network settings at the edge. Cong
et al. [10] found that standardized communication protocols
support many unnecessary functions of edge applications,
resulting in redundant power usage while transmitting useless
data required by HTTP transactions. Different capabilities in
wireless signals, sensors, computing, storage, etc., incur non-
negligible overhead and operation complexity, which results
in significant power usage on edge platforms.

III. CASE STUDIES OF EDGE ENERGY EFFICIENCY

Edge computing has been widely used in many scenar-
ios. This section aims at five typical applications of edge
computing, analyzes the control and challenges of energy
consumption, and discusses future possibilities and directions.

A. Smart Grid
Smart grids are a vision of a traditional power grid integrat-

ing green and renewable technologies. The smart grid is an
electricity network enabling a two-way flow of electricity and
data with digital communications technology, enabling it to
actively react to changes or issues [11]. Instead of a traditional
power grid that uses one-way energy consumption, smart grids
collect the user’s electricity usage data for analysis and adjust
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Fig. 2. Edge computing in smart grids, smart homes, smart city, electric vehicles and VR/AR

the energy plan for users based on the consumption reducing
energy waste by querying energy usage in real-time. Smart
grids can collect various signal quantities, such as voltage
and current, for real-time updates improving infrastructure
reliability, fault prediction, and rapid adjustments. The current
state of smart grids is still not optimal due to energy waste
and inefficiencies still prevalent. First, in terms of grid oper-
ations, most of the data is separated and real-time sharing is
weak. Secondly, smart meter terminals collect overwhelming
quantities of data, resulting in insufficient response times.
Third, new scenarios appear and become more complex, which
require more accurate and localized data processing to achieve
customized and intelligent management.

B. Smart Home
Smart homes can provide highly efficient human-computer

interaction, safe control, and configurable efficient functions.
Many smart home solutions exist currently such as the Ama-
zon Alexa, Apple HomeKit, and Google Home, that provide
users with a rich user experience and functions. The energy
consumption of a smart home grows with the number of
devices connected. Future Tech Lab estimated 470 devices are
connected in the upcoming smart home [12]. Three categories
are the primary source of energy consumption in a smart
home: the smart device itself, communication system, and
control system. First, smart home devices are typically on
standby 24 hours a day. For example, a smart speaker is
always collecting surrounding audio signals in a working
mode and power-consuming state. Second, smart devices are
heterogeneous, meaning the data they produce is unique and
has different exchange methods. Wired communication allows
high data transmission speed and strong anti-interference abil-
ity, but the wiring is expensive and cumbersome. In contrast,
wireless communication built on communication protocols
such as Bluetooth or Wi-Fi allows dexterous configuration,
automatic networking, and flexible management. However,
wireless and wired communications still generate additional
energy consumption during the execution. Lastly, most smart
home devices are controlled by connected smartphones or
home gateway control systems that consume additional energy.

C. Smart City
Smart cities combine urban areas with modern technology

to collect data and utilize the data for optimizations in real-
time and increase energy efficiency. Cities consume 70%
of the world’s resources and consume significant amounts

of energy due to the population growth and economic and
social activities in these urban areas [13]. Two aspects are
the main contributors to energy consumption in smart cities.
First, smart cities utilize cloud computing, edge computing,
and the IoT to connect the infrastructure with numerous
sensors, devices, and equipment smart cities require the energy
consumption is going to be immense. Second, smart cities
produce an extensive amount of heterogeneous and rich data,
and collecting, processing, and communicating this data results
in non-negligible energy consumption. To address the energy
consumption, it is necessary to formulate efficient and intuitive
standards for use in lighting, buildings, roads, etc. In the past,
city infrastructure data was sent to the cloud for processing
but with edge computing and embedded systems, the data
processing and computations can be done in real-time at the
edge and reduce energy consumption.

D. Electric Vehicle
The popularity of electric vehicles (EV) has soared over

the years with the advancement of EV technology with
the primary leaders such as Tesla. EVs use electric motors
powered by rechargeable battery packs in comparison to
combustion engines in traditional vehicles, EVs convert over
77% of electrical energy to power at the wheels while gasoline
vehicles only convert around 20% of energy stored in gasoline
[14]. The two main problems facing EVs are the short driving
range and low battery energy density. The range of EVs
is constantly increasing, but most have a limited range of
200-300 miles and charging can be a time-consuming task.
Even with the quick charging feature, it takes 30 minutes to
achieve 80% capacity [14]. Tesla has been developing their
new batteries, most recently the 4680 battery that increases the
energy density of a single cell by 5 and charging efficiency by
6 times [15]. Mullen Technologies, another EV manufacturer,
proposed a solid-state polymer battery with the potential to
increase the cruising range of EV to 1,000 kilometers [16]. In
addition, many EVs employ energy recovery technology, such
as regenerative braking, to convert kinetic energy into electric
energy in the battery during deceleration.

E. VR/AR
Virtual reality (VR) provides a 360-degree immersive virtual

world and allows users to interact with it. Augmented reality
(AR) brings elements of the digital world into the real world,
allowing users to conduct real-time 3D interactions. The algo-
rithms built for VR and AR applications consume a significant



amount of energy [17]. VR headsets also need to maintain
a latency of fewer than 20 milliseconds to prevent users
from becoming dizzy [18], and with the real-time computing
and performance requirement for complex visuals, the energy
consumption is high. To reduce energy consumption scientists,
researchers, and companies have implemented chip, display,
and software optimizations. Meta’s Oculus Quest 2 uses the
Qualcomm Snapdragon XR2 processor extending battery life
by 2 to 3 hours and featuring a Video Analysis Engine
dedicated for computer vision [19]. InifniLED, owned by
Oculus VR, developed an Inorganic LED Display, a low-power
energy-efficient display, for VR with a 40 times reduction in
power consumption [20]. Meta’s research department devel-
oped a graphics rendering system based on neural networks
called DeepFovea that uses high-resolution fields of vision for
areas where the vision is concentrated and pixel downgrades
peripheral images [21].

IV. ENERGY EFFICIENT METHODS

In this section, we surveyed the state-of-the-art techniques
and efforts to address the energy inefficiency of the above
scenarios and categorized them into three groups: computation
offloading, energy-saving designs in hardware, and energy-
saving features in software.

A. Computation Offloading
Energy Efficient Offloading. Edge computing is con-

strained by the lack of powerful processing power due to its
compact form, computation offloading can be employed to
efficiently offload to the cloud or other edge servers or nodes
to improve energy efficiency. Bi et al. [22] introduced an
energy-optimized partial computation offloading for mobile-
edge computing using a genetic simulated-annealing-based
particle swarm optimization. Zhang et al. [23] proposed
an energy-efficient computation offloading technique for 5G
heterogeneous networks to optimize computation offloading
allocation strategies and radio resource allocation. Huang et
al. [24] introduced an energy-efficient offloading for mobile
edge computing in vehicular networks using a Lyapunov-based
dynamic task offloading decision algorithm.

Partial Offloading. Computations are not required to of-
fload entirely, and partial offloading can be employed and
is quickly becoming the most common offloading technique.
Wang et al. [25] introduced a partial computation offloading
technique in mobile edge computing using dynamic voltage
scaling, by employing a latency-optimal partial computation
offloading algorithm and an energy-optimal partial computa-
tion offloading algorithm they successfully minimized energy
consumption and energy usage. Ning et al. [26] proposed a co-
operative partial offloading solution for IoT devices, in which
they designed an iterative heuristics mobile edge computing
resource allocation algorithm that improves upon present
schemes in the areas of latency and offloading efficiency.
Saleem et al. [27] considered a device-to-device mobile
edge computing offloading scenario where either devices or
servers nearby can be used for offloading, by applying a joint

partial offloading and resource allocation scheme they reduced
latency and energy usage.

Intelligent Offloading. To further optimize offloading AI,
machine learning (ML), and Deep Learning (DL) can be
employed to strategically offload computations based on re-
source or network constraints. Yu et al. [28] developed a
deep supervised learning method for mobile users in which
network conditions, local overhead, and application are used to
calculate the optimal offloading method reducing system cost
by 15.69% in comparison to total offloading. Ning et al. [29]
employed an intelligent offloading system for vehicular edge
computing by dividing up the joint optimization problem into
subproblems they can use a two-sided matching approach for
scheduling offloading requests and a Double Deep Q-Network
algorithm for the resource allocation. In smart cities, IoT, Xu
et al. [30] presented an intelligent offloading method in which
they develop an offloading algorithm using an ant colony
optimization approach to minimize service response time,
optimize energy consumption, and maintain load balancing.

B. Energy Saving Designs in Hardware
System on a Chip. System-on-a-Chip (SoC) designs are

being adopted to reduce energy waste and inefficiencies in the
hardware of edge devices. Apple began using the M1 chip
and more recently the M1 Max and M1 Pro chips, a SoC
to improve performance and energy efficiency that features a
unified memory architecture and all computing components
on one chip [31]. The M1 Pro and M1 Max can achieve
70% less power usage while being 1.7⇥ faster than an 8-core
Intel chip with the same power level [32]. ARM Holdings
developed a SoC, big.LITTLE, that utilized a “big” processor
for computation heavy workloads and a “little” processor for
less intensive computing with energy efficiency in mind [33].
Qualcomm’s latest mobile platform processor, the Snapdragon
888 5G, is based on the ARM Holdings Cortex-X1 [34] and
uses Kyro 680 CPU, Adreno 680 GPU, and Hexagon 780
processor to achieve an efficient SoC [35].

Domain-specific Chip. Domain-Specific System-on-a-Chip
(DSSoC) can increase the energy-efficiency of specific domain
computation by orders of magnitude compared to the general
processors. Qualcomm’s APQ8096SG is a processor directed
at IoT applications such as VR due to its small form, perfor-
mance, and power efficiency [36]. Nvidia claims their mobile
chip the Tegra X1 is their most advanced mobile processor
with performance 13 times better than a 2015 Apple TV
and features a 256 core GPU and 4-core 64-bit CPU [37].
Mobileye develops technology for self-driving and advanced
driver-assistance vehicles and their latest processor is the
EyeQ5 which supports fully autonomous vehicles. Can achieve
performance efficiency due to proprietary computation cores,
named accelerators, that are optimized for computer-vision,
signal-processing, and machine-learning tasks [38].

Memory and Networking. 5G is the latest generation of
mobile networks and is becoming heavily adopted into edge
devices such as mobile phones. 5G allows higher network
speeds, improved reliability, and less latency while consuming



a fifth of energy for a single bit compared to 4G [39]. Wen et
al. [40] proposed a hardware-accelerated memory manager
with data placement data migration policies for use in future
mobile hybrid systems achieving a 39% reduction in energy
usage and only a 12% loss in performance. Samsung devel-
oped the next-generation mobile device RAM, LPDDR4X,
with 17% less power usage, 15% performance increase, and up
to 12GB of storage in a compact form. In addition, a new gen-
eration of Bluetooth chips (e.g., Nordic nRF52811) and ultra-
wideband chips (e.g., Apple U1) can also bring low power
consumption, high bandwidth, and simple communication to
wireless interfaces and personal LAN access.

C. Energy Saving Features in Software
Operating Systems. Operating systems can restrict power-

ful and efficient hardware if it is not optimized. Specifically,
Apple’s iOS and Android have been optimized over the years
to properly utilize the efficient hardware and software. Apple
can achieve efficient hardware-software integration in their
devices and push developers to create efficient applications
on the app store due to creating a homogenous ecosystem
[41]. Android and iOS both contain a low power mode
feature that allows users to limit battery drain by limiting
certain features such as cellular data usage and throttling
performance. iOS utilizes several energy-saving technologies
including intelligent app management, network operation de-
ferral, task prioritization, and developer tools. Intelligent app
management allows the system to place apps that are not
being interacted with by placing them into a background state,
similarly, task prioritization prioritizes tasks that affect the
user over background tasks. Network operation deferral allows
developers to designate a network operation deferral through
APIs and the system then defers the network operation until
an energy-efficient time. Lastly, Apple has developer tools
in Xcode to help application developers find and fix energy-
inefficient problems before they affect users [41].

Algorithms. Algorithms can be utilized alongside operating
systems to reduce potential energy offloading transmissions or
performing computations. Li et al. [42] proposed a particle
swarm optimization energy-aware edge server placement al-
gorithm that can reduce more than 10% energy consumption
and over 15% improvement in computing resource allocation
compared to other algorithms. Zhu et al. [43] presented a task-
scheduling framework reducing the number of task-switching
times and active tasks resulting in efficiency over 98% in
most cases. Xu et al. [44] proposed an adaptive differential
evolution algorithm for energy control frameworks to calculate
the optimal load pattern and corresponding energy storage
capacity of battery energy storage systems.

V. VISION & FUTURE DIRECTIONS

The high energy consumption of edge computing not only
causes waste of power and unstable system operation but
also harms the environment and social security. The energy
consumption management of edge computing platforms is still
in its early stage, and there are still many problems that need

to be further studied. In this section, based on the analysis and
summary of existing technologies, we propose several future
directions worthy of further research.

Virtualization on Edges. The rapid development of vir-
tualization technology provides new solutions to the energy
management of edge computing. Virtualization has advantages
in resource consolidation, online migration, isolation, high
availability, flexible deployment, and scalable management.
For example, through virtualization, multiple workloads are
integrated on the same node through consolidation, and idle
physical edge nodes could be shut down to achieve energy
saving. In recent years, lightweight virtualization such as
containers [45], [46] and serverless systems can further realize
fine-grained resource management, dynamic migration, and
load balancing to reduce power consumption.

Collaborative Energy Management. At present, the in-
tegration of energy consumption management at different
layers, such as the hardware layer and the operating system
layer, to achieve fine-grained energy consumption manage-
ment, is receiving more attention. The energy-saving of multi-
dimensional resources is also a hot research direction in recent
years. Most of the current work only considers the energy
saving of computing resources, and rarely involves other en-
ergy saving such as storage resources (including file systems)
and network resources. Different system components and
layers, such as processor, operating system, application layer,
etc., provide their energy management strategies. Additionally,
different manufacturers will also have their power control
mechanisms. How to coordinate these energy management
designs and solutions at different levels or from different
sources to maximize energy-saving performance is an issue
that needs to be resolved.

Accurate Measurement & Modeling. To achieve efficient
energy management and control, it is important to imple-
ment richer energy consumption monitoring and measurement
methods at the hardware and software layers and to provide
raw data in a timely and accurate manner. For example, the
energy consumption of various hardware is different. The
energy consumption model of the CPU depends on multiple
factors, such as the activity of the processor subunits and the
execution of specific instructions. The study of the memory
energy consumption model found that the main factor affecting
its energy usage is the memory read and write throughput. In
addition to the energy consumption model, we also need to
establish a multi-factor driven and lightweight system to trace
overall energy consumption that can predict energy hot spots,
indicate trends and find a causal relationship.

Personalized Energy Saving. In an edge computing envi-
ronment, workloads are diverse, and their resource and energy
efficiency requirements are also different. Meanwhile, the
software and hardware system runtime environments are also
significantly disparate. How to use ML and AI technology to
dynamically apply personalized energy-saving solutions based
on existing conditions is also an interesting question.



VI. CONCLUSION

The potential of edge computing appears to be great as
an evolving technology being applied to various new and
existing industries. However, the energy consumption of edge
computing has always hindered its advancement. In this paper,
we introduced the energy efficiency of edge computing and
discussed the current limitations in energy saving on edges.
We presented case studies where we analyzed edge scenarios
including smart grids, smart homes, smart cities, EV, and
VR/AR. Existing efforts such as computation offloading, effi-
cient software, and advanced hardware that is applied by the
researchers are discussed based on thorough analysis. Based
on the above, this paper proposes future directions worthy
of further research from the four aspects of virtualization,
collaborative energy management, precise measurement and
modeling, and individualized energy saving. Since the energy
consumption research of edge computing is still in the early
stage, we hope this research could shed light on other re-
searchers to make breakthroughs in this area.
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