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Abstract

In this work, we employ hybrid and generalized gradient approximation (GGA)
level density functional theory (DFT) calculations to investigate the convergence of
surface properties and band structure of rutile titania (TiO2) nanoparticles with parti-
cle size. The surface energies and band structures are calculated for cuboidal particles
with minimum dimension ranging from 3.7 A (24 atoms) to 10.3 A (384 atoms) using a
highly-parallel real-space DFT code to enable hybrid level DFT calculations of larger
nanoparticles than are typically practical. We deconvolute the geometric and electronic
finite size effects in surface energy, and evaluate the influence of defects on band struc-
ture and density of states (DOS). The electronic finite size effects in surface energy
vanish when the minimum length scale of the nanoparticles becomes greater than 10
A. We show that this length scale is consistent with a computationally efficient numer-
ical analysis of the characteristic length scale of electronic interactions. The surface
energy of nanoparticles having minimum dimension beyond this characteristic length
can be approximated using slab calculations that account for the geometric defects. In
contrast, the finite size effects on the band structure is highly dependent on the shape
and size of these particles. The DOS for cuboidal particles and more realistic particles
constructed using the Wulff algorithm reveal that defect states within the bandgap
play a key role in determining the band structure of nanoparticles and the bandgap

does not converge to the bulk limit for the particle sizes investigated.



Metal oxide nanoparticles have wide range of commercial and technological applications
ranging from biomedical engineering to chemical catalysis.!” Oxide nanoparticles have a
number of favorable properties including a high surface-area to volume ratio, tunable optical
properties, and a range of surface reactivities. For example, oxide nanoparticles can be
used as inert support materials in catalysis,® or provide reactive surfaces that interact with
supported catalysts,? or act directly as catalysts.®1? In particular, oxide nanoparticles are
commonly used for photocatalysis since it requires high surface areas, bandgaps that are
aligned with the redox potentials of products and reactants, and surface chemistry that
facilitates chemisorption and reaction of intermediates.!''? Both the band structure and
chemical reactivity of nanoparticles are controlled by their atomic structure and size, as well
as the surrounding environment such as solvents, capping agents and supports. However,
atomic-scale simulations of nanoparticles are challenging due to the number of atoms and
electrons present, especially if their environment is considered. Therefore, it is a natural
starting point to study the structure and reactivity of isolated nanoparticles to establish
an understanding of the key factors governing band structure and reactivity to help design
nanoparticles with specific optical and catalytic properties.'?

In particular, TiO is of paramount technological importance. The applications of TiOq
include hydrogen production, photo-voltaic cells, degradation of harmful organic compounds
in the environment, medical applications such as bone implants, and supports for other
catalytic materials. %141 For this reason, TiO, is widely studied in the scientific literature

and is often referred to as a “model oxide”.?°?2 A large number of ab-initio studies fo-
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cus on models of bulk polymorphs, extended surfaces and small nanoparticles but

relatively few studies have been done on investigation of finite size effects arising in small

30732 especially for the rutile polymorph of TiO,. These finite size effects

TiO5 nanoparticles,
can be classified into geometric effects which arise due to unique atomic configurations in
the nanoparticle, electronic effects, which arise due to features in the electronic structure

of the nanoparticle system, and quantum effects, which arise due to quantization of energy



levels in small particles.®® Since rutile TiO, has a large number of applications in the field

34736 it represents a natural starting point for

of heterogeneous catalysis and photocatalysis,
evaluating the finite size effects on surface and electronic properties. In this work, we study
the finite size effects in surface energy which is an important property that dictates the sur-
face structure and stability. The electronic property in consideration is the band structure,
which is crucial in applications of photocatalysis because nanoparticles of TiOy are often
used, but the interplay between nanoparticle structure and photon absorption is not well
understood.

Previous works in the literature have investigated the intrinsic particle size effect with
increasing size of metallic nanoparticles using adsorption energy to characterize surface cat-
alytic properties. Kleis et al.?” performed a DFT study using the revised Perdew-Burke-
Ernzerhof (RPBE) functional®® on gold metal nanoparticles ranging from 13 to 1,415 atoms
to show how surface properties varied with system size at two local geometries that resemble
surfaces of (111) and (211) slabs. They show that surface properties converge to the slab
limit at a characteristic length of 27 A (560 atoms). The generality of findings for other tran-
sition metals were confirmed with a similar study on freestanding cuboctahedral platinum
metal nanoparticles which show analogous convergence with size but at a smaller character-
istic length of 16 A (147 atoms).?® The main limitation of the prior work described above is
that they focus on metallic systems and are limited to semilocal GGA exchange-correlation
functionals. One exception is work by Lamiel-Garcia et al.,?? that studied finite size effects
in anatase nanoparticles at the hybrid level of theory with localized basis sets. However,
the convergence of surface properties toward the slab limit was not investigated, and the
particles were constructed to minimize the presence of geometric defects which may play a
significant role in catalytic systems.

Jinnouchi and Asahi®® have also shown that metal alloy nanoparticles can contain het-
erogeneous atomic configurations such as atomic-scale defects that cannot be explained by

the single-crystal surface models, and that these defects dominate the catalytic activity of



nanoparticles. They propose a machine-learning scheme which adopts a descriptor-based
approach to map slab-based surface models to the nanoparticle surfaces and defects. The
machine-learning model is trained on single crystal slabs with various defects and compo-
sitions. The model is then able to accurately predict energetics of complex nanoparticles,
which indicates that the geometric defects dominate the nanoparticle behavior. However, it
is unclear if a similar strategy will work for (mixed) metal oxide particles, particularly for
photocatalysts where the electronic band structure is important.

Evaluating finite size effects on band structure properties is complicated by the need for
hybrid-level functionals. Exchange-correlation functionals based on the local-density approx-
imation (LDA) and GGA significantly underestimate the bandgap because of a derivative
discontinuity in the exchange-correlation potential.*® However, the hybrid functionals that
are implemented within the generalized Kohn-Sham (KS) formalism instead of standard
KS formalism incorporate part of the discontinuity which leads to a bandgap that is in
good agreement with experimental values.*! Despite the fact that planewave codes are the
most widely used method for solving the KS equations, it becomes impractical to perform
planewave hybrid calculations on systems with > 100 atoms due to the early onset of the
cubic scaling bottleneck and the large associated prefactor. In particular, the limited scal-
ability on parallel computing platforms restricts the time to solution that can be achieved.
Another disadvantage of planewave codes is the nature of the Fourier basis that restricts the
method to periodic boundary conditions, hence making it necessary to add artificial period-
icity using vacuum and dipole corrections, which limits accuracy in the study of systems with
dipole moments as well as charged systems.*>** The use of a finite difference basis set can
overcome these challenges by enabling ideal parallelization and application of non-periodic
boundary conditions.

In this work, we investigate finite size effects in rutile TiO,y, which is the most stable
polymorph of titania.*> We utilize a collection of model systems including bulk, surface

slabs, and nanoparticles to deconvolute effects arising from various types of defects. We use



these model systems to elucidate finite size effects on the surface energy and band structure,
and we explore the influence of the exchange correlation functional on these effects by per-
forming calculations with both semilocal (PBE) and hybrid (PBEO) functionals. The study
utilizes the new finite-difference Simulation Package for Ab-initio Real-space Calculations
(SPARC)*? code to enable hybrid-level calculations on nanoparticle systems. We also utilize
a numerical convergence technique to assess the length scale of electronic interactions, and
apply a geometric fingerprinting scheme based on machine-learning® to deconvolute geo-
metrical and electronic finite size effects®® in surface energy. The results indicate that the
surface energy converges quickly for both functionals, approaching the infinite particle limit
at particle sizes of ~ 10 A. However, we find that the band structure is highly sensitive to
functional choice, particle size, and particle shape, indicating that hybrid-level calculations
are required to assess the band structure of nanoparticles well beyond the sizes investigated

here.

Results and Discussion

To study the finite size effects in surface properties and band structure of nanoparticles, we
construct the “TiOy model space” which is the collection of all model systems using the
equilibrium structural parameters. This is illustrated in Fig. 1. For the bulk rutile system,
we find equilibrium lattice constants of a = 4.636 A and ¢ = 2.967 A. These lattice constants
are in good agreement with the literature values and are summarized in Table 1 in the SI.
The slab models include a mix of symmetric and asymmetric slabs, and the facet energy
of asymmetric slabs is calculated using the average between the two different facets. The
cuboidal nanoparticles are non-periodic slabs, with vacuum in all directions instead of peri-
odic boundary conditions. These cuboidal isolated nanoparticles are stoichiometric, and the
faces of these cuboidal nanoparticles have an atomic structure consistent with the low-index

facets of TiO, slabs. The faces of cuboidal particles will also have defect sites arising due



to edges, corners and sub-edge atoms at edges (sub-edges) that are not present in the facets
of slab models. These nanoparticles are a convenient way of studying the trends of surface
properties and comparing with the extended slab models since their geometries are most
similar to the slab models, making it easier to isolate electronic finite size effects. However,
the unphysical nature of the cuboidal geometries may cause artifacts when studying system-
level properties such as the bandgap and DOS. Hence, non-stoichiometric nanoparticles that
are closer to realistic systems are also created using the Wulff-construction algorithm.*” To
facilitate comparison between the particle models, we restrict the Wulff-constructed particles
to only contain the same low-index facets that appear on the cuboidal particles (100, 010,
and 001 facets).

Bulk and slab models
Rutile bulk crystal (100) symmetric slab (010) asymmetric slab (001) symmetric slab
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Figure 1: All TiOs systems studied including the rutile bulk crystal, slab model, cuboidal
nanoparticles ranging from 24 to 384 atoms and Wulff nanoparticles constituting of 136 and
282 atoms. Atomic coordinates for all systems are provided in the SI.



Finite size effects on surface energy

Finite size effects can be categorized as geometric effects, electronic effects, and quantum
effects.®® In the case of energetic properties such as surface or adsorption energies, the geo-
metric finite size effects are expected to be local due to the nearsightedness of electrons.*®
Therefore, it is possible to deconvolute the geometric and electronic finite size effects by
partitioning the energy to specific types of geometric defects. Any deviation from this par-
titioning can be assumed to arise from electronic or quantum effects that are implicit in the
electronic structure of the particle. Here, we group quantum effects with electronic structure
effects since they are both inherent to the behavior of electrons in the system.

To quantify the finite size effects on the nanoparticle surface energy, we utilize the total

surface energy of the nanoparticle obtained from DFT as the ground truth:

E o Enanoparticle — ITj0, Ebulk 1
surface, DFT — ( )
DNgurfacer;,total

where Epanoparticle 15 the total energy of nanoparticle from DEF'T, Epyy is the bulk energy ex-
tracted from the linear interpolation model for slab surface energies (Eq. 5) and ngurfacer total
is the total number of TiOy units belonging to low-index facets and surface defects. In the
absence of any finite size effects, the nanoparticle surface energy could be approximated by

a linear combination of semi-infinite slab energies:

facets E
Zi facet,illfacet,i

Ngurfacer;,total

(2)

Esurface,slab model —

where Egyceti is the facet energy and ngacet; is the number of surface-like TiO, units resem-
bling each facet type. The semi-infinite slab energies are obtained by the linear interpolation
method as described in the methods section and are referred to as “facet energies” to distin-
guish them from the energy of other types of surface defects. The converged slab energies
are summarized in Table 1 and are shown in Fig. 2.

To deconvolute the influence of geometric finite size effects, we utilize a regression model
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Figure 2: Surface energy (Ha/atom) convergence for TiO, slabs with varying thickness of
slabs from PBE and PBEO exchange correlation functionals. The hollow symbols represent
surface energy from PBE for thin slabs that deviate from the convergent surface energies.

(Eq. 3) to obtain the energy contribution of edge, corner, and sub-edge geometric defects
present within the system. The total surface energy of the particle based on the regression
model can be obtained by adding the energy contributions of all surface defects that consti-
tute of atoms resembling facet types and defects such as corners, edges and sub-edge defects

and normalizing to the number of surface Ti atoms:

slab types defect types
Zz’ Efacet,infacet,i + Zj Ejndefect,j

DNgurfacer;,total

(3)

Esurface,regression =

where the term ZjdefeCt types Edefect, jldefect j SUmMs over the contributions of corner, edge, and
sub-edge Ti atoms and accounts for the geometric finite size effects. The results from the
regression model are summarized in Table 1.

The trends in surface energy convergence for all three models are plotted in Fig. 3.
Fig. 3(a) clearly shows that the linear slab model poorly approximates the surface energy,
which indicates that finite size effects play a significant role at all particle sizes investi-
gated. However, the regression model provides a much more accurate approximation of the

nanoparticle surface energy, indicating that geometric finite size effects are dominant. The



Table 1: Defect energy for different facets and surface defects arising on surface of TiO,

nanoparticles (Ha/atom) from PBE and PBEO XC functionals.

Defect type

PBE (Ha/atom)

PBEO (Ha/atom)

(100)-facet _ 0.045 0.054
(010)-facet  0.188 0.220
(001)-facet  0.119 0.139
Corner! 0.188 0.223
Fdge! 0.151 0.197
Sub—edgel 0.099 0.121

! Energy contributions of defect sites obtained from
regression model.
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Figure 3: Convergence of surface energy with increasing size of TiO, nanoparticles for
PBE and PBEO XC functionals. (a) Surface energy from 3 methods: ground truth DFT
(Esurface.pFT), linear combination of slab models (Eguface siab model) that does not account for
geometric defects and regression model (Egyrface regression) that accounts for the geometric de-
fects. (b) Absolute difference between Egygace prT and Egurface stab model that quantifies the
overall finite size effects and absolute difference between Egyrface prr and Egurface regression that
quantifies the electronic finite size effects.

residual between the regression model and the ground truth energy can be interpreted as the

contribution due to electronic finite size effects towards the surface energy. The electronic

10



finite size effects are quantified on a log scale in Fig. 3(b). At very small particle sizes (<4
A) the electronic finite size effects are very significant (~0.03 Ha/atom), which exceeds the
typical exchange-correlation error (~0.01 Ha/atom). At particle sizes from ~4-8 A (~30-200
atoms) the electronic finite size effects are below the typical exchange-correlation error, but
still exceed the numerical error (~0.001 Ha/atom). Finally, beyond ~10 A the electronic
finite size effects are reliably at or below the threshold of numerical accuracy, suggesting
that they can safely be neglected. This trend is consistent between both PBE and PBEO
functionals. This indicates that the surface properties of TiO, particles larger than ~ 10 A
can be studied using a combination of slab models, as long as slab models that capture the
relevant geometric defects are included.

To validate the regression model, we apply it to particles not included in the regression
analysis. These particles are generated by extending four of the cuboidal nanoparticles (24,
72, 108, and 162 atoms) in the 100, 010, and 001-directions and computing their surface
energies with PBE. These particles will have the same types of geometric defects (edges,
corners, and sub-edge atoms), but the proportions will be different from the original cuboidal
particles. The electronic finite size effects (the absolute difference between Egyface prr and
Esurface regression) s a function of particle size are shown in the SI (Fig. 1). Similar to Fig. 3,
the residual decreases to ~1e-3 Ha/atom beyond ~ 10A, which confirms that the regression
model can be generalized to systems that were not included in the training procedure. This
also provides further support for the conclusion that the surface properties of nanoparticles
with a minimum dimension greater than 10 A can be accurately modeled using appropriate

semi-infinite slabs.

Characteristic length scale of electronic interactions

The results of this work indicate that electronic finite size effects have a negligible impact on
the surface energetic properties of TiO, particles larger than ~10 A. However, this conclusion

is material dependent, with the characteristic length scale of finite size effects depending on
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Figure 4: Convergence in electron density with size of interaction region for bulk crystal and
the smallest nanoparticle. The error in the self-consistent field (SCF) energy corresponds to
the accuracy in the SCF iteration for the lowest normalized error in electron density.(see SI
Fig. Fig. 2).

the localization of electrons in the material. TiO, is a large bandgap semiconductor, which
suggests that electronic finite size effects will decay quickly compared to more delocalized
systems such as metals. Indeed, this is consistent with the fact that adsorption energies on
metal nanoparticles tend to converge around ~2-3 nm.?*37 Yet, a quantitative assessment of
this length scale is extremely computationally demanding with the methods presented here
and in prior work, since it requires the calculation of many large particles with DFT.

An alternative approach is to directly characterize the length scale that affects the elec-
tronic convergence in the bulk solid. This is achieved by the “nearsightedness analysis”
discussed in the methods section, which is based on the convergence of the density error as
a function of the length scale of the interaction region around each point in the system. The
results are shown in Fig. 4 for the bulk crystal and smallest nanoparticle. The box plots
for the bulk crystal indicate that at a length scale of 10.6 A the normalized electron density
error decays to under 0.01 in all cases and below 0.001 in most cases. To correlate this to
energy convergence, the normalized electron density error is compared to the total energy

error at a variety of SCF tolerances for bulk TiO, and a linear fit is used to provide an upper
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bound based on the systems studied in this work (see SI Fig. 2). The results indicate that
a normalized electron density error of 0.01 - 0.001 corresponds to an SCF energy error of
10~* — 1075 Ha/atom. To ensure that these findings hold for the nanoparticle systems we
also perform the nearsightedness analysis for the smallest nanoparticle, TigO16. The results
indicate that the interactions decay as fast or faster in the nanoparticle system, with the
error in SCF energy decaying to under 0.001 Ha/atom at a length scale of 8.0 A in most
cases.

The results of the nearsightedness analysis for both bulk and nanoparticle systems are
consistent with the analysis of convergence of surface energy for nanoparticles, where we
observe that the electronic finite size effects disappear at a length scale >10.0 A. The near-
sightedness analysis and the corresponding energy error calibration can be performed using
only the bulk system, and can be applied to any material. This suggests that the nearsight-
edness analysis is a far more computationally efficient route for evaluating the characteristic

length scale of electronic finite size effects for a given material.

Finite size effects on band structure

The band structure of TiO5 plays an important role in photocatalysis, especially the bandgap
and defect states within the gap. To assess the finite size effects on the band structure
of the particles, we analyze the bandgap and DOS of stoichiometric TiOy nanoparticles
and compare the results with bulk and slab models. The experimental bandgap for bulk
rutile TiOy is ~ 3.0-3.1 eV,**? while the bulk gap predicted by PBE and PBEO are 1.89
and 4.19 eV, respectively. This is consistent with the well-known underestimation of band
gaps by PBE, 405051 and prior reports of over-estimation of TiOy band gaps with hybrid
functionals.?®°® Nonetheless, the hybrid results are considered to be more reliable since they
accurately incorporate exchange interactions that lead to electron localization.

The bandgaps for all nanoparticles are shown in Fig. 5(a) as a function of particle size.

The plot indicates that bandgaps for all nanoparticles are much smaller than the bulk for
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both PBE and PBE(O. Moreover, the bandgap values decrease, rather than increase as a
function of particle size, indicating that the particle sizes investigated are far from the bulk
limit. The PBE results suggest that the particles are metallic, indicating a qualitative failure

of PBE. For this reason, PBE is omitted from subsequent analyses.
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Figure 5: (a) Convergence of bandgap with increasing size of TiOy nanoparticles for XC
functionals PBE and PBE(O. The bandgaps are compared with the bulk bandgap from 3
methods which are given by 3 horizontal lines in the inset plot: experimental, PBE and
PBEO. (b) Comparison of DOS of cuboidal and Wulff-constructed nanoparticles with TiO2
bulk and slab models. The top panel shows the DOS of bulk and slab models and highlights
the defect states within the gap for (010) and (001)-slab models. The bottom panel depicts
the DOS of stoichiometric cuboidal and non-stoichiometric Wulff particles.

To understand the reason for smaller bandgaps in the nanoparticles, we analyze the full
DOS of two of the cuboidal particles constituting of 162 and 288 atoms. We compare the
DOS of these particles with that of the bulk crystal and slab models and these are plotted in
Fig. 5(b). The DOS is normalized with respect to the total number of electrons in each of the
particles. The vertical dotted lines highlight the bandgap of the bulk crystal. In the DOS
of cuboidal particles, we observe that the bandgaps are much lower compared to the bulk

bandgap and defect states within the bandgap are forming a continuum above the HOMO
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of the bulk crystal. This continuum leads to a very small gap of ~0.2 eV.

We compare the DOS of the cuboidal particles with the DOS of slab models. We observe
that the (100)-slab model has a bandgap very close to the bulk and there are no defect states
within the gap, whereas the DOS of the (010) and (001)-slabs reveal the defect states present
within the gap resulting in a lower bandgap. The (010)-facet which is highly unstable also
has a continuum of states within the gap, which suggests that the slab models provide some
insight into the defect states within the gap for these cuboidal particles. However, these
cuboidal particle models are unrealistic due to the presence of high energy surfaces in equal
proportions. Therefore, we hypothesize that the nature of DOS of cuboidal particles is an
artifact of the unphysical nature of the particles.

To test our hypothesis, we plot the DOS of Wulff-constructed TiO2 particles which are
more realistic, since the area occupied by each low-index facet is inversely proportional to the
surface energy of the low-index facet. These particles have larger gaps with discrete defect
states within the gaps. However, these gaps do not seem to converge to the bulk limit as the
particle size increases and the location of the defect states cannot be predicted from the slab
DOS plots. Since the minimum length scales of the Wulff particle with 136 and 282 atoms
are 9.27 A and 11.08 A, this leads us to conclude that even at ~ 10 A, the band structure
is highly sensitive to the shape and size of the nanoparticles. Therefore, hybrid calculations
with specific nanoparticle morphologies are required to understand their band structure.

We also visualize the orbitals around highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) levels of the cuboidal and Wulff-constructed
particles which are included in the SI (Fig. 3). The orbitals are localized around (010)
and (001) low-index facets of the cuboidal particles, whereas they appear to be much more
delocalized throughout the Wulff particles. This behavior of orbitals supports the conclusion
that presence of high energy facets results in defect states within the gap localized around
those facets in cuboidal particles, whereas in the case of Wulff particles, the defects are

delocalized throughout the nanoparticle, and will depend on the details of the particle size
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and shape.

Concluding Remarks

In this work, we study the convergence of surface energy and band structure as a function
of nanoparticle size for rutile TiO,. We utilize the PBE GGA functional and PBEO hybrid
functional, and evaluate cuboidal and Wulff-constructed particles with a maximum size of 384
atoms (~13 A). The results indicate that geometric finite size effects play a significant role in
the particle surface energy, but that they can be accounted for with a simple linear regression
algorithm. In contrast, electronic finite size effects on the surface energy decay rapidly, and
can be neglected for particles with a minimum dimension of >10 A. These findings are
consistent for both the PBE and PBEO functionals. Analysis of the nearsightedness of the
electronic interactions provides further confirmation of the findings and suggests that the
characteristic length scale of electronic interactions for a given material can be computed
directly from the bulk electronic structure. This analysis may negate the need for expensive
nanoparticle simulations to evaluate the length scale at which finite size effects no longer
impact energetic properties.

In the case of band structure, the findings indicate that the nanoparticle systems studied
are well below the size at which the bandgap or band structure converges to the bulk limit.
The cuboidal particles are found to have a qualitatively different band structure from bulk
TiO,, and the band structure does not change significantly with particle size. This can be
explained by the band structure of the slab models, since the high-energy (010) surface slab
exhibits a similar band structure to the cuboidal nanoparticles. The Wulff construction is
used to generate more realistic particles without highly unstable surfaces, and their band
structures are more similar to the bulk, exhibiting a large gap with more discrete defects
within the gap. However, the size of the gap and the location of the defects varied consid-

erably with particle size, and the bandgap decreased with increasing particle size. These

16



results suggest that the bandgap and band structure of TiO, nanoparticles are highly sensi-
tive to both the particle size and morphology at the length scales investigated here (<15.0
A). This indicates that hybrid-level simulations of specific TiO, nanoparticle morphologies
are required to elucidate their band structures.

The findings have implications for the electronic structure theory of nanoparticle systems
and nanoparticle catalysis. The findings demonstrate that the finite-difference SPARC DFT
code is capable of performing hybrid-level DFT simulations for large (>350 atoms) systems,
and that a nearsightedness analysis can be used to rapidly assess the characteristic length
scale of electronic interactions. For catalysis, the findings show that the finite size effects of
surface properties (e.g. surface energy and adsorption energies) are dominated by geometric
defects, and can be simulated using appropriate semi-infinite slab models. On the other
hand, in the case of photocatalysis or other applications where the details of the band
structure are important, explicit nanoparticle models are likely required to describe very
small nanoparticles below ~ 20 A. Further work is necessary to evaluate the band structure
of more realistic particle morphologies and elucidate the role of solvents and adsorbates.
However, the emergence of highly parallelized hybrid DFT codes like SPARC, along with
the increasing prevalence of petascale computing resources, represents promising progress

toward evaluating these complex phenomena.

Methods

Kohn-Sham DFT simulations

We perform Kohn-Sham DFT calculations using the state-of-the-art “Simulation Package
for Ab-Initio Real-space Calculations” (SPARC) software?*54:55 — a real-space DFT code
that has comparable accuracy to established planewave codes, while requiring walltimes
that are more than an order of magnitude lower. In all calculations, we neglect spin and

choose optimized norm-conserving Vanderbilt (ONCV) pseudopotentials®® from the SG1557
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collection. In addition, we employ the Perdew-Burke-Ernzerhof (PBE)®® and PBEQ5%:5°
exchange-correlation functionals for performing GGA and hybrid level calculations, respec-
tively.

In all simulations, we choose the twelfth-order finite-difference approximation. For bulk
calculations, where periodic boundary conditions are prescribed in all three coordinate di-
rections, we employ a mesh-size of 0.25 bohr and 4 x 4 x 4 Monkhorst-Pack grid® for
Brillouin zone integration. These and other parameters have been chosen to provide an
accuracy of 0.01 bohr in the computed equilibrium lattice constants. For slab calculations,
where periodic and Dirichlet boundary conditions are prescribed in the plane and perpen-
dicular to the plane of the slab, respectively, we employ a mesh-size of 0.25 bohr, a 4 X
4 Monkhorst-Pack grid for Brillouin zone integration, and a vacuum of 8 bohr. These and
other parameters have been chosen to provide an accuracy of 0.001 Ha/atom in the energy.
For the nanoparticle calculations, where Dirichlet boundary conditions are employed in all
three coordinate directions, we employ a mesh-size of 0.3 bohr and vacuum of 8 bohr in each
coordinate direction. These and other parameters have been chosen to provide an accuracy
of 0.001 Ha/atom in the energy. Note that we perform structural relaxation for only the
bulk system, while the atoms in the slab systems and nanoparticles are held fixed, i.e., only
the electronic ground state is computed for the given atomic positions. All atomic positions

and structures are defined using the Atomic Simulations Environment (ASE) package. %2

Linear regression model for nanoparticle energetics
We adopt the following decomposition for the nanoparticle energy:
facets defect types
Enanoparticle = Ebulknbulk + Z Efacet,infacet,i + Z Edefect,jndefect,j (4)

1 J

where Ep i is the energy per TiO5 unit for the crystal, ny is the number of bulk-like TiO4

units in the nanoparticle, Eg,cet ; is the average facet energy per TiO; unit for the ith slab type,
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Dfacet,i 18 the number of i? slab-like surface TiO, units in the nanoparticle, Edefect j 1s the defect
energy per TiOy unit of the j™ defect type, and ngegect; is the number of j™ defect-like TiO,
units in the nanoparticle. We have separated surface-like defects from other defects, since
the energy of surface defects can be obtained from slab calculations. In the current work,
we consider 3 slab types, i.e., (100)-symmetric, (010)-asymmetric, and (001)-symmetric, and
3 defect types, i.e., edge, corner, and sub-edge. The values for Egefectj are determined via
least-squares regression, with the values for the remaining quantities computed using the
methodology outlined below.

The energies Eyanoparticle and Epyc are immediately available from DFT calculations for
the nanoparticle and bulk, respectively. To calculate Egyacei, Wwe adopt the extrapolation
scheme of Fiorentini and Methfessel.%3 In particular, for each of the slab types, we first
calculate the energy of the slab as a function of the number of layers N, which we denote by

Eqapi(N). Next, we determine the average surface energy by fitting the data to the relation:

Eslab,i(N) = 2Esurface,i + NEbulk,i (5)

where Ebulk,i is the extrapolated bulk energy. In the current work, we have used N = 12
layers, which results in Egyface; values converged to within 0.0002 Ha/atom. Note that for
the (010)-asymmetric slab, though the computed Egyface i is the average over the two different
surfaces on either side of the slab, it can be used in our formulation since all nanoparticles
considered in this work have both surfaces of the (010)-asymmetric slab, if present at all.
To be able to systematically determine npyui, Dgab,i, and Ngefect,i, We develop a machine
learning scheme that determines the classification of each TiO, unit in the nanoparticles
based on the local atomic environment. Specifically, we use the atomic descriptors proposed
by Behler and Parrinello,¢ details of which can be found in the SI. We generate the atomic
descriptors for fingerprinting the model space by using the Atomistic Machine-learning Pack-

age (AMP)% and select the hyperparameters of the featurization scheme such that there is
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maximum separation between different geometrical configurations in the model space. We
apply dimensionality reduction using kernel principal component analysis (kPCA)% on the
scaled descriptors to generate linearly independent features and use MeanShift clustering, %
a density-based clustering algorithm to form clusters of atomic configurations for different
types of titanium atoms in nanoparticles. The dimensionally reduced features facilitate
visualization in a lower-dimensional space by using the interactive visualization tool Elec-
troLens. %" The scikit-learn software package® is used for all machine-learning models. We
train the clustering algorithm with the model space and use ElectroLens to assign clusters

to class labels for the categories of interest.

Nearsightedness analysis for electronic interactions

We perform the nearsightedness analysis for electronic interactions using the real-space
Spectral Quadrature (SQ) method,® ™ a technique developed for performing large-scale
linear-scaling Kohn-Sham DFT calculations. In particular, for the electronic ground state
computed using standard diagonalization-based schemes in SPARC,*?%%% we determine the
convergence in electron density with size of interaction region — quadrature order to be large
enough to make associated errors significantly smaller than those considered in this work —
analogous to previous such results obtained for the energy and atomic forces in bulk alu-
minum at various temperatures.”? Specifically, for a given interaction length scale, we express
the electron density at any point in space as a bilinear form in terms of the Hamiltonian,
which is then approximated by a Gauss quadrature rule that remains spatially localized to
the interaction region by exploiting the locality of electronic interactions in real-space,” i.e,
the exponential decay of the density matrix in real-space for insulators as well as metals at

finite temperature. Indeed, in the limit of infinite size for the interaction region, the ground

state electron density computed using diagonalization is exactly recovered.
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Equilibrium lattice constants for rutile TiO, bulk crystal

Table 1: Comparison of equilibrium lattice parameters for bulk rutile TiOs crystal from
experimental and theoretical studies calculated using PBE exchange correlation functional.

a(A) c(A)

Experimental }? 4.587 2.954
Montanari and Harrison® 4.641 2.966
Labat et al.? 4.653 2.975

This work 4.636 2.967

Atom-Centered Symmetry Functions(ACSFs)

We use the Gaussian descriptors proposed by Behler and Parrinello* which are also known
as ACSFs to identify the unique atomic configurations belonging to corner, edge and sub-
surface defect sites that are not present in the bulk and slab models of TiO5. The descriptors
represent local atomic environments for every atom with respect to neighboring atoms within
a given cutoff radius, R.. This fingerprinting scheme generates feature vectors for every atom
in the system when provided with atomic positions as an input. This transformation is given

by:



R —2C"  GR, R, W) (1)

feature mapping

where G is the set of descriptors generated by the fingerprinting scheme. W is the set
of parameters for radial and angular symmetry functions. The radial and angular symmetry
functions are referred to as G5 and G4 respectively. The radial symmetry functions are sum

of Gaussians that are multiplied to a cutoff function f.(R;;):

N
G =Y e R (Ry)) (2)
j=1

The angular symmetry functions are built from angle centered at every atom i for three-

body interaction, 0,5, with neighbor atoms, j and k and is given by the following equation:

N N
G? = 21=¢ Z Z [(1 + X\ - cos Qijk)c . e_"(R?ﬁR’Z’“) “fe(Rij) - fe(Rix) (3)
i ki

The central cut-off function is represented by f.(R;;) and depends on the cutoff radius,
R.. Tt captures the inter-atomic interactions between any atom and its neighboring atoms.
The Gaussian fingerprinting of atomic environments has been implemented in the software
package, Atomistic Machine-Learning Package (AMP).> We use this package to construct

feature vectors for the systems of interest in this study.

Validation of regression model
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Orbitals of medium-sized cuboidal and Wulff nanoparticles

HOMO-2 HOMO-1 HOMO LUMO LUMO-1

Q-0 -0 Q-0 -0f Q- Q- -@- Q. -0+ HOP
p. Q@ @ - 0'5'0' -Q o,o,o,o_o,o, Q@ Q@ Q- 042
5.0 -0- -0 Q- Q- 0’# @ @ Q- -Q- -0- ‘0% 013
o 0 -0 - Q@ ‘@ - - ®: 9 O - @ ‘@ @ » o (a)
4@ @ -0 ‘@ -0@- Qe s@- Q- @ @ @ I
Q- Q@ #Q- - @ -0- 40 Q- 0 -0 - (%) @ Q9 # 004
cﬁ 0.00
‘@ @ “O% i @08 -0 -0 %0k ‘@ @ Ok Q-0 -0
Q@ Q0 -0 = Q.o.o.o.g.o. o.o.o.o.o.ogf @ -0 -0- = @ @ @ 013
Q- Q- -0t  .Q. .Q: -Q Q@ @ Q% Q- Q- -0+ Qo -0 -0 o
Q@ @ @ = ®: ‘©: 0+ O -0 -0-% @ ‘@ Q- = Q@ ‘@ @ - : b
Q@ Q- 0% ‘@ @ @} Q@ ‘@ @ Q- Q- -0} @@ @ 007 ( )
@ ‘O L@ @ ‘0 -30-° O @ 1@ # Q@ @0 @+ Qo 0 -0 -
@ @z ‘O P Y g o 0 O - B% -Q . .@ @@ @ 0.03
O -0vg0- - ¢ gullg. . ©- -Owfio.- O -0-50- - LRl L oo
Q- @ @ @ (RN - @ @ O W
@ 0 0@ @ @ 0@ [ EP EIRX @ -9 -0 @ Q- @
A @ @ @ e Qe @ Q- A Qe
Q- 0 0 Q: - @- @ @ QO -0 @ @ -0 @ @ @
D e .9. Q- e @ e @ @ @ 0.02
@ ‘@@ @: @ -@ @ @ -0 oL -0 0 @ @ -0 (C)
@ @ Q- @ @ @ 9. -G e el
050 0@ @ ‘O-FO 0 . 0-:0 @ Q49 @ sT e @ 001
e @ e @ P @ @ @ @ @
@: -0 -0 @ ‘@ @ O Y ) 0 9@ @ 0 -0
e G Q- @ Qe W @ @ e Qe 000
@ QO -Q Q@ @ -@ @ -0 -0 o ‘@ @ @ Q- @ :
@ @ @ Q- @ @ e @ e @
@ e @ Q- Q-
Q. @ @ @ Q- @ Q- @ Q- @
Q- ‘-0- - @ @ ‘@ -0 @ ‘©® -0 @ @ -0 @ @ @
LI, 23S~ S e 2T @ @ - - Qe P . LOICE LIRS * TR
@ @ 0 @ @ @ @ ‘9 @ @ @ @ @ @ -0
o ofBre Qe o o oD P e @ @ o e e o o P Qe o
@ @ -0 @ ‘@ -0 @ ‘0 -0 @ @9 @ @ @ @
o P @ - @ @ - @ @ e @ . e @ @ -
0'0'0.'0‘.9' 0-9'0-0'0 O'C"O-(‘;O 0~0~0-9-0 9'9‘9‘0'9 003
@ @ -0 @ ‘© -0 @ G- @ @ @ @ @ -0 Q@ — (d)
c @ @ - c @ @ - I Sl o ol oo o L@ c@-in .
@ 9 -0 @ -9 -0 @ & + @ @ -0 0@ @ -0 -Q
o i silie o o i@ ol o o oKD o ook e - o i@ @ o 0.01
@ -0 -0 @ ‘@ @ @ ‘@ @ @ -9 @ Q-0 @
@ D e o @ @ o e @ o e Qe . G R
@ -0 -0 @ ‘@ -0 @ ‘@ @ @ @ @ Q- ‘@ <@ 0.00
o e e . o e e . @ @ - LT TR S T o Qe Qe
@ Q- -0 @ - ® -0 ®: -® -0 @ -9 @ @ @@
BES THEE T o ke oiThe - e @ @ - BE 3 'O'W' G,
@ @ 0O @ 0 -0 @ @ @ @ @ -0 - "9" - Q@
@ @ P @ B @ @ @ 9.9'0'
@ @ Q- Q-

Figure 3: Visualization of orbitals around HOMO and LUMO levels of cuboidal and Wulff-
constructed particles using ELectroLens.® HOMO-2 and HOMO-1 refer to the two orbitals
just below the HOMO and LUMO-1 refers to the orbital just above the LUMO. These
figures indicate that the one-electron densities are localized around the high-energy facets
for cuboidal nanoparticles whereas they are more delocalized in the case of Wulff particles.

Atomic coordinates of TiO; model systems

Atomic coordinates are available in .xyz format in the file atomic_coordinates.zip.
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