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Abstract

The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that
drive numerous biological and industrial processes. Chemically heterogeneous interfaces are
abundant in these contexts; examples include the surfaces of proteins, functionalized
nanomaterials, and polymeric materials. While the hydrophobicity of nonpolar solutes can be
predicted and related to the structure of interfacial water molecules, predicting the hydrophobicity
of chemically heterogeneous interfaces remains a challenge because of the complex, non-additive
contributions to hydrophobicity that depend on the chemical identity and nanoscale spatial
arrangements of polar and nonpolar groups. In this work, we utilize atomistic molecular dynamics
simulations in conjunction with enhanced sampling and data-centric analysis techniques to
quantitatively relate changes in interfacial water structure to the hydration free energy (a
thermodynamically well-defined descriptor of hydrophobicity) of chemically heterogeneous
interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs) composed of
ligands with nonpolar and polar end groups of different chemical identity (amine, amide, and
hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that
only five features of interfacial water structure are required to accurately predict hydration free
energies. Examination of these features reveals mechanistic insights into the interfacial hydrogen
bonding behaviors that distinguish different surface compositions and patterns. This analysis also
identifies the probability of highly coordinated water structures as a unique signature of
hydrophobicity. These insights provide a physical basis to understand the hydrophobicity of
chemically heterogeneous interfaces and connect hydrophobicity to experimentally accessible

perturbations of interfacial water structure.



Introduction

The hydrophobicity of an interface reflects its thermodynamic tendency to minimize
contact with surrounding water molecules and determines the magnitude of water-mediated
hydrophobic interactions. Hydrophobic interactions between homogeneous nonpolar solutes in
water have been extensively studied and the relationship between interfacial hydrophobicity and
the scale-dependent structuring of water near nonpolar domains has been validated by experiment
and simulation.!"> In contrast, the hydrophobicity of interfaces that are chemically heterogeneous
at the nanoscale — i.e., interfaces with nonpolar and polar groups in close (~nm) proximity — is
poorly understood and difficult to predict.5!° This knowledge gap is significant because

hydrophobic interactions with chemically heterogeneous interfaces are central to wide-ranging
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industrial and biological processes, such as polypeptide folding, protein interactions, non-
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specific protein adsorption, cellular uptake, and chromatographic separations.’”?* As a

result, substantial experimental, theoretical, and computational efforts have sought to understand

how polar groups, when placed adjacent to nonpolar domains, impact interfacial hydrophobicity

and the associated structure of water.?*3!

Approaches to quantify the hydrophobicity of chemically heterogeneous interfaces
typically assume that contributions to hydrophobicity are additive. For example, metrics to
quantity interfacial hydrophobicity, such as water contact angles, are often estimated based on

area-weighted sums of the contact angles of polar and nonpolar surface regions (i.e., the Cassie
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equation),?? ** the amount of nonpolar solvent-accessible surface area,**® or by group-specific

parameters such as hydrophobicity scale values®® or octanol-water partition coefficients.?® 4% 4!

However, these methods neglect perturbations to water structure by polar groups near nonpolar
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domains that lead to cooperative, non-additive contributions to hydrophobicity, as



highlighted by recent experimental measurements of hydrophobic forces with chemically
heterogeneous interfaces.?®3? In these experiments, adhesion forces were measured between an
atomic force microscope (AFM) tip functionalized with a nonpolar self-assembled monolayer
(SAM) and planar gold substrates functionalized with mixed SAMs containing both nonpolar and
polar ligand end groups. The difference between adhesion forces measured in water and in
methanol was identified as the hydrophobic force.232° Comparing hydrophobic forces for different
mixed SAM compositions indicated that replacing amine end groups that are adjacent to a
nanoscale nonpolar domain with amide groups can weaken and even eliminate hydrophobic
forces.? Related experimental measurements similarly revealed that hydrophobic forces between
a nonpolar AFM tip and B-peptide oligomers containing well-defined nonpolar and polar domains
were modulated by the chemical identity of the polar group and followed similar trends as for the
mixed SAMs.?® % Conversely, hydrophobic forces were eliminated for structural isomers of the
same B-peptide oligomers in which polar and nonpolar groups were interspersed without a well-
defined nonpolar domain. These findings underscore that both the chemical identity of polar
groups and the nanoscale spatial arrangement (i.e., patterning) of polar and nonpolar groups at
chemically heterogeneous interfaces substantially influence interfacial hydrophobicity.

To complement experimental studies, atomistic molecular dynamics (MD) simulations
have been utilized to study relationships between interfacial water structure and the
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thermodynamic driving forces underlying hydrophobic assembly, enabling effective

4. 44 protein-protein interactions,! and biomolecule

predictions of protein-ligand binding,
aggregation.*> Similar simulations have found that patterning influences the thermodynamics of

the hydration layer near chemically heterogeneous surfaces.*® *” To compare the hydrophobicity

of different surfaces, simulation studies have also identified the magnitude of water density



fluctuations as a descriptor of interfacial hydrophobicity.*>> Water density fluctuations are
enhanced near hydrophobic surfaces, increasing the probability that a cavity near the interface
spontaneously dewets. This probability can be quantified as a corresponding hydration free
energy*®>2 which captures correlations between interfacial water molecules and has been shown
to effectively predict binding interactions on proteins.’!* 3 By calculating hydration free energies,
we previously determined that molecular-level order modulates the hydrophobicity of uniformly
nonpolar SAMs by perturbing interfacial water structure, in agreement with similar trends
identified through experimental hydrophobic force measurements.’® 3% 35 This accumulated
research establishes strong connections between interfacial hydrophobicity, variations in the
properties of homogeneous and chemically heterogenous interfaces, and interfacial water
structure. However, these connections remain largely qualitative, and systematic studies to relate
perturbations to interfacial water structure to the hydrophobicity of chemically heterogenous
interfaces are lacking.

In this work, we hypothesize that descriptors of interfacial water structure alone can be
quantitatively related to the hydrophobicity of chemically heterogeneous interfaces. To test this
hypothesis, we utilize atomistic MD simulations to calculate water structural order parameters and
hydration free energies for a large set of SAMs containing amine, amide, and hydroxyl polar
groups in various surface compositions and patterns. Using a feature selection workflow, we find
that only five water structural features are important to accurately predict SAM hydration free
energies. Analysis of these five features provides a physical basis for understanding how surface
properties modulate the hydration free energy — and thus hydrophobicity — by altering the hydrogen

bond network and orientation of interfacial water molecules. These results produce new



understanding of perturbations to water structure at chemically heterogeneous surfaces which can

be extrapolated to more complex materials like proteins and peptides.

Results and Discussion

Hydration free energy calculations capture experimental trends. To understand how polar end
groups modulate interfacial hydrophobicity, we first simulated the set of alkanethiol SAMs that
were shown in Ref. 29 to exhibit substantially different hydrophobic interactions in prior AFM
experiments. This set includes single-component homogeneous SAMs in which ligands were
functionalized with either nonpolar (methyl) or polar (amine or amide) end groups and mixed
chemically heterogeneous SAMs in which 40% of the ligands were functionalized with polar end
groups and 60% of the ligands were functionalized with nonpolar end groups (Figure 1A).%° While
the end group pattern is unknown in the experiments, we modeled fully separated SAM patterns
because analogous experiments have shown that B-peptide oligomers only exhibit large deviations
in hydrophobicity when they have well-defined separated polar and nonpolar domains.?® ?° This
data set permits initial simulation interrogation of homogeneous and chemically heterogeneous
surfaces for comparison to experimental trends.

For each SAM, we performed Indirect Umbrella Sampling (INDUS) to compute the
hydration free energy (u,), or excess chemical potential, of a 2.0 x 2.0 x 0.3 nm? cuboidal cavity
(denoted by the subscript v) near the SAM-water interface (see Methods). u, reports on the
magnitude of water density fluctuations within the cavity that emerge from the collective
interactions of water molecules with each other and with the SAM. Smaller values of u,
(corresponding to enhanced fluctuations) indicate a more hydrophobic interface. Although p,, will
depend on the size and placement of the cavity, u, can be used as a thermodynamically well-

defined descriptor to compare the interfacial hydrophobicity of different surfaces if the cavity is
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Figure 1. (A) Chemical structures and top-down simulation snapshots of SAMs with amine, amide, and
hydroxyl polar end groups in checkered and separated patterns and with the mole fraction of polar end
groups (fp) equal to 0.25, 0.50, and 0.75. (B) Comparison between hydration free energies (i,,) measured
by INDUS (black squares) and hydrophobic forces measured by AFM experiments (red columns).
Experimental hydrophobic force data are adapted from Wang et al.* -, is plotted to illustrate the trend
relative to the experimental values. (C) w, as a function of fp for the checkered (solid squares) and separated
(hollow circles) patterned SAMs. Dashed lines indicate predictions from three linear regression models that
were separately fit between values of @, computed by INDUS and fp for each polar end group. RMSEs for
these models are 3.81, 9.75, and 6.46 kzT for SAMs containing amine, amide, and hydroxyl groups,

respectively.



consistently defined.’® Past studies of SAMs have shown that y, correlates with equilibrium water

4,57 and experimentally measured hydrophobic forces.’* Similarly, Figure 1B

contact angles
illustrates that u, values computed for this set of SAMs are negatively correlated with hydrophobic
forces measured experimentally in Ref. 29, confirming that smaller values of u, correspond to
SAMs that appear more hydrophobic in experiments. In particular, the simulations reproduce the
finding that chemically heterogeneous SAMs with amide-functionalized ligands are less
hydrophobic than chemically heterogeneous SAMs with amine-functionalized ligands. This result
demonstrates that our simulation model qualitatively reproduces the effects of polar end group
chemistry on SAM hydrophobicity, supporting further investigation into the origin of these effects.

We next investigated whether values of p, for chemically heterogeneous SAMs could be
approximated by assuming that contributions to u, from polar and nonpolar groups are additive.
We expanded the set of simulated SAMs to include mixed SAMs with amine-, amide-, and
hydroxyl-functionalized ligands with six different mole fractions of polar end groups (fp) and two
different patterns (“‘checkered” and “separated”). Figure 1A shows representative SAMs for each
chemistry, composition, and pattern, with additional details included in Section S1 of the
Electronic Supporting Information (ESI). Figure 1C shows values of u,, computed using INDUS
as a function of fp. Dashed lines indicate predictions from linear regression models that were
separately fit between values of u,, computed by INDUS and fp for each polar group (including a
purely nonpolar surface corresponding to f, = 0); these models represent predictions from an
additive approximation based on the fraction of polar surface area alone. For all three polar groups,

values of pu, for the 24 chemically heterogeneous SAMs (with 0.0 < fp < 1.0) lie off the linear

regression line. As expected based on the results of prior studies,?” ¢ 47 large differences in pu,



between the checkered and separated patterns are observed at fixed fp. These results confirm that
an additive approximation is inaccurate for these chemically heterogeneous surfaces.

We further used the linear regression lines in Figure 1C to quantify the accuracy of additive
models (akin to the Cassie model) that predict u, for a chemically heterogeneous SAM based on
the value of fp and chemical identity of the polar group alone (the latter captured by separately
fitting three models for SAMs containing each type of polar group). The root-mean-squared error
(RMSE) between values of p, predicted by the additive models and values computed by INDUS
(i.e., the average difference between the interpolation line and the points in Figure 1C) is 3.81,
9.75, and 6.46 kgT for the chemically heterogeneous SAMs containing amine, amide, and hydroxyl
groups, respectively. For comparison, INDUS calculations have a replica error of about 2 kg7,
indicating that predictions of the additive models are quantitatively inaccurate (particularly for the
amide and hydroxyl SAMs which demonstrate a more substantial dependence on SAM patterning)
and provide a baseline for further numerical comparisons of the data-centric models described
below. Figure 1C thus highlights two challenges with predicting hydrophobicity based on an
additive approximation: u, depends on the spatial pattern of polar and nonpolar groups and hence
cannot be predicted accurately by fp alone, and an additive approximation requires the value of fp
and specification of the polar group, which limits generalizability to surfaces of arbitrary
composition.

To overcome these challenges, we hypothesized that a model based on analysis of
interfacial water structure could be trained to accurately predict the hydrophobicity of surfaces
with diverse surface chemistries and patterns without requiring surface-specific information (e.g.,
the value of fp or the type of polar group). To generate a larger data set for model training, we

simulated homogeneous SAMs in which the end group partial charges were scaled while



maintaining charge neutrality (ESI Figure S1).2*® These charge-scaled SAMs are not meant to
model physically realistic surfaces, but rather are included to ensure that corresponding p, values
fully span the range of possible u, values for each end group in Figure 1A (as shown in Figure
S20). Along with the prior patterned chemically heterogeneous SAMs, the total training data set
included 58 SAMs for further analysis. For each SAM, we computed g, using INDUS to quantify
interfacial hydrophobicity and computed a set of water order parameters from a complementary
unbiased MD simulation to quantify the structure of interfacial water molecules (defined as water
molecules within 0.3 nm of the SAM-water interface). These order parameters include information
on SAM-SAM, SAM-water, and water-water hydrogen bonds, water orientations relative to the
SAM, and the water triplet angle (i.e., the angle formed between an interfacial water molecule and
two neighboring water molecules).’*®! ESI Section S2 provides a full description for each
parameter and ESI Figures S7-12 show variations in these parameters for different SAMs. Subsets
of these parameters have been used previously to understand how peptide side chain chemistry
affects binding,*® surface polarity alters interfacial water orientation,>* and SAM order affects
hydrophobic interactions.”® However, quantifying which order parameters are most important for
predicting hydrophobicity across a broad range of SAMs is challenging through traditional

approaches that investigate single parameters independently.

Data-centric analysis identifies important water structural features. We implemented a data-
centric workflow to relate interfacial water order parameters to interfacial hydrophobicity
quantitatively. We defined a set of 152 features that were each related to a particular value of an
order parameter; for example, the probability of observing zero water-water hydrogen bonds is a

feature. Each of the 58 SAMs was associated with a feature vector containing standardized

10
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Figure 2. (A) Schematic of feature selection workflow. (B) Parity plot comparing hydration free energies
(1) predicted from multivariate linear regression to those calculated by INDUS. Each point is the
prediction for the SAM when it is included in the validation set during 5-fold cross validation, such that the
SAM is not included in model training. Error bars are smaller than the symbols. (C) Comparison of feature
weights for the linear regression model. Error bars were calculated as the standard deviation of the weights

from three independent repetitions of the simulation and feature selection workflow.

numerical values for all features (determined from the unbiased MD simulation) and a single value
of u,,. We then developed a three-step workflow to select the minimum set of features required to
accurately predict u,, and, thus, interfacial hydrophobicity (Figure 2A). In the first step, we
reduced the number of features by computing the Pearson’s correlation coefficient between all
pairs of features and removing features that were above a correlation threshold (ESI Section S2).
In the second step, we performed Lasso regression using the 45 remaining features (ESI Table S2)

for each SAM as input to predict corresponding values of w, . In the final step, we performed 5-

11



fold cross validation using multiple linear regression to relate the minimum set of features
identified from Lasso regression to y,,, thereby determining the overall accuracy of our approach
(ESI Section S2). This entire approach (including INDUS and unbiased simulations) was repeated
three times for independent sample sets to ensure robustness and estimate simulation error.

Strikingly, we found that only five features of interfacial water structure are required to
accurately predict the full range of SAM hydration free energies even though the SAM data set
contains both homogeneous and chemically heterogeneous SAMs with different compositions,
patterns, and end group chemistries, and contains SAMs with scaled end group partial charge (ESI
Section S2), suggesting that the selected features may be universally relevant to SAM
hydrophobicity. The five features, and their importance to model predictions, are discussed below.
Figure 2B shows a parity plot comparing p, values predicted by the final linear regression model
to those computed by INDUS. Each reported p, value is based on the model prediction for the
corresponding SAM when it is included in the validation set, rather than training set, during 5-fold
cross validation; that is, reported values are for SAMs not included during model training and
hence capture the ability of the model to generalize to unseen SAMs. The linear regression model
has an RMSE of 3.97 + 0.19 kgT and predicted pu, values are strongly correlated with INDUS
values with a Pearson’s 7 of 0.98 (a value of 1.0 indicates perfect linear correlation). This RMSE
compares favorably to the replica error of INDUS (2 k37 as noted above), indicating that the
predictions are quite accurate.

The overall RMSE reported above and in Figure 2B includes predictions for homogeneous
SAMs; if considering only the chemically heterogeneous SAMs (i.e., the 24 SAMs with
0.0 < fp < 1.0 shown in Figure 1C, including SAMs with two different patterns and three

different end groups) the RMSE is instead 4.57 = 0.25 kgT. This slightly higher value reflects the
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greater challenge in predicting u, for chemically heterogeneous as opposed to homogeneous
SAMs, but is notably still lower than the RMSE of the additive models for the amide and hydroxyl
SAMs and comparable to the RMSE of the additive model for the amine SAMs (Figure 1C) even
though the linear regression model includes no features describing properties of the SAM itself
(e.g., fp or the type of polar end group). The accuracy of the linear regression model was further
tested on an additional set of 153 chemically heterogeneous SAMs, obtained from Ref. 62, that
were unseen during model training. These SAMs included three sets of 51 mixed SAMs with each
set including ligands functionalized with nonpolar end groups and either amine, amide, or hydroxyl
end groups (as with the SAMs in Figure 1A) in varying mole fractions and random patterns. p,,
values for these SAMs were predicted using the trained linear regression model with a resulting
RMSE of 5.21 kT (parity plot shown in Figure S21), which is comparable to the RMSE for cross-
validation predictions of the 24 chemically heterogenecous SAMs with separated or checkered
patterns despite the much larger size of this data set. Together, these results showcase the ability
of the linear regression model to accurately predict u, for a range of chemically heterogeneous
SAMs utilizing only features of interfacial water structure.

Given the accuracy of the linear regression model, we next investigate the five features
important to model predictions. These features are the probability that an interfacial water
molecule forms zero SAM-water hydrogen bonds, p(Nsam—water = 0), the probability that an
interfacial water molecule forms a triplet angle of 48°, p(6 = 48°), the average total number of
hydrogen bonds per molecule (ligand with a polar end group or water), Nyot41, the average number
of SAM-water hydrogen bonds, Ngam_water » and the probability that an interfacial water molecule
forms a triplet angle of 90°, p(6 = 90°). No features describing properties of the SAM are

included, indicating the potential for the regression model to generalize to surfaces beyond the
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SAMs considered here. Similarly, the five identified features are not correlated with fp and thus
are not capturing a simple descriptor of surface hydrophobicity (ESI Table S3). We further
performed 5-fold cross validation using Lasso regression and separately utilized a nonlinear
Random Forest model with recursive feature elimination to select features for the same data set
(ESI Section S2). Both approaches identified similar features, indicating the robustness of model
findings. Figure 2C compares the weights of the coefficients from the linear regression model to
quantify their relative importance. These results show that p(Nsam_water = 0) is the most
important feature in the model, followed by p(6 = 48°). Niota1 and Ngapm—water Of are comparable
importance and p(6 = 90°) is least important. These five features, and their physical significance,

are described in detail in the sections below.

SAM-water hydrogen bonding strongly correlates with hydrophobicity. Two of the features
identified as strong predictors of hydrophobicity, p(Nsam—water = 0) and Ngam—water, quantify
the formation of hydrogen bonds between the SAM and interfacial water molecules. The feature
that has the highest weight in the linear regression model (and hence contributes most substantially
to model predictions) is p(Nsam—water = 0); large values of p(Ngam—water = 0) indicate that
water molecules are unlikely to form hydrogen bonds with the SAM and that the SAM is
accordingly more hydrophobic. This feature is thus a simple, intuitive descriptor for SAM
hydrophobicity that is conceptually related to water density fluctuations because the enhancement
of such fluctuations near more hydrophobic surfaces is due to weak surface-water interactions.*®
50

To determine if this feature alone can capture trends in SAM hydrophobicity, Figure 3A

plots w, versus p(Nsapm—water = 0) for the SAM data set. For this comparison (and the
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Figure 3. Values of features (prior to standardization) related to interfacial hydrogen bonding plotted versus
hydration free energies (u,,) for the checkered (solid squares) and separated (hollow circles) SAMs. Values
for SAMs with amine (purple), amide (green), and hydroxyl (orange) end groups are plotted separately. (A)
Probability density for zero SAM-water hydrogen bonds formed by an interfacial water molecule. The black
dotted line is a linear fit to all data. (B) Number of hydrogen bonds between SAM polar end groups and
interfacial water molecules. (C) Total number of hydrogen bonds formed by an interfacial water molecule.
Each value is averaged over all interfacial water molecules and simulation time. The dotted lines are linear

fits for each end group (including both checkered and separated patterns).

comparisons in the following sections), only the chemically heterogeneous SAMs from Figure 1
are considered when determining how features correlate with the hydrophobicity of chemically
heterogeneous SAMs with different ligand end groups because these SAMs are physically realistic
and have well-defined values of fp and patterns; homogeneous charge-scaled SAMs and the
chemically heterogeneous SAMs with random patterns and compositions are omitted. u, and
P(Nsam—water = 0) are highly correlated with a Pearson’s » of -0.95; the negative correlation is
expected because larger values of p(Ngam—water = 0) indicate a more hydrophobic surface with
lower p,,. Linear regression with only this feature predicts u,, with an RMSE of 5.86 + 0.07 k3T,

demonstrating that this feature alone provides reasonable prediction accuracy but including the
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other four features reduces the prediction RMSE by approximately 1.3 kzT. Notably, the RMSE of
a linear regression model with only p(Ngam_water = 0) is substantially lower than the RMSEs of
additive models for chemically heterogeneous SAMs with amide or hydroxyl groups (Figure 1C)
despite including no SAM-specific information, again highlighting the value of analyzing
interfacial water structure.

The other important feature based on SAM-water hydrogen bonds is Ngay—water - Figure
3B shows that this feature also has a linear correlation with hydration free energy and a Pearson’s
r0f 0.95. In contrast to p(Nsam—water = 0), this feature quantifies favorable interactions between
interfacial water molecules and the SAM, with larger values indicating more water molecules on
average bound to the SAM. These two features provide complementary information on SAM-
water interactions and demonstrate that analysis of hydrogen bonding can serve as a baseline
prediction of trends in u,,. However, Figure 3A also shows systematic deviations in predictions for
different end groups and patterns: for example, pu, is underpredicted for SAMs with amine end
groups and overpredicted for separated patterns compared to checkered patterns. Accordingly, we
investigated the physical origin of the other important features identified by our workflow to

determine why they lead to the more accurate predictions shown in Figure 2.

Total interfacial hydrogen bonds vary with polar group chemistry. Another important feature
that depends on hydrogen bonds is Nyqt41, Which quantifies the total number of SAM-water, water-
water, and SAM-SAM hydrogen bonds per molecule. Increased SAM-water hydrogen bonds, as
described in the previous section, indicate strong SAM-water interactions that decrease interfacial
hydrophobicity. Increased interfacial water-water hydrogen bonds signify a more connected

hydrogen bond network, or a more ordered interfacial water structure, which has been linked to
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decreased hydrophobicity for idealized nonpolar solutes® and SAMs.> Increased SAM-SAM
hydrogen bonds could indicate fewer hydrogen bonding donor or acceptor sites available for SAM-
water hydrogen bonding, consequently increasing interfacial hydrophobicity. Thus, this feature
encodes information on a range of possible behaviors with distinct contributions to interfacial
hydrophobicity that could vary for different SAM properties.

Figure 3C plots u, versus Niota following the previous approach in Figures 3A and 3B.
Different trends are observed for each polar end group; notably, u, scales approximately linearly
with Nioia for each polar end group separately but with substantially different slopes. The
difference in scaling suggests that Ny, can distinguish between polar end group chemistries in
the linear regression model (Figure 2B); that is, the relative contribution of this feature to the
predicted value of u,, differs between polar end groups. Figure 4 shows variations in the average
number of SAM-SAM, SAM-water, and water-water hydrogen bonds that contribute to Niq¢4. For
all three end groups, variations in Ny, reflect the competition between increased SAM-water and
decreased water-water hydrogen bonds as fp increases (leading to an increase in p, ). These general
trends can be interpreted in terms of the disruption of water structure near a uniformly nonpolar
surface (for the lowest value of u, ) by the presence of polar groups that can interact favorably with
interfacial water molecules. For the SAMs containing amine end groups, SAM-water hydrogen
bonding is relatively weak and consequently the increase in SAM-water hydrogen bonds is
insufficient to compensate for the decrease in water-water hydrogen bonds, leading to a decrease
in Nioral as U, increases. Conversely, Nioea 1S nearly constant with p, for SAMs containing
hydroxyl end groups because the increase in the number of favorable SAM-water hydrogen bonds

compensates for the decrease in number the water-water hydrogen bonds.
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Figure 4. Average number of hydrogen bonds per molecule (excluding ligands with methyl end groups that
cannot form hydrogen bonds) for all hydrogen bonds (N¢ytq;), SAM-SAM hydrogen bonds, SAM-water
hydrogen bonds, and water-water hydrogen bonds. Top row: hydrogen bonds for checkered SAMs. Bottom

row: hydrogen bonds for separated SAMs.

The SAMs containing amide end groups exhibit similar trends as the SAMs containing
amine end groups. However, these SAMs are unique because only the amide end groups form a
significant number of SAM-SAM hydrogen bonds (Figure 4) which increases with increasing
fp and contributes to an overall increase in Niyea With p, (for SAMs in the checkered pattern;
because the total number of hydrogen bonds is normalized by the number of polar end groups,
SAM-SAM hydrogen bonds remain relatively constant for the amide-containing SAMs in the
separated pattern since the local chemical environment does not change with fp). Intra-surface

hydrogen bonding has been shown to reduce surface hydrophilicity in prior simulation studies of
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model surfaces,®> which explains why amide end groups contribute to lower values of u, than
hydroxyl end groups (on average) despite larger values of Niyta1- This behavior may also explain
why p, for the checkered SAM with 75 mol% amide end groups is larger than p, for a
homogeneous SAM with only amide end groups.

Together, this analysis indicates that N, captures variations in hydrogen bonding
behavior that depend on the chemical identity of SAM polar end groups and points to physical
mechanisms underlying variations in SAM hydrophobicity. Incorporation of this feature into the
linear regression model provides information to distinguish the influence of end group chemistry
in predictions of u,. Moreover, the ability to identify a single feature (rather than a subset of
additional features related to the variation of each type of hydrogen bond separately) that

quantitatively relates these complex behaviors to y, is a benefit of our data-centric workflow.

Orientational features encode information on crowded water coordination shells. The feature
with the largest positive weight in the final linear regression model (Figure 2C) is p(6 = 48°),
which is the probability that an interfacial water molecule forms a triplet angle of 48°. The triplet
angle is calculated by measuring the angle between an interfacial water molecule and its two
nearest neighbors within a 0.33 nm radius. Figure SA illustrates differences in the triplet angle
distribution for SAMs with varying fractions of polar end groups, hinting at the ability of this
distribution to distinguish surfaces with varying values of pu,. While these distributions vary
substantially, the importance of variations to p(6 = 48°) identified by the feature section
workflow indicates that this probability provides unique information not directly quantified by
features associated with hydrogen bonding and thus merits further analysis. Figure 5B plots u,,

versus p(6 = 48°). Like Nyora, (8 = 48°) exhibits different variations with respect to u,, for

19



different polar end groups and thus provides information to the regression model to distinguish
between SAMs with different end groups. p(6 = 48°) increases with p, for SAMs containing
amide and hydroxyl end groups and decreases with u, for SAMs containing amine end groups,
which follows a similar pattern as Ny, While trends in the formation of hydrogen bonds have a
clear physical interpretation, the physical significance of this feature is less clear. Monroe and
Shell have suggested that a small peak in the triplet angle distribution at around 50° arises due to

a fifth neighbor in the coordination shell of bulk water.! However, it is unclear how interfaces and

surface properties affect this feature.
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Figure 5. (A) Schematic of the calculation of the water triplet angle and example distributions for
“checkered” SAMs with amine end groups as a function of the fraction or polar end groups (fp).
Distributions show the difference relative to a SAM containing only methyl end groups, which corresponds
to fp=0.00. (B) Probability density for an interfacial water molecule forming a triplet angle, 8, of 48° for
the checkered (solid squares) and separated (hollow circles) SAMs versus hydration free energies (i,,). (D)
Probability density for an interfacial water molecule forming a triplet angle of 90°. The dashed lines and

dotted lines are linear fits for the checkered and separated SAMs, respectively, for each end group.
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To investigate the origin of the p(6 = 48°) feature, we calculated the water coordination
number, Cy, by counting the number of heavy atoms within 0.33 nm of the oxygen atom of an
interfacial water molecule. Figure 6A compares the probability distribution of the coordination
number, p(Cy), when calculated separately for all water molecules (i.e., all possible triplet angles)
and for only those water molecules with a triplet angle of 48°. Results are presented for bulk water
and for the checkered SAMs as a function of fp; the separated SAMs follow approximately the
same trend (ESI Figure S22). As previously suggested,®! p(Cy) for water molecules with a triplet
angle of 48° is shifted toward larger values of Cy, with a maximum at Cy =5, for all SAMs and
for bulk water. This finding indicates that p(6 = 48°) captures information on the likelihood of
observing highly coordinated water structures. We note that p(68 = 48°) is very small for bulk
water, so the observation of these highly coordinated structures is rare. Compared to bulk water,
all p(Cy) distributions are shifted toward small values of Cy when fp is low, reflecting the vapor-
like arrangement of water molecules near more hydrophobic surfaces.®* Increasing fp shifts all
distributions toward those of bulk water, which is consistent with an increase in the hydrophilicity
of the surface. These shifts are less pronounced for SAMs with amine end groups due to the general
decrease in hydrogen bonds for SAMs with amine end groups (Figure 3B). The difference in these
shifts between different polar groups highlights that p(6 = 48°) hence contains information on
end group contributions to the formation of highly coordinated water structures.

The shift toward higher coordination numbers suggests that the polar end groups either
interact directly with water molecules at the interface (thereby increasing their coordination
numbers) or nucleate highly coordinated water structures near more polar SAMs. We tested both
possibilities by separately calculating water-water and SAM-water contributions to p(Cy = 6)

because the p(Cy) distributions for the SAMs containing amide and hydroxyl groups have a
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Figure 6. (A) Water coordination number (Cy) probability density functions for all interfacial water
molecules (blue lines) and only interfacial water molecules with a triplet angle of 48° (red lines). Bulk water
probability density functions for all water molecules (dotted line) and water molecules with a triplet angle
of 48° (dashed line) are included for reference. Shifts with increasing fp are indicated by the purple arrows.
(B) Probability density function values for C,y = 6. Stacked columns indicate the contributions from water-

water coordination (blue columns) and SAM-water coordination (red columns). A and B both consider only

checkered SAMs.

shoulder at Cy = 6 when fp is large. Figure 6B shows that the increase in p(Cy = 6) as fp increases
is largely driven by the water-water contribution for all checkered SAMs. This result indicates that
the polar groups nucleate highly coordinated water structures at the interface. As a secondary
effect, we also find a substantial SAM-water contribution to p(Cy = 6) for the SAMs containing
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amide and hydroxyl end groups, indicating that the strong interactions between these polar end
groups and interfacial water molecules lead to crowded coordination shells that are rarely observed
in bulk water. Together, this analysis reveals that p(6 = 48°) encodes information on the
formation of highly coordinated water structures that are nucleated near more hydrophilic SAMs

and are thus signatures of hydrophilic surfaces.

Disordered arrangements of molecules differentiate SAM patterns. The p(6 = 90°) feature has
the smallest weight of the important features (Figure 2C) but plays an important role in
distinguishing SAMs with different patterns. Figure 5C plots p(6 = 90°) versus u, and reveals
that SAMs with checkered and separated patterns exhibit substantially different variations in the
scaling of p(6 = 90°) with u,. The physical significance of this feature can be inferred from the
peak at 90° in the triplet angle distribution of an ideal gas (ESI Section S3), which indicates that
large values of p(6 = 90°) are characteristic of disordered, gas-like arrangements of water
molecules. Prior simulation studies have shown that water structure near hydrophobic surfaces
exhibits similarities to the water-vapor interface,** which is consistent with our finding that more
hydrophobic SAMs (smaller u,) have larger values of p(6 = 90°). The differences in behavior
between checkered and separated SAMs can be attributed to the larger hydrophobic domains
associated with separated patterns. ESI Figure S21 shows that p(8 = 90°) increases near these
hydrophobic domains but is lower on average for checkered surfaces with the same value of fp,
reflecting the pinning of the water-vapor interface when polar groups are uniformly distributed
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across the SAM. This finding is consistent with prior simulation studies and indicates that

p(0 = 90°) quantifies the formation of large hydrophobic domains found in certain SAM patterns.
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Conclusions

We computed hydration free energies (as quantitative descriptors of interfacial
hydrophobicity) and water structural parameters for 58 SAMs, encompassing variations in polar
group chemistries, compositions, and spatial patterns, using MD simulations. Lasso regression
revealed that only five water structural features were needed to quantitatively predict SAM
hydration free energies with an accuracy comparable to that of rigorous enhanced sampling
calculations, and with comparable or greater accuracy than additive models that approximate the
hydration free energy of a chemically heterogeneous SAM based on the mole fraction of polar
groups alone. We investigated the physical significance of the five features identified and their
importance in distinguishing different SAM properties. Two features — the probability that an
interfacial water molecule forms zero SAM-water hydrogen bonds and the average total number
of SAM-water hydrogen bonds — correlated strongly with SAM hydrophobicity and contribute
substantially to the regression model. Consequently, analysis of SAM-water hydrogen bonding
alone provides a baseline prediction for hydrophobicity that can be intuitively understood as
quantifying the strength of SAM-water interactions. Two additional features — the average total
number of hydrogen bonds per molecule and the probability that an interfacial water molecule
forms a triplet angle of 48° — were necessary to distinguish contributions to hydrophobicity from
different polar groups. The average total number of hydrogen bonds per molecule captured
variations in SAM-water, SAM-SAM, and water-water hydrogen bonding in analogy to the
restructuring of hydrogen bond networks that underlies the hydrophobicity of nonpolar solutes.
The probability that an interfacial water molecule forms a triplet angle of 48° quantifies the
formation of highly coordinated interfacial water structures as a unique, previously unreported

signature of hydrophilic surfaces. The last feature, the probability that an interfacial water
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molecule forms a triplet angle of 90°, distinguishes nanoscale spatial patterns by capturing
disordered arrangements of water molecules near large nonpolar domains.

These findings establish a link between variations in water structure and hydrophobicity
for chemically heterogeneous interfaces. Typical experimental approaches can directly quantify
hydrophobic interactions for simple systems (e.g. planar interfaces®” 3% %) or approximate
interfacial hydrophobicity based on additive approximations (e.g. hydropathy scales®® 7). The
finding that surprisingly few water structural features are needed to predict interfacial
hydrophobicity with high accuracy provides opportunities to quantify the hydrophobicity of
complex interfaces (e.g., proteins, colloids, or amphiphile membranes) via more readily accessible
experimental measurements of interfacial water structure.’*’° Our findings further provide a
framework to understand how polar group chemistry and patterning modulate hydrophobicity,
which could be applied to materials design for the many applications involving water-mediated
interactions. No features specific to the surface (e.g., the fraction of polar groups or the chemical
properties of those groups) are used to predict interfacial hydrophobicity in this work, suggesting
that analysis of interfacial water structure could generalize to guide the design of diverse synthetic
and biological surfaces. However, additional features may be necessary to predict hydrophobicity
for more complex surfaces as the model developed in this work is parameterized using a limited
number of polar end groups and only planar surfaces. Finally, we note that the regression model
predicts hydration free energies using water structural features obtained with substantially reduced
simulation time compared to INDUS simulations yet achieves comparable accuracy. This
computational efficiency indicates that structure-property models based upon water structural

features could be utilized as screening tools to rationally fine-tune hydrophobicity, complementing
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recently developed machine learning techniques® > by permitting analysis of the importance of

water structural features.

Methods

SAM models. Two sets of SAMs were modeled as part of the data set used to train the linear
regression model developed in this study: single-component charge-scaled SAMs and mixed
SAMs with ligands arranged in either a “checkered” or “separated” pattern. Charge-scaled SAMs
contained ligands where the partial charges of the end groups were multiplied by a scaling factor,
k, to modify the hydrophobicity of the surface while maintaining charge neutrality.>* >® The two
SAM patterns were selected to capture the extremes of possible ligand arrangements. SAMs in the
checkered pattern contained ligands with polar and nonpolar end groups arranged such that the
polar end groups were most dispersed on the SAMs. SAMs in the “separated” pattern contained
ligands with polar and nonpolar end groups arranged in distinct groups resembling a 2D phase-
separated system. All SAMs contained 144 ligands arranged on a 12x12 hexagonal lattice to be
consistent with a grafting density of 21.6 A/ligand to be consistent with experimental
measurements for the Au(111) lattice.”" > SAMs were then solvated and periodic boundary
conditions were applied to the resulting 5.2 x 6.0 x 11.7 nm> SAM-water systems. A third set of
SAMs, obtained from Ref. 62, was used to test the trained linear regression model. These SAMs
contained 64 ligands arranged in an 8x8 hexagonal lattice with a central 4x4 patch of polar and
nonpolar ligands surrounded by an additional 48 nonpolar ligands. The relative fraction of polar
and nonpolar ligands and their spatial positions within the patch were randomly selected to
generate distinct SAM compositions and patterns. For all three sets of SAMs, ligand atoms were

modeled using the CHARMM36 General Force Field (CGenFF-jul2017).”> Water atoms were
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modeled using the TIP4P/2005 force field.”* Additional details of the SAM models are included

in ESI Section S1.

Hydration free energy and water order parameter calculations. Two different types of MD
simulations were performed for each of the 58 SAMs used for feature selection and linear
regression model training. INDUS simulations were implemented to calculate the hydration free
energies (i,) and unbiased simulations were performed to compute water order parameters.
Detailed descriptions of both simulation types are provided in ESI Section S1. INDUS was used
to quantify the relative hydrophobicity of the SAMs by calculating y, for a 2.0 x 2.0 x 0.3 nm?
cuboidal cavity at the SAM-water interface. The probability of observing N water molecules within
this cavity, p,, (N), follows a Gaussian distribution near the mean value of N and near hydrophilic
surfaces but exhibits a non-Gaussian tail for small values of N as a signature of interfacial
hydrophobicity.’*>? INDUS applies a biasing harmonic potential to the positions of water
molecules in the cavity so that N can be sampled continuously to determine the p,, (N) distribution.
We biased the number of water molecules inside the cavity using 16 independent simulation
windows, each performed for 5ns (80 ns total). The weighted histogram analysis method
(WHAM) was used to compute the unbiased probability distribution of N in the cavity” and u,
was obtained via Equation 1:

py = —kpTInp,(0) (1)
kg is the Boltzmann constant, T is the temperature, and p, (0) is the probability that zero water
molecules are within the cavity. u, is a quantitative indicator of hydrophobicity that captures non-

Gaussian tails in the p, (N) distribution (Figure S6).
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Unbiased simulations were performed for 10 ns and used to compute water order
parameters as described in the Results section. Descriptions of the parameters and details about
their calculation are include in the ESI Section S2. Water order parameters were only computed
for interfacial water molecules, which were defined as all water molecules with a center of mass
position within 0.3 nm of the SAM-water interface. Three replicas for both the INDUS and
unbiased simulations were used to compute error bars and ensure the robustness of the data-centric
feature selection workflow. Unbiased simulations following this same procedure were also
performed for each of the 153 chemically heterogeneous SAMs used to test the trained linear
regression model in order to compute water order parameters. Values of p, for these SAMs were
obtained from Ref. 62, in which they were calculated following the same INDUS protocol
described above.
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