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Abstract 

The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that 

drive numerous biological and industrial processes. Chemically heterogeneous interfaces are 

abundant in these contexts; examples include the surfaces of proteins, functionalized 

nanomaterials, and polymeric materials. While the hydrophobicity of nonpolar solutes can be 

predicted and related to the structure of interfacial water molecules, predicting the hydrophobicity 

of chemically heterogeneous interfaces remains a challenge because of the complex, non-additive 

contributions to hydrophobicity that depend on the chemical identity and nanoscale spatial 

arrangements of polar and nonpolar groups. In this work, we utilize atomistic molecular dynamics 

simulations in conjunction with enhanced sampling and data-centric analysis techniques to 

quantitatively relate changes in interfacial water structure to the hydration free energy (a 

thermodynamically well-defined descriptor of hydrophobicity) of chemically heterogeneous 

interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs) composed of 

ligands with nonpolar and polar end groups of different chemical identity (amine, amide, and 

hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that 

only five features of interfacial water structure are required to accurately predict hydration free 

energies. Examination of these features reveals mechanistic insights into the interfacial hydrogen 

bonding behaviors that distinguish different surface compositions and patterns. This analysis also 

identifies the probability of highly coordinated water structures as a unique signature of 

hydrophobicity. These insights provide a physical basis to understand the hydrophobicity of 

chemically heterogeneous interfaces and connect hydrophobicity to experimentally accessible 

perturbations of interfacial water structure.  
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Introduction 

The hydrophobicity of an interface reflects its thermodynamic tendency to minimize 

contact with surrounding water molecules and determines the magnitude of water-mediated 

hydrophobic interactions. Hydrophobic interactions between homogeneous nonpolar solutes in 

water have been extensively studied and the relationship between interfacial hydrophobicity and 

the scale-dependent structuring of water near nonpolar domains has been validated by experiment 

and simulation.1-5 In contrast, the hydrophobicity of interfaces that are chemically heterogeneous 

at the nanoscale — i.e., interfaces with nonpolar and polar groups in close (~nm) proximity — is 

poorly understood and difficult to predict.6-10 This knowledge gap is significant because 

hydrophobic interactions with chemically heterogeneous interfaces are central to wide-ranging 

industrial and biological processes, such as polypeptide folding,11, 12 protein interactions,13-16 non-

specific protein adsorption,17-19 cellular uptake,20, 21 and chromatographic separations.22, 23 As a 

result, substantial experimental, theoretical, and computational efforts have sought to understand 

how polar groups, when placed adjacent to nonpolar domains, impact interfacial hydrophobicity 

and the associated structure of water.24-31  

Approaches to quantify the hydrophobicity of chemically heterogeneous interfaces 

typically assume that contributions to hydrophobicity are additive. For example, metrics to 

quantity interfacial hydrophobicity, such as water contact angles, are often estimated based on 

area-weighted sums of the contact angles of polar and nonpolar surface regions (i.e., the Cassie 

equation),32, 33 the amount of nonpolar solvent-accessible surface area,34-38 or by group-specific 

parameters such as hydrophobicity scale values39 or octanol-water partition coefficients.20, 40, 41 

However, these methods neglect perturbations to water structure by polar groups near nonpolar 

domains that lead to cooperative, non-additive contributions to hydrophobicity,25-27, 42 as 
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highlighted by recent experimental measurements of hydrophobic forces with chemically 

heterogeneous interfaces.28-30 In these experiments, adhesion forces were measured between an 

atomic force microscope (AFM) tip functionalized with a nonpolar self-assembled monolayer 

(SAM) and planar gold substrates functionalized with mixed SAMs containing both nonpolar and 

polar ligand end groups. The difference between adhesion forces measured in water and in 

methanol was identified as the hydrophobic force.28-30 Comparing hydrophobic forces for different 

mixed SAM compositions indicated that replacing amine end groups that are adjacent to a 

nanoscale nonpolar domain with amide groups can weaken and even eliminate hydrophobic 

forces.29 Related experimental measurements similarly revealed that hydrophobic forces between 

a nonpolar AFM tip and β-peptide oligomers containing well-defined nonpolar and polar domains 

were modulated by the chemical identity of the polar group and followed similar trends as for the 

mixed SAMs.28, 29 Conversely, hydrophobic forces were eliminated for structural isomers of the 

same β-peptide oligomers in which polar and nonpolar groups were interspersed without a well-

defined nonpolar domain. These findings underscore that both the chemical identity of polar 

groups and the nanoscale spatial arrangement (i.e., patterning) of polar and nonpolar groups at 

chemically heterogeneous interfaces substantially influence interfacial hydrophobicity.29 

To complement experimental studies, atomistic molecular dynamics (MD) simulations 

have been utilized to study relationships between interfacial water structure and the 

thermodynamic driving forces underlying hydrophobic assembly,3, 24, 43 enabling effective 

predictions of protein-ligand binding,14, 44 protein-protein interactions,31 and biomolecule 

aggregation.45 Similar simulations have found that patterning influences the thermodynamics of 

the hydration layer near chemically heterogeneous surfaces.46, 47 To compare the hydrophobicity 

of different surfaces, simulation studies have also identified the magnitude of water density 
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fluctuations as a descriptor of interfacial hydrophobicity.48-52 Water density fluctuations are 

enhanced near hydrophobic surfaces, increasing the probability that a cavity near the interface 

spontaneously dewets. This probability can be quantified as a corresponding hydration free 

energy48-52 which captures correlations between interfacial water molecules and has been shown 

to effectively predict binding interactions on proteins.31, 53 By calculating hydration free energies, 

we previously determined that molecular-level order modulates the hydrophobicity of uniformly 

nonpolar SAMs by perturbing interfacial water structure, in agreement with similar trends 

identified through experimental hydrophobic force measurements.30, 54, 55 This accumulated 

research establishes strong connections between interfacial hydrophobicity, variations in the 

properties of homogeneous and chemically heterogenous interfaces, and interfacial water 

structure. However, these connections remain largely qualitative, and systematic studies to relate 

perturbations to interfacial water structure to the hydrophobicity of chemically heterogenous 

interfaces are lacking. 

In this work, we hypothesize that descriptors of interfacial water structure alone can be 

quantitatively related to the hydrophobicity of chemically heterogeneous interfaces. To test this 

hypothesis, we utilize atomistic MD simulations to calculate water structural order parameters and 

hydration free energies for a large set of SAMs containing amine, amide, and hydroxyl polar 

groups in various surface compositions and patterns. Using a feature selection workflow, we find 

that only five water structural features are important to accurately predict SAM hydration free 

energies. Analysis of these five features provides a physical basis for understanding how surface 

properties modulate the hydration free energy – and thus hydrophobicity – by altering the hydrogen 

bond network and orientation of interfacial water molecules. These results produce new 
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understanding of perturbations to water structure at chemically heterogeneous surfaces which can 

be extrapolated to more complex materials like proteins and peptides. 

Results and Discussion 

Hydration free energy calculations capture experimental trends. To understand how polar end 

groups modulate interfacial hydrophobicity, we first simulated the set of alkanethiol SAMs that 

were shown in Ref. 29 to exhibit substantially different hydrophobic interactions in prior AFM 

experiments. This set includes single-component homogeneous SAMs in which ligands were 

functionalized with either nonpolar (methyl) or polar (amine or amide) end groups and mixed 

chemically heterogeneous SAMs in which 40% of the ligands were functionalized with polar end 

groups and 60% of the ligands were functionalized with nonpolar end groups (Figure 1A).29 While 

the end group pattern is unknown in the experiments, we modeled fully separated SAM patterns 

because analogous experiments have shown that β-peptide oligomers only exhibit large deviations 

in hydrophobicity when they have well-defined separated polar and nonpolar domains.28, 29 This 

data set permits initial simulation interrogation of homogeneous and chemically heterogeneous 

surfaces for comparison to experimental trends. 

For each SAM, we performed Indirect Umbrella Sampling (INDUS) to compute the 

hydration free energy (𝜇𝜈), or excess chemical potential, of a 2.0 × 2.0 × 0.3 nm3 cuboidal cavity 

(denoted by the subscript 𝜈) near the SAM-water interface (see Methods). 𝜇𝜈 reports on the 

magnitude of water density fluctuations within the cavity that emerge from the collective 

interactions of water molecules with each other and with the SAM. Smaller values of 𝜇𝜈 

(corresponding to enhanced fluctuations) indicate a more hydrophobic interface. Although 𝜇𝜈 will 

depend on the size and placement of the cavity, 𝜇𝜈 can be used as a thermodynamically well-

defined descriptor to compare the interfacial hydrophobicity of different surfaces if the cavity is  
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Figure 1. (A) Chemical structures and top-down simulation snapshots of SAMs with amine, amide, and 

hydroxyl polar end groups in checkered and separated patterns and with the mole fraction of polar end 

groups (𝑓𝑃) equal to 0.25, 0.50, and 0.75. (B) Comparison between hydration free energies (𝜇𝜈) measured 

by INDUS (black squares) and hydrophobic forces measured by AFM experiments (red columns). 

Experimental hydrophobic force data are adapted from Wang et al.29 -𝜇𝜈 is plotted to illustrate the trend 

relative to the experimental values. (C) 𝜇𝜈as a function of 𝑓𝑃 for the checkered (solid squares) and separated 

(hollow circles) patterned SAMs. Dashed lines indicate predictions from three linear regression models that 

were separately fit between values of 𝜇𝜈 computed by INDUS and 𝑓𝑃 for each polar end group. RMSEs for 

these models are 3.81, 9.75, and 6.46 kBT for SAMs containing amine, amide, and hydroxyl groups, 

respectively.  
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consistently defined.56 Past studies of SAMs have shown that 𝜇𝜈 correlates with equilibrium water 

contact angles48, 57 and experimentally measured hydrophobic forces.54 Similarly, Figure 1B 

illustrates that 𝜇𝜈 values computed for this set of SAMs are negatively correlated with hydrophobic 

forces measured experimentally in Ref. 29, confirming that smaller values of 𝜇𝜈 correspond to  

SAMs that appear more hydrophobic in experiments. In particular, the simulations reproduce the 

finding that chemically heterogeneous SAMs with amide-functionalized ligands are less 

hydrophobic than chemically heterogeneous SAMs with amine-functionalized ligands. This result 

demonstrates that our simulation model qualitatively reproduces the effects of polar end group 

chemistry on SAM hydrophobicity, supporting further investigation into the origin of these effects. 

 We next investigated whether values of 𝜇𝜈 for chemically heterogeneous SAMs could be 

approximated by assuming that contributions to 𝜇𝜈 from polar and nonpolar groups are additive. 

We expanded the set of simulated SAMs to include mixed SAMs with amine-, amide-, and 

hydroxyl-functionalized ligands with six different mole fractions of polar end groups (𝑓𝑃) and two 

different patterns (“checkered” and “separated”). Figure 1A shows representative SAMs for each 

chemistry, composition, and pattern, with additional details included in Section S1 of the 

Electronic Supporting Information (ESI). Figure 1C shows values of 𝜇𝜈 computed using INDUS 

as a function of 𝑓𝑃. Dashed lines indicate predictions from linear regression models that were 

separately fit between values of 𝜇𝜈 computed by INDUS and 𝑓𝑃 for each polar group (including a 

purely nonpolar surface corresponding to fp = 0); these models represent predictions from an 

additive approximation based on the fraction of polar surface area alone. For all three polar groups, 

values of 𝜇𝜈 for the 24 chemically heterogeneous SAMs (with 0.0 < 𝑓𝑃 < 1.0) lie off the linear 

regression line. As expected based on the results of prior studies,27, 46, 47 large differences in 𝜇𝜈 
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between the checkered and separated patterns are observed at fixed 𝑓𝑃. These results confirm that 

an additive approximation is inaccurate for these chemically heterogeneous surfaces.  

We further used the linear regression lines in Figure 1C to quantify the accuracy of additive 

models (akin to the Cassie model) that predict 𝜇𝜈 for a chemically heterogeneous SAM based on 

the value of 𝑓𝑃 and chemical identity of the polar group alone (the latter captured by separately 

fitting three models for SAMs containing each type of polar group). The root-mean-squared error 

(RMSE) between values of 𝜇𝜈 predicted by the additive models and values computed by INDUS 

(i.e., the average difference between the interpolation line and the points in Figure 1C) is 3.81, 

9.75, and 6.46 kBT for the chemically heterogeneous SAMs containing amine, amide, and hydroxyl 

groups, respectively. For comparison, INDUS calculations have a replica error of about 2 kBT, 

indicating that predictions of the additive models are quantitatively inaccurate (particularly for the 

amide and hydroxyl SAMs which demonstrate a more substantial dependence on SAM patterning) 

and provide a baseline for further numerical comparisons of the data-centric models described 

below. Figure 1C thus highlights two challenges with predicting hydrophobicity based on an 

additive approximation: 𝜇𝜈 depends on the spatial pattern of polar and nonpolar groups and hence 

cannot be predicted accurately by 𝑓𝑃 alone, and an additive approximation requires the value of 𝑓𝑃 

and specification of the polar group, which limits generalizability to surfaces of arbitrary 

composition.  

To overcome these challenges, we hypothesized that a model based on analysis of 

interfacial water structure could be trained to accurately predict the hydrophobicity of surfaces 

with diverse surface chemistries and patterns without requiring surface-specific information (e.g., 

the value of 𝑓𝑃 or the type of polar group). To generate a larger data set for model training, we 

simulated homogeneous SAMs in which the end group partial charges were scaled while 
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maintaining charge neutrality (ESI Figure S1).24, 58 These charge-scaled SAMs are not meant to 

model physically realistic surfaces, but rather are included to ensure that corresponding 𝜇𝜈 values 

fully span the range of possible 𝜇𝜈 values for each end group in Figure 1A (as shown in Figure 

S20). Along with the prior patterned chemically heterogeneous SAMs, the total training data set 

included 58 SAMs for further analysis. For each SAM, we computed 𝜇𝜈 using INDUS to quantify 

interfacial hydrophobicity and computed a set of water order parameters from a complementary 

unbiased MD simulation to quantify the structure of interfacial water molecules (defined as water 

molecules within 0.3 nm of the SAM-water interface). These order parameters include information 

on SAM-SAM, SAM-water, and water-water hydrogen bonds, water orientations relative to the 

SAM, and the water triplet angle (i.e., the angle formed between an interfacial water molecule and 

two neighboring water molecules).59-61 ESI Section S2 provides a full description for each 

parameter and ESI Figures S7-12 show variations in these parameters for different SAMs. Subsets 

of these parameters have been used previously to understand how peptide side chain chemistry 

affects binding,60 surface polarity alters interfacial water orientation,24 and SAM order affects 

hydrophobic interactions.55 However, quantifying which order parameters are most important for 

predicting hydrophobicity across a broad range of SAMs is challenging through traditional 

approaches that investigate single parameters independently. 

 

Data-centric analysis identifies important water structural features. We implemented a data-

centric workflow to relate interfacial water order parameters to interfacial hydrophobicity 

quantitatively. We defined a set of 152 features that were each related to a particular value of an 

order parameter; for example, the probability of observing zero water-water hydrogen bonds is a 

feature. Each of the 58 SAMs was associated with a feature vector containing standardized  
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Figure 2. (A) Schematic of feature selection workflow. (B) Parity plot comparing hydration free energies 

(𝜇𝜈) predicted from multivariate linear regression to those calculated by INDUS. Each point is the 

prediction for the SAM when it is included in the validation set during 5-fold cross validation, such that the 

SAM is not included in model training. Error bars are smaller than the symbols. (C) Comparison of feature 

weights for the linear regression model. Error bars were calculated as the standard deviation of the weights 

from three independent repetitions of the simulation and feature selection workflow. 

 

numerical values for all features (determined from the unbiased MD simulation) and a single value 

of 𝜇𝜈. We then developed a three-step workflow to select the minimum set of features required to 

accurately predict 𝜇𝜈, and, thus, interfacial hydrophobicity (Figure 2A). In the first step, we 

reduced the number of features by computing the Pearson’s correlation coefficient between all 

pairs of features and removing features that were above a correlation threshold (ESI Section S2). 

In the second step, we performed Lasso regression using the 45 remaining features (ESI Table S2) 

for each SAM as input to predict corresponding values of 𝜇𝜈. In the final step, we performed 5-
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fold cross validation using multiple linear regression to relate the minimum set of features 

identified from Lasso regression to 𝜇𝜈, thereby determining the overall accuracy of our approach 

(ESI Section S2). This entire approach (including INDUS and unbiased simulations) was repeated 

three times for independent sample sets to ensure robustness and estimate simulation error. 

Strikingly, we found that only five features of interfacial water structure are required to 

accurately predict the full range of SAM hydration free energies even though the SAM data set 

contains both homogeneous and chemically heterogeneous SAMs with different compositions, 

patterns, and end group chemistries, and contains SAMs with scaled end group partial charge (ESI 

Section S2), suggesting that the selected features may be universally relevant to SAM 

hydrophobicity. The five features, and their importance to model predictions, are discussed below. 

Figure 2B shows a parity plot comparing 𝜇𝜈 values predicted by the final linear regression model 

to those computed by INDUS. Each reported 𝜇𝜈 value is based on the model prediction for the 

corresponding SAM when it is included in the validation set, rather than training set, during 5-fold 

cross validation; that is, reported values are for SAMs not included during model training and 

hence capture the ability of the model to generalize to unseen SAMs. The linear regression model 

has an RMSE of 3.97 ± 0.19 kBT and predicted 𝜇𝜈 values are strongly correlated with INDUS 

values with a Pearson’s r of 0.98 (a value of 1.0 indicates perfect linear correlation). This RMSE 

compares favorably to the replica error of INDUS (2 kBT as noted above), indicating that the 

predictions are quite accurate. 

The overall RMSE reported above and in Figure 2B includes predictions for homogeneous 

SAMs; if considering only the chemically heterogeneous SAMs (i.e., the 24 SAMs with 

0.0 < 𝑓𝑃 < 1.0 shown in Figure 1C, including SAMs with two different patterns and three 

different end groups) the RMSE is instead 4.57 ± 0.25 kBT. This slightly higher value reflects the 
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greater challenge in predicting 𝜇𝜈 for chemically heterogeneous as opposed to homogeneous 

SAMs, but is notably still lower than the RMSE of the additive models for the amide and hydroxyl 

SAMs and comparable to the RMSE of the additive model for the amine SAMs (Figure 1C) even 

though the linear regression model includes no features describing properties of the SAM itself 

(e.g., 𝑓𝑃 or the type of polar end group). The accuracy of the linear regression model was further 

tested on an additional set of 153 chemically heterogeneous SAMs, obtained from Ref. 62, that 

were unseen during model training. These SAMs included three sets of 51 mixed SAMs with each 

set including ligands functionalized with nonpolar end groups and either amine, amide, or hydroxyl 

end groups (as with the SAMs in Figure 1A) in varying mole fractions and random patterns. 𝜇𝜈 

values for these SAMs were predicted using the trained linear regression model with a resulting 

RMSE of 5.21 kBT (parity plot shown in Figure S21), which is comparable to the RMSE for cross-

validation predictions of the 24 chemically heterogeneous SAMs with separated or checkered 

patterns despite the much larger size of this data set. Together, these results showcase the ability 

of the linear regression model to accurately predict 𝜇𝜈 for a range of chemically heterogeneous 

SAMs utilizing only features of interfacial water structure.  

Given the accuracy of the linear regression model, we next investigate the five features 

important to model predictions. These features are the probability that an interfacial water 

molecule forms zero SAM-water hydrogen bonds, 𝑝(𝑁SAM−water = 0), the probability that an 

interfacial water molecule forms a triplet angle of 48°, 𝑝(𝜃 = 48°), the average total number of 

hydrogen bonds per molecule (ligand with a polar end group or water), 𝑁total, the average number 

of SAM-water hydrogen bonds, 𝑁SAM−water , and the probability that an interfacial water molecule 

forms a triplet angle of 90°, 𝑝(𝜃 = 90°). No features describing properties of the SAM are 

included, indicating the potential for the regression model to generalize to surfaces beyond the 
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SAMs considered here. Similarly, the five identified features are not correlated with 𝑓𝑃 and thus 

are not capturing a simple descriptor of surface hydrophobicity (ESI Table S3). We further 

performed 5-fold cross validation using Lasso regression and separately utilized a nonlinear 

Random Forest model with recursive feature elimination to select features for the same data set 

(ESI Section S2). Both approaches identified similar features, indicating the robustness of model 

findings. Figure 2C compares the weights of the coefficients from the linear regression model to 

quantify their relative importance. These results show that 𝑝(𝑁SAM−water = 0) is the most 

important feature in the model, followed by 𝑝(𝜃 = 48°). 𝑁total and 𝑁SAM−water  of are comparable 

importance and 𝑝(𝜃 = 90°) is least important. These five features, and their physical significance, 

are described in detail in the sections below. 

 

SAM-water hydrogen bonding strongly correlates with hydrophobicity. Two of the features 

identified as strong predictors of hydrophobicity, 𝑝(𝑁SAM−water = 0) and 𝑁SAM−water,  quantify 

the formation of hydrogen bonds between the SAM and interfacial water molecules. The feature 

that has the highest weight in the linear regression model (and hence contributes most substantially 

to model predictions) is 𝑝(𝑁SAM−water = 0); large values of 𝑝(𝑁SAM−water = 0) indicate that 

water molecules are unlikely to form hydrogen bonds with the SAM and that the SAM is 

accordingly more hydrophobic. This feature is thus a simple, intuitive descriptor for SAM 

hydrophobicity that is conceptually related to water density fluctuations because the enhancement 

of such fluctuations near more hydrophobic surfaces is due to weak surface-water interactions.48, 

50  

To determine if this feature alone can capture trends in SAM hydrophobicity, Figure 3A 

plots 𝜇𝜈 versus 𝑝(𝑁SAM−water = 0) for the SAM data set. For this comparison (and the  
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Figure 3. Values of features (prior to standardization) related to interfacial hydrogen bonding plotted versus 

hydration free energies (𝜇𝜈) for the checkered (solid squares) and separated (hollow circles) SAMs. Values 

for SAMs with amine (purple), amide (green), and hydroxyl (orange) end groups are plotted separately. (A) 

Probability density for zero SAM-water hydrogen bonds formed by an interfacial water molecule. The black 

dotted line is a linear fit to all data. (B) Number of hydrogen bonds between SAM polar end groups and 

interfacial water molecules. (C) Total number of hydrogen bonds formed by an interfacial water molecule. 

Each value is averaged over all interfacial water molecules and simulation time. The dotted lines are linear 

fits for each end group (including both checkered and separated patterns).  

 

comparisons in the following sections), only the chemically heterogeneous SAMs from Figure 1 

are considered when determining how features correlate with the hydrophobicity of chemically 

heterogeneous SAMs with different ligand end groups because these SAMs are physically realistic 

and have well-defined values of 𝑓𝑃 and patterns; homogeneous charge-scaled SAMs and the 

chemically heterogeneous SAMs with random patterns and compositions are omitted. 𝜇𝜈 and 

𝑝(𝑁SAM−water = 0) are highly correlated with a Pearson’s r of -0.95; the negative correlation is 

expected because larger values of 𝑝(𝑁SAM−water = 0) indicate a more hydrophobic surface with 

lower 𝜇𝜈. Linear regression with only this feature predicts 𝜇𝜈 with an RMSE of 5.86 ± 0.07 kBT, 

demonstrating that this feature alone provides reasonable prediction accuracy but including the 
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other four features reduces the prediction RMSE by approximately 1.3 kBT. Notably, the RMSE of 

a linear regression model with only 𝑝(𝑁SAM−water = 0) is substantially lower than the RMSEs of 

additive models for chemically heterogeneous SAMs with amide or hydroxyl groups (Figure 1C) 

despite including no SAM-specific information, again highlighting the value of analyzing 

interfacial water structure. 

The other important feature based on SAM-water hydrogen bonds is 𝑁SAM−water . Figure 

3B shows that this feature also has a linear correlation with hydration free energy and a Pearson’s 

r of 0.95. In contrast to 𝑝(𝑁SAM−water = 0), this feature quantifies favorable interactions between 

interfacial water molecules and the SAM, with larger values indicating more water molecules on 

average bound to the SAM. These two features provide complementary information on SAM-

water interactions and demonstrate that analysis of hydrogen bonding can serve as a baseline 

prediction of trends in 𝜇𝜈. However, Figure 3A also shows systematic deviations in predictions for 

different end groups and patterns: for example, 𝜇𝜈 is underpredicted for SAMs with amine end 

groups and overpredicted for separated patterns compared to checkered patterns. Accordingly, we 

investigated the physical origin of the other important features identified by our workflow to 

determine why they lead to the more accurate predictions shown in Figure 2. 

 

Total interfacial hydrogen bonds vary with polar group chemistry. Another important feature 

that depends on hydrogen bonds is 𝑁total, which quantifies the total number of SAM-water, water-

water, and SAM-SAM hydrogen bonds per molecule. Increased SAM-water hydrogen bonds, as 

described in the previous section, indicate strong SAM-water interactions that decrease interfacial 

hydrophobicity. Increased interfacial water-water hydrogen bonds signify a more connected 

hydrogen bond network, or a more ordered interfacial water structure, which has been linked to 
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decreased hydrophobicity for idealized nonpolar solutes3 and SAMs.55 Increased SAM-SAM 

hydrogen bonds could indicate fewer hydrogen bonding donor or acceptor sites available for SAM-

water hydrogen bonding, consequently increasing interfacial hydrophobicity. Thus, this feature 

encodes information on a range of possible behaviors with distinct contributions to interfacial 

hydrophobicity that could vary for different SAM properties. 

Figure 3C plots 𝜇𝜈 versus 𝑁total following the previous approach in Figures 3A and 3B. 

Different trends are observed for each polar end group; notably, 𝜇𝜈 scales approximately linearly 

with 𝑁total for each polar end group separately but with substantially different slopes. The 

difference in scaling suggests that 𝑁total can distinguish between polar end group chemistries in 

the linear regression model (Figure 2B); that is, the relative contribution of this feature to the 

predicted value of 𝜇𝜈 differs between polar end groups. Figure 4 shows variations in the average 

number of SAM-SAM, SAM-water, and water-water hydrogen bonds that contribute to 𝑁total. For 

all three end groups, variations in 𝑁total reflect the competition between increased SAM-water and 

decreased water-water hydrogen bonds as 𝑓𝑃 increases (leading to an increase in 𝜇𝜈). These general 

trends can be interpreted in terms of the disruption of water structure near a uniformly nonpolar 

surface (for the lowest value of 𝜇𝜈) by the presence of polar groups that can interact favorably with 

interfacial water molecules. For the SAMs containing amine end groups, SAM-water hydrogen 

bonding is relatively weak and consequently the increase in SAM-water hydrogen bonds is 

insufficient to compensate for the decrease in water-water hydrogen bonds, leading to a decrease 

in 𝑁total as 𝜇𝜈 increases. Conversely, 𝑁total is nearly constant with 𝜇𝜈 for SAMs containing 

hydroxyl end groups because the increase in the number of favorable SAM-water hydrogen bonds 

compensates for the decrease in number the water-water hydrogen bonds.  
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Figure 4. Average number of hydrogen bonds per molecule (excluding ligands with methyl end groups that 

cannot form hydrogen bonds) for all hydrogen bonds (𝑁𝑡𝑜𝑡𝑎𝑙), SAM-SAM hydrogen bonds, SAM-water 

hydrogen bonds, and water-water hydrogen bonds. Top row: hydrogen bonds for checkered SAMs. Bottom 

row: hydrogen bonds for separated SAMs. 

 

The SAMs containing amide end groups exhibit similar trends as the SAMs containing 

amine end groups. However, these SAMs are unique because only the amide end groups form a 

significant number of SAM-SAM hydrogen bonds (Figure 4) which increases with increasing 

𝑓𝑃 and contributes to an overall increase in 𝑁total with 𝜇𝜈 (for SAMs in the checkered pattern; 

because the total number of hydrogen bonds is normalized by the number of polar end groups, 

SAM-SAM hydrogen bonds remain relatively constant for the amide-containing SAMs in the 

separated pattern since the local chemical environment does not change with 𝑓𝑃). Intra-surface 

hydrogen bonding has been shown to reduce surface hydrophilicity in prior simulation studies of 
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model surfaces,63 which explains why amide end groups contribute to lower values of 𝜇𝜈 than 

hydroxyl end groups (on average) despite larger values of 𝑁total. This behavior may also explain 

why 𝜇𝜈 for the checkered SAM with 75 mol% amide end groups is larger than 𝜇𝜈 for a 

homogeneous SAM with only amide end groups. 

Together, this analysis indicates that 𝑁total captures variations in hydrogen bonding 

behavior that depend on the chemical identity of SAM polar end groups and points to physical 

mechanisms underlying variations in SAM hydrophobicity. Incorporation of this feature into the 

linear regression model provides information to distinguish the influence of end group chemistry 

in predictions of  𝜇𝜈. Moreover, the ability to identify a single feature (rather than a subset of 

additional features related to the variation of each type of hydrogen bond separately) that 

quantitatively relates these complex behaviors to 𝜇𝜈 is a benefit of our data-centric workflow. 

 

Orientational features encode information on crowded water coordination shells. The feature 

with the largest positive weight in the final linear regression model (Figure 2C) is 𝑝(𝜃 = 48°), 

which is the probability that an interfacial water molecule forms a triplet angle of 48°. The triplet 

angle is calculated by measuring the angle between an interfacial water molecule and its two 

nearest neighbors within a 0.33 nm radius. Figure 5A illustrates differences in the triplet angle 

distribution for SAMs with varying fractions of polar end groups, hinting at the ability of this 

distribution to distinguish surfaces with varying values of 𝜇𝜈. While these distributions vary 

substantially, the importance of variations to 𝑝(𝜃 = 48°) identified by the feature section 

workflow indicates that this probability provides unique information not directly quantified by 

features associated with hydrogen bonding and thus merits further analysis.  Figure 5B plots 𝜇𝜈 

versus 𝑝(𝜃 = 48°). Like 𝑁total, 𝑝(𝜃 = 48°) exhibits different variations with respect to 𝜇𝜈 for 
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different polar end groups and thus provides information to the regression model to distinguish 

between SAMs with different end groups. 𝑝(𝜃 = 48°) increases with 𝜇𝜈 for SAMs containing 

amide and hydroxyl end groups and decreases with 𝜇𝜈 for SAMs containing amine end groups, 

which follows a similar pattern as 𝑁total. While trends in the formation of hydrogen bonds have a 

clear physical interpretation, the physical significance of this feature is less clear. Monroe and 

Shell have suggested that a small peak in the triplet angle distribution at around 50° arises due to 

a fifth neighbor in the coordination shell of bulk water.61 However, it is unclear how interfaces and 

surface properties affect this feature.  

 

 

 

 

Figure 5. (A) Schematic of the calculation of the water triplet angle and example distributions for 

“checkered” SAMs with amine end groups as a function of the fraction or polar end groups (𝑓𝑃). 

Distributions show the difference relative to a SAM containing only methyl end groups, which corresponds 

to 𝑓𝑃=0.00. (B) Probability density for an interfacial water molecule forming a triplet angle, 𝜃, of 48° for 

the checkered (solid squares) and separated (hollow circles) SAMs versus hydration free energies (𝜇𝜈). (D) 

Probability density for an interfacial water molecule forming a triplet angle of 90°. The dashed lines and 

dotted lines are linear fits for the checkered and separated SAMs, respectively, for each end group. 
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To investigate the origin of the 𝑝(𝜃 = 48°) feature, we calculated the water coordination 

number, 𝐶𝑁, by counting the number of heavy atoms within 0.33 nm of the oxygen atom of an 

interfacial water molecule. Figure 6A compares the probability distribution of the coordination 

number, 𝑝(𝐶𝑁), when calculated separately for all water molecules (i.e., all possible triplet angles) 

and for only those water molecules with a triplet angle of 48°. Results are presented for bulk water 

and for the checkered SAMs as a function of 𝑓𝑃; the separated SAMs follow approximately the 

same trend (ESI Figure S22). As previously suggested,61 𝑝(𝐶𝑁) for water molecules with a triplet 

angle of 48° is shifted toward larger values of 𝐶𝑁, with a maximum at 𝐶𝑁 = 5, for all SAMs and 

for bulk water. This finding indicates that 𝑝(𝜃 = 48°) captures information on the likelihood of 

observing highly coordinated water structures. We note that 𝑝(𝜃 = 48°) is very small for bulk 

water, so the observation of these highly coordinated structures is rare. Compared to bulk water, 

all 𝑝(𝐶𝑁) distributions are shifted toward small values of 𝐶𝑁 when 𝑓𝑃 is low, reflecting the vapor-

like arrangement of water molecules near more hydrophobic surfaces.64 Increasing 𝑓𝑃 shifts all 

distributions toward those of bulk water, which is consistent with an increase in the hydrophilicity 

of the surface. These shifts are less pronounced for SAMs with amine end groups due to the general 

decrease in hydrogen bonds for SAMs with amine end groups (Figure 3B). The difference in these 

shifts between different polar groups highlights that 𝑝(𝜃 = 48°) hence contains information on 

end group contributions to the formation of highly coordinated water structures. 

The shift toward higher coordination numbers suggests that the polar end groups either 

interact directly with water molecules at the interface (thereby increasing their coordination 

numbers) or nucleate highly coordinated water structures near more polar SAMs. We tested both 

possibilities by separately calculating water-water and SAM-water contributions to 𝑝(𝐶𝑁 = 6) 

because the 𝑝(𝐶𝑁) distributions for the SAMs containing amide and hydroxyl groups have a  



22 

 

 

Figure 6. (A) Water coordination number (𝐶𝑁) probability density functions for all interfacial water 

molecules (blue lines) and only interfacial water molecules with a triplet angle of 48° (red lines). Bulk water 

probability density functions for all water molecules (dotted line) and water molecules with a triplet angle 

of 48° (dashed line) are included for reference. Shifts with increasing 𝑓𝑃 are indicated by the purple arrows. 

(B) Probability density function values for 𝐶𝑁 = 6. Stacked columns indicate the contributions from water-

water coordination (blue columns) and SAM-water coordination (red columns). A and B both consider only 

checkered SAMs. 

 

shoulder at 𝐶𝑁 = 6 when 𝑓𝑃 is large. Figure 6B shows that the increase in 𝑝(𝐶𝑁 = 6) as 𝑓𝑃 increases 

is largely driven by the water-water contribution for all checkered SAMs. This result indicates that 

the polar groups nucleate highly coordinated water structures at the interface. As a secondary 

effect, we also find a substantial SAM-water contribution to 𝑝(𝐶𝑁 = 6) for the SAMs containing 
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amide and hydroxyl end groups, indicating that the strong interactions between these polar end 

groups and interfacial water molecules lead to crowded coordination shells that are rarely observed 

in bulk water. Together, this analysis reveals that 𝑝(𝜃 = 48°) encodes information on the 

formation of highly coordinated water structures that are nucleated near more hydrophilic SAMs 

and are thus signatures of hydrophilic surfaces.  

 

Disordered arrangements of molecules differentiate SAM patterns. The 𝑝(𝜃 = 90°) feature has 

the smallest weight of the important features (Figure 2C) but plays an important role in 

distinguishing SAMs with different patterns. Figure 5C plots 𝑝(𝜃 = 90°) versus 𝜇𝜈 and reveals 

that SAMs with checkered and separated patterns exhibit substantially different variations in the 

scaling of 𝑝(𝜃 = 90°) with 𝜇𝜈.  The physical significance of this feature can be inferred from the 

peak at 90° in the triplet angle distribution of an ideal gas (ESI Section S3), which indicates that 

large values of 𝑝(𝜃 = 90°) are characteristic of disordered, gas-like arrangements of water 

molecules. Prior simulation studies have shown that water structure near hydrophobic surfaces 

exhibits similarities to the water-vapor interface,64 which is consistent with our finding that more 

hydrophobic SAMs (smaller 𝜇𝜈) have larger values of 𝑝(𝜃 = 90°). The differences in behavior 

between checkered and separated SAMs can be attributed to the larger hydrophobic domains 

associated with separated patterns. ESI Figure S21 shows that 𝑝(𝜃 = 90°) increases near these 

hydrophobic domains but is lower on average for checkered surfaces with the same value of 𝑓𝑃, 

reflecting the pinning of the water-vapor interface when polar groups are uniformly distributed 

across the SAM. This finding is consistent with prior simulation studies27, 54 and indicates that 

𝑝(𝜃 = 90°) quantifies the formation of large hydrophobic domains found in certain SAM patterns. 
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Conclusions 

 We computed hydration free energies (as quantitative descriptors of interfacial 

hydrophobicity) and water structural parameters for 58 SAMs, encompassing variations in polar 

group chemistries, compositions, and spatial patterns, using MD simulations. Lasso regression 

revealed that only five water structural features were needed to quantitatively predict SAM 

hydration free energies with an accuracy comparable to that of rigorous enhanced sampling 

calculations, and with comparable or greater accuracy than additive models that approximate the 

hydration free energy of a chemically heterogeneous SAM based on the mole fraction of polar 

groups alone. We investigated the physical significance of the five features identified and their 

importance in distinguishing different SAM properties. Two features — the probability that an 

interfacial water molecule forms zero SAM-water hydrogen bonds and the average total number 

of SAM-water hydrogen bonds — correlated strongly with SAM hydrophobicity and contribute 

substantially to the regression model. Consequently, analysis of SAM-water hydrogen bonding 

alone provides a baseline prediction for hydrophobicity that can be intuitively understood as 

quantifying the strength of SAM-water interactions. Two additional features — the average total 

number of hydrogen bonds per molecule and the probability that an interfacial water molecule 

forms a triplet angle of 48° — were necessary to distinguish contributions to hydrophobicity from 

different polar groups. The average total number of hydrogen bonds per molecule captured 

variations in SAM-water, SAM-SAM, and water-water hydrogen bonding in analogy to the 

restructuring of hydrogen bond networks that underlies the hydrophobicity of nonpolar solutes. 

The probability that an interfacial water molecule forms a triplet angle of 48° quantifies the 

formation of highly coordinated interfacial water structures as a unique, previously unreported 

signature of hydrophilic surfaces. The last feature, the probability that an interfacial water 
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molecule forms a triplet angle of 90°, distinguishes nanoscale spatial patterns by capturing 

disordered arrangements of water molecules near large nonpolar domains. 

These findings establish a link between variations in water structure and hydrophobicity 

for chemically heterogeneous interfaces. Typical experimental approaches can directly quantify 

hydrophobic interactions for simple systems (e.g. planar interfaces29, 30, 65) or approximate 

interfacial hydrophobicity based on additive approximations (e.g. hydropathy scales66, 67). The 

finding that surprisingly few water structural features are needed to predict interfacial 

hydrophobicity with high accuracy provides opportunities to quantify the hydrophobicity of 

complex interfaces (e.g., proteins, colloids, or amphiphile membranes) via more readily accessible 

experimental measurements of interfacial water structure.68-70 Our findings further provide a 

framework to understand how polar group chemistry and patterning modulate hydrophobicity, 

which could be applied to materials design for the many applications involving water-mediated 

interactions. No features specific to the surface (e.g., the fraction of polar groups or the chemical 

properties of those groups) are used to predict interfacial hydrophobicity in this work, suggesting 

that analysis of interfacial water structure could generalize to guide the design of diverse synthetic 

and biological surfaces. However, additional features may be necessary to predict hydrophobicity 

for more complex surfaces as the model developed in this work is parameterized using a limited 

number of polar end groups and only planar surfaces. Finally, we note that the regression model 

predicts hydration free energies using water structural features obtained with substantially reduced 

simulation time compared to INDUS simulations yet achieves comparable accuracy. This 

computational efficiency indicates that structure-property models based upon water structural 

features could be utilized as screening tools to rationally fine-tune hydrophobicity, complementing 



26 

 

recently developed machine learning techniques58, 62 by permitting analysis of the importance of 

water structural features. 

 

Methods 

SAM models. Two sets of SAMs were modeled as part of the data set used to train the linear 

regression model developed in this study: single-component charge-scaled SAMs and mixed 

SAMs with ligands arranged in either a “checkered” or “separated” pattern. Charge-scaled SAMs 

contained ligands where the partial charges of the end groups were multiplied by a scaling factor, 

k, to modify the hydrophobicity of the surface while maintaining charge neutrality.24, 58 The two 

SAM patterns were selected to capture the extremes of possible ligand arrangements. SAMs in the 

checkered pattern contained ligands with polar and nonpolar end groups arranged such that the 

polar end groups were most dispersed on the SAMs. SAMs in the “separated” pattern contained 

ligands with polar and nonpolar end groups arranged in distinct groups resembling a 2D phase-

separated system. All SAMs contained 144 ligands arranged on a 12×12 hexagonal lattice to be 

consistent with a grafting density of 21.6 Å/ligand to be consistent with experimental 

measurements for the Au(111) lattice.71, 72 SAMs were then solvated and periodic boundary 

conditions were applied to the resulting 5.2 × 6.0 × 11.7 nm3 SAM-water systems. A third  set of 

SAMs, obtained from Ref. 62, was used to test the trained linear regression model. These SAMs 

contained 64 ligands arranged in an 8×8 hexagonal lattice with a central 4×4 patch of polar and 

nonpolar ligands surrounded by an additional 48 nonpolar ligands. The relative fraction of polar 

and nonpolar ligands and their spatial positions within the patch were randomly selected to 

generate distinct SAM compositions and patterns. For all three sets of SAMs, ligand atoms were 

modeled using the CHARMM36 General Force Field (CGenFF-jul2017).73 Water atoms were 
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modeled using the TIP4P/2005 force field.74 Additional details of the SAM models are included 

in ESI Section S1. 

 

Hydration free energy and water order parameter calculations. Two different types of MD 

simulations were performed for each of the 58 SAMs used for feature selection and linear 

regression model training. INDUS simulations were implemented to calculate the hydration free 

energies (𝜇𝜈) and unbiased simulations were performed to compute water order parameters. 

Detailed descriptions of both simulation types are provided in ESI Section S1. INDUS was used 

to quantify the relative hydrophobicity of the SAMs by calculating 𝜇𝜈 for a 2.0 × 2.0 × 0.3 nm3 

cuboidal cavity at the SAM-water interface. The probability of observing N water molecules within 

this cavity, 𝑝𝜈(𝑁), follows a Gaussian distribution near the mean value of N and near hydrophilic 

surfaces but exhibits a non-Gaussian tail for small values of N as a signature of interfacial 

hydrophobicity.50-52 INDUS applies a biasing harmonic potential to the positions of water 

molecules in the cavity so that N can be sampled continuously to determine the 𝑝𝜈(𝑁) distribution. 

We biased the number of water molecules inside the cavity using 16 independent simulation 

windows, each performed for 5 ns (80 ns total). The weighted histogram analysis method 

(WHAM) was used to compute the unbiased probability distribution of N in the cavity75 and 𝜇𝜈 

was obtained via Equation 1: 

𝜇𝜈 = −𝑘𝐵𝑇 ln 𝑝𝜈( 0) (1) 

𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, and 𝑝𝜈(0) is the probability that zero water 

molecules are within the cavity. 𝜇𝜈 is a quantitative indicator of hydrophobicity that captures non-

Gaussian tails in the 𝑝𝜈(𝑁) distribution (Figure S6). 
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 Unbiased simulations were performed for 10 ns and used to compute water order 

parameters as described in the Results section. Descriptions of the parameters and details about 

their calculation are include in the ESI Section S2. Water order parameters were only computed 

for interfacial water molecules, which were defined as all water molecules with a center of mass 

position within 0.3 nm of the SAM-water interface. Three replicas for both the INDUS and 

unbiased simulations were used to compute error bars and ensure the robustness of the data-centric 

feature selection workflow. Unbiased simulations following this same procedure were also 

performed for each of the 153 chemically heterogeneous SAMs used to test the trained linear 

regression model in order to compute water order parameters. Values of 𝜇𝜈 for these SAMs were 

obtained from Ref. 62, in which they were calculated following the same INDUS protocol 

described above.  
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