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ABSTRACT: Triboelectric nanogenerators (TENGs) have re-
ceived significant attention for next-generation wearable elec-
tronics due to their simple device structure and low cost. Although
the performance of TENGs is intimately tied to compressibility
effects in the charge-generating layer, achieving high compressi-
bility with conventional elastomers is challenging because
molecular entanglements place a lower bound on the softness of
cross-linked networks. Here, we demonstrate that bottlebrush
elastomers are efficient charge-generating layers that improve the
output performance of TENGs, including voltage, current, and
surface potential, by minimizing entanglements and decreasing the
compressive modulus (E). For example, a cross-linked bottlebrush
with poly(dimethylsiloxane) side chains yielded TENGs with an
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output voltage (120 V) more than two times larger than a linear PDMS network (55 V). In conclusion, this study highlights the
advantage of designing new charge-generating layers with improved compressibility to enhance TENG performance.

Motivated by applications such as the Internet of Things
(IoT), the field of nanoenergy has made significant progress
over the past 20 years. A key advance was the development of
nanogenerators that convert small-scale (e.g, nano) mechan-
ical movement into electrical energy.' Triboelectric nano-
generators (TENGs) are one example that turn motion from
energy sources such as wind,”* water,"® and body movement’
into an electrical signal based on triboelectrification and
electrostatic induction. Because this type of electrical energy
extracted from dynamic mechanical movement can be used
directly as a power supply or stored for later use, TENGs have
been applied in a variety of fields, including human—machine
interfacing,10 healthcare monitoring,“_13 and self-powered
sensors. "' In particular, TENGs %)rovide a number of
advantages in wearable electronics'®™"' due to their simple
device structure and portable energy packaging.””*’

To improve the output performance of TENGsS, significant
research has focused on surface engineering by controlling
contact area’*™”’ and the compressibility of the charge-
generating layer via microstructuring.28 A larger contact area
creates more charge, whereas higher compressibility (i.e.,
smaller compressive modulus E) increases the amount of
charge induced at the surface—collector interface. Although
some research groups have investigated the impact of both
effects in tandem on the output performance of TENGs,* ™’
they were not controlled independently. In order to system-
atically improve the performance of TENGs, it is necessary to
analyze each factor independently. Poly(dimethylsiloxane)
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(PDMS) is an ideal material platform to isolate the effects of
compressibility because it is a common elastomer with an
easily controlled modulus by changing cross-linking density.
However, since commercially available PDMS forms linear
network structures after curing, the modulus (or compressi-
bility) is limited by molecular entanglements to roughly >1
MPa. Moreover, the cross-link density cannot be lowered ad
infinitum because a low gel fraction would result in viscous
flow or relaxation that is unsuitable for use in TENG devices.

To address this challenge, here we demonstrate that polymer
architecture can be used to maximize compressibility without
sacrificing a high gel fraction. Our study leverages bottlebrush
elastomers, which suppress chain entanglements, an effect that
significantly lowers the modulus compared to conventional
linear polymer networks.””~° Using a simple light-based
synthesis method, cross-linked bottlebrush elastomers with
PDMS side chains were produced spanning different stiffnesses
(E = 0.42—2.60 MPa) by adjusting the ratio of bottlebrush
PDMS macromonomer to cross-linker. In addition to
providing a tunable platform for controlling mechanical
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properties, these materials have a sufficiently high gel fraction
(>80%) for creating mechanically stable TENGs. TENG
output performance increases as E decreases, with cross-linked
bottlebrush PDMS exhibiting twice the output voltage (120 V)
and charge density (125 uC m™) compared to an analogous
TENG device fabricated with linear PDMS (55 V and 58 uC
m~?). These results demonstrate the power of controlling
polymer architecture in the context of advanced electronic
applications.
Since PDMS accumulates negative charge when contacted,*®

it is widely exploited as a charge-generating layer in TENGs.
The most common form of PDMS used in these devices is
Sylgard 184, which, after thermal curing, generates a linear
polymer network. We hypothesized that a charge-generating
(i.e., dielectric) layer with an even lower modulus than can be
achieved with Sylgard 184 would create more induced charge
because of the increased deformability and narrower gap
between the two electrodes at a given applied force, as shown
in Figure 1.
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Figure 1. TENG devices based on bottlebrush elastomers should
generate more charge at a given applied force due to increased
deformability (a lower compressive modulus).

Figure 2a,b plots compressive stress (F) versus compressive
strain (s) for BB, and BB; at different loadings of cross-linker.
Note that we denote synthesized bottlebrush samples as BBy-
Y, where X is the number-average molar mass (M,) of the

Y is the mole fraction of cross-linker (also see Materials and
Methods section). Compressive moduli (E = F/s) were
calculated at small F (up to 0.098 MPa, see Figure S1). The
value of E for cross-linked bottlebrushes grows from 0.42 to
1.70 MPa as the mole fraction of cross-linker increases from
0.13 to 0.48 with two different side-chain lengths. Longer side
chains result in a smaller E as expected based on prior
literature.”” **Figure 2c shows that E increases with cross-
linking density, which is consistent with the phantom network
model.”” From our previous report,”” with this chemistry,
more than 99% of cross-linker forms productive cross-links at
the loadings used in BB, and BB; (15—30 mol %). Notably,
high gel fractions (>85%) were achieved with these
formulations, resulting in mechanically stable samples that
are suitable for the charge generating layer in TENG.

A contact—separation TENG device was fabricated to
evaluate the triboelectrification properties of bottlebrush
elastomers (Figure 3a). When the indium tin oxide (ITO)
electrode contacts the bottlebrush PDMS film, a difference in
work function causes static charges with opposite signs on the
two surfaces. When the layers begin to compress other,
electrons flow from the upper ITO electrode to the lower
electrode through an external circuit, generating an electric
output signal with a positive sign. After the two layers
sufficiently compress, the number of charges equilibrates and
charge transfer through the external circuit is complete. As the
upper layer starts to separate again, electrons flow from the
lower electrode to the upper electrode, generating an electric
output signal with a negative sign. Finally, when the device is
fully separated, the charge is balanced and a single self-powered
cycle is finished. By repeating the contact—separation
sequence, mechanical movement is converted into a pulsed
AC output (Figure 3b,c).”*Figure 3d shows the output voltage
of BB, and BB samples versus the mole fraction of cross-
linker. Here, open-circuit voltage (Voc) represents the peak-to-
peak voltage as described in Figure S2. Notably, the output
voltage of both BB, and BB samples increased as the mole
fraction of cross-linker decreased due to changes in
compressibility (as discussed below). However, when the gel
fraction falls below a critical value, output voltage drops
dramatically because unreacted PDMS chains leach from the
cross-linked PDMS network and contaminate the surface of
the opposite electrode during repeated contact (see Figure S3).

The improved performance of TENGs with decreasing E

PDMS macromonomer (i.e., side-chain length in kg/mol) and can be explained as follows.”****
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Figure 2. Compressive stress (F) vs strain (s) for PDMS bottlebrush elastomers with side-chain lengths of (a) 1 kg/mol (BB,) and (b) S kg/mol
(BB;) at various cross-link densities. A lower cross-linking density and higher M, ¢ decreases E. (c) Plots of E (closed symbols) and gel fraction
(open symbols) versus mole fraction of the cross-linker for BB, and BB, samples.
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Figure 3. (a) Illustration of the TENG mechanism in contact—separation mode. F: applied stress, x: air gap, d: initial thickness, d: compressed
thickness. (b, c) Voltage vs time for cross-linked bottlebrush PDMS with side-chain lengths of (b) 1 kg/mol (BB,) and (c) S kg/mol (BBs). (d)
Plot of open-circuit voltage (Vo¢, peak-to-peak) vs mole fraction of the cross-linker for BB; and BB samples. Output voltage increases with
decreasing E when the gel fraction is above a critical value (90% for BB, and 80% for BB;). Samples below the critical gel point are marked with an
opaque ellipse.
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In eqs 1 and 2, V¢, Q, and C represent the open circuit
output voltage, triboelectric charge, and capacitance, respec- where A = @ and B = ©F. Here, we fixed the values of , d,,
tively, o is the charge density, x is the air gap between the X ;
electrode and dielectric layer, €, and &, are the vacuum
permittivity and relative permittivity of the charge-generating
layer, and d and AV are the compressed thickness and surface
potential difference of the charge generating layer, respectively.
From eqs 1 and 2, V¢ is

and F for all experiments. Further, ¢, is similar for every sample
because they all share the same chemical structure PDMS.
From eq 6, AV/Vy is a function of E. AV is the induced
charge formed on the surface when ITO contacts a PDMS
charge generating layer. The measured AV for BB;, BB;, and
LN depends on the mole fraction of cross-linker (Figure S4),

£AVx where conventional (linear) cross-linked PDMS is denoted

Voc = d (3) LN-Y with Y the weight fraction of curing agent. As shown in
Figure 4, a linear relationship between AV/Vyc and 1/E was

where d is directly related to the compressive modulus (E) at obtained for all samples. The output voltage in TENGs clearly
small F according to Young’s equation”’ increases with decreasing E as long as the gel fraction of the
charge generating layer is higher than the critical value for each

d=d (1 _F ) sample. The different slopes (red, blue, and black fit lines) in

0 E (4) Figure 4 are within error but could arise from slightly variable

compositions (i.e., backbone chemistry), although they are all
with d, representing the initial thickness of the dielectric layer, predominantly PDMS. The calculated values of B/A (~0.1

F is the applied compressive stress (0.098 MPa), and E is the MPa) in Figure 4 are almost the same, regardless of sample
compressive modulus. From eqs 3 and 4, type (Table S1), which is consistent with the prediction of eq
1293 https://doi.org/10.1021/acsmacrolett.2c00535
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1/E (MPa-")

Figure 4. Plot of AV/Vy¢ vs 1/E for BB}, BB;, and LN. Samples
below the critical gel point are marked with a gray ellipse.

6, because B/A should be equal to the applied stress (F = 0.098
MPa).

Figure Sa—c more clearly shows the effect of chain
architecture on TENG output performance. LN-0.05 and
BB;-0.28 were chosen as representative examples for each
architecture (linear and bottlebrush, respectively) as these
formulations exhibited the best performance (see Figure SS
and Table S2 in the Supporting Information). The output
performance (voltage, current, and charge density) of cross-
linked bottlebrush PDMS is more than two times better than
linear PDMS. Figure 5d summarizes the changes in voltage and
average peak power with external load resistance. The voltage
increases with resistance according to Ohm’s law, and the
power is maximized when impedance is matched between the
TENG and load. Consequently, cross-linked bottlebrush
PDMS exhibits a maximum output power of 0.72 mW at a
resistance of 20 MQ. When connected to a TENG and rectifier
without capacitors, the power generated from the bottlebrush

PDMS network lit 60 green LEDs compared with only 15 with
a linear cross-linked PDMS network (Figure Se).

To a first approximation, the bottlebrush architecture
improves the performance of TENGs precisely because it
lowers the modulus. However, another consequence of
changing architecture appears to be a different surface potential
(AV, Figure S4). Together, these effects cause a modest
difference in the behavior of linear and bottlebrush systems,
that is, they do not fall on a common fit line in Figure 4. Even
if the trends were identical, the ability of bottlebrush
elastomers to soften linear networks by a factor of 10—100
could be quite advantageous in the context of TENGs; swelling
with solvent would introduce problems such as leaching and a
change in performance over time.

In summary, triboelectric nanogenerators fabricated from
bottlebrush elastomers provide more than twice the output
performance compared to conventional cross-linked PDMS.
This improvement is due to a lower compressive modulus that
arises from molecular architecture effects. These results
highlight the power of leveraging polymer architecture to
control material properties that are important in next-
generation devices and advanced technology.

B MATERIALS AND METHODS

Materials: Cross-linked bottlebrush PDMS samples were synthesized
by a light-mediated method in the absence of the additives to
minimize the effect of impurities on TENG performance.”” Two
PDMS macromonomers were synthesized with different molar masses
(M,sc = 1 and § kg/mol) as well as a PDMS cross-linker (M, c;, = $
kg/mol). Conventional (linear) PDMS was prepared from Sylgard
184 (Dow Corning). Indium tin oxide-coated poly(ethylene
terephthalate) (PET; ITO-PET) with 60 Q/sq and ITO-coated
glass (ITO-glass) with 15 ©/sq were purchased from Sigma-Aldrich
and Asahi Glass Co, respectively.

Sample preparation: To measure the compressive modulus (E) of
cross-linked bottlebrush PDMS samples, a given macromonomer and
cross-linker were mixed at various ratios (10—50 mol % of cross-linker
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Figure S. Comparison of TENG output performance with linear (LN-0.05) and bottlebrush (BB;-0.28) PDMS networks: (a) voltage, (b) current,
and (c) charge density vs time. (d) Plots of the voltage and power versus load resistance for BB;-0.28. (e) Electric circuit for lightening green LEDs
(left). The bottlebrush sample lit four times more LEDs than linear PDMS (right).
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relative to PDMS macromonomer). After the mixture was degassed, it
was poured into a mold and cured under UV light. Similarly, linear
cross-linked PDMS samples were prepared by mixing and curing with
various ratios of the Sylgard 184 base to curing agent (3 to 20 wt % of
curing agent to base). We denote synthesized bottlebrush samples as
BBy-Y, where X is the number-average molar mass (M,,) of the PDMS
macromonomer (ie., side chain length in kg/mol) and Y is the mole
fraction of cross-linker (see Figure S6). Conventional cross-linked
linear PDMS is denoted as LN-Y, where Y is the weight fraction of the
curing agent in commercially available Sylgard 184.

To prepare TENG devices based on cross-linked bottlebrush

PDMS, mixtures of PDMS macromonomer and cross-linker were
drop cast on 1 X 1 cm® ITO glass slides and exposed to 365 nm light
at an intensity of 500 mW/cm? (Model 19588, Hamamatsu Co.)
under ambient air. For TENG devices based on conventional cross-
linked PDMS, Sylgard 184 was prepared with air bubbles completely
removed in a vacuum chamber. Mixtures were spin coated on 1 X 1
cm? ITO glass slides and thermally cured at 80 °C for 2 h. The
thickness of all samples was 600 ym, as confirmed by scanning
electron microscopy operating at 3 kV (FE-SEM, Hitachi S-4800; see
Figure S7). To measure E, cross-linked bottlebrush and conventional
PDMS samples with a diameter of S mm and a thickness of 600 um
were punched out. TENG devices with a size of 1 X 1 cm® were
fabricated by inserting the charge-generating layer (bottlebrush or
conventional PDMS) between lower (ITO-glass) and upper (ITO-
PET) electrodes. Gel fractions were calculated as wy./w, X 100,
where wy,, is the weight of a sample after soaking in n-hexane for 24 h
and wj is the weight before swelling.
TENG output performance: Voltage and current were measured with
an oscilloscope (Tektronix, TBS2102). Charge density was measured
using a high-resistance electrometer (Keithley, Model 6517). For the
periodic application of pressure by touch, a homemade contact
machine (SPG Co., Ltd. Model No. S8KA6B) was used to apply
mechanical force (1 kgf) at 4 Hz frequency. In order to eliminate the
position dependence of the device, 100 k€2 was connected in parallel
to the oscilloscope (10 MQ), and the other side was connected in
series with 10 MQ and 0-3 G to measure general and power
measurements, respectively. Since a 10 MQ probe connected in
parallel did not affect the overall circuit resistance, the voltage of the
low resistor was measured by an oscilloscope with a 10 M2 probe.
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