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Abstract

In this work, we employ hybrid and generalized gradient approximation (GGA)

level density functional theory (DFT) calculations to investigate the convergence of

surface properties and band structure of rutile titania (TiO2) nanoparticles with parti-

cle size. The surface energies and band structures are calculated for cuboidal particles

with minimum dimension ranging from 3.7 Å (24 atoms) to 10.3 Å (384 atoms) using a

highly-parallel real-space DFT code to enable hybrid level DFT calculations of larger

nanoparticles than are typically practical. We deconvolute the geometric and electronic

finite size e↵ects in surface energy, and evaluate the influence of defects on band struc-

ture and density of states (DOS). The electronic finite size e↵ects in surface energy

vanish when the minimum length scale of the nanoparticles becomes greater than 10

Å. We show that this length scale is consistent with a computationally e�cient numer-

ical analysis of the characteristic length scale of electronic interactions. The surface

energy of nanoparticles having minimum dimension beyond this characteristic length

can be approximated using slab calculations that account for the geometric defects. In

contrast, the finite size e↵ects on the band structure is highly dependent on the shape

and size of these particles. The DOS for cuboidal particles and more realistic particles

constructed using the Wul↵ algorithm reveal that defect states within the bandgap

play a key role in determining the band structure of nanoparticles and the bandgap

does not converge to the bulk limit for the particle sizes investigated.
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Metal oxide nanoparticles have wide range of commercial and technological applications

ranging from biomedical engineering to chemical catalysis.1–7 Oxide nanoparticles have a

number of favorable properties including a high surface-area to volume ratio, tunable optical

properties, and a range of surface reactivities. For example, oxide nanoparticles can be

used as inert support materials in catalysis,8 or provide reactive surfaces that interact with

supported catalysts,9 or act directly as catalysts.8,10 In particular, oxide nanoparticles are

commonly used for photocatalysis since it requires high surface areas, bandgaps that are

aligned with the redox potentials of products and reactants, and surface chemistry that

facilitates chemisorption and reaction of intermediates.11,12 Both the band structure and

chemical reactivity of nanoparticles are controlled by their atomic structure and size, as well

as the surrounding environment such as solvents, capping agents and supports. However,

atomic-scale simulations of nanoparticles are challenging due to the number of atoms and

electrons present, especially if their environment is considered. Therefore, it is a natural

starting point to study the structure and reactivity of isolated nanoparticles to establish

an understanding of the key factors governing band structure and reactivity to help design

nanoparticles with specific optical and catalytic properties.13

In particular, TiO2 is of paramount technological importance. The applications of TiO2

include hydrogen production, photo-voltaic cells, degradation of harmful organic compounds

in the environment, medical applications such as bone implants, and supports for other

catalytic materials.1,14–19 For this reason, TiO2 is widely studied in the scientific literature

and is often referred to as a “model oxide”.20–22 A large number of ab-initio studies fo-

cus on models of bulk polymorphs,23–26 extended surfaces27–29 and small nanoparticles but

relatively few studies have been done on investigation of finite size e↵ects arising in small

TiO2 nanoparticles,30–32 especially for the rutile polymorph of TiO2. These finite size e↵ects

can be classified into geometric e↵ects which arise due to unique atomic configurations in

the nanoparticle, electronic e↵ects, which arise due to features in the electronic structure

of the nanoparticle system, and quantum e↵ects, which arise due to quantization of energy
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levels in small particles.33 Since rutile TiO2 has a large number of applications in the field

of heterogeneous catalysis and photocatalysis,34–36 it represents a natural starting point for

evaluating the finite size e↵ects on surface and electronic properties. In this work, we study

the finite size e↵ects in surface energy which is an important property that dictates the sur-

face structure and stability. The electronic property in consideration is the band structure,

which is crucial in applications of photocatalysis because nanoparticles of TiO2 are often

used, but the interplay between nanoparticle structure and photon absorption is not well

understood.

Previous works in the literature have investigated the intrinsic particle size e↵ect with

increasing size of metallic nanoparticles using adsorption energy to characterize surface cat-

alytic properties. Kleis et al. 37 performed a DFT study using the revised Perdew-Burke-

Ernzerhof (RPBE) functional38 on gold metal nanoparticles ranging from 13 to 1,415 atoms

to show how surface properties varied with system size at two local geometries that resemble

surfaces of (111) and (211) slabs. They show that surface properties converge to the slab

limit at a characteristic length of 27 Å (560 atoms). The generality of findings for other tran-

sition metals were confirmed with a similar study on freestanding cuboctahedral platinum

metal nanoparticles which show analogous convergence with size but at a smaller character-

istic length of 16 Å (147 atoms).33 The main limitation of the prior work described above is

that they focus on metallic systems and are limited to semilocal GGA exchange-correlation

functionals. One exception is work by Lamiel-Garcia et al.,30 that studied finite size e↵ects

in anatase nanoparticles at the hybrid level of theory with localized basis sets. However,

the convergence of surface properties toward the slab limit was not investigated, and the

particles were constructed to minimize the presence of geometric defects which may play a

significant role in catalytic systems.

Jinnouchi and Asahi 39 have also shown that metal alloy nanoparticles can contain het-

erogeneous atomic configurations such as atomic-scale defects that cannot be explained by

the single-crystal surface models, and that these defects dominate the catalytic activity of
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nanoparticles. They propose a machine-learning scheme which adopts a descriptor-based

approach to map slab-based surface models to the nanoparticle surfaces and defects. The

machine-learning model is trained on single crystal slabs with various defects and compo-

sitions. The model is then able to accurately predict energetics of complex nanoparticles,

which indicates that the geometric defects dominate the nanoparticle behavior. However, it

is unclear if a similar strategy will work for (mixed) metal oxide particles, particularly for

photocatalysts where the electronic band structure is important.

Evaluating finite size e↵ects on band structure properties is complicated by the need for

hybrid-level functionals. Exchange-correlation functionals based on the local-density approx-

imation (LDA) and GGA significantly underestimate the bandgap because of a derivative

discontinuity in the exchange-correlation potential.40 However, the hybrid functionals that

are implemented within the generalized Kohn-Sham (KS) formalism instead of standard

KS formalism incorporate part of the discontinuity which leads to a bandgap that is in

good agreement with experimental values.41 Despite the fact that planewave codes are the

most widely used method for solving the KS equations, it becomes impractical to perform

planewave hybrid calculations on systems with > 100 atoms due to the early onset of the

cubic scaling bottleneck and the large associated prefactor. In particular, the limited scal-

ability on parallel computing platforms restricts the time to solution that can be achieved.

Another disadvantage of planewave codes is the nature of the Fourier basis that restricts the

method to periodic boundary conditions, hence making it necessary to add artificial period-

icity using vacuum and dipole corrections, which limits accuracy in the study of systems with

dipole moments as well as charged systems.42–44 The use of a finite di↵erence basis set can

overcome these challenges by enabling ideal parallelization and application of non-periodic

boundary conditions.

In this work, we investigate finite size e↵ects in rutile TiO2, which is the most stable

polymorph of titania.45 We utilize a collection of model systems including bulk, surface

slabs, and nanoparticles to deconvolute e↵ects arising from various types of defects. We use
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these model systems to elucidate finite size e↵ects on the surface energy and band structure,

and we explore the influence of the exchange correlation functional on these e↵ects by per-

forming calculations with both semilocal (PBE) and hybrid (PBE0) functionals. The study

utilizes the new finite-di↵erence Simulation Package for Ab-initio Real-space Calculations

(SPARC)42 code to enable hybrid-level calculations on nanoparticle systems. We also utilize

a numerical convergence technique to assess the length scale of electronic interactions, and

apply a geometric fingerprinting scheme based on machine-learning46 to deconvolute geo-

metrical and electronic finite size e↵ects33 in surface energy. The results indicate that the

surface energy converges quickly for both functionals, approaching the infinite particle limit

at particle sizes of ⇠ 10 Å. However, we find that the band structure is highly sensitive to

functional choice, particle size, and particle shape, indicating that hybrid-level calculations

are required to assess the band structure of nanoparticles well beyond the sizes investigated

here.

Results and Discussion

To study the finite size e↵ects in surface properties and band structure of nanoparticles, we

construct the “TiO2 model space” which is the collection of all model systems using the

equilibrium structural parameters. This is illustrated in Fig. 1. For the bulk rutile system,

we find equilibrium lattice constants of a = 4.636 Å and c = 2.967 Å. These lattice constants

are in good agreement with the literature values and are summarized in Table 1 in the SI.

The slab models include a mix of symmetric and asymmetric slabs, and the facet energy

of asymmetric slabs is calculated using the average between the two di↵erent facets. The

cuboidal nanoparticles are non-periodic slabs, with vacuum in all directions instead of peri-

odic boundary conditions. These cuboidal isolated nanoparticles are stoichiometric, and the

faces of these cuboidal nanoparticles have an atomic structure consistent with the low-index

facets of TiO2 slabs. The faces of cuboidal particles will also have defect sites arising due
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to edges, corners and sub-edge atoms at edges (sub-edges) that are not present in the facets

of slab models. These nanoparticles are a convenient way of studying the trends of surface

properties and comparing with the extended slab models since their geometries are most

similar to the slab models, making it easier to isolate electronic finite size e↵ects. However,

the unphysical nature of the cuboidal geometries may cause artifacts when studying system-

level properties such as the bandgap and DOS. Hence, non-stoichiometric nanoparticles that

are closer to realistic systems are also created using the Wul↵-construction algorithm.47 To

facilitate comparison between the particle models, we restrict the Wul↵-constructed particles

to only contain the same low-index facets that appear on the cuboidal particles (100, 010,

and 001 facets).

Rutile bulk crystal       (100) symmetric slab    (010) asymmetric slab          (001) symmetric slab

Cuboidal nanoparticles

Wulff nanoparticles

24                     48                         72                       96                            108         162

192                           216                             270                              288                    384                                  

136                                                     282

Bulk and slab models

Figure 1: All TiO2 systems studied including the rutile bulk crystal, slab model, cuboidal
nanoparticles ranging from 24 to 384 atoms and Wul↵ nanoparticles constituting of 136 and
282 atoms. Atomic coordinates for all systems are provided in the SI.
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Finite size e↵ects on surface energy

Finite size e↵ects can be categorized as geometric e↵ects, electronic e↵ects, and quantum

e↵ects.33 In the case of energetic properties such as surface or adsorption energies, the geo-

metric finite size e↵ects are expected to be local due to the nearsightedness of electrons.48

Therefore, it is possible to deconvolute the geometric and electronic finite size e↵ects by

partitioning the energy to specific types of geometric defects. Any deviation from this par-

titioning can be assumed to arise from electronic or quantum e↵ects that are implicit in the

electronic structure of the particle. Here, we group quantum e↵ects with electronic structure

e↵ects since they are both inherent to the behavior of electrons in the system.

To quantify the finite size e↵ects on the nanoparticle surface energy, we utilize the total

surface energy of the nanoparticle obtained from DFT as the ground truth:

Esurface,DFT =
Enanoparticle � nTiO2Ebulk

nsurfaceTi,total
(1)

where Enanoparticle is the total energy of nanoparticle from DFT, Ebulk is the bulk energy ex-

tracted from the linear interpolation model for slab surface energies (Eq. 5) and nsurfaceTi,total

is the total number of TiO2 units belonging to low-index facets and surface defects. In the

absence of any finite size e↵ects, the nanoparticle surface energy could be approximated by

a linear combination of semi-infinite slab energies:

Esurface,slab model =

P
facets

i
Efacet,infacet,i

nsurfaceTi,total
(2)

where Efacet,i is the facet energy and nfacet,i is the number of surface-like TiO2 units resem-

bling each facet type. The semi-infinite slab energies are obtained by the linear interpolation

method as described in the methods section and are referred to as “facet energies” to distin-

guish them from the energy of other types of surface defects. The converged slab energies

are summarized in Table 1 and are shown in Fig. 2.

To deconvolute the influence of geometric finite size e↵ects, we utilize a regression model
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Figure 2: Surface energy (Ha/atom) convergence for TiO2 slabs with varying thickness of
slabs from PBE and PBE0 exchange correlation functionals. The hollow symbols represent
surface energy from PBE for thin slabs that deviate from the convergent surface energies.

(Eq. 3) to obtain the energy contribution of edge, corner, and sub-edge geometric defects

present within the system. The total surface energy of the particle based on the regression

model can be obtained by adding the energy contributions of all surface defects that consti-

tute of atoms resembling facet types and defects such as corners, edges and sub-edge defects

and normalizing to the number of surface Ti atoms:

Esurface,regression =

P
slab types

i Efacet,infacet,i +
P

defect types

j
Ejndefect,j

nsurfaceTi,total
(3)

where the term
P

defect types

j
Edefect,jndefect,j sums over the contributions of corner, edge, and

sub-edge Ti atoms and accounts for the geometric finite size e↵ects. The results from the

regression model are summarized in Table 1.

The trends in surface energy convergence for all three models are plotted in Fig. 3.

Fig. 3(a) clearly shows that the linear slab model poorly approximates the surface energy,

which indicates that finite size e↵ects play a significant role at all particle sizes investi-

gated. However, the regression model provides a much more accurate approximation of the

nanoparticle surface energy, indicating that geometric finite size e↵ects are dominant. The
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Table 1: Defect energy for di↵erent facets and surface defects arising on surface of TiO2

nanoparticles (Ha/atom) from PBE and PBE0 XC functionals.

Defect type PBE (Ha/atom) PBE0 (Ha/atom)

(100)-facet 0.045 0.054
(010)-facet 0.188 0.220
(001)-facet 0.119 0.139
Corner1 0.188 0.223
Edge1 0.151 0.197
Sub-edge1 0.099 0.121
1 Energy contributions of defect sites obtained from
regression model.

(a)                                                                        (b)
Figure 3: Convergence of surface energy with increasing size of TiO2 nanoparticles for
PBE and PBE0 XC functionals. (a) Surface energy from 3 methods: ground truth DFT
(Esurface,DFT), linear combination of slab models (Esurface,slab model) that does not account for
geometric defects and regression model (Esurface,regression) that accounts for the geometric de-
fects. (b) Absolute di↵erence between Esurface,DFT and Esurface,slab model that quantifies the
overall finite size e↵ects and absolute di↵erence between Esurface,DFT and Esurface,regression that
quantifies the electronic finite size e↵ects.

residual between the regression model and the ground truth energy can be interpreted as the

contribution due to electronic finite size e↵ects towards the surface energy. The electronic
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finite size e↵ects are quantified on a log scale in Fig. 3(b). At very small particle sizes (<4

Å) the electronic finite size e↵ects are very significant (⇠0.03 Ha/atom), which exceeds the

typical exchange-correlation error (⇠0.01 Ha/atom). At particle sizes from ⇠4-8 Å (⇠30-200

atoms) the electronic finite size e↵ects are below the typical exchange-correlation error, but

still exceed the numerical error (⇠0.001 Ha/atom). Finally, beyond ⇠10 Å the electronic

finite size e↵ects are reliably at or below the threshold of numerical accuracy, suggesting

that they can safely be neglected. This trend is consistent between both PBE and PBE0

functionals. This indicates that the surface properties of TiO2 particles larger than ⇠ 10 Å

can be studied using a combination of slab models, as long as slab models that capture the

relevant geometric defects are included.

To validate the regression model, we apply it to particles not included in the regression

analysis. These particles are generated by extending four of the cuboidal nanoparticles (24,

72, 108, and 162 atoms) in the 100, 010, and 001-directions and computing their surface

energies with PBE. These particles will have the same types of geometric defects (edges,

corners, and sub-edge atoms), but the proportions will be di↵erent from the original cuboidal

particles. The electronic finite size e↵ects (the absolute di↵erence between Esurface,DFT and

Esurface,regression) as a function of particle size are shown in the SI (Fig. 1). Similar to Fig. 3,

the residual decreases to ⇠1e-3 Ha/atom beyond ⇠ 10Å, which confirms that the regression

model can be generalized to systems that were not included in the training procedure. This

also provides further support for the conclusion that the surface properties of nanoparticles

with a minimum dimension greater than 10 Å can be accurately modeled using appropriate

semi-infinite slabs.

Characteristic length scale of electronic interactions

The results of this work indicate that electronic finite size e↵ects have a negligible impact on

the surface energetic properties of TiO2 particles larger than ⇠10 Å. However, this conclusion

is material dependent, with the characteristic length scale of finite size e↵ects depending on
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Figure 4: Convergence in electron density with size of interaction region for bulk crystal and
the smallest nanoparticle. The error in the self-consistent field (SCF) energy corresponds to
the accuracy in the SCF iteration for the lowest normalized error in electron density.(see SI
Fig. Fig. 2).

the localization of electrons in the material. TiO2 is a large bandgap semiconductor, which

suggests that electronic finite size e↵ects will decay quickly compared to more delocalized

systems such as metals. Indeed, this is consistent with the fact that adsorption energies on

metal nanoparticles tend to converge around ⇠2-3 nm.33,37 Yet, a quantitative assessment of

this length scale is extremely computationally demanding with the methods presented here

and in prior work, since it requires the calculation of many large particles with DFT.

An alternative approach is to directly characterize the length scale that a↵ects the elec-

tronic convergence in the bulk solid. This is achieved by the “nearsightedness analysis”

discussed in the methods section, which is based on the convergence of the density error as

a function of the length scale of the interaction region around each point in the system. The

results are shown in Fig. 4 for the bulk crystal and smallest nanoparticle. The box plots

for the bulk crystal indicate that at a length scale of 10.6 Å the normalized electron density

error decays to under 0.01 in all cases and below 0.001 in most cases. To correlate this to

energy convergence, the normalized electron density error is compared to the total energy

error at a variety of SCF tolerances for bulk TiO2 and a linear fit is used to provide an upper
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bound based on the systems studied in this work (see SI Fig. 2). The results indicate that

a normalized electron density error of 0.01 - 0.001 corresponds to an SCF energy error of

10�4 � 10�6 Ha/atom. To ensure that these findings hold for the nanoparticle systems we

also perform the nearsightedness analysis for the smallest nanoparticle, Ti8O16. The results

indicate that the interactions decay as fast or faster in the nanoparticle system, with the

error in SCF energy decaying to under 0.001 Ha/atom at a length scale of 8.0 Å in most

cases.

The results of the nearsightedness analysis for both bulk and nanoparticle systems are

consistent with the analysis of convergence of surface energy for nanoparticles, where we

observe that the electronic finite size e↵ects disappear at a length scale >10.0 Å. The near-

sightedness analysis and the corresponding energy error calibration can be performed using

only the bulk system, and can be applied to any material. This suggests that the nearsight-

edness analysis is a far more computationally e�cient route for evaluating the characteristic

length scale of electronic finite size e↵ects for a given material.

Finite size e↵ects on band structure

The band structure of TiO2 plays an important role in photocatalysis, especially the bandgap

and defect states within the gap. To assess the finite size e↵ects on the band structure

of the particles, we analyze the bandgap and DOS of stoichiometric TiO2 nanoparticles

and compare the results with bulk and slab models. The experimental bandgap for bulk

rutile TiO2 is ⇠ 3.0-3.1 eV,45,49 while the bulk gap predicted by PBE and PBE0 are 1.89

and 4.19 eV, respectively. This is consistent with the well-known underestimation of band

gaps by PBE,40,50,51 and prior reports of over-estimation of TiO2 band gaps with hybrid

functionals.52,53 Nonetheless, the hybrid results are considered to be more reliable since they

accurately incorporate exchange interactions that lead to electron localization.

The bandgaps for all nanoparticles are shown in Fig. 5(a) as a function of particle size.

The plot indicates that bandgaps for all nanoparticles are much smaller than the bulk for
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both PBE and PBE0. Moreover, the bandgap values decrease, rather than increase as a

function of particle size, indicating that the particle sizes investigated are far from the bulk

limit. The PBE results suggest that the particles are metallic, indicating a qualitative failure

of PBE. For this reason, PBE is omitted from subsequent analyses.

(a)                                                                                  (b)

Figure 5: (a) Convergence of bandgap with increasing size of TiO2 nanoparticles for XC
functionals PBE and PBE0. The bandgaps are compared with the bulk bandgap from 3
methods which are given by 3 horizontal lines in the inset plot: experimental, PBE and
PBE0. (b) Comparison of DOS of cuboidal and Wul↵-constructed nanoparticles with TiO2
bulk and slab models. The top panel shows the DOS of bulk and slab models and highlights
the defect states within the gap for (010) and (001)-slab models. The bottom panel depicts
the DOS of stoichiometric cuboidal and non-stoichiometric Wul↵ particles.

To understand the reason for smaller bandgaps in the nanoparticles, we analyze the full

DOS of two of the cuboidal particles constituting of 162 and 288 atoms. We compare the

DOS of these particles with that of the bulk crystal and slab models and these are plotted in

Fig. 5(b). The DOS is normalized with respect to the total number of electrons in each of the

particles. The vertical dotted lines highlight the bandgap of the bulk crystal. In the DOS

of cuboidal particles, we observe that the bandgaps are much lower compared to the bulk

bandgap and defect states within the bandgap are forming a continuum above the HOMO
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of the bulk crystal. This continuum leads to a very small gap of ⇠0.2 eV.

We compare the DOS of the cuboidal particles with the DOS of slab models. We observe

that the (100)-slab model has a bandgap very close to the bulk and there are no defect states

within the gap, whereas the DOS of the (010) and (001)-slabs reveal the defect states present

within the gap resulting in a lower bandgap. The (010)-facet which is highly unstable also

has a continuum of states within the gap, which suggests that the slab models provide some

insight into the defect states within the gap for these cuboidal particles. However, these

cuboidal particle models are unrealistic due to the presence of high energy surfaces in equal

proportions. Therefore, we hypothesize that the nature of DOS of cuboidal particles is an

artifact of the unphysical nature of the particles.

To test our hypothesis, we plot the DOS of Wul↵-constructed TiO2 particles which are

more realistic, since the area occupied by each low-index facet is inversely proportional to the

surface energy of the low-index facet. These particles have larger gaps with discrete defect

states within the gaps. However, these gaps do not seem to converge to the bulk limit as the

particle size increases and the location of the defect states cannot be predicted from the slab

DOS plots. Since the minimum length scales of the Wul↵ particle with 136 and 282 atoms

are 9.27 Å and 11.08 Å, this leads us to conclude that even at ⇠ 10 Å, the band structure

is highly sensitive to the shape and size of the nanoparticles. Therefore, hybrid calculations

with specific nanoparticle morphologies are required to understand their band structure.

We also visualize the orbitals around highest occupied molecular orbital (HOMO) and

lowest unoccupied molecular orbital (LUMO) levels of the cuboidal and Wul↵-constructed

particles which are included in the SI (Fig. 3). The orbitals are localized around (010)

and (001) low-index facets of the cuboidal particles, whereas they appear to be much more

delocalized throughout the Wul↵ particles. This behavior of orbitals supports the conclusion

that presence of high energy facets results in defect states within the gap localized around

those facets in cuboidal particles, whereas in the case of Wul↵ particles, the defects are

delocalized throughout the nanoparticle, and will depend on the details of the particle size
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and shape.

Concluding Remarks

In this work, we study the convergence of surface energy and band structure as a function

of nanoparticle size for rutile TiO2. We utilize the PBE GGA functional and PBE0 hybrid

functional, and evaluate cuboidal andWul↵-constructed particles with a maximum size of 384

atoms (⇠13 Å). The results indicate that geometric finite size e↵ects play a significant role in

the particle surface energy, but that they can be accounted for with a simple linear regression

algorithm. In contrast, electronic finite size e↵ects on the surface energy decay rapidly, and

can be neglected for particles with a minimum dimension of >10 Å. These findings are

consistent for both the PBE and PBE0 functionals. Analysis of the nearsightedness of the

electronic interactions provides further confirmation of the findings and suggests that the

characteristic length scale of electronic interactions for a given material can be computed

directly from the bulk electronic structure. This analysis may negate the need for expensive

nanoparticle simulations to evaluate the length scale at which finite size e↵ects no longer

impact energetic properties.

In the case of band structure, the findings indicate that the nanoparticle systems studied

are well below the size at which the bandgap or band structure converges to the bulk limit.

The cuboidal particles are found to have a qualitatively di↵erent band structure from bulk

TiO2, and the band structure does not change significantly with particle size. This can be

explained by the band structure of the slab models, since the high-energy (010) surface slab

exhibits a similar band structure to the cuboidal nanoparticles. The Wul↵ construction is

used to generate more realistic particles without highly unstable surfaces, and their band

structures are more similar to the bulk, exhibiting a large gap with more discrete defects

within the gap. However, the size of the gap and the location of the defects varied consid-

erably with particle size, and the bandgap decreased with increasing particle size. These
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results suggest that the bandgap and band structure of TiO2 nanoparticles are highly sensi-

tive to both the particle size and morphology at the length scales investigated here (<15.0

Å). This indicates that hybrid-level simulations of specific TiO2 nanoparticle morphologies

are required to elucidate their band structures.

The findings have implications for the electronic structure theory of nanoparticle systems

and nanoparticle catalysis. The findings demonstrate that the finite-di↵erence SPARC DFT

code is capable of performing hybrid-level DFT simulations for large (>350 atoms) systems,

and that a nearsightedness analysis can be used to rapidly assess the characteristic length

scale of electronic interactions. For catalysis, the findings show that the finite size e↵ects of

surface properties (e.g. surface energy and adsorption energies) are dominated by geometric

defects, and can be simulated using appropriate semi-infinite slab models. On the other

hand, in the case of photocatalysis or other applications where the details of the band

structure are important, explicit nanoparticle models are likely required to describe very

small nanoparticles below ⇠ 20 Å. Further work is necessary to evaluate the band structure

of more realistic particle morphologies and elucidate the role of solvents and adsorbates.

However, the emergence of highly parallelized hybrid DFT codes like SPARC, along with

the increasing prevalence of petascale computing resources, represents promising progress

toward evaluating these complex phenomena.

Methods

Kohn-Sham DFT simulations

We perform Kohn-Sham DFT calculations using the state-of-the-art “Simulation Package

for Ab-Initio Real-space Calculations” (SPARC) software42,54,55 — a real-space DFT code

that has comparable accuracy to established planewave codes, while requiring walltimes

that are more than an order of magnitude lower. In all calculations, we neglect spin and

choose optimized norm-conserving Vanderbilt (ONCV) pseudopotentials56 from the SG1557
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collection. In addition, we employ the Perdew-Burke-Ernzerhof (PBE)58 and PBE059,60

exchange-correlation functionals for performing GGA and hybrid level calculations, respec-

tively.

In all simulations, we choose the twelfth-order finite-di↵erence approximation. For bulk

calculations, where periodic boundary conditions are prescribed in all three coordinate di-

rections, we employ a mesh-size of 0.25 bohr and 4 ⇥ 4 ⇥ 4 Monkhorst-Pack grid61 for

Brillouin zone integration. These and other parameters have been chosen to provide an

accuracy of 0.01 bohr in the computed equilibrium lattice constants. For slab calculations,

where periodic and Dirichlet boundary conditions are prescribed in the plane and perpen-

dicular to the plane of the slab, respectively, we employ a mesh-size of 0.25 bohr, a 4 ⇥

4 Monkhorst-Pack grid for Brillouin zone integration, and a vacuum of 8 bohr. These and

other parameters have been chosen to provide an accuracy of 0.001 Ha/atom in the energy.

For the nanoparticle calculations, where Dirichlet boundary conditions are employed in all

three coordinate directions, we employ a mesh-size of 0.3 bohr and vacuum of 8 bohr in each

coordinate direction. These and other parameters have been chosen to provide an accuracy

of 0.001 Ha/atom in the energy. Note that we perform structural relaxation for only the

bulk system, while the atoms in the slab systems and nanoparticles are held fixed, i.e., only

the electronic ground state is computed for the given atomic positions. All atomic positions

and structures are defined using the Atomic Simulations Environment (ASE) package.62

Linear regression model for nanoparticle energetics

We adopt the following decomposition for the nanoparticle energy:

Enanoparticle = Ebulknbulk +
facetsX

i

Efacet,infacet,i +
defect typesX

j

Edefect,jndefect,j (4)

where Ebulk is the energy per TiO2 unit for the crystal, nbulk is the number of bulk-like TiO2

units in the nanoparticle, Efacet,i is the average facet energy per TiO2 unit for the ith slab type,
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nfacet,i is the number of ith slab-like surface TiO2 units in the nanoparticle, Edefect,j is the defect

energy per TiO2 unit of the jth defect type, and ndefect,j is the number of jth defect-like TiO2

units in the nanoparticle. We have separated surface-like defects from other defects, since

the energy of surface defects can be obtained from slab calculations. In the current work,

we consider 3 slab types, i.e., (100)-symmetric, (010)-asymmetric, and (001)-symmetric, and

3 defect types, i.e., edge, corner, and sub-edge. The values for Edefect,j are determined via

least-squares regression, with the values for the remaining quantities computed using the

methodology outlined below.

The energies Enanoparticle and Ebulk are immediately available from DFT calculations for

the nanoparticle and bulk, respectively. To calculate Esurface,i, we adopt the extrapolation

scheme of Fiorentini and Methfessel.63 In particular, for each of the slab types, we first

calculate the energy of the slab as a function of the number of layers N, which we denote by

Eslab,i(N). Next, we determine the average surface energy by fitting the data to the relation:

Eslab,i(N) = 2Esurface,i +NẼbulk,i (5)

where Ẽbulk,i is the extrapolated bulk energy. In the current work, we have used N = 12

layers, which results in Esurface,i values converged to within 0.0002 Ha/atom. Note that for

the (010)-asymmetric slab, though the computed Esurface,i is the average over the two di↵erent

surfaces on either side of the slab, it can be used in our formulation since all nanoparticles

considered in this work have both surfaces of the (010)-asymmetric slab, if present at all.

To be able to systematically determine nbulk, nslab,i, and ndefect,i, we develop a machine

learning scheme that determines the classification of each TiO2 unit in the nanoparticles

based on the local atomic environment. Specifically, we use the atomic descriptors proposed

by Behler and Parrinello,46 details of which can be found in the SI. We generate the atomic

descriptors for fingerprinting the model space by using the Atomistic Machine-learning Pack-

age (AMP)64 and select the hyperparameters of the featurization scheme such that there is
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maximum separation between di↵erent geometrical configurations in the model space. We

apply dimensionality reduction using kernel principal component analysis (kPCA)65 on the

scaled descriptors to generate linearly independent features and use MeanShift clustering,66

a density-based clustering algorithm to form clusters of atomic configurations for di↵erent

types of titanium atoms in nanoparticles. The dimensionally reduced features facilitate

visualization in a lower-dimensional space by using the interactive visualization tool Elec-

troLens.67 The scikit-learn software package68 is used for all machine-learning models. We

train the clustering algorithm with the model space and use ElectroLens to assign clusters

to class labels for the categories of interest.

Nearsightedness analysis for electronic interactions

We perform the nearsightedness analysis for electronic interactions using the real-space

Spectral Quadrature (SQ) method,69–71 a technique developed for performing large-scale

linear-scaling Kohn-Sham DFT calculations. In particular, for the electronic ground state

computed using standard diagonalization-based schemes in SPARC,42,54,55 we determine the

convergence in electron density with size of interaction region — quadrature order to be large

enough to make associated errors significantly smaller than those considered in this work —

analogous to previous such results obtained for the energy and atomic forces in bulk alu-

minum at various temperatures.72 Specifically, for a given interaction length scale, we express

the electron density at any point in space as a bilinear form in terms of the Hamiltonian,

which is then approximated by a Gauss quadrature rule that remains spatially localized to

the interaction region by exploiting the locality of electronic interactions in real-space,73 i.e,

the exponential decay of the density matrix in real-space for insulators as well as metals at

finite temperature. Indeed, in the limit of infinite size for the interaction region, the ground

state electron density computed using diagonalization is exactly recovered.
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Ab-initio investigation of finite size e↵ects in

rutile titania nanoparticles with semilocal and

nonlocal density functionals

Supplementary Material

Equilibrium lattice constants for rutile TiO2 bulk crystal

Table 1: Comparison of equilibrium lattice parameters for bulk rutile TiO2 crystal from
experimental and theoretical studies calculated using PBE exchange correlation functional.

a (Å) c (Å)

Experimental1,2 4.587 2.954
Montanari and Harrison 1 4.641 2.966

Labat et al. 3 4.653 2.975
This work 4.636 2.967

Atom-Centered Symmetry Functions(ACSFs)

We use the Gaussian descriptors proposed by Behler and Parrinello 4 which are also known

as ACSFs to identify the unique atomic configurations belonging to corner, edge and sub-

surface defect sites that are not present in the bulk and slab models of TiO2. The descriptors

represent local atomic environments for every atom with respect to neighboring atoms within

a given cuto↵ radius, Rc. This fingerprinting scheme generates feature vectors for every atom

in the system when provided with atomic positions as an input. This transformation is given

by:
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feature mapping

G(R̃, Rc, ~W ) (1)

where G is the set of descriptors generated by the fingerprinting scheme. ~W is the set

of parameters for radial and angular symmetry functions. The radial and angular symmetry

functions are referred to as G2 and G4 respectively. The radial symmetry functions are sum

of Gaussians that are multiplied to a cuto↵ function fc(Rij):

G2

i =
NX

j=1

e�⌘(Rij�Rs)
2

· fc(Rij) (2)

The angular symmetry functions are built from angle centered at every atom i for three-

body interaction, ✓ijk with neighbor atoms, j and k and is given by the following equation:

G4

i = 21�⇣
NX

j 6=i

NX

k 6=i,j

h
(1 + � · cos ✓ijk)⇣ · e�⌘(R2

ij+R2
ik) · fc(Rij) · fc(Rik)

i
(3)

The central cut-o↵ function is represented by fc(Rij) and depends on the cuto↵ radius,

Rc. It captures the inter-atomic interactions between any atom and its neighboring atoms.

The Gaussian fingerprinting of atomic environments has been implemented in the software

package, Atomistic Machine-Learning Package (AMP).5 We use this package to construct

feature vectors for the systems of interest in this study.

Validation of regression model

2



Figure 1: Model validation for regression model quantifying the electronic finite size e↵ects
when the nanoparticles containing 24, 72, 108 and 162 atoms are stretched along 3 directions
(100), (010) and (001). The di↵erence in surface energy converges between 1e-3 and 1e-2
Ha/atom at a length scale of ⇠ 12.0 Å.

Nearsightedness analysis

Figure 2: Calibration curve for nearsightedness analysis which establishes the upper bound
for correlation between error in SCF energy and normalized error of electron density.
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Orbitals of medium-sized cuboidal and Wul↵ nanoparticles

HOMO-2 HOMO-1 HOMO LUMO LUMO-1

(a)

(b)

(c)

(d)

Figure 3: Visualization of orbitals around HOMO and LUMO levels of cuboidal and Wul↵-
constructed particles using ELectroLens.6 HOMO-2 and HOMO-1 refer to the two orbitals
just below the HOMO and LUMO-1 refers to the orbital just above the LUMO. These
figures indicate that the one-electron densities are localized around the high-energy facets
for cuboidal nanoparticles whereas they are more delocalized in the case of Wul↵ particles.

Atomic coordinates of TiO2 model systems

Atomic coordinates are available in .xyz format in the file atomic coordinates.zip.
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