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Abstract— In this paper, we present an approach that enables

long-term monitoring of biological activity on coral reefs

by extending mission time and adaptively focusing sensing

resources on high-value periods. Coral reefs are one of the most

biodiverse ecosystems on the planet; yet they are also among

the most imperiled: facing bleaching, ecological community

collapses due to global climate change, and degradation from

human activities. Our proposed method improves the ability of

scientists to monitor biological activity and abundance using

passive acoustic sensors. We accomplish this by extracting

periodicities from the observed abundance, and using them

to predict future abundance. This predictive model is then

used with a Monte Carlo Tree Search planning algorithm

to schedule sampling at periods of high biological activity,

and power down the sensor during periods of low activity.

In simulated experiments using long-term acoustic datasets

collected in the US Virgin Islands, our adaptive Online Sensor

Scheduling algorithm is able to double the lifetime of a sensor

while simultaneously increasing the average observed acoustic

activity by 21%.

I. INTRODUCTION

Observing phenomena over long time periods in remote
environments, such as in space or underwater, is a chal-
lenging problem. The environments’ remoteness makes it
difficult to deploy robots or to recover them. Consequently,
any robot deployed for one of these sensing tasks must
maximize its own sensing effectiveness given its limited
available resources. The primary resource constraint is typi-
cally battery power, which limits the total number of observa-
tions a robot can collect over the course of its deployment.
Temporarily shutting down non-essential systems, such as
sensors, decision-making computers, and actuators allows
robots to conserve power [1], [2], prolonging mission du-
ration. However this comes at the cost of missing potentially
valuable observations. By intelligently selecting when to
emerge from hibernation, a robot can extend its sampling
time without sacrificing the quality of the samples obtained.
In this paper we focus on this problem of adaptive sampling
of a time-varying phenomena, motivated by the challenge of
monitoring biological activity on coral reefs.

Coral reefs are one of the most biologically productive
areas on the planet, home to over 25% of all marine
species [3]. However, they are also among the most fragile.
Reef biodiversity and overall health is facing devastating
recent degradation from such stressors as ocean warming,
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Fig. 1: The Visual-Acoustic Sensor Emplacement (VASE). The camera
and acoustic data collected by VASE is processed in realtime to compute
bioactivity measures. The system then adaptively make decisions about
when to put the sensor in a low-power sleep mode, while optimizing the
total observed bioactivity.

overfishing [4] and ocean acidification [5]. Thus it is critical
to identify and track reef health and biodiversity in order
to understand the efficacy of marine protected areas, help
prioritize and manage reefs under threat, and identify the
states to which reefs will need to be restored [6]. Tracking
coral reef health and biodiversity through time requires
measurements of the abundance and biological activity of
organisms present on or within a reef [7]. Traditionally,
these measures are computed by hand, using human divers
swimming along coral reefs. However, this is a costly and
labor-intensive approach. One promising alternative is to use
sensors deployed on reefs to collect long-term datasets. Since
many reef organisms are sonically active, passive acoustics
is a potentially powerful tool for reef monitoring, however
current analyses of passive acoustic data are limited in their
ability to measure biodiversity from acoustic data since large
gaps remain in our understanding of which acoustic signals
are produced by which species, particularly among fishes [8].

To fill in this gap, larger and richer datasets are required
that augment acoustic data with other sensors that can better
characterize biodiversity. One sensor capable of produc-
ing these datasets is Visual-Acoustic Sensor Emplacement
(VASE), shown in Fig. 1. VASE simultaneously records
camera imagery and acoustic data, building datasets that can
more directly measure biological activity on reefs. Due to its
increased sensor payload, VASE consumes more power than
traditional hydrophone recorders. Consequently, to improve
VASE’s ability to monitor coral reefs, new methods are
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needed that will enable it to conserve energy and focus
observations only during periods of high activity when it
is more likely to simultaneously observe fish visually and
acoustically.

The problem of selecting observation periods that maxi-
mize the number of fish VASE’s camera is expected to cap-
ture while respecting the constraints imposed by the limited
battery power is an online version of the Sensor Scheduling
Problem (OSSP) [9]. We assume that the biological activity
evolves as a periodic function of time. There are strong
priors on certain periods, such as diel and tidal cycles for
coral reef biological activity that could be used to inform
the sampling schedule [7]. However, such a fixed approach
may limit the ability of VASE to target high-value times,
since a fixed sampling schedule may introduce aliasing of
other frequencies.

The primary contribution of this paper is a novel frame-
work for informatively sampling a periodic time series.
Our approach requires no prior data, instead it learns the
periodicities of an intermittently sampled function online,
and adapts a sensor’s sampling behavior to spend its energy
budget more efficiently by focusing on periods of high-value
observations. We demonstrate our approach using time series
data collected over long-term hydrophone deployments in the
US Virgin Islands.

II. RELATED WORK

A. Acoustic Monitoring of Biological Abundance
The widespread distribution and isolation of many habitats

found along secluded coastal areas, reefs, seamounts and
insular habitats can make traditional approaches to biologi-
cal monitoring logistically difficult and expensive. Research
cruises often result in high ship time costs and typically allow
only intermittent and limited opportunities for assessing the
conditions at many sites [10]. Moored instruments capable of
measuring a wide range of environmental parameters, such as
surface and subsurface temperatures, salinity, wave energy,
and current flow provide measures of the physical habitat,
but do not obtain data directly about the biological activity
taking place at a location. As a result, many significant
ecological events, such as disease outbreaks, episodic infesta-
tions (e.g. harmful algal blooms), reactions to climate change
(e.g. massive coral bleaching), and the effect of storms, oil
spills and poaching often occur undetected, complicating the
interpretation of long-term monitoring data.

An emerging area of study uses hydrophones to listen to
the reef ”soundscape”, as a more direct measure of biological
activity on the reef. This is because sounds present in
many marine habitats can be an effective indicator of many
biological processes, such as spawning events [11], feeding
[12], and social communication [13] among many species of
fish, invertebrates, and aquatic mammals. Passive acoustics
sensors have now been applied on a variety of habitats to
track differences in reef health, fish abundances, coral cover,
human presence, and related parameters [7], [14]. However,
these acoustic recorders, like many robots, rely on a self-
contained battery to provide power.

B. Irrevocable Decision Making
Many problems in robotics, particularly ones in time-

varying domains, contain elements of irrevocable decisions
[15], [16], [17]. An irrevocable decision is one that once
made, cannot be revised, through returning and selecting
a different alternative. Perhaps the best known irrevocable
decision problem is the Cayley-Moser problem [18], often
called the hiring problem or secretary problem, where a
manager is presented with a sequence of independently
and identically distributed (IID) candidates with differing
qualifications for a position. The manager’s goal is to select
the most qualified candidate. In the classical version of the
problem, a near-optimal algorithm exists, that selects the
best candidate with probability 1/e [19]. Many variants of
this problem exist, such as selecting the k most qualified
candidates [20], [21], selecting candidates with different
associated costs [22], or selecting candidates when the candi-
dates do not appear according to a uniform distribution [23].
The problem that we consider differs from the versions of
the Cayley-Moser problem in several key ways. The first of
these is that we, like Flashpohler et al. [23], do not assume
that the samples we may observe appear IID, but instead
vary according to a periodic function. Additionally, we go a
step beyond the work presented in [23], and do not assume
prior knowledge of the period of the function of interest.

C. Spatiotemporal Monitoring
The OSSP can also be thought of as a monitoring problem,

similar to the informative path planning problem, where the
goal is to plan a set of observation windows that maximizes
the total utility of the resultant observations. In the case
where the biological utility function is known, this reduces to
a sensor placement problem, similar to the optimal stopping
problem explored in Best et al. [16]. Since we do not know
the value of the biological utility, and instead it is only
revealed through observations, we require a different and
online planning approach.

A common approach to spatiotemporal monitoring is to
use a Gaussian Process to compile the set of observations
collected by a robot into a time-varying belief of the state
of the world [24], [25]. One of the primary challenges
with this approach is that many of the common Gaussian
Process kernels (e.g. squared-exponential or Matèrn) struggle
to extrapolate the behavior of the latent function beyond the
set of observations [25]. One notable exception is the peri-
odic kernel [26] that, with correctly tuned hyperparameters,
can achieve good predictive performance while extrapolating
beyond observations [27]. However, many of the approaches
to time-series modelling which incorporate periodicity rely
on prior knowledge of the period, or seasonality, of the signal
[28], [29]. For monitoring previously unobserved processes,
this prior knowledge cannot always be guaranteed. While the
periodicity hyperparameters can be estimated online using
the observed data with maximum a posteriori methods, this
process is computationally expensive (O(n3)), and generally
relies on good prior estimates to find the global maximum
parameters. Fortunately, the frequency-domain analysis of
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time series data provides an alternative. The Fourier Trans-
form, and its variants, allow us to decompose a periodic
time series signal into a set of component frequencies and
intensities with a complexity of O(n log n) [30]. There
are two approaches to including the Fourier transform in
developing GP kernels, by either directly transforming the
GP hyperparameters into the frequency domain [31] or
constructing a composite kernel with automatically detected
frequency components [32]. However, the application of
these approaches has been limited to time series prediction,
and to the best of our knowledge have not been applied to
any realtime monitoring task.

III. PROBLEM FORMULATION

We can formulate the Online Sensor Scheduling prob-
lem as a Partially Observable Markov Decision Process
(POMDP). A POMDP is fully defined by a set of states,
S , set of actions A, a conditional state transition function,
T (s, a, s0), a set of observations, ⌦, and the conditional
probabilities of making each observation O, and a reward
function R(·) [33].

• State: The OSSP state is comprised of four elements:
the current time, t, the amount of biological activity
in the environment, f(t), the robot’s binary state st 2
[sleep,wake], and the amount of battery remaining Bt.
Three of these components: t, St, and Bt, are fully ob-
servable by the robot, while knowledge about biological
activity can only be gleaned by making observations.

• Actions: The robot has two actions observing and
sleeping. Each action has an associated cost Cobs and
Cslp where 0 < Cslp << Cobs.

• State Transition Function: The known components of
the state, t, St, and Bt, transition deterministically with
each action. Taking the sleep or wake action adjusts
the robot’s internal state to the respective sleeping
or observing state, while deducting the action’s cor-
responding cost from the available remaining battery
power. While the state transition function for f(t) is
unknown to the robot, we do assume it takes a periodic
form with unknown frequency components.

• Observations: The robot is able to make noisy ob-
servations of f(t) using its hydrophones. The noise is
assumed to be Gaussian, with a mean centered on f(t).

• Reward: To enable the scientific objective of measuring
acoustic activity at a coral reef, we use a sum-of-activity
reward function for an action sequence, A given by

R(A) =
X

at2A
f(t)⇥ 1(at), (1)

where 1(·) is the indicator function with a value of 1
when at is to sense, and 0 when at is to wait. This
function rewards the robot for observing high levels of
biological activity, maximizing the chances of observing
rare species on the reef.

The unique challenges of the OSSP are captured by the
state transition function, T (s, a, s0). As discussed in Sec-
tion II, the problem that we address in this paper shares the

constraint of irrevocable actions with the optimal stopping
problem and the hiring problem. Since time is a component
of our POMDP state, the robot can never return to a previous
state, once the decision to take any action is made, the
decision can never be repeated. The second key aspect of
T (·) is the assumption that the transition of f(·) is periodic.
We will show how this assumption can be exploited in
Section IV-B to improve the robot’s belief estimation. The
final component of T (·) that we would like to highlight
is the relationship between the action cost and the overall
mission budget. This type of budget constraint is all too
common in field robotics applications. Here, it imposes a
knapsack constraint on the optimal action sequence. Since
both actions have nonzero cost, there is a direct trade-off
between maximizing the total number of sensing actions and
delaying sensing to higher-value periods of time.

IV. METHOD

The solution to the POMDP outlined in Section III is
the action sequence, A that maximizes the reward given by
Equation 1. Computing the exact solution to any POMDP is
PSPACE-hard [33], and so instead of solving it directly, we
choose to adopt a receding horizon approach, where at each
decision point, we estimate f(·) using the observations in O.
Since f(·) is the only unknown component of the POMDP,
we can use the estimate, f̂(·) to construct a more tractable
MDP, which can then be solved.

There are three main components to our acoustic monitor-
ing method. The first of these is the acoustic observation
processing pipeline itself, which allows us to compute a
bioactivity measure using the raw acoustic data collected
by the sensor’s hydrophones. The second component is the
belief modelling which uses a periodic Gaussian Process
to extrapolate the bioactivity time series into the future.
The final component is the temporal planning algorithm
that performs the action selection to maximize the POMDP
reward function.

A. Biological Activity Estimation from Acoustics
The first step in conducting acoustic monitoring of coral

reef activity is finding an activity measure which can be
easily calculated from an acoustic time series. Multiple
field studies have found that observations of coral reef fish
density and diversity correlate with recorded sound levels
at low frequencies and that these sound levels vary over
daily and seasonal timescales [34]. Higher frequencies tend
to be dominated by sounds of certain invertebrates, such
as snapping shrimp, and are less useful for fish biodiver-
sity monitoring purposes. Accordingly, in developing our
acoustic monitoring approach we choose to use root-mean-
square sound pressure levels (SPLrms) calculated across a
low-frequency (100-2000 Hz) ”fish band” as a time-varying
metric of reef biological acoustic activity [7]. This metric
is useful, but limited by its inability to easily distinguish
biological activity from other sources of low-frequency noise,
such as boat traffic or rain. In practice this noise would
be post-processed and removed manually by trained experts.
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Fig. 2: The proposed Auto-Periodic Gaussian Process predictions with 10, 40, and 70% of the data in the Jan. 2020 Tektite Reef dataset. As the APGP gains
more observations, it is able to more accurately predict the period and phase of the periodic acoustic activity. The lower figures show the corresponding
estimations of the Power Spectral Density. With fewer observations, the Lomb-Scargle method is still able to identify the true periodicity of 1 daily cycle.

However, since our system is utilizing this data in real-time
without surface communications, relying on human annota-
tion is impossible. While it may be possible to automate the
detection of anomalous events, it is beyond the scope of the
work presented here.

B. Predicting Future Activity

To reduce the POMDP outlined in Section III to a tractable
MDP, we use a Gaussian Process (GP) to predict the future
behavior of the acoustic activity time series. GPs are a
widely-used tool for estimating the value of environmental
processes [24], [25]. A GP is defined by a mean function,
typically assumed to be zero, and a kernel function K(x, x0)
which defines the covariance of any two points, x and x

0,
in the GP’s domain. Many commonly used kernels, such as
the Matérn or Squared-Exponential kernels [26] use a length-
scale parameter to define the correlation between two points.
However, these kernels have poor extrapolative performance
beyond the set of observations, since they regress to the mean
function in the absence of data [25]. Instead, we choose to
model the time series using the periodic kernel,

K(x, x0) = �
2 exp

 
�2 sin2(T ⇥ (x�x0

2 ))

`2

!
, (2)

with periodicity controlled by the parameter T . As Tompkins
and Ramos [32] showed, setting this parameter correctly is
of critical importance to achieving good accuracy in time-
series predictions. However, the method they propose to
allow these parameters to be learned online relies on a
Fourier periodogram. One of the major assumptions of all
Fourier-based frequency analysis techniques such as FFT
is that T consists of samples spaced uniformly in time.
However, one of the main goals of the VASE system is
to intermittently sample the signal of interest, preserving
battery power by only sampling when we expect to be able

to collect high-value observations. For many applications
where the skipped sampling is a relatively small portion of
the total number of samples, approximation methods such
as interpolation or averaging may be sufficient to restore
the even-spacing assumption. Since our approach involves
skipping a significant portion of the time series, we require
an alternative approach.

To overcome the problem of estimating periodicity from
irregularly sampled data, we propose the use of Lomb-
Scargle Power Spectral Density [35], [36]. The Lomb-
Scargle method uses a least-squares approach to compute
the fit of individual sinusoids across a set of candidate
frequencies F = {f1, f2, ..., fn},

y(t; f,Af ,�f ) = Af sin(2⇡f(t� �f )), (3)

For each candidate frequency, the amplitude, Af , and phase,
�f are chosen based on a least-squares fit to the observed
data minimizing

�̂
2(f) ⌘

X

n

(yn � y(tn; f,Af ,�f ))
2 (4)

Finally the periodogram is computed by

P (f) =
1

2
(�̂2

0 � �̂
2(f)). (5)

To choose the range of frequencies, F , over which to
evaluate the Lomb-Scargle periodogram, we use the set
of positive frequencies over which the standard Fourier
periodogram could be computed,

F ,

0,

1

d⇥ n
,

2

d⇥ n
, ...,

n

2d

�
, (6)

where d is the minimum spacing of samples in T , and n =
b(max(T )�min(T ))/dc.

To select T for the GP kernel, we rank the peaks of the
Lomb-Scargle periodogram by topographic prominence, the
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difference in height between each peak and the highest saddle
point on each side [37]. We select the k most prominent
peaks, and the resultant Auto-Periodic kernel is defined as

KAP (x, x
0) =

kX

i=0

�
2
i exp

 
�2 sin2(Ti ⇥ (x�x0

2 ))

`2i

!
. (7)

An example of the Auto-Periodic kernel Gaussian Process
(APGP) is shown in Fig. 2.

C. Receding Horizon Sensing Scheduling

The final component of our Online Sensor Scheduling
algorithm is the planner that takes a belief at the current time,
t, and the robot’s state, including the remaining battery, and
plans an optimal action sequence that maximizes the reward
function given in Equation 1. This problem can be formulated
as a Markov Decision Process with Time-Varying Rewards
(T-MDP). The state space, action space, and state transition
function are identical to those of the POMDP outlined in
Section III. The key difference is in the T-MDP the reward
function is known; it is the APGP belief constructed from
the robot’s observations. To solve the T-MDP, we chose to
use Monte Carlo Tree Search (MCTS) [38]. The MCTS
algorithm explores a robot’s action space through biased
random sampling, trading off between exploring new action
sequences and exploiting previously-sampled high-quality
action sequences. At each iteration of the MCTS planner,
the MCTS tree is expanded by sampling action sequences
using the Upper Confidence Bound for Trees metric [38],
and a rollout function to expand the action sequence to
the full available budget by means of a heuristic rollout.
The full rolled-out sequence is then evaluated according to
Equation 1, and the reward is backpropogated up the tree,
adjusting the expected reward of each node in the action
sequence according to the reward of the sampled sequence
and number of times each respective node in the tree has
been sampled. This process is repeated for a fixed number
of iterations. In our implementation we used n = 10, 000.
MCTS has several properties which make it desirable for
our realtime field application. First, MCTS is an anytime
algorithm, which enables us to directly trade off the amount
of computation available to the planner with the quality of the
resultant plan. Second, through the rollout function, MCTS
only evaluates full action sequences. For nonmyopic planning
problems, like the OSSP, this helps MCTS more fully explore
the action space of the robot, leading more quickly to high-
quality plans.

Pseudocode for the full Online Sensor Scheduling algo-
rithm is shown in Algorithm 1. At each loop through the
algorithm, if the robot is awake, it observes the world,
constructs its belief, then plans an action sequence using
that belief. It then executes the next step in that plan.
Since no replanning occurs while the robot is asleep, the
robot will sleep for the full duration planned by the MCTS
planner before awakening, observing, and continuing with
new information. While a plan with no wake actions would
result in the robot completely draining its battery without

Algorithm 1 Online Sensor Scheduling
1: function OSS(Bmax, k)
2: t 0, S0  Sense, B0  Bmax, T  ;
3: while Bt > 0 do

4: if St == sleep then

5: Bt+1  Bt � Cslp

6: else if St == wake then

7: Bt+1  Bt � Cobs

8:  t  ObserveAcousticPower()
9: T  T [ (t, t)

10: KAP  Lomb-ScargleKernel(T ,F(T ), k)
11: bel GP(T ,KAP (·, ·))
12: Â MCTS(St, bel, Bt+1)

13: St+1  St + Ât

14: t t+ 1

waking, Equation 1 would give such a plan would have
a reward of zero. Therefore it would not be chosen over
any other plan with nonzero reward. An example of the
behavior of Online Sensor Scheduling algorithm is shown
in Fig. 3. Initially, the algorithm has only one observation
to work with, and so it plans to sample densely based on its
uniform belief. However, as more observations are collected,
the APGP belief becomes more accurate, and the planner is
able to create a sampling schedule that focuses only on the
high-value peaks of bioactivity.

V. RESULTS

A. Datasets

We tested our approach using datasets collected from
three coral reef sites on the island of St. John, U.S. Virgin
Islands. The sites are referred to as Tektite, Yawzi, and
Cocoloba reefs. Local biological activity among the three
sites is known to vary: Tektite reef has the highest levels
of hard coral cover (25%) and the highest fish abundances
determined from manual surveys, Yawzi has the second
highest (15% coral cover) and Cocoloba the lowest (9%
coral cover). Time-series acoustic data were collected using
SoundTrap ST-300 single-channel acoustic recorders that
sampled the reefs on a 10% duty cycle, with one minute of
audio recorded every 10 minutes, between November 2019
- August 2020. Recordings from the months of January,
March, May, and July 2020 were calibrated post-hoc ac-
cording to the manufacturer’s specifications with hydrophone
sensitivities ranging from 176.4 – 178 dB re 1 V/µPa. The
calibrated data were subsequently filtered to 100-200 Hz
using an 8th order Butterworth bandpass filter and SPLrms

values were calculated across each 1 min file. Acoustic
activity at all three sites was variable over diel timescales.
Dawn and dusk peaks in low-frequency sound were evident
and thought to be reflective of increased crepuscular calling
activity by soniferous fish. Each reef time series has been
divided into four one-month datasets with activity averaged
over one-hour intervals, used for statistical analysis.
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Fig. 3: Demonstration of the OSS planner on the Jan 2020 Tektite Dataset. APGP model uses 1 frequency component. Times shown are the initial belief
and plan T = 0, the plan at 50% of budget expended, and the final sensing schedule. The upper images show the belief over time. Initially, with only one
datapoint, we just predict a constant function, however we quickly learn the periodicity and use it to produce plans that target high-value peaks.

Fig. 4: Root Mean Square Error (RMSE) in units of normalized bioactivity
for the APGP prediction on the January 2020 Tektite Reef dataset. As
additional data is used to train the APGP (horizontal axis), the prediction
accuracy decreases but with a periodic trend. The peak in RMSE between
90 and 95% data used is due to the anomalous spike in activity observed
on January 7th, which can be seen in Fig. 2.

B. APGP Predictor

The first set of experiments we performed focused on
evaluating the performance of the Auto-Periodic kernel
Gaussian Process (APGP). Particularly, we were interested
in quantifying the predictive accuracy of the APGP with
varying amounts of training data. The results from this
experiment are shown in Fig. 4. The APGP lengthscale and
process variance hyperparameters, �2, and ` in Equation 7
were both set to 1, and k = 1 frequency component was used.
The evaluation metric is Root Mean Square Error (RMSE)
on the portion of the dataset not used for training. Intuitively,
the overall error decreases as more data is used for training,
particularly within as T grows to contain the first period of
the bioacoustic signal. However, one unexpected result from
this experiment is a periodic component to this decrease. This
trend is a result of the periodogram analysis. Since spectral
analysis assumes an infinitely repeating periodic signal, we
observe the local minima in error when the observed portion
of the dataset is an integer multiple of the dataset’s period.

In the same experiments, we also tried randomly removing

some portion of the dataset, varying from 0% to 50% of the
observations. The intent of this was to simulate the loss of
data due to the intermittent sampling in the OSSP planner.
However, we found that this random dropout had little to no
effect on the overall predictive accuracy. We attribute this
to the fact that even with 50% of the observations removed,
the signal is still relatively densely sampled compared to the
true period. This fact allows the Lomb-Scargle periodogram
to correctly identify the true periodicities in the signal, and
maintain high predictive accuracy.

C. OSSP Performance
The second set of experiments we performed were to eval-

uate the performance of the entire Online Sensor Scheduling
framework. For these experiments, results are aggregated
over all 12 of the calibrated USVI acoustic datasets. We
compare the performance of our approach to the standard
approach of continuous sampling on two metrics: the per-
centage of total acoustic activity observed by the robot and
the total deployment time before the battery is run dry.
Unless otherwise noted, we simulate a battery with enough
capacity for 144 hours (6 days) of continuous sampling. We
use a sleep cost ratio of Cslp/Cobs = 2%, and stop the
MCTS planner after 10,000 iterations.

We compared the performance of our Auto Periodic Kernel
using the Lomb-Scargle periodogram, to a kernel constructed
with the Fourier periodogram using the FFT algorithm as
described in [32]. On average, the planner using the Lomb-
Scargle belief outperformed the Fourier kernel and the base-
line approach on the acoustic activity metric with an average
improvement of 21% over the baseline and 19% over the
Fourier Kernel. This is a result of the emergent interaction
between the reward maximization sampling policy given
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Fig. 5: Performance increase over the baseline method for our Online Sensor
Scheduling Algorithm for varying numbers of frequency components (k).
Due to the difficulty of accurately identifying the periodic components with
missing observations, the Fourier Periodogram APGP does not produce a
significant increase in observation quality.

Fig. 6: Increase in observation time using our Online Sensor Scheduling
algorithm over the baseline. The Fourier Periodogram APGP tended to over-
sparsely sample the bioactivity, leading to much longer mission times, but
at the cost of reduced reward.

perfect knowledge of the signal, and the optimal sampling
policy for resolving the signal for Fourier analysis. To
resolve a signal with period T , we need to sample above
the Nyquist Frequency of 2/T . However, to maximize the
POMDP reward, we want to only sample at the peaks of the
signal, a period of T . This makes it impossible to actually
resolve the true periodicity using Fourier analysis, leading
to poor belief estimates. While the Lomb-Scargle approach
does also suffer from these competing needs, its least-squares
approach is better able to leverage a small set of dense
sampling to fit the overall periodic signal. Both signals
achieved intermittent sampling behavior, with the Lomb-
Scargle kernel doubling the sampling mission duration, and
the Fourier kernel increasing it by 175%. However, we found
that the Fourier approach samples over-sparsely, which leads
to longer mission durations, but no corresponding increase
in observed activity over the baseline.

We also compared the Lomb-Scargle Auto Periodic Kernel
with the Fourier kernel across different numbers of frequency
components. As the results in Fig. 5 and Fig. 6 show, there
is no significant difference in performance on either metric
with increasing number of frequency components. There are

Fig. 7: Effects of varying the sleep cost ratio on observed biological activity.
As the ratio decreases, there is an increase in the average amount of
biological activity observed.

Fig. 8: Effects of varying the sleep cost ratio on mission duration. As the
ratio decreases, there is an increase in the average mission length.

several possible explanations for this. First, the signals that
we consider contain a single main frequency component.
The periodograms from Fig. 2 show that the daily cycle
contains over an order of magnitude more power than the
other frequency components. The smoothing of the predicted
signal by the GP lengthscale and variance parameters is
sufficient to cover the observation noise in the true signal,
resulting in high-quality predictions. The second possible
explanation is that any improvements in predictive accuracy
are lost due to overfitting to a noisy training signal.

In the experiments discussed so far, we have assumed
a sleep cost ratio of 2% relative to the cost of observing.
However different sensors are optimized differently for low
power states. To evaluate the impact of this ratio on the
ability of the OSS planning algorithm to select high-value
observation windows, we evaluated our sensor framework at
different ratios. As the results in Fig. 7 and Fig. 8 show, as
this ratio decreases (i.e. as sleeping becomes cheaper relative
to sensing), we can spend more time sleeping to delay
observations to future high-value times, leading to longer
sampling missions and overall higher observed biological
activity. This result is a consequence of the direct tradeoff
between sensing and observing enforced by the knapsack
constraint of the robot’s battery.
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VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a method for extending
the lifespan of a sensor while increasing the quality of
its observations. We apply this approach to improve the
monitoring of a diverse and vital, yet imperiled ecosystem:
coral reefs. Our approach identifies frequency components
of a time series, with no requirements for prior data, to
predict the series’ future states. This prediction is used
by a non-myopic planning algorithm to solve the optimal
stopping problem, scheduling sensor observations in high-
value time periods, and sending the robot to sleep in low-
value periods. We demonstrate our method using acoustic
datasets collected in the US Virgin Islands. Future work
involves adding spatial dimensions to our approach. This
extension would allow us to predict the time and place of
biological activity, enabling a mobile sensor platform, like
an AUV to pre-position itself to observe activity, minimizing
its impact on the reef. Additionally, we plan to deploy this
algorithm on VASE during upcoming field experiments.
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