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Abstract—A large volume of data is typically needed to achieve
an accurate solar generation prediction. However, not all types
of data are consistently available. Various research efforts have
addressed this challenge by developing methods that identify the
most relevant features for predicting solar generation. However,
the optimal features vary with different weather patterns, making
it impossible to select a fixed set of optimal features for all weather
patterns. This study develops a new framework to accurately pre-
dict solar irradiance using dynamically changing optimal features.
The developed model first incorporates feature extraction with
clustering techniques to identify representative weather data from
a dataset. Next, using deep reinforcement learning (DRL), a new
feature selection method is developed to yield the minimum features
required to accurately forecast solar irradiance from representative
data. Benefiting from the model-free nature of DRL, the developed
method is adaptive to various weather conditions, and dynamically
alters the selected features. Case studies using real-world data have
shown that the developed model significantly reduces the volume
of data required for accurate irradiance forecasting for different
weather patterns.

Index Terms—Data analytics, data clustering, deep reinforce-
ment learning, feature extraction, solar generation forecast.
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I,71,Zr  Allnodes, left nodes, and right nodes in a tree.

Q(fx) Complexity penalty of kth tree in XGBoost.

d(X) A higher dimensional dataset transformed from
the original weather dataset.

o Standard deviation.

0; Inner parameters (weights and bias) of the present
Q-network at the 7th iteration.

0; Inner parameters (weights and bias) for target Q-
network at the ¢th iteration.

a A weighting constant for reward.

AF Number of the features used for forecast.

b; Size of selected data from each cluster.

C; Centroid for the ith cluster.

fr kth independent regression tree with structure ¢
and leaf weights w

() Loss function in XGBoost.

Loss;(0)  The value of the loss function at the ith iteration
given parameter 6 in DQN.

m,t Dimension of original weather dataset X, and
d(X)

N Number of data points in the original weather
dataset.

n; Number of data points in the ith cluster.

Ngi The selected representative data for the ith cluster.

QO Qmew  Q-value of last iteration, and the updated Q-value.

Sty Aty Tt State, action, and reward at step ¢, respectively.

T, w Number of leafs, and leaf weights in a tree.

W,D, L Similarity matrix, Diagonal matrix, and Lapla-
cian matrix, respectively.

X(x) The original weather dataset.

xij ) The ith data in the jth cluster.

Xrepre The representative dataset extracted from the
original weather dataset.

Xirans The output of KPCA and the input to SC.

Y Label when training XGBoost.

Real solar irradiance.

Predicted solar irradiance with the selected
features.

Yactual
Ypred

1. INTRODUCTION

ITH the unprecedented growth of solar-powered gen-
Weration, an accurate forecast of solar generation has
become critical to grid operations, notably for maintaining load
and generation balance in real time. Traditional solar forecasting
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methods rely on the availability of large-scale historical weather
data (e.g., temperature, humidity, and wind speed) and often
suffer from the following shortcomings:

1) They require large-scale historical data to guarantee fore-
cast accuracy while accessing massive weather data is
limited for many utilities;

2) There is a need to balance data adequacy with avoiding
over-fitting problems.

Due to effectively reducing the volume of data used, feature
selection is proven to be an effective solution to these limita-
tions [1]. However, the optimal features fluctuate depending
on weather conditions; thus, choosing a single set of fixed
features under all circumstances will result in a sub-optimal
solution. Consequently, it is essential to develop a framework for
predicting solar generation that is adaptable to changing weather
conditions. This study aims to build a dynamic model for solar
forecasting based on Deep Reinforcement Learning (DRL). The
developed model yields optimal features for day-ahead or hour-
ahead solar irradiance forecasting that are adapted to different
weather patterns.

To demonstrate the new ideas pursued in this paper, we will
first discuss the existing applications of Reinforcement Learning
(RL) in generation forecasting. Current applications can be
grouped into three categories: 1) optimizing the parameters
of existing forecasting models [2], [3]; 2) optimizing time-
series forecasting results [4]; 3) real-time selection of optimal
predictive models [5], [6]. The authors in [2], [3] optimized
the initial parameters of an RL-based neural network (NN)
predictive model to avoid local minima when training a NN
model. A hybrid model for short-term wind speed forecasting is
developed in [4], which combines Empirical Wavelet Transform
(EWT), Deep Network, and RL for improved forecast results.
Upon decomposing the original data into different sub-data, RL
determines the best forecasting result among the results from
each sub-data. However, this approach necessitates a signifi-
cant amount of computing power, whereas more straightfor-
ward probabilistic methods, such as the Bayesian approach,
can achieve similar goals. Alternatively, in [5], [6] the authors
proposed using several forecast models, each generating a dif-
ferent forecast result. An RL agent determines the best model
depending on real-time conditions. In the aforementioned stud-
ies, RL has been utilized solely to improve the accuracy of the
existing forecast models. This improvement comes at the cost
of increased computational expense, only to result in a slight
improvement in accuracy. This paper develops a fundamentally
different approach to utilizing RL to reduce the computational
burden of data-driven forecast models.

RL has proven to be an effective tool for feature selection [7],
[81, [9]. However, its performance is limited in higher dimen-
sions, such as those anticipated in solar irradiance prediction.
Combining RL and Deep Learning for advanced DRL-based fea-
ture selection provides the benefit of reliably capturing minimal
discriminating features for solar irradiance forecasting, reducing
computational cost, and improving forecast performance. The
deployment of DRL also allows dynamic feature selection,
which implies that the optimal features change according to the
conditions at the time of the forecast. As indicated in Fig. 1, the
optimal dynamic features are used to forecast solar irradiance.
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Fig. 1. Structure of the developed DRL-based dynamic feature selection
method for solar irradiance forecasting.

The case studies presented in this paper have shown that the
optimal features for forecasting solar irradiance during rainy
conditions differ from those for sunny days. These results mo-
tivate the objective sought in this paper, which is to identify the
minimum number of features for different weather patterns, and
explore the feasibility of extending DRL for this purpose.

The main contributions of this paper can be listed as follows:

1) Developing a novel DRL-based method to identify a
reduced set of optimal data for the prediction of solar
irradiance. The optimal data used for prediction change
dynamically, based on the local weather conditions;

2) The developed model can dramatically reduce the required
data volume for an accurate forecast. Unlike traditional Ar-
tificial Neural Network (ANN)-based forecast models, the
method presented in this paper generates similar forecast
accuracy with much fewer data;

3) Case studies using real-world data demonstrate that the
developed feature selection methodology strongly adapts
to various weather conditions.

The rest of this paper is organized as follows. The state-of-
the-art methods in solar generation forecasting are discussed in
Section II. Details of the developed DRL-based model for solar
irradiance forecasting are discussed in Section III. Case studies
are presented in Section IV, followed by conclusions and future
research in Section V.

II. STATE-OF-THE-ART METHODS IN SOLAR GENERATION
FORECASTING

Various recent efforts have aimed to forecast solar irradi-
ance, which can be grouped into two main categories [10]:
physics-based and Machine Learning (ML)-based methods.
Physics-based models are classified into three main categories:
models based on cloud imagery [11], models based on satellite
data [12], and numerical weather prediction (NWP) models [13].
Nevertheless, the forecasting effectiveness of the physics-based
models is limited by the volume of accessible data, i.e., the
forecast efficiency is deficient since a considerable amount of
raw data is required.

ML-based approaches have recently become common to
estimate solar irradiance with large-scale historical data [14].
Among the existing methods, supervised learning, unsupervised
learning, and RL are three main categories of interest in the
research community. In terms of the supervised learning meth-
ods, Support Vector Machine (SVM), Regression, and Hidden
Markov Model (HMM) are compared by the authors in [15] with
diverse datasets from different locations for short-term solar irra-
diance forecasting. Similar comparisons are carried out in [16]
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to compare Linear Regression, K-Nearest Neighbors (KNN),
and SVM, while the SVM forecast model is shown to produce
the most accurate forecast. Another comparative examination
of several techniques, including Feedforward Neural Network
(FFNN), Auto Regression (AR), KNN, and Markov Chain, is
presented in [17], with FFNN demonstrated to be the optimal
approach for solar irradiance forecasting among the four al-
gorithms investigated. Although the aforementioned predictive
models outperform traditional statistical methods, such as NWP,
in terms of forecast accuracy, the models perform poorly during
dynamic conditions, such as overcast days.

To further improve the forecast accuracy under dynamic
conditions, hybrid models have been developed that combine
multiple ML methods. In one study [15], Principal Component
Analysis (PCA), primarily used for feature extraction, is coupled
with Artificial Neural Network (ANN) for long-term solar irradi-
ance forecasting. In another work [18], a hybrid solar forecasting
model is established using sky images. Sky image data are
first clustered with convolutional autoencoder and K-means.
Upon grouping the original data into multiple clusters, several
NN-based algorithms are leveraged to forecast solar power using
distinct clusters. Combining the forecast results from each clus-
ter results in the final forecast. Authors in [19] proposed a hybrid
deep learning forecasting model that integrates auto-encoder
long-short-term memory networks (AE-LSTM) with persistence
model. AE-LSTM model is used to generate forecasts under
complex weather conditions while the persistence model is only
applied for continuous sunny weather conditions. Frequency-
domain decomposition and deep learning are utilized in [20] for
ultra short solar power forecasting. PV power is first decomposed
into the low-frequency and high-frequency components. Convo-
lutional neural networks (CNN) are then introduced to forecast
both of the two components, from which the final forecasting
result can be integrated to obtain. CNN is also integrated with
satellite visible images processing to forecast minutely solar
irradiance in [21]. Cloud cover is extracted from satellite visible
images using a CNN. The generated cloud cover as well as other
meteorological information, such as zenith angel, are used by a
Multi-layer Perceptron (MLP) to yield forecasts.

To ensure the forecast accuracy of the aforementioned hybrid
models, large-scale data are required. Such a volume of data may
not always be available due to the need for continuous sensor
measurement and storage. Therefore, identifying the optimal
data for predicting solar irradiance can be critical to resolving the
aforementioned issues while ensuring a minimal computational
burden in both training and forecasting processes.

III. A NEW HYBRID FORECASTING MODEL FOR SOLAR
IRRADIANCE FORECASTING

In this paper, a fundamentally new approach to generation
forecasting is proposed. DRL is extended to dynamically select
the optimal features used for solar irradiance forecasting under
various weather circumstances. The goal is to minimize the
number of features used in the forecast horizon (e.g., hour-
ahead) and reduce the computational burden, while ensuring
an accurate forecast. Reduced computational burden generally

Fig. 2. Computing framework of the proposed forecasting model
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Fig. 3. The framework for the Data Reduction

leads to higher efficiency and faster computation speeds. A
detailed description of the developed model is provided next.

A. An Overview of the Hybrid Forecasting Model

The enhanced solar irradiance forecast framework, illustrated
in Fig. 2, incorporates feature extraction, data clustering, DRL,
and the Extreme Gradient Tree Boosting (XGBoost) algorithms
to produce an efficient and accurate forecast. Three major com-
ponents work to attain this goal: data reduction, dynamic feature
selection, and solar irradiance forecasting. The data reduction
step reduces the scale of the raw datasets by clustering the data,
while dynamic feature selection further reduces the dimension
of data by finding the optimal features used for forecast.

The data reduction, illustrated in Fig. 3, incorporates feature
extraction with data clustering and seeks to select representative
data that best describe the original dataset. The dynamic feature
selection process learns from the representative data to deter-
mine the optimal features using DRL. The developed XGBoost
eventually uses the optimal features to yield solar irradiance
forecasts.

Combining feature extraction with clustering is a practical
technique for identifying representative data, as demonstrated
by priorresearch [22], [23], [24]. This paper aims to dynamically
reduce the size and dimension of the data required for an accurate
prediction, significantly extending previous research [22]. In
addition, the impact of diverse weather conditions on the size
of the needed data for an accurate forecast has been thoroughly
investigated. The comprehensive forecast model developed in
this work dynamically selects a subset of data based on weather
variations, which is the first of its kind approach in solar fore-
casting and offers a new angle for solar generation forecasting.
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B. Data Reduction - Feature Extraction and Clustering

1) Feature Selection: Feature extraction is used to represent a
large dataset with representative features [25]. Previous research
works have shown that solar forecast accuracy can be enhanced
by proper feature extraction [15], [22]. Linearly dependent data
can be efficiently transformed using PCA, a common feature
extraction methodology. However, the real-world data utilized
for solar generation forecasts are nonlinearly dependent, and
PCA is not applicable here. As an extension to PCA, Kernel
Principal Component Analysis (KPCA) can be used for nonlin-
ear data by incorporating a kernel. With specific kernel functions,
KPCA enables the mapping of nonlinear data to a dot product
feature space F, where the new dataset ¢ becomes linearly
dependent [26]. Thus, the PCA component in KPCA can be
applied to the new dataset ®. This paper selects the Radial Basis
Function (RBF) kernel function in equation (1) for mapping.
As compared to other kernel functions, such as polynomial
functions or sigmoid functions, RBF enhances the degree to
which the output data become linearly separable when applied
to the weather data used for solar forecasting [22].

202

R
K (wi,7;) = exp (—'x’ el ) ()

The original weather data X = {@x1, 2, 23,....xN}, X €
RN*m_ where N is the number of data in X and m is the
dimension of X, is mapped to a higher dimensional space as:

K@i )) = (®(2:) - @(5)) = B (i) B (25)"
i,j=12,...,N 2)
An N by N Kernel Matrix is thus constructed:
K =&(X)®(X)T 3)

where K;; = K(z;,z;) and (X) = {®(x1),..., 2(xn)}.
A higher dimensional dataset ®(X) € RV*t, (¢ > m), is de-
fined in the dot product feature space . Performing PCA di-
rectly in the new feature space is highly inefficient; consequently,
the kernel method is introduced to simplify the calculation by
replacing ®(X)®(X)T with K [27]. Thus, there is no need
to calculate ®(X). To illustrate this process, ®(X) should be
centered (4), i.e., Zle ®(x;) = 0, to compute the covariance
matrix.

B0 = B(X) -~ 1> @) @

The covariance matrix, which captures the correlation between
the variables [28], can be computed as:

N
— 1 — — T
Sox) = 7 D B(@:) B(x)) 8
i=1
The eigenvectors A of the covariance matrix Xy x) is described

in equation (6), which represent the direction of the data vari-
ance.
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Fig. 4. Anexample of selecting representative data: blue points are the entire
data, and the red points are the selected representative data.

From (5), A € span{®(z), ®(x2),..., ®(xn)} [29]. Hence,
A can be stated as a linear combination of ®(z;)’s with coeffi-
cients a;’s:

N
A= Za@(mi) @)

Substituting (7) and (5) into (6) yields (8) [29],

1 N = T a T
<> B(@:) B () Zaifb(Xi)

i=1

N
LY d(X;)

1@ (X)a

%@(X)@(X)Tri(X)a
Ni®(X)®(X)Ta=o(X)2(X)Te(X)2(X)Ta (8)
Applying (3) into (8) yields the following equation [28],
NiKa = K*a — Nia = Ka, 9)

which is an n-dimensional eigenvalue problem. To satisfy the
KPCA constraints, the norm of « is adjusted to ||a|[* = 1.
Finally, the transformed data is calculated as Xy,qns = oK.
A transformed data set of p dimensions can be achieved by
selecting the first p(p < N) columns of a for computation.

2) Data Clustering: Following feature extraction from the
dataset, the transformed data X .., s are classified into /' groups
according to their similarity. Spectral Clustering (SC) [30],
which blends clustering and graph theory is leveraged for this
purpose. Compared with the conventional clustering K -means,
spectral clustering is more robust and has better grouping per-
formance regardless of the data distribution.

SC combines graph theory and K -means, where graph theory
pre-processes the data and K -means clusters the pre-processed
data. Rather than directly clustering the data based on their value,
SC groups data based on the eigenvectors of its Laplacian matrix
L, which is obtained from the similarity matrix W.

Three methods are generally deployed to generate the sim-
ilarity matrix W of the transformed dataset X qpns, : €-
neighborhood [31], k-nearest neighborhood [32], and the fully
connected method [33]. In this paper, the fully-connected
method is deployed, which assumes a fully-connected graph
when constructing a similarity matrix due to relatively small
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Fig. 5. Learning principle for the developed model.

data variance. Each W;; in W represents the similarity between
the samples ¢ and j. Here, the Gaussian similarity function is
used, as it assigns a higher weight to samples that are close [33]:

X = X1
202 ’

where o determines the distance of the data neighborhood. The
Laplacian matrix L is calculated as [34],

L=D-W

W;; = exp ( (10)

(11)

where D;; = 5 ; Wij. The eigenvalues and their corresponding
eigenvectors of the Laplacian matrix are represented as:

LA; =1 A; (12)

Upon obtaining the eigenvectors and eigenvalues, the eigenvec-
tors are sorted according to the value of the eigenvalues. The
top K eigenvectors Ay, .., Ag, the number of which is similar
to the predicted clusters and is determined later in the simu-
lation section, are then chosen to build the feature matrix U,
U € RV*E for large-scale data. A high-dimensional feature
matrix can be challenging to group effectively. Therefore, the
selected K eigenvectors are the optimal solution to balancing the
utilization of valuable information and reducing the processed
eigenvectors’ dimensionality [30]. The values in the feature
matrix U are then grouped with K-means into K clusters, and
the same grouping results are applied to X4, [35]. To select
the representative data of Xy,4,s, the data in each cluster is
equally divided into four groups (A-D) based on the Euclidean
distance between the data and its centroid c;. The first group (A)
contains the top 25% of data closest to the centroid ¢;, and the
following groups are ranked similarly. The representative data
for the ith cluster is selected as,

bi, Group Ainthe i, cluster

" by, Group B inthe i, cluster
) by, Group Cintheiy, cluster
by, Group D in the iy, cluster

(13)

where, by > b, > b3 > byand by + by, + b3 + by = n;. The data
selection criterion in (13) implies that more samples are selected
near the centroid. To ensure data diversity, some data farther from
the centroid are also selected.

The transformed dataset X;,4,s contains the same informa-
tion as the original weather dataset X (z:). Hence, the index of the
representative data Xy,.,s, Which means where representative
dataisin Xy, s, is applied to the original dataset X () to obtain
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the final representative data. This process is also illustrated in
Fig. 3. An example of selecting representative data from the
original dataset is shown in Fig. 4, with blue dots representing
the original dataset, and red points representing the chosen data.

C. Dynamic Feature Selection - Deep Reinforcement Learning

Although feature selection and clustering reduce the amount
of data, all types of sensor measurements are still used to predict
solar irradiance. There is a substantial difference across different
weather conditions regarding the required sensor measurements.
Not all variables are always necessary, and there is a potential
to reduce the data volume for the predictions further. A novel
dynamic feature selection methodology is developed here, ex-
tending DRL. DRL is a collection of goal-oriented algorithms
that combine Deep Networks with RL. Although RL effectively
solves a wide range of complex problems in different domains,
only low-dimensional environments can be fully observed by
RL [36]. This limitation hinders the application of RL to do-
mains with complex environments. On the contrary, DRL can
solve problems independent of the data dimensions. Since data
dimensions could potentially be high for the problem at hand,
Deep Q-Network (DQN), which incorporates Q-learning with
Deep Neural Network (DNN)), is leveraged here.

Q-learning is an off-policy DRL algorithm that discovers the
optimum actions for a given state [37]. Upon defining the action
and state space in an environment, an optimal action maximizes
the expected value of the total reward in subsequent steps. The Q-
value, denoted as Q(State, Action), is the evaluation standard
for each action. The action with the highest Q-value is generally
regarded as the optimal action for the current state. The Q-value
can be formulated as [38],

Q" (st,a¢) = Q()ld(st»at) +a x (re + 9 x maxQ(si11,a)

— Q" (s4,a1)) (14)

The computed Q-values are stored in a table known as the
Q-table, and the maximum expected Q-value for each state could
be directly obtained from the Q-table. In other words, Q-learning
agents have prior knowledge about the optimal action under
each state based on the Q-table. However, the number of actions
and states in a high-dimensional problem can be infinite. In this
study, the states, that is, the weather conditions, are countless.
Consequently, Q-learning or RL is not a proper method for
the learning task at hand and is significantly challenging to
handle a state that was not trained when developing the RL
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model. DQN can overcome the challenge mentioned above
by incorporating Q learning with neural networks. The DNN
component, which consists of two neural networks with the same
structure, stores the associated Q-values by estimating a function
f(S, A) = Q(State, Action) [39]. Thus, DQN is not limited by
the number of states and can estimate optimal actions even for
untrained states. The defined actions and states are the inputs
to DNN. Due to correlations between sequential inputs, directly
learning from a succession of actions and states causes DNN
to fall into local minima. Consequently, a mechanism known as
experience replay is introduced to overcome this problem [40].
Upon acquiring a large number of Q-values with actions and
states, and to make the input to DNN nonsequential, a fixed set
of actions and states are randomly chosen as the input to the
DNN model.

The output of the first DNN referred to as the target Q-
network, is used as labels to calibrate the parameters of a
second DNN, namely the present Q-network. The parameters
of the present Q-network can be calibrated with a Loss Function
represented as [41],

Lossi(0) = Eq o[(r +ymaxy Q(s, d';0;) — Q(s,a;6;))?]
s)
Upon differentiating the loss function, as shown in (16), the
gradient descent method calibrates the parameters in the present
Q-network [39].

V Lossi(0;) = Es o[(r + ymaxy Q(s, d’;0;) — Q(s,a;6;))
x Vg, Q(s,a;0;)] (16)
0=0- BVL(O) a7

For each P step, which is predetermined based on performance,
the parameters in the target Q-network are replaced with the
parameters in the present Q-network to update the learning
results. This process is repeated until the reward converges, as
summarized in Algorithm 1.

As shown in Fig. 5, the action is defined as the selected
features and is represented by an /N-digit binary number, where
each bit represents a specific feature type. For example, the
action is defined as the selected features and is represented by
an N-digit binary number, where each bit represents a specific
feature type. For example, the action ‘1010000000 indicates
that only the first and third features have been selected for
prediction among the ten available features. The state is defined
as the numerical value of the ten categories of accessible me-
teorological data, such as specific temperature and humidity at
the time of the forecast. Each state is then formed as a {1 x 10}
array. The reward function aims to improve the accuracy of the
forecast with less data. Hence, it is formulated as,

Reward = —(Yactual — Ypred)* —a x AF (18)

A trained DQN model yields optimal features that dynamically
change based on different weather conditions.

Algorithm 1: Deep Q-Network with experience reply.

1: Initialize present Q-Network with random parameters

0
2: Initialize target Q-Network with random parameters
0~ =40
3: Initialize the experience memory to D with capacity C
4: for episode = 1,2,....M do
5: Set initial observation state s,
6: Initialize the sequence of state s = {s;}
7: fort=1,2,..Tdo
8: With probability € select a random action a,
9: Otherwise, select a; = argmaz (s, a;0)
10: Execute selected action ay
11: Observe reward 7, and new state sy
12: Store transition (s¢, at, 74, S¢41) in D
13: Sample a C capacity random minibatch of
transitions (s;, a;, 7, $j41) from D
14: if episode ends at step j+1then
15: Sety; =1,
16: else Set y; = r; +v x maxQ(sji1,a’;07)
17: end if
18: Perform the gradient descent procedure on
(y; — Q(sj,a;;0))% updating the parameters 6
in the present Q-Network
19: For every P step, replace 6~ with 0
20: end for
21: end for

D. Extreme Gradient Tree Boosting Forecasting Model

The identified optimal features are deployed by the Extreme
Gradient Tree Boosting (XGBoost) [42] algorithm to generate
the final solar irradiance forecasts. XGBoost is a scalable ma-
chine learning algorithm for tree boosting, commonly used to
solve regression and classification problems [42]. The advantage
of XGBoost over other common methods (such as NN) is that
it is robust and adaptive to diverse and dynamic data found
in real world. The major limitation of XGBoost is that it is
sensitive to data outliers, which affects the performance of
XGBoost. However, the outlier data in this study are filtered
out by selecting representative data from the entire dataset. In
other words, XGBoost and the developed data selection model
enhance each other.

Using the optimal selected features, the initial predicted value
from XGBoost is calculated as § = Y, _, fi(z), fr(x) is the
k., independent regression tree with structure ¢ and leaf weights
w. An iterative method is then used to optimize the result by
minimizing the following objective [42]:

{ LO =31 Uy 9" + fulw) + Qf)

19
QO(f,) = €11 + byl g |2 (1%

where the first term l(yi,y}(t*l) + fi(x;)) refers to the loss
function over the training set, and the second term Q( f;) is the
penalty for the model’s complexity [43]. However, all the tree
structures in f(-) are impossible to be listed for optimization.
Using Taylor expansion and the concept of greedy algorithm to
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split the tree, (19) is represented as (20) after splitting the tree
nodes [42].

r ':l (Ziengi)z
split B ZiezL hi+,u

o (ZieIgi)z :| e
Ziel hi +p

where g, = ayi(H)l(yi,y}(t*l)) and hl = a;(t,l)l(yi,yl'(til)).
Equation (20) is used to find the best node to divide the tree.
The objective L is then easily optimized to determine the leaf
weights of the entire tree.

(ZieIR gi)z
ZiEIR hi + H

(20)

IV. SIMULATION AND SUMMARY

The developed DQN-based model is assessed in this section
with real-world data. The platform for simulation has an Intel(R)
Xeon(R) CPU @ 2.20 GHz with 13 GB RAM. Results are
obtained and compared with traditional forecasting methods
without applying the developed model. Prediction is performed
based on all the original weather data when the developed model
is not used. The robustness of the developed predictive model
is also examined under extreme weather conditions, such as
overcast cloudy days and heavy rainy days.

A. Data Characteristics and Evaluation Criteria

The weather data used for simulation were obtained from the
Open Weather’s database [44] and were collected from January
1,2019 to December 31st 2021, at Seattle, Washington. The data
set contains hourly weather data from different sensors. Sensors
collect hourly temperature, dew points, feel-like temperature,
air pressure, relative humidity, average wind speed, wind de-
gree, cloud cover, and visibility. Data from January 1, 2019 to
December 31, 2020 are treated as the training dataset, and data
from January 1, 2021 to December 31, 2021 are considered the
test dataset. Night data is filtered out in both the training and the
test process, as only daytime predictions have practical meaning.

To evaluate a forecast, several standard statistical
metrics, i.e., the Root Mean Square Error (RMSE):
\/ S (Yi—Yi)?/n  [45], the normalized  Root
Mean Square Error (nRMSE):  1/(Yiaz — Yonin)

\/ S (Vi — Yi)?/n [45], the Mean Absolute Percent Error
(MAPE): 100%/n - 32", |(Y; = Y;)/Yi| [45], and R? score:
= (Y- Yz)z)/(zll (Yi — Y)?) [46] are used.

B. Benchmark

1) Persistence Ensemble: A traditional time series forecast-
ing method, that is, the persistence ensemble method [47], is
introduced as the first benchmark. The results of day-ahead
Global Horizontal Irradiance (GHI) prediction from the Per-
sistence method are directly obtained from National Oceanic
and Atmospheric Administration (NOAA) SOLRAD Seattle
station [48] for comparison.

2) Neural Network: A common approach for forecasting,
i.e., Feed Forward Neural Network (FFNN) [49], is introduced as

124
—e— Training a XGBoost with 50% data
122 g o~ Training a XGBoost with 33% data
) —e— Training a XGBoost with 20% data
w 1201
wn
= 18
-
0
9 116
114 4
112
2 4 6 B 10 12 14 16 18 20 22 24 26 28 30
Number of clusters in Data Clusteing scenario
Fig. 6. Variations of testing RMSE when increasing the number of clusters in

the Data Clustering step

TABLE I
COMPARISON OF TEST ERROR WHEN TRAINING XGBOOST WITH DIFFERENT
PERCENTAGE OF REPRESENTATIVE DATA

H Train a XGBoost with MAPE (%) RMSE nRMSE RZ H
100% data* 7.6937 113.473 0.1138 0.8094
50% data 7.646 111.907 0.1122 0.8135
33% data 7.8299 115.020 0.1153 0.805
20% data 7.9090 115.508 0.1158 0.7980

*Training a XGBoost with 100% data refers to the case without
applying data selection step.

the second benchmark. The developed FFNN generates forecasts
using the optimal features determined by the well-trained DQN
model, is built with training data, and the near-optimal inner
parameters are obtained by cross-validation.

3) Autoencoder Long-Short-Term Memory Network (AE-
LSTM): A recent approach for solar forecasting, which is illus-
trated in [19], is introduced as the second benchmark. The top six
relevant features are first identified using the Root Mean Squared
Euclidean Distance Difference (RMSEDD), as recommended
in [19]. The relevant features are utilized to train the AE-LSTM
model, which is then optimized by an optimizer. The loss
function is defined as the MSE metric, the activation function
is sigmoid function, and the near-optimal inner parameters are
obtained by cross-validation.

C. The Selection of Representative Data

First, the optimal hyperparameters of XGBoost are found us-
ing training data and cross-validation. The selection of represen-
tative data is evaluated in Fig. 6. This figure depicts the impact of
the number of clusters on the performance of the representative
data. Three different cases are investigated here, i.e., 50%, 33%,
and 20% of training data are selected as representative data. The
y-axis shows the RMSE of the forecasts based on the test data.

From Fig. 6, it is seen that the optimal number of clusters
for the case with 50% of data is 23. For 33% and 20% of data
cases, that number is 22 and 23, respectively. The best perfor-
mances using different percentages of representative data are
summarized in Table I. These results demonstrate that training
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every iteration when learning from different percentages of training data.

a forecast model only with appropriate representative data, i.e.,
50% data case, increases the accuracy.

D. The Learning Performance of the Dynamic Feature
Selection Step

The four different representative datasets in Table I are used
by the developed DQN model to learn and select the optimal
features, which the XGBoost then utilizes to generate forecasts.
Variations in the reward value and the average number of features
used for forecasting in every iteration of the four aforementioned
cases are provided in Fig. 7.

As seen from the figure, when 20% and 33% of the training
data are selected, the learning curves exhibit more oscillations,
and the rewards eventually converge to a relatively lower value.
When 50% of the data are chosen, the learning curve becomes
smoother, and the reward converges at a higher value with less
used features for forecasting. Compared with baseline, where
the training data is used entirely, the reward for the 50% case
exhibits better performance. The baseline case exhibits overfit-
ting, a problem that is not observed when using half of the data.
With 50% of the data, the average number of optimal features
converges to around five, much less than the total number of
variables, i.e., ten. These results also corroborate the initial
hypothesis: Learning from representative data can improve the

TABLE II
COMPARISON OF TEST ERROR WHEN TRAINING THE DEVELOPED HYBRID
MODEL WITH DIFFERENT PERCENTAGE OF REPRESENTATIVE DATA

H DON learns from  MAPE (%) RMSE  nRMSE R? H
100% data® 7.6142 112.058 0.1124  0.8142
50% data 7.5646 111.044  0.1114  0.8175
33% data 7.730 112.996  0.1133  0.811
20% data 7.8205 114.364  0.11474  0.8064
TABLE III

COMPARISON OF THE TEST ERROR WHEN FORECASTING WITH
DIFFERENT CASES

H MAPE (%) RMSE nRMSE R2 H
XGBoost 7.6937 113473 0.1138  0.8094
KPCA+XGBoost 10.27 140.639  0.1411  0.7073
SC+XGBoost 7.98 11623 0.1166 0.8
KPCA+SC+XGBoost 7.646 111.907  0.1122  0.8135
DQN+XGBoost 7.6142 112.058  0.1124 08142
Developed model* 7.5646 111.044 01114 08175

*Developed model refers to KPCA+SC+DQN+XGBoost

effectiveness and efficiency of the DQN model, resulting in
better learning results. The forecasting performance of the four
cases is summarized in Table II.

As shown in Table II, the forecast error for the case where
DQN learns from 50% of the data is generally lower in the
other three cases. In this case, the number of features used for
the forecast is less than half of the total number of features,
according to Fig. 7(b). Hence, a more accurate forecast is
achieved by only using around 25% (50% x 50% = 25%)
of the training data. The well-trained DQN is thus used to
determine dynamic optimum features for future solar irradiance
forecasting. Forecasting with optimum features reduces com-
puting time, resulting in faster prediction results. The scenario
utilizing optimum features takes 0.2 seconds to generate the
prediction for day-ahead hourly predictions, whereas the sce-
nario using all available data takes 0.28 seconds. The developed
model’s calculation time for generating predictions is almost
the same as the case of benchmark AE-LSTM, which takes
0.22 seconds. Another benchmark model Persistence Ensemble
uses 0.004 seconds to yield online forecasts. Despite the fact
that Persistence Ensemble has faster computing time than our
developed model due to its simple structure, forecasts generated
by the developed model are substantially more accurate than
those generated by Persistence Ensemble.

Furthermore, the impact of different components on the
developed model is reflected in Table III. As shown in Ta-
ble III, the DQN component contributes the most to an accu-
rate forecast, since using DQN only to select optimal features
(DQN+XGBoost) can increase the accuracy of the forecast.
On the other hand, only clustering or transforming the data
to reduce the data volume (SC+XGBoost or KPCA+XGBoost)
will not lead to improved forecast accuracy. Combining KPCA
with SC to pre-process the raw dataset can slightly enhance
the forecasting performance, supporting the stated hypothesis:
applying feature extraction to the raw dataset leads to better
clustering and more accurate forecasts. The developed model,
which refers to the “KPCA+SC+DQN+XGBoost” case, has
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TABLE IV
COMPARISON OF THE FORECASTING PERFORMANCE OF THE DEVELOPED
MODEL WITH BENCHMARK

H Model MAPE (%) RMSE nRMSE RZ H
Persistence Ensemble 14.414 206.283 0.2069 0.4022
AE-LSTM 7.73 113.54 0.114 0.809
Pearson+XGBoost 8.296 121.54 0.122 0.7814
KPCA+SC+DQN+FFNN 8.763 125.072  0.1255  0.7685
Developed model* 7.5646 111.044  0.1114  0.8175

*Developed model refers to KPCA+SC+DQN+XGBoost

the lowest prediction error among all instances examined in
Table III, indicating the combination of KPCA, SC, and DQN
increases prediction accuracy even further.

E. Comparison With the Benchmark

The test data are collected in Seattle, WA, from January
1 to December 31, 2021. The weather conditions during this
period are relatively diverse, with more than 60% days being
cloudy, rainy, and snowy. Therefore, the solar irradiance forecast
model developed is thoroughly evaluated in extreme weather
conditions. The forecasting performance of the hybrid model
developed is compared to the benchmark methods, as shown in
Table IV. The forecasts from the Persistence Ensemble method
are directly obtained from National Oceanic and Atmospheric
Administration (NOAA) SOLRAD Seattle station [48]. Other
models are trained with training data and optimized by cross-
validation. Additionally, a traditional feature selection method,
i.e., Pearson correlation coefficient, is also chosen for compari-
son. Pearson correlation coefficient (21) is a statistical measure
that indicates how related two variables are [50].

cov(X,Y)

ox 0y

pPXY = 2D
The top five correlated features are selected and applied to train
an XGBoost model with cross-validation. The errors shown in
Table IV refer to the test data. The forecasting performance of
the developed model outperforms the benchmark methods, such
as Persistence Ensemble and AE-LSTM methods. Persistence
ensemble generates forecasts based on past days’ real solar
irradiance, and forecast accuracy can only be guaranteed for
consecutive days with similar weather conditions. Nevertheless,
such circumstances are often not realized in the real world,
which is the primary reason for Persistence Ensemble’s poor
forecasting performance. Furthermore, the AE-LSTM model
or traditional methods based on feature selection utilize con-
stant features for forecasting, which restricts the robustness of
the predictive model as different features are appropriate for
different weather conditions. On the contrary, the developed
model dynamically selects optimal features used for forecasting
ateach point in time, determined by the well-trained DQN model
under various weather conditions. The developed model selects
the most appropriate features for generating forecasts, thus
outperforming the analyzed traditional methods by dynamically
selecting fewer features while ensuring a more accurate forecast.
In short, the hybrid solar irradiance forecasting model produced
more accurate forecasts with fewer data.

g
@
5 o X
k=]
I
= 600 | —e~ AE-LSTM
Il ®  Real Value
E = Persistence Ensemble
© 400 | —m~ KPCA+SC+DON+XGBoost
g —4— Pearson+XGBoost
T x0
[1+]
o
i
G
0 5 10 15 20 25 30 35 40 45 50
Time Step
(a) Three consecutive sunny days in summer
Y so0 —a— AEASTM
c -+ Real Value
]
T 200 Persistence Ensemble
o @~ KPCA+SC+DON+XGBoost
st —&— Pearson+XGBoost
= 20
o}
c
=]
N 200
—
=]
b=
— 100
™
o
=]
o °

0 s 10 15 2 25 3 35 40 45 S0
Time Step

(b) One cloudy day followed by two consecutive rainy days and a sunny
day in autumn.

o~ AE-LSTM
-4 Real Value
Persistence Ensemble
=&~ KPCA+5C+DON+XGBoost
—a— Pearson+XGBoost

150

100

Global Horizontal Irradiance

0 5 10 15 20 25 30 35 40 45 50
Time Step

(c) Two consecutive rainy days followed by two consecutive cloudy
days in winter

Fig. 8. Comparison of forecasts from different models under diverse weather
conditions.

E Case Studies

The forecasted results for various weather conditions are
shown in Fig. 8. GHI values shown in Fig. 8 are daytime values,
as nighttime data are filtered out. Fig. 8(a) demonstrates the
forecasts for three consecutive sunny days in summer. As seen
from the figure the Persistence Ensemble method generates the
most accurate forecasts for the last two days, as this method
has been proven to be perfectly suitable for consecutive sunny
days [19]. However, the first day’s forecast from the Persistence
Ensemble method is quite inaccurate since the day before the
first day is a cloudy day. In contrast, the developed model is
much more stable while maintaining high forecast accuracy.
Fig. 8(b) shows the forecasts for one cloudy day followed by
two consecutive rainy days and a sunny day in the Fall. The
forecasts of the last sunny day from Persistence Ensemble are
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Fig. 9. Comparison of forecasts from different models for a rainy day.

TABLE V
OPTIMAL FEATURES USED FOR PREDICTIONS FOR THE RAINY DAY

[[ Time Types of used features for predictions. 1]
6-7 am Air temperature, Feel-like temperature, Pressure,
Humidity,Wind degree, and Cloud cover

8-9 am Feel-like temperature, Humidity, Wind speed,
Cloud cover, and Visibility

10-11 am Dew point, pressure, Humidity, Wind speed,
Cloud cover, and Visibility

12-4 pm Feel-like temperature, Humidity, Wind speed,

and Cloud cover

significantly underestimated since they are based on real GHI
from the previous several days, which are generally low due
to the unfavorable weather conditions. Despite the fact that
other approaches produce reasonable forecasts, the forecasts
from the developed model are the most accurate after careful
examination. Fig. 8(c) shows the forecasts for two consecutive
rainy days followed by two consecutive cloudy days. Even on
the analyzed cloudy days in the winter, when reliable prediction
is challenging, solar irradiance can still be accurately forecasted
using the developed model. These case studies demonstrated that
the developed DQN model significantly adapts to rapid changes
in all weather conditions, and remarkably outperforms the tra-
ditional forecasting methods, such as the persistence ensemble
method.

1) An Example of the Change in Features for a Daily Fore-
cast: Fig. 9 shows the variation of the features selected for
forecasting using the model developed during a rainy day. As
illustrated in Table V, the types of features used to forecast

change throughout the day. These observations demonstrate
that the number and types of optimal features selected by the
developed model dynamically change from hour to hour.

V. CONCLUSION

This paper presents a DQN-based forecasting model to deter-
mine the optimal variables for accurate solar irradiance forecast-
ing. The objective of the developed model is to build a predictor
that adapts to varying weather conditions and is particularly
useful when there is limited access to data for solar generation
prediction. Case studies using real-world data have demon-
strated that the developed model significantly decreases the
volume of data required for accurate solar irradiance forecast-
ing under various weather conditions while slightly increasing
the forecast accuracy. The reduction of data volume used for
prediction increases computing efficiency and reduces storage
costs. The developed method is model-free and can be applied
in other applications, such as wind forecasting, load forecasting,
or forecast applications in other disciplines, where reducing the
volume of data to be processed is of interest. This method can
be beneficial to on-board processing applications, where the
computational power and communication constraints limit the
volume of data to be processed.

Solar energy under extreme weather conditions is unstable
and prone to constant fluctuations, making accurate prediction
extremely difficult. This research can be extended to further
quantify the correlation between forecasted weather data and
actual data and incorporate the uncertainty of forecast models
with DRL to produce a generation uncertainty quantification
framework under various weather conditions.
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