1 Point Mutations in TbpA Abrogate Human-Transferrin Binding in Neisseria gonorrhoeae Ashley Greenawalt, ^a Julie Stoudenmire, ^a Karl Lundquist, ^{b,c,d} Nicholas Noinaj, ^{b,c,d} James C. 2 Gumbart, e and Cynthia Nau Cornelissena* 3 4 ^aCenter for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta GA, 30303. 5 6 ^bMarkey Center for Structural Biology, Department of Biological Science, Purdue University, 7 West Lafayette, Indiana, USA 8 ^cPurdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West 9 Lafayette, Indiana, USA ^dDepartment of Biological Sciences, Purdue University, West Lafayette, Indiana, USA 10 ^e School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 11 12 13 14 15 16 17 *To whom correspondence should be addressed: Cynthia Nau Cornelissen, Georgia State 18 University, Atlanta GA 30303. ccornelissen@gsu.edu. Tel. (404)-413-6680 Keywords: TonB-dependent transporter, Transferrin Binding Protein A, Transferrin, Site-19 20 directed mutagenesis, N. gonorrhoeae, N. meningitidis 21 22

Running title: Mutagenesis of gonococcal TbpA

Abstract

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

TonB-dependent transporters (TDTs) are essential proteins for metal acquisition, an important step in growth and pathogenesis for many pathogens, including Neisseria gonorrhoeae, the causative agent for gonorrhea. There is currently no available vaccine for gonorrhea; TDTs are being investigated as vaccine candidates because they are highly conserved and expressed in vivo. TbpA is an essential virulence factor in the initiation of experimental infection in human males and functions by acquiring iron upon binding to host transferrin (hTf). The loop 3 helix (L3H) is a helix finger that inserts into the hTf C-lobe and is required for hTf binding and subsequent iron acquisition. This study identified and characterized the first TbpA single point substitutions resulting in significantly decreased hTf binding and iron acquisition, suggesting that the helix structure is more important than charge for hTf binding and utilization. The tbpA D355P tbpB- and tbpA A356P tbpB- mutants demonstrated significantly reduced hTf binding and impaired iron uptake from Fe-loaded hTf; however, only tbpA A356P tbpB- was able to grow when hTf was the sole source of iron. Expression of tbpB was able to restore function in all tbpA mutants. These results implicate both D355 and A356 in the key binding, extraction and uptake functions of gonococcal TbpA.

Introduction

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Neisseria gonorrhoeae is the human-specific pathogen that causes the sexuallytransmitted infection, gonorrhea. The World Health Organization (WHO) reported 87 million new cases globally in 2016 (1), and the Centers for Disease Control and Prevention (CDC) estimates that approximately 1.6 million new cases occurred in 2018 in the United States alone (2). Uncomplicated gonorrhea presents as urethritis in men and cervicitis in women (3-6). An estimated 80% of gonococcal infections in women are asymptomatic (3, 7). Asymptomatic cases left untreated allow for gonococcal infection to ascend upwards in the reproductive tract and cause more severe secondary sequalae, such as pelvic inflammatory disease, ectopic pregnancy, and infertility (3). Previous gonococcal infection does not provide protective immunity (5, 8, 9), and there has been a rise in the incidence of antimicrobial resistance among gonococcal isolates (1, 10-16). Reports to the WHO in 2018 indicated that 7 out of 65 countries reported isolating gonococcal strains with decreased susceptibility or resistance to extendedspectrum cephalosporins (10). Drastic increases in antimicrobial resistance, including resistance to azithromycin, caused the CDC to modify recommendations for treatment as of late 2020; uncomplicated gonococcal infection should currently be treated with monotherapy of ceftriaxone without additional oral azithromycin (17). Availability of effective therapeutics have dwindled to the point that researchers are analyzing older antibiotics as potential alternative treatments against gonorrhea infection (15). The widespread prevalence of gonococcal infection, increasing incidence of antibiotic resistance, and lack of protective immunity add urgency to the development of an effective gonococcal vaccine.

Many of the neisserial outer membrane proteins, such as the Opas and pilin, are subject to high-frequency antigenic variation (18-21), allowing the gonococcus to effectively camouflage itself from an adaptive immune response. This genetic adaptability has presented quite a challenge in vaccine development. TonB-dependent metal transporters (TDTs) have been the focus of several vaccine studies (20, 22-28). TDTs are well-suited vaccine candidates because they are highly conserved, present in all pathogenic *Neisseria* (29), expressed *in vivo* (30), and many are not subject to high-frequency antigenic variation (20, 31). The importance of TbpAB in gonococcal infection has been demonstrated in a human male infection study, where a *tbpAB* double knockout mutant was unable to elicit signs or symptoms of urethritis in human male volunteers (4). The mechanism for iron piracy through hTf interaction with TbpA is crucial to understand as TbpA is being evaluated as a potential vaccine and therapeutic target.

Neisseria species can acquire iron through the TDT transferrin-binding protein A (TbpA) (25, 32). With the help of the lipoprotein TbpB, human transferrin (hTf) binds to TbpA, and iron is internalized in a TonB-dependent mechanism powered by proton-motive force (29, 32-35). TbpA is required for iron acquisition from hTf (36, 37), and TbpB increases the efficiency of hTf-binding (38, 39). TbpA binds both apo- and saturated hTf with similar affinity, but TbpB preferentially binds to Fe-saturated hTf (40, 41).

The exact interaction between TbpA and hTf is still being elucidated. The co-crystal structure of TbpA and bound hTf demonstrates a helix finger in loop 3 (L3H) that projects into the cleft of the hTf C-lobe (29). TbpA exclusively interacts with the C-lobe for hTf acquisition, hinting at the importance of the L3H interaction in iron extraction (29). Three pH-sensing residues (K534, R632, and D634) reside in the C-lobe cleft to store iron (25, 29). Upon hTf

binding, TbpA L3H, which contains a positive charge at the penultimate residue (K359), is hypothesized to interact with the hTf C-lobe D634 to cause a conformational change in the C-lobe, resulting in the release and subsequent internalization of iron (25, 42). Mutation of D634A increased iron release by 83 fold, indicating that D634 neutralizes the positive charges of K359 and R632 (43). Upon hTf binding, the L3H K359 residue is inserted near the C-lobe D634, which causes a charge repulsion to release iron (44). An HA epitope insertion into the extracellular loop 3 (L3) and deletion of the L3H were both disruptive enough to abrogate hTf binding and iron acquisition, demonstrating that the L3H is essential for hTf binding and iron acquisition from hTf (25, 45). Alanine or opposite charge amino acid substitutions in the L3H failed to significantly abrogate hTf binding (25).

The current study aims to extend previous TbpA structure-function analyses by generating proline-substitution mutants in the TbpA L3H. The structure of proline contains a ring, which is predicted to disrupt the helix motif. Characterization of 16 proline substitution mutants for hTf binding, iron uptake from hTf, and growth using hTf as the sole iron source helped to elucidate the details of the interaction between the L3H and hTf. Understanding the mechanism for binding is essential in the development of therapeutics and vaccines. Drugs could be developed to block hTf binding for treatment of infection (42). TbpA mutants unable to bind hTf with minimal protein conformational changes compared to the wild-type (WT) protein could be tested for immunogenicity similar to protection studies using nonbinding TbpB and factor H binding protein (fHbp) as vaccine antigens (28, 46). Molecular dynamics (MD) simulations were utilized to predict protein conformational changes in lieu of an available

crystal structure. In this study, two mutants with single proline-substitutions in TbpA
 demonstrated significantly reduced hTf binding and iron internalization.

Results

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

The TbpA L3H sequence is well conserved at the amino terminus, but residues are more variable at the carboxy-terminal end.

TbpA from N. meningitidis strain K454 has been previously crystalized (29) and shares 94% sequence identity with TbpA from N. gonorrhoeae strain FA19 (32). Using this similarity, we generated a homology model for TbpA from gonococcal strain FA19, which is shown in FIG 1. Key components of the TbpA structure include the outer-membrane embedded beta-barrel motif; key hTf-interacting region, the L3H; and the TonB-interacting region, the plug domain (FIG 1A and FIG 1C, yellow, green, and cyan respectively). A closer look at the L3H (FIG 1B) shows the key residues that were mutated in this study in order to test structure/function relationships. FIG 1C shows TbpA from a top-down perspective to demonstrate the location of the plug domain. Both the FA19 model and the K454 TbpA structure share the L3H, previously shown to be essential for hTf binding (25, 29, 45). Interestingly, the helical structure is well conserved, despite considerable variability at the carboxy-terminal end, the region that interacts with the iron in hTf during iron acquisition (FIG 2A). In an attempt to identify residues critical for hTf binding, site-directed mutagenesis was conducted on several residues within the TbpA L3H region from D355 to Q360, substituting each residue with a proline (FIG 2B).

A previous study characterized several FA19 *tbpA* L3H point mutants and did not identify any single residue that completely abrogated hTf binding (25). The current study extends the previous findings by substituting residues within the L3H with proline, which are proposed to be more impactful on the secondary structure of the helix. To evaluate expression

Mutagenized TbpA was surface exposed despite proline substitutions in the L3H.

of TbpA in each mutant, strains were grown under iron-stressed conditions; whole-cell lysates were prepared, run on SDS-PAGE, and transferred to nitrocellulose for western blotting using a polyclonal anti-TbpA antibody (S1). The western blot analysis showed approximately equivalent levels of TbpA protein produced by all mutants. Because mutagenesis has the potential to disrupt 3D protein conformation and localization to the outer membrane, each strain was evaluated for proper surface exposure of TbpA using protease digestion. Each gonococcal strain was grown under iron-stressed conditions, then subjected to a time course of trypsin digestion before whole-cell lysates were collected for western blot analysis (S2). As the cells were exposed to trypsin, full-length TbpA, approximately 100 kDa, was cleaved, producing 95 kDa and 55 kDa degradation products, as previously described (25, 40). Each mutant showed a similar pattern compared to FA19 (WT). Taken together, these data suggest that the mutations did not disrupt TbpA production or wild-type surface exposure.

Selected mutants, containing proline substitutions in L3H, are deficient in hTf binding.

Proline-substitution mutants were evaluated for their ability to bind hTf in whole-cell binding assays. Since TbpB expressed by whole *N. gonorrhoeae* is also capable of binding to hTf, only *tbpB*- strains were used for the hTf-binding analyses. Whole-cell ELISAs of strains lacking *tbpB* were conducted using HRP-conjugated hTf as the ligand (FIG 3). In these experiments, FA6905 (*tbpA+/tbpB*-) was used as a positive control (FIG 3, WT) and two negative controls were used: FA6815 (*tbpA-/tbpB-*, FIG 3, Neg) and competitive inhibition (FIG 3, WT w/Comp and Neg w/Comp) conditions, which were generated by adding 100x excess unlabeled apo-hTf to both FA6905 and FA6815. A previous study showed that a mutant with a deletion of the L3H binds hTf at about 9% the levels of a strain expressing WT TbpA, and mutants expressing *tbpA*

with alanine or charge-change point mutations reduced hTf binding to approximately 40-80% of WT FA6905 (*tbpA+/tbpB-*) levels (25). The current study found significantly reduced hTf binding in almost every *tbpA* mutant (FIG 3). Significantly reduced hTf binding levels in mutants ranged from approximately 14-58% of FA6905 (*tbpA+/tbpB-*). Two mutants in particular, *tbpA* D355P *tbpB-* and *tbpA* A356P *tbpB-* (approximately 14% and 18% of WT HRP-hTf binding, respectively) showed the lowest levels of HRP-hTf binding of all tested mutants; the hTf-binding levels in the *tbpA* D355P *tbpB-* and *tbpA* A356P *tbpB-* mutants were not statistically different from the negative controls (FIG 3).

L3H proline mutants in a tbpB- background are deficient in iron internalization from hTf.

Mutants with decreased hTf binding were hypothesized to demonstrate diminished levels of internalized iron. Internal iron pools were measured using inductively coupled plasma mass spectrometry (ICP-MS) in the WT *tbpA* strain and proline-substitution mutants. In the *tbpB*- background, the *tbpA* D355P, A356P, N357P, Q358P, and double K359P Q360P mutants demonstrated statistically reduced levels of iron internalization compared to the WT *tbpA* strain (FA19) (FIG 4). These same mutants in a *tbpB+* background did not demonstrate statistically different levels of iron internalization compared to the WT *tbpA* strain, suggesting that expression of TbpB is able to compensate for these proline substitutions in TbpA (FIG 4). These data also indicate that the mutagenized TbpA proteins are not significantly impaired in membrane localization or structure, consistent with data described above.

Several mutants, with proline substitutions in the L3H of *tbpA* in a *tbpB*- background, are unable to grow if hTf is the sole source of iron.

In a previous study, only the L3H deletion mutant showed any defect in growth when employing hTf as a sole iron source, regardless of the presence of *tbpB* (25). Using the same methodology, the growth phenotype of the *tbpA* mutants was characterized by plating mutant gonococcal strains onto solid media providing hTf as the sole source of iron. Approximately equal inocula were applied to Fe-deficient CDM agarose plates supplemented with 30% Fe-saturated hTf as the sole iron source (FIG 5). FA19 (*tbpA+/tbpB+*) and FA6905 (*tbpA+/tbpB-*) served as positive controls and FA6747 (*tbpA-/tbpB+*) and FA6815 (*tbpA-/tbpB-*) served as negative controls. As seen previously (25), all *tbpB+* strains were able to grow like the WT *tbpA* strain (FIG 5B). Both the *tbpA* D355P and the quadruple *tbpA* N357P/Q358P/K359P/Q360P mutants in a *tbpB-* background were unable to grow on solid CDM with hTf as the sole source of iron (FIG 5A).

To assess the growth defect of the *tbpA* D355P *tbpB*- mutant further, a liquid CDM growth assay was developed. Iron-starved cells were transferred to a 96-well plate and supplemented with 5 μ M 30% iron-saturated hTf and 5 μ M Desferal to chelate free iron, and the growth was monitored over 24 hours. The *tbpA* D355P *tbpB*- strain demonstrated essentially no growth in the liquid growth assay **(FIG 6)**.

The tbpA D355P tbpB- mutant demonstrates reduced hTf binding in serum.

To assess if the binding deficiency in the *tbpA* D355P *tbpB*- mutant could be replicated in a more biologically relevant environment, three samples of human serum were pooled and used as a source of hTf to assess hTf-TbpA binding on whole cells. FA6905 (*tbpA+/tbpB*-) served

as a positive control for hTf binding, and FA6815 (*tbpA-/tbpB-*) served as a negative control for hTf binding. The controls and the *tbpA* D355P *tbpB-* strain were grown in Fe-deplete liquid CDM. Whole cells were blocked with BSA prior to adding hTf or pooled human serum and after a 20-minute incubation, lysates were collected for western blot analysis (FIG 7). Approximately equivalent levels of TbpA were detected in the *tbpA* D355P *tbpB-* strains compared to FA6905 (*tbpA+/tbpB-*), but reduced binding was detected in the case of hTf alone and hTf in the context of serum using the *tbpA* D355P *tbpB-* mutant. The small amount of background binding in FA6815 (*tbpA-/tbpB-*) suggests that there may be components in the serum that allow hTf to interact with the gonococcus in a TbpAB-independent mechanism.

Molecular dynamics simulations suggest that D355P mutagenesis is disruptive to the TbpA L2 and L3 structures, but not to L5.

Because there is no experimentally determined structure of the D355P mutant, we instead used molecular dynamics simulations to model its effects on the structure and dynamics of L3H and the interactions between TbpA and hTf. Molecular dynamics (MD) is a mature approach that provides atomistic-level insight into the microsecond-scale dynamics of proteins in native-like environments with typically high qualitative and quantitative agreement with experimental measurements (Hollingsworth2018). Here, MD simulations were performed on four systems: WT TbpA, WT TbpA +hTf, D355P TbpA, D355P TbpA + hTf; in all systems, the protein was embedded in a realistic species-specific outer-membrane model and solvated with water and ions (see Methods). Two replicas were run for each system in order to improve the reliability of our observations (Knapp2018). The L3H begins at residue 351 and ends at 361, as shown by the α-helix (H, orange) in **FIG 8**. The presence of hTf stabilized the α-helix secondary

structure, as demonstrated by fewer interruptions of the α-helix in WT TbpA+ hTf (FIG 8B) compared to WT TbpA (FIG 8A). The α-helix structure of the L3H was interrupted by β-turns (T, blue) after D355P mutagenesis (FIG 8C); however, the presence of hTf appeared to be moderately stabilizing to the helical structure despite D355P mutagenesis (FIG 8D). To assess whether the mutation in the L3H impacted the overall structure of the protein, two wild-type loops were assessed for their structure compared to WT TbpA. The predicted secondary structure of extracellular L2 demonstrated some variation between residues 262 and 276 (FIGS S4, S5); however, the predicted secondary structure of the extracellular L5 remained highly conserved (FIGS S6, S7).

We also measured the root-mean-square deviation (RMSD) for TbpA L3H over time for each simulated system and replica. This metric illustrates how much the region diverges from the original structure over time after being superimposed. The RMSD values measured here demonstrate that there is more distance between TbpA L3H in TbpA D355P and TbpA D355P +hTf compared to WT TbpA and WT TbpA +hTf (FIG 9). Consistent with FIG 8, the RMSD plots also demonstrated that the presence of hTf is more stabilizing to secondary structure (FIG 9). The number of hydrogen bonds between TbpA and hTf were also tracked for the WT and D355P mutant systems (FIG 10). We find that for one of the two replicas, the number of hydrogen bonds in the D355P mutant drop precipitously after ~200 ns, from ~11 to 6. In contrast, both WT replicas maintain a similar number of hydrogen bonds (~10-12) throughout the trajectories.

Discussion

Prior to this study, no TbpA point mutation has been observed to completely abrogate hTf binding. The generation of such mutants was facilitated by the availability of the 3D crystal

structure of TbpA from N. meningitidis (K454) bound to hTf (25, 47). Because the TbpA sequence from gonococcal strain FA19 shares 94% sequence identity with the meningococcal K454 strain, important structural inferences can be made to identify crucial binding domains (25). Initially, the K359 and Q360 residues were predicted to be key hTf-interacting and binding partners based on their charge and proximity to the C-lobe of hTf (25). The previous mutagenesis study demonstrates that alanine or opposite charge point substitutions are insufficient in abolishing hTf binding and TbpA function. In the previous study, the most substantial decrease in hTf-binding was observed with substitution of residue 360Q to a negative charge, followed by substitution of residue 359K with the opposite or no charge (25). The high conservation of L3H secondary structure among *Neisseria sp.* and the data from this study suggest that the structure of the helix may be more important for function than the charges of L3H residues (48). A recent study provides evidence supporting the role of the helix finger using MD simulations demonstrated that the L3H is shifted downward, impeding hTf binding (42). Additionally, L5 and L8 shifted closer, suggesting a "closed" state to prevent hTf binding (42).

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Both *tbpA* D355P *tbpB*- and *tbpA* A356P *tbpB*- mutants showed the lowest levels of hTf binding of all tested mutants compared to WT. Similarly, both the *tbpA* D355P *tbpB*- and *tbpA* A356P *tbpB*- mutants demonstrated significantly reduced iron internalization compared to WT. Together, these findings suggest that proline substitutions in the beginning of the L3H are more disruptive to the structure and function than proline substitutions near the end of the L3H.

Interestingly, the *tbpA* A356P *tbpB*- mutant was able to grow with hTf as the sole source of iron, whereas the *tbpA* D355P *tbpB*- mutant could not. Without a functional TbpA, growth

using hTf as the sole iron source would be impossible. These data suggest that the *tbpA* A356P *tbpB*- mutant is able to overcome the decrease in hTf binding and iron internalization by obtaining iron elsewhere to grow. All strains were grown on Desferal plates to ensure that iron stores in the strains would not influence the results; however, it is possible that there were some residual internal iron stores that allowed for growth. Quantification of iron via ICP-MS is very sensitive; therefore, trace iron levels could account for the variation observed.

Iron-internalization levels from all proline substitution *tbpA* L3H *tbpB*- mutants were significantly reduced compared to WT FA6905 (*tbpA+/tbpB-*), suggesting that despite some hTf-binding, there is still a defect in iron internalization. These results are consistent with a previous study demonstrating that high-affinity hTf binding to TbpA loops L4, L5, and L8 is required for iron internalization (49). Deletion of TbpA extracellular L4 and L5 completely abolishes hTf binding, whereas deletion of L8 inhibits hTf binding by 10-fold (49). In all three deletions, iron internalization is abolished (49). These findings are consistent with the results of this study: while hTf binding was not completely abrogated in each *tbpA* L3H *tbpB*- mutants, most mutants demonstrated reduced iron internalization.

As observed previously (25, 45), the expression of *tbpB* rescues TbpA function despite a decrease in TbpA-hTf binding in each *tbpA* mutant used in this study. Two mutants (the *tbpA* D355P *tbpB*- mutant and the quadruple *tbpA* D355P, A356P, N357P, 358P *tbpB*- mutant) did not grow with hTf as the sole source of iron; however, expression of *tbpB* restored function. The ability for *tbpB* to restore function suggests that inhibition of hTf binding or iron internalization is likely caused by small conformational changes small enough not to alter overall protein conformation.

Nonbinding mutants for use in a vaccine should maintain the overall conformation of the WT protein, to stimulate the immune response and elicit antibodies that recognize WT epitopes. To evaluate how D355P L3H proline substitution may affect overall protein conformation, the predicted secondary structures of extracellular L2 and L5 were monitored over the course of 500-ns simulations. Both L2 and L5 have a demonstrated role in hTf binding (45, 49). The simulation results suggest that D335P mutagenesis affects the secondary structure of the L3H region and a short region in the L2, but otherwise the overall secondary structures of L2, L3, and L5 is maintained. Thus, the overall 3D conformation of the protein is predicted to be similar to WT (45). MD simulation provides valuable insight in the hTf-TbpA interaction. The data from this study suggests that the TbpA D355P mutation is destabilizing to the α -helical structure of the L3H; furthermore, hydrogen bonding between TbpA and hTf is notably reduced in one of the two replicates of the TbpA D355P mutant when started in the hTf-bound state (FIG 10). Recent evidence suggests that TbpA extracellular L5 and L8 flex to an "open" state, opening a pocket for hTf to bind (42). This implies that the hTf C-lobe is in an open and unbound state as a result of the L3H D355P substitution. L3 is sandwiched between L2 and L5, which are the longest extracellular loops (50). In variants with higher levels of hTf binding but low levels of iron internalization, it is possible that L3H point mutations cause a small but impactful change to the TbpA structure that allows for poor hTf binding or possible downstream conformational changes, such as blocking the β -barrel pore or the TonB-box, which is responsible for transporting iron into the β -barrel (51).

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

Proper WT TbpA function is observed in *tbpA* L3H mutants with proper *tbpB* expression in previous studies with the exception of the L3H deletion mutant (25, 45, 49). Because TbpB

can bind to hTf and facilitate iron transfer, incorporation of TbpB in a vaccine will also require mutagenesis or modification to inhibit binding to hTf, as binding to host proteins has been shown to inhibit a robust immune response (23, 28). Because TbpB is more immunogenic and sequence variable, and TbpA is less immunogenic but shares more sequence conservation among strains, a combination of both Tbps is predicted to enhance protection and the immune response (30, 52, 53). Ideally, non-host binding variants of both Tbps would be included in a vaccine cocktail to increase immunogenicity and protection. As more TDTs are characterized, nonbinding mutants can be included in this vaccine cocktail to enhance protection and immunogenicity.

The ability of a vaccine antigen to bind to host proteins is hypothesized to inhibit the development of a robust immune response and may explain the weak immunogenicity of WT TbpA, WT TbpB, and WT fHbp (25, 29, 31, 54). Generation of mutants unable to bind host ligands has already been shown to be a viable option in creating a superior vaccine candidate using TbpB and fHbp (23, 28, 46, 55). This is the first study to identify a point mutant in *tbpA* that completely abrogates both binding and growth functions. Future studies will focus on elucidating the interaction between the L3H and iron extraction from hTf using structural analysis and comparing the immunization potential using the TbpA D355P and TbpA A356P variants in a human transferrin transgenic mouse model.

Materials and Methods

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Strains, plasmids, and media. All primers and plasmids used in the study are described in Table 1. Site-directed mutagenesis started with the plasmid pUNCH755 (38). All strains utilized in this study are described in Table 2. Plasmids were propagated in Escherichia coli Top10 (Invitrogen), E. coli XL-10 Gold cells (Agilent Technologies), or NEB 5-alpha E. coli (New England BioLabs). E. coli was cultured in Luria-Bertani broth (10 g tryptone, 5 g NaCl, 5 g yeast extract in 1 L of water) in the presence of ampicillin/carbenicillin (100 μg/mL) or chloramphenicol (34 μg/mL), where appropriate. Site-directed mutagenesis. Site-directed mutagenesis was performed using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies Cat: 200523) or the Q5 Site-Directed Mutagenesis Kit (New England BioLabs Cat: E0552S) per manufacturer's instructions. NEB 5alpha competent E. coli or XL10 Ultracompetent Gold E. coli were transformed with mutagenized pUNCH755. First, a Stul restriction site was inserted downstream of the tbpA L3H region in pUNCH755. The Stul insertion was used to identify gonococcal transformants that retained WT tbpA sequence. Polymerase chain reaction (PCR) was used to amplify tbpA from transformant DNA and PCR products were digested with Stul; WT tbpA does not contain the Stul site, but site-directed mutants retained the site. Following Stul restriction site insertion, proline mutations were directed to the L3H region of tbpA between D355 and Q360 as described in Table S1. Primers and plasmids are further described in Table 1. Sequences of mutated plasmids were confirmed before transformation into gonococcal strain FA19. As described previously, gonococcal transformation with one plasmid yielded two genotypes: tbpA+/tbpB+ and tbpA+/tbpB- (25). Mutated FA19 strains were single-colony purified and then

characterized as either tbpB+ or tbpB- by PCR, amplifying the wild-type or mutagenized tbpB 347 gene. 348 Gonococcal growth. Gonococci were propagated using GC medium base (GCB; Difco) with Kellogg's Supplement I (56) and 12 μM Fe(NO₃)₃ at 35-37°C with 5% atmospheric CO₂. To 349 350 provide selection of gonococcal transformants, 1 µg/mL chloramphenicol was added to GCB 351 agar plates. Gonococcal strains were iron-stressed with 10 µM deferoxamine mesylate (Desferal) on GCB agar plates or cultured from GCB plates into liquid chemically-defined media 352 353 (CDM) pretreated with Chelex 100 (Bio-Rad) to remove excess metals as described previously 354 (57).Homology modeling of TbpA and alignment of the L3H. The homology model of TbpA from 355 356 strain FA19 was generated based on the known structure of TbpA from N. meningitidis strain 357 K454. Phyre 2.0 was used to generate the PDB file, and PyMOL was used to generate FIG 1. 358 ESPript 3.0 was used to generate the multiple strain alignment and secondary structure 359 prediction of TbpA L3H as previously described (58). GenBank Accession Numbers include the following: N. gonorrhoeae FA19: EEZ46093.1; N. gonorrhoeae FA1090: WP_010951283.1; N. 360 gonorrhoeae DG12: EFE04786.1; N. meningitidis K454: AAF81744.1. 361 362

346

363

364

365

366

367

Western blotting. Gonococcal strains were grown under iron stressed conditions using CDM, as described above. Cells were harvested 3-4 hours after culturing at 36°C with 5% CO₂ to a standardized density. Pellets were standardized by weight and lysed in 2x Laemmli solubilizing buffer (Bio-Rad) supplemented with 5% β-mercaptoethanol. Whole-cell lysates were boiled for 10 minutes. A total of 10 µL of lysate per sample was loaded onto a 7.5% SDS-PAGE. Proteins were transferred to a 0.45 μM nitrocellulose membrane. Uniform protein loading was

confirmed via Ponceau S staining after transfer and prior to blocking. Blots were blocked with 5% Bovine Serum Albumin (BSA) in high-salt TBS (HS-TBS) (20 mM Tris, 500 mM NaCl [pH 7.5], 0.05% Tween20) and probed for TbpA using polyclonal rabbit serum against full-length TbpA (36). Goat anti-rabbit IgG conjugated to horseradish peroxidase (HRP; Bio-Rad) or rabbit antigoat IgG HRP (Bio-Rad) were used as secondary antibodies. Goat anti-hTf (Sigma) was used to detect hTf. OPTI-4CN (Bio-Rad) or West Femto (Thermo) were used as substrates per manufacturers' recommendations. Images were acquired using a Bio-Rad Chemidoc System. **Protease accessibility assay.** Trypsin digest assays were completed as previously described (40). Briefly, gonococcal cells were grown in liquid CDM as described above, diluted to a standardized density, and grown for an additional 3-4 hours at 36°C with 5% CO₂. Whole, iron-stressed gonococci were treated with 2.5 μg trypsin (Sigma) per mL of culture for 0, 10, 20, or 30 minutes at 36°C with 5% CO₂. Reactions were stopped by addition of 0.6 trypsin-inhibiting units of aprotinin (Sigma). Whole-cell lysates were collected and subjected to western blotting for TbpA detection, as described above. hTf-binding ELISA. hTf (Sigma) was prepared as previously described (59). Strains were ironstarved on GCB agar plates supplemented with 12.5 µM Desferal overnight to induce TbpA expression. MaxiSorp microtiter plates (Nunc), pre-treated with 200 μL 0.01% poly-lysine (Sigma), were inoculated with whole gonococcal cells scraped from GCB Desferal plates. Cells were resuspended to a standardized density of 1.0 OD₆₀₀ and then 100 μL per strain was inoculated into triplicate wells and allowed to incubate for 1 hour at room temperature. Unbound cells in the suspension were removed and plates were blocked with 200 µL 3% BSA in Phosphate Buffered-Saline (PBS) for 1 hour at room temperature. Blocking was followed by the

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

addition of 1 µg/mL HRP-conjugated hTF (Jackson ImmunoResearch) dissolved in 1x PBS also containing 3% BSA for 1 hour at room temperature. To show specificity, 100 μg/mL apo-hTF was added as a competitor to HRP-hTf Comp wells. Wells were washed 3 times in 200 μL 1x PBS using a plate washer (BioTek). Colorimetric 1-Slow-step TMB ELISA Substrate solution (Thermo) was applied until sufficient color change was observed, and the reaction was quenched with 100 μL 1.8 N H₂SO₄. Results were read at 600 nm using a BioTek Plate Reader. Standard curves were generated for each assay using a range of HRP-hTf amounts, ranging between 1 x 10⁻³ ng and 2 x 10^{-6} ng. Strains were analyzed in triplicate with standard deviations plotted. Student's ttest was used to determine significance when compared to the positive control FA6905 (P <0.05). ICP-MS. WT and mutant strains were grown under iron-stressed conditions in liquid CDM at 36°C with 5% CO₂, as described above. Four hours after dilution to standardized density, 5 μM hTf (30% Fe-saturated) was added for 1 hour. Cells were then pelleted in metal-free tubes at 3570 x g for 5 minutes, washed once in 5 mLs of Chelex-treated 10 mM HEPES + 1 mM EDTA (pH 7.4), and washed twice in 5 mLs of 10 mM HEPES (pH 7.4). Digestions and analysis of frozen pellets were performed by University of Georgia's Center for Applied Isotope Studies Plasma Chemistry Laboratory. Growth in iron-deplete CDM supplemented with hTf. Strains were plated onto CDM agarose plates supplemented with 2.5 µM hTf (30% Fe-saturated) and incubated for 48 hours at 36°C with 5% CO₂. Images were acquired with Bio-Rad ChemiDoc. For liquid growth assays, strains were plated onto GCB plates supplemented with 10 μM Desferal and incubated at 36°C with 5%

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

CO₂ for 12-16 hours. Iron-starved strains were inoculated into liquid CDM as described above.

After doubling, cells were standardized to 2×10^{-5} OD₆₀₀ and plated into 96-well dishes supplemented with 5 μM Desferal and 5 μM hTf. Biotek Synergy and Cytation plate readers were used to incubate the cells at 36° C with 5% CO₂. The OD₆₀₀ was plotted over 24 hours. Assessment of whole cell binding to hTf in serum. Strains were grown in liquid CDM as described above. Cells were blocked with 10 mg/mL BSA for 5 minutes after harvest, then cells were incubated with either 1 μM purified hTf or an estimated 1 μM hTf in human serum. Serum hTf was estimated to be approximately 50 μM based on literature and preliminary tests (60-63). Cells were incubated with hTf or serum for 20 minutes at 36°C with 5% CO₂. Lysates were washed twice with 500 μL 1x PBS and standardized and subjected to SDS-PAGE and Western Blotting as described above. Images were acquired with Bio-Rad ChemiDoc. Molecular dynamic simulations. The homology model of FA19 TbpA bound to hTf was used as a starting point for simulations. Co-crystallized water molecules as well as the two glycan chains attached to hTf were adopted from the TbpA structure from N. meningitidis (PDB 3V8X) (32). A total of three disulfide bonds were formed in TbpA along with 19 in hTf. An outer-membrane model representing that of N. gonorrhoeae was created using CHARMM-GUI's Membrane Builder (64) and the TbpA: hTf complex was inserted. The membrane contained 77 lipopolysaccharide (LPS) molecules with inner and outer core glycans in the outer leaflet. The inner leaflet contained 174 1-palmitoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine (PYPE), 50 1-palmitoyl-2-palmitoleoyl-sn-glycero-3-phosphoglycerol (PYPG), and 25 1,2dipalmitoyl-sn-glycero-3-phosphate (DPPA) lipids. A total of 154 Ca2+ and 77 Mg2+ ions were added to neutralize the LPS. An additional 66,164 water molecules as well as 202 K+ and 158 Cl- ions were added to solvate the system and bring to a bulk KCl concentration of 150 mM,

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

respectively, using VMD (65). The final system size for the TbpA:hTf system was 290,178 atoms. 434 435 The apo TbpA system was created from the bound one by deleting hTf, and repeating the 436 solvation and KCl ionization steps. The final system size for the apo TbpA system was 251,845 437 atoms. MD simulations were run using NAMD (66, 67). A 2-fs timestep was used for all simulations with 438 439 long-range electrostatics calculating every other timestep using the particle-mesh Ewald method (68). A cutoff of 12 Å was used for van der Waals interactions with a force-based 440 441 switching function beginning at 10 Å. A temperature of 310 K was maintained using Langevin 442 dynamics; for all production simulations, a constant pressure of 1 atm was enforced using an 443 anisotropic Langevin piston. The CHARMM36 force field for lipids and glycans (69, 70) and the 444 CHARMM36m force field for proteins (71) were used. The bound Fe3+ ion and coordinating 445 carbonate ion were covalently bound to one another and additional bonds between Fe3+ and 446 D392, Y426, Y517, and H585 of hTf were added to further enforce coordination as done 447 previously (32). Prior to production runs, the membrane was equilibrated for 50 ns with the 448 protein backbone restrained. In total, four systems with two replicas each were run for 500 ns each (4 µs in aggregate): TbpA (WT) with and without hTf bound as well as TbpA (D355P) with 449 450 and without hTf bound. 451 Statistics. Statistical analyses were conducted by comparing positive control to mutant strains utilizing Student's t test. Pairwise differences with a P value of <0.05 were considered 452 453 statistically significant. ELISA and ICP-MS values are shown as the means of multiple 454 concentration points from the studies conducted in at least triplicate ± standard error of the mean. Statistical analysis for hTf-dependent gonococcal growth was completed using PRISM 455

9.0. A two-way analysis of variance (ANOVA) with Tukey's post-hoc was performed on 3 independent biological replicates. Graph in **FIG 6** shows a representative growth curve. **Acknowledgements**We acknowledge Sarah Jantzi and the University of Georgia Center for Applied Isotope Studies for assistance in development of protocols and analyzing ICP-MS data. This work was supported by funding from the National Health Service grants R01 A1 Al125421, R01 Al125421, R01 Al127793, U19 Al144182, and R01 GM123169. Computational resources were provided through XSEDE (TG-MCB130173), which is supported by the US National Science Foundation (NSF; ACI-1548562). This work also used the Hive cluster, which is supported by the NSF (1828187) and is managed by PACE at Georgia Tech. The funders had no role in study design, data collection, data analysis, decision to publish, or preparation of the manuscript.

468 Figures

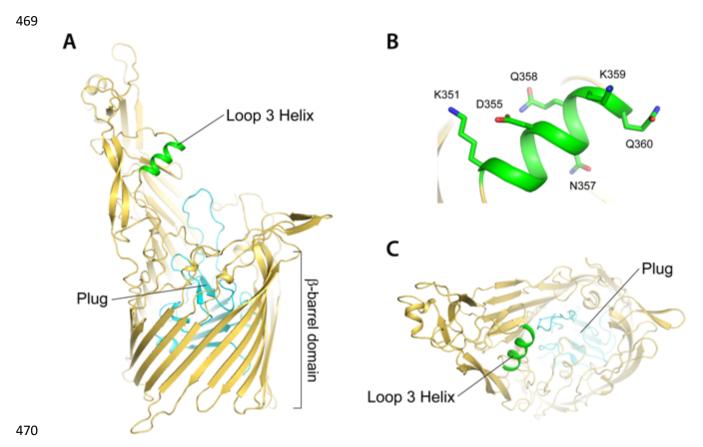


FIG 1 TbpA homology model from gonococcal strain FA19

(A) TbpA homology model predicted structure based on the *N. meningitidis* strain K454 TbpA crystal structure. The TonB-interacting plug domain is shown in cyan. The L3H is shown in green. **(B)** The residues of the L3H targeted for site-directed mutagenesis in this study. **(C)** A top-down view of TbpA, demonstrating the plug domain situated in the beta-barrel pore.

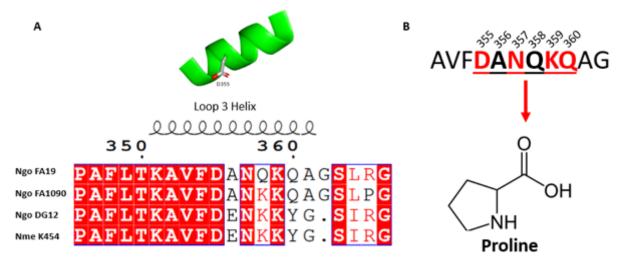
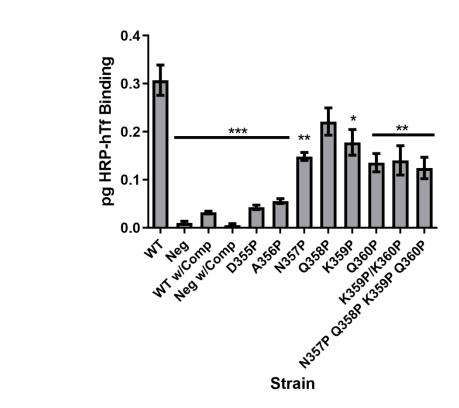



Fig 2 L3H structure and amino acid sequence alignment in Neisseria strains.

 (A) An alignment of the TbpA L3H domain amino acid sequences for three *N. gonorrhoeae* strains (FA19, FA1090, and DG12) and one *N. meningitidis* strain (K454). Conserved residues are highlighted in red. A secondary structure prediction is shown above the residues. Alignment was generated using ESPript. **(B)** The FA19 TbpA L3H sequence residues that were substituted with proline for this study (D355-Q360). Conserved residues are written in red, and variable residues are shown in black.

FIG 3 TbpA-hTf binding of tbpA mutants in a tbpB- background.

Whole, iron-stressed gonococcal cells were applied to microtiter dishes for ELISAs using HRP-labeled hTf as ligand. FA6905 (tbpA+/tbpB-) served as the positive control, and FA6815 (tbpA-/tbpB-) and the excess competitor apo-hTf condition (Comp) served as negative controls. The data represent the means \pm standard errors of at least three independent experiments. All strains were compared to the positive control FA6905. Statistics were calculated with the Student's t test. Significant differences are noted (t <0.005 * t <0.0005 *

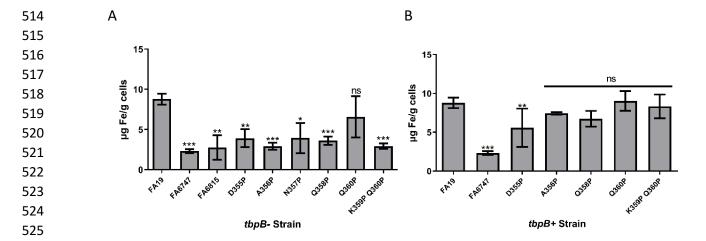


FIG 4 Iron internalization by *tbpA* proline mutants in (A) *tbpB*- background and (B) *tbpB*+ background strains.

Gonococcal cells were iron-stressed and allowed to bind to 5 μ M 30% Fe-saturated hTf for 1 hour. Bacteria were pelleted and washed prior to being subjected to nitric acid digestion for ICP-MS analysis. Raw μ g Fe/g bacteria was plotted for each strain. FA19 (tbpA+/tbpB+) served as the positive control. FA6747 (tbpA-/tbpB+) served as the negative control. The data represent the means \pm standard errors of at least three independent experiments. All strains were compared to the positive control. Statistics were calculated with the Student's t test. Non-significant (ns) was defined as p>0.05. Significant differences are noted (P <0.05 * P <0.005 ***).

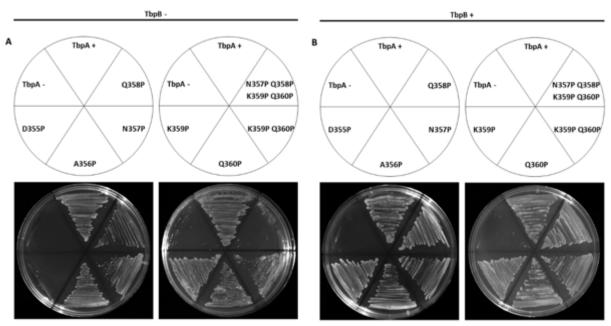


FIG 5 Growth of tbpA L3H proline-substitution mutants on hTf plates.

Strains were grown on solid CDM agarose plates supplemented with 30% Fe-saturated hTf as the sole source of iron. CDM agar plates containing 2.5 μ M 30% saturated hTf and growth phenotype for **(A)** tbpB- background and **(B)** tbpB+ background. Approximately equivalent amounts of bacteria were applied onto each plate. **(A)** FA6905 (tbpA+/tbpB-) served as the positive control for tbpA tbpB- mutants, and FA6815 (tbpA-/tbpB-) was the negative control for tbpA mutants in a tbpB- background, and FA6747 (tbpA-/tbpB+) was the negative control for tbpA mutants in the tbpB+ background.

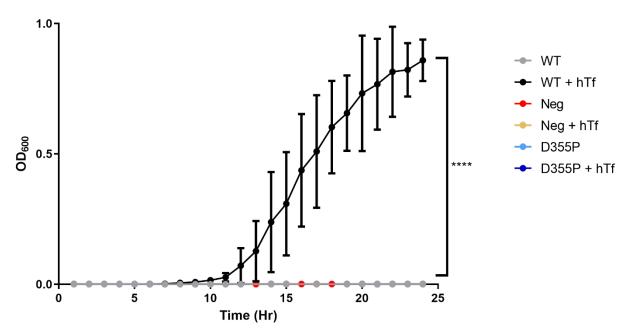


FIG 6 Growth of *tbpA* L3H proline-substitution *tbpB*- mutants on hTf as the sole source of iron in liquid CDM.

Whole, iron-stressed gonococci were grown in liquid CDM supplemented with 5 μ M 30% saturated hTf over 24 hours. FA6905 (tbpA+/tbpB-) was used as a positive control and FA6815 (tbpA-/tbpB-) served as a negative control. A two-way ANOVA was used to determine significance in comparison to the positive control. Significant differences are noted (P <0.0005 ****).

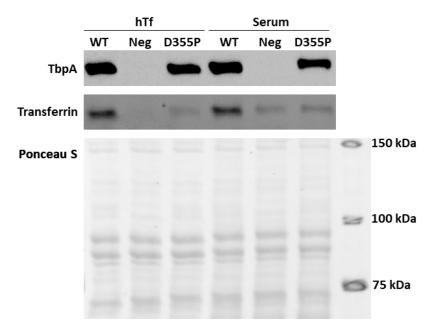


FIG 7 The *tbpA* D355P *tbpB*- mutant shows reduced hTf binding compared to FA6905 (*tbpA+/tbpB-*).

Iron-stressed gonococcal cells were incubated with 1 μ M of hTf or approximately 1 μ M hTf from human serum for 20 minutes. Lysates were collected and subjected to SDS-PAGE, transferred to nitrocellulose, and probed with polyclonal anti-TbpA antibody and polyclonal anti-hTf antibody. FA6905 (tbpA+/tbpB-) was used as a positive control, and FA6815 (tbpA-/tbpB-) was used as a negative control. Ponceau S stain was used to show even protein loading. TbpA is approximately 100 kDa, and hTf is approximately 80 kDa.

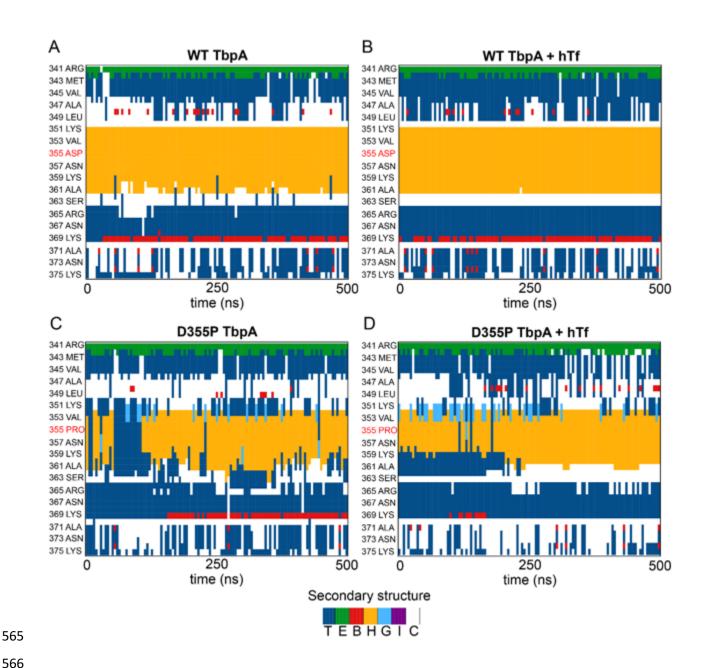


FIG 8 TbpA L3 mutagenesis and secondary structure conservation.

Secondary structure around TbpA L3 over the course of a 500-ns MD simulation for **(A)** WT TbpA, **(B)** WT TbpA +hTf, **(C)** D355P TbpA, and **(D)** D355P TbpA + hTf. The L3H 355 residue is highlighted in red in each panel. The key at the bottom indicates the colors for the seven standard secondary structures as described in the Dictionary of Protein Secondary Structure (72); T is β turn, E is β sheet, B is β bridge, H is α helix, G is β helix, I is β helix, and C is unstructured coil. Plots for the second replica are provided in Fig S3 in the Supplemental Information.

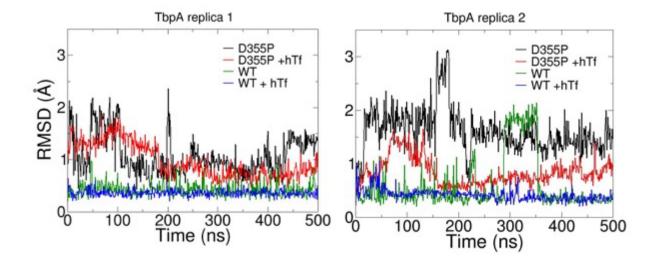


FIG 9 RMSD of TbpA L3H mutants bound and unbound to hTf.

Root-mean-square deviation (RMSD) of the L3 helix (residues 351 to 361) after alignment for full-length WT TbpA (green), WT TbpA+ hTf (blue), D355P TbpA (black), and D355P TbpA +hTf (red) over the course of two 500-ns MD simulations (replicas 1, left, and 2, right).

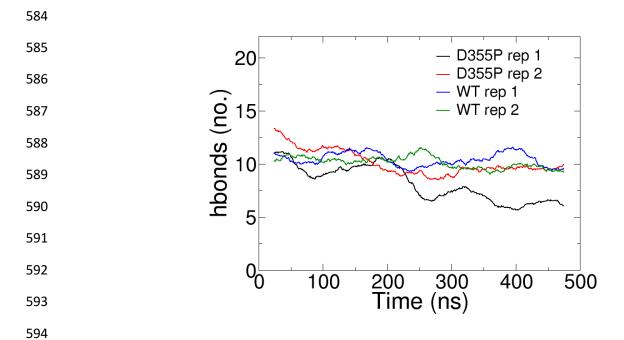


FIG 10 Hydrogen bonds of WT and D355P TbpA over the course of 500ns of MD simulations.

Hydrogen bonds with hTf for WT TbpA (blue and green for replicas 1 and 2, respectively) and TbpA D355P (black and red for replicas 1 and 2) over the course of 500-ns MD simulations.

Table 1. Mutagenesis primers used in this study. Mutations are identified in bold and underline.

Generated Plasmid	Generated TbpA Mutation	Target Plasmid	Primer Name	Direction	5'-3' Sequence	Kit
pGSU001	Stul insert	pUNCH755	oVCU 905	Fwd	GGCAACCACAAATACGG <u>AGGCCT</u> GTTTACCAGCGGC	Agilent
			oVCU 906	Rev	GCCGCTGGTAAACAGGCC <u>TCCGTA</u> TTTGTGGTTGCC	
pGSU002	D355P	pGSU001	oVCU 927	Fwd	AAGGCGGTTTTT <u>CCT</u> GCAAATCAAAAACAGGCG	Agilent
			oVCU 928	Rev	CGCCTGTTTTTGATTTGC AGG AAAAACCGCCTT	
pGSU003	A356P	pGSU001	oVCU 929	Fwd	CTGACCAAGGCGGTTTTTGAT <u>CCA</u> AATCAAAAACAGGCG	Agilent
			oVCU 930	Rev	CGCCTGTTTTTGATT <u>TGG</u> ATCAAAAACCGCCTTGGTCAG	
pGSU004	N357P	pGSU001	oVCU 973	Fwd	TTTTGATGCA <u>CCT</u> CAAAAACAGGCGGGTTC	NEB Q5
pGS0004			oVCU 974	Rev	ACCGCCTTGGTCAGAAAT	
»CSHOOF	Q358P	pGSU001	oVCU 975	Fwd	TGATGCAAAT <u>CCA</u> AAACAGGCGG	NEB Q5
pGSU005			oVCU 976	Rev	AAAACCGCCTTGGTCAGA	
*CE1100C	Karon	~CCU001	oVCU 977	Fwd	TGCAAATCAA <u>CCA</u> CAGGCGGGTTC	NEB Q5
pGSU006	K359P	pGSU001	oVCU 978	Rev	TCAAAAACCGCCTTGGTC	NEB Q5
mCS11007	K360P	pGSU001	oVCU 913	Fwd	GATGCAAATCAAAAAA <u>CCG</u> GCGGGTTCTTTGCGC	Agilent
pGSU007			oVCU 914	Rev	CTACGTTTAGTTTTT GGC CGCCCAAGAAACGCG	
*CC11008	K359P/Q360P	pGSU001	oVCU 917	Fwd	GATGCAAATCAA <u>CCACCG</u> GCGGGTTCTTTGCGC	Agilent
pGSU008			oVCU 918	Rev	CTACGTTTAGTT <u>GGTGGC</u> CGCCCAAGAAACGCG	
~CC11000	N357P/Q358P/K359P/Q360P	pGSU008	oVCU 933	Fwd	GCGGTTTTT <u>CCTCCACCTCCACCACCG</u> GCGGGTTCTTTGCGC	Agilent
pGSU009			oVCU 934	Rev	GCGCAAAGAACCCGC CGGTGGTGGAGGTGGAGG AAAAACCGC	

Table 2. Bacterial strains used in this study

Strain	Description Sou	Source					
E. coli							
Top10	F mcrA (mrr-hsdRMS-mcrBC) 80lacZM15 lacX74 recA1 deoR araD139 (ara-leu)7697 galU galK rpsL(Strr) endA1 nupG	Invitrogen					
XL10 Gold	endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte (mcrA)183 (mcrCB-hsdSMR-mrr)173 Tetr F=						
UltraCompetent NEB 5-alpha	[proAB lacIqZM15 Tn10(Tetr Amyr Cmr)]	Agilent Technologies					
Competent	fhuA2 Δ (argF-lacZ)U169 phoA glnV44 Φ 80 Δ (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	New England BioLabs					
N. gonorrhoeae							
FA19	wild-type	(73)					
FA6747	TbpA- (tbpA::mTn3cat)	(36, 40)					
FA6815	TbpAB- ($\Delta tbpB::\Omega$)	(38)					
FA6905	TbpB- (ΔtbpB)	(40)					
MCV 192	TbpA L3HΔ (T350-A361)	(25)					
RSC 100	TbpA D355P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 101	TbpA D355P	This study					
RSC 102	TbpA A356P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 103	TbpA A356P	This study					
RSC 104	TbpA N357P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 105	TbpA N357P	This study					
RSC 106	TbpA Q358P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 107	TbpA Q358P	This study					
RSC 108	TbpA K359P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 109	TbpA K359P	This study					
RSC 110	TbpA Q360P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 111	TbpA Q360P	This study					
RSC 112	TbpA K369P + Q360P TbpB- (<i>tbpB</i> Δ T350-A361)	This study					
RSC 113	TbpA K369P + Q360P	This study					
RSC 114	TbpA N357P + Q358P + K359P+ Q360P TbpB- (tbpBΔ T350-A361)	This study					
RSC 115	TbpA N357P + Q358P + K359P + Q360P	This study					

611 Literature Cited

- WHO. 2018. Sexually transmitted infections (STIs). https://www.who.int/en/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis).
- CDC. 2021. Incidence, Prevalence and Cost of Sexually Transmitted Infections in the United
 States. https://www.cdc.gov/nchhstp/newsroom/2021/2018-STI-incidence-prevalence-estimates.html.
- Walker CK, Sweet RL. 2011. Gonorrhea infection in women: prevalence, effects, screening, and management. Int J Womens Health 3:197-206.
- Cornelissen CN, Kelley M, Hobbs MM, Anderson JE, Cannon JG, Cohen MS, Sparling PF. 1998.
 The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol Microbiol 27:611-6.
- Schmidt KA, Schneider H, Lindstrom JA, Boslego JW, Warren RA, Van de Verg L, Deal CD, McClain
 JB, Griffiss JM. 2001. Experimental gonococcal urethritis and reinfection with homologous
 gonococci in male volunteers. Sex Transm Dis 28:555-64.
- 625 6. Unemo M, Shafer WM. 2014. Antimicrobial resistance in *Neisseria gonorrhoeae* in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587-613.
- 7. Portnoy J, Mendelson J, Clecner B, Heisler L. 1974. Asymptomatic gonorrhea in the male. Can Med Assoc J 110:169 passim.
- 629 8. Liu Y, Liu W, Russell MW. 2014. Suppression of host adaptive immune responses by *Neisseria* gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol 7:165-76.
- Liu Y, Feinen B, Russell MW. 2011. New concepts in immunity to *Neisseria gonorrhoeae*: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front Microbiol 2:52.
- 634 10. WHO. 2018. WHO Gonococcal AMR Surveillance Programme.
- 635 https://www.who.int/data/gho/data/themes/topics/who-gonococcal-amr-surveillance-programme-who-gasp.
- Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J, Unemo M. 2011. Is *Neisseria gonorrhoeae* initiating a future era of untreatable gonorrhea?:
- detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55:3538-45.
- Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. 2012. High-level cefixime and ceftriaxone-resistant *Neisseria gonorrhoeae* in France: novel *penA* mosaic allele in a
 successful international clone causes treatment failure. Antimicrob Agents Chemother 56:1273 80.
- Lahra MM, Ryder N, Whiley DM. 2014. A new multidrug-resistant strain of *Neisseria* gonorrhoeae in Australia. N Engl J Med 371:1850-1.
- Cámara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D, Andreu A, Ardanuy C. 2012. Molecular
 characterization of two high-level ceftriaxone-resistant *Neisseria gonorrhoeae* isolates detected
 in Catalonia, Spain. J Antimicrob Chemother 67:1858-60.
- Fifer H, Livermore DM, Uthayakumaran T, Woodford N, Cole MJ. 2021. What's left in the cupboard? Older antimicrobials for treating gonorrhoea. J Antimicrob Chemother doi:10.1093/jac/dkaa559.
- 46. Yan J, Chen Y, Yang F, Ling X, Jiang S, Zhao F, Yu Y, van der Veen S. 2021. High percentage of the ceftriaxone-resistant *Neisseria gonorrhoeae* FC428 clone among isolates from a single hospital in Hangzhou, China. J Antimicrob Chemother doi:10.1093/jac/dkaa526.
- 556 17. Sancta St. Cyr MLB, MD1,2; Kimberly A. Workowski, MD1,3; Laura H. Bachmann, MD1; Cau Pham, PhD1; Karen Schlanger, PhD1; Elizabeth Torrone, PhD1; Hillard Weinstock, MD1; Ellen N. Kersh, PhD1; Phoebe Thorpe, MD. 2020. Update to CDC's Treatment Guidelines for Gonococcal

- Infection, 2020. Prevention UDoHaHSCfDCa, Morbidity and Mortality Weekly Report. http://dx.doi.org/10.15585/mmwr.mm6950a6.
- Virji M. 2009. Pathogenic neisseriae: surface modulation, pathogenesis and infection control.

 Nat Rev Microbiol 7:274-86.
- 563 19. Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. 2011. Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2:124.
- Russell MW, Jerse AE, Gray-Owen SD. 2019. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 10:2417.
- Criss AK, Kline KA, Seifert HS. 2005. The frequency and rate of pilin antigenic variation in *Neisseria gonorrhoeae*. Mol Microbiol 58:510-9.
- 669 22. Cornelissen CN. 2008. Identification and characterization of gonococcal iron transport systems as potential vaccine antigens. Future Microbiol 3:287-98.
- Martínez-Martínez S, Frandoloso R, Rodríguez-Ferri E-F, García-Iglesias M-J, Pérez-Martínez C,
 Álvarez-Estrada Á, Gutiérrez-Martín C-B. 2016. A vaccine based on a mutant transferrin binding
 protein B of *Haemophilus parasuis* induces a strong T-helper 2 response and bacterial clearance
 after experimental infection. Veterinary Immunology and Immunopathology 179:18-25.
- 675 24. Martinez S, Frandoloso R, Gutierrez-Martin CB, Lampreave F, Garcia-Iglesias MJ, Perez-676 Martinez C, Rodriguez-Ferri EF. 2011. Acute phase protein concentrations in colostrum-deprived 677 pigs immunized with subunit and commercial vaccines against Glässer's disease. Vet Immunol 678 Immunopathol 144:61-7.
- Cash DR, Noinaj N, Buchanan SK, Cornelissen CN. 2015. Beyond the Crystal Structure: Insight into the Function and Vaccine Potential of TbpA Expressed by *Neisseria gonorrhoeae*. Infect Immun 83:4438-49.
- Chan C, Andisi VF, Ng D, Ostan N, Yunker WK, Schryvers AB. 2018. Are lactoferrin receptors in Gram-negative bacteria viable vaccine targets? Biometals 31:381-398.
- 684 27. Martinez-Martinez S, Rodriguez-Ferri EF, Frandoloso R, Garrido-Pavon JJ, Zaldivar-Lopez S,
 685 Barreiro C, Gutierrez-Martin CB. 2016. Molecular analysis of lungs from pigs immunized with a
 686 mutant transferrin binding protein B-based vaccine and challenged with *Haemophilus parasuis*.
 687 Comp Immunol Microbiol Infect Dis 48:69-78.
- Frandoloso R, Martinez-Martinez S, Calmettes C, Fegan J, Costa E, Curran D, Yu RH, Gutierrez-Martin CB, Rodriguez-Ferri EF, Moraes TF, Schryvers AB. 2015. Nonbinding site-directed mutants of transferrin binding protein B exhibit enhanced immunogenicity and protective capabilities. Infect Immun 83:1030-8.
- Noinaj N, Buchanan SK, Cornelissen CN. 2012. The transferrin-iron import system from pathogenic *Neisseria* species. Mol Microbiol 86:246-57.
- 694 30. Price GA, Hobbs MM, Cornelissen CN. 2004. Immunogenicity of gonococcal transferrin binding proteins during natural infections. Infect Immun 72:277-83.
- 696 31. Cornelissen CN, Anderson JE, Boulton IC, Sparling PF. 2000. Antigenic and sequence diversity in gonococcal transferrin-binding protein A. Infect Immun 68:4725-35.
- Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P,
 Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. 2012. Structural
 basis for iron piracy by pathogenic *Neisseria*. Nature 483:53-8.
- Noinaj N, Gumbart JC, Buchanan SK. 2017. The beta-barrel assembly machinery in motion. Nat Rev Microbiol 15:197-204.
- Noinaj N, Buchanan SK. 2014. Structural insights into the transport of small molecules across membranes. Curr Opin Struct Biol 27:8-15.
- Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43-60.

- 707 36. Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA, Sparling PF. 1992. Gonococcal 708 transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-709 dependent outer membrane receptors. J Bacteriol 174:5788-97.
- 710 37. Irwin SW, Averil N, Cheng CY, Schryvers AB. 1993. Preparation and analysis of isogenic mutants 711 in the transferrin receptor protein genes, *tbpA* and *tbpB*, from *Neisseria meningitidis*. Mol 712 Microbiol 8:1125-33.
- 713 38. Anderson JE, Sparling PF, Cornelissen CN. 1994. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 176:3162-70.
- 715 39. Renauld-Mongenie G, Poncet D, Mignon M, Fraysse S, Chabanel C, Danve B, Krell T, Quentin-716 Millet MJ. 2004. Role of transferrin receptor from a *Neisseria meningitidis tbpB* isotype II strain 717 in human transferrin binding and virulence. Infect Immun 72:3461-70.
- 718 40. Cornelissen CN, Sparling PF. 1996. Binding and surface exposure characteristics of the 719 gonococcal transferrin receptor are dependent on both transferrin-binding proteins. J Bacteriol 720 178:1437-44.
- 721 41. Retzer MD, Yu R, Zhang Y, Gonzalez GC, Schryvers AB. 1998. Discrimination between apo and 722 iron-loaded forms of transferrin by transferrin binding protein B and its N-terminal subfragment. 723 Microb Pathog 25:175-80.
- 724 42. Duran GN, Özbil M. 2021. Structural rearrangement of *Neisseria meningitidis* transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding. Turk J Chem 45:1146-1154.
- 726 43. Steere AN, Miller BF, Roberts SE, Byrne SL, Chasteen ND, Smith VC, MacGillivray RT, Mason AB.
 727 2012. Ionic residues of human serum transferrin affect binding to the transferrin receptor and
 728 iron release. Biochemistry 51:686-94.
- 729 44. Pogoutse AK, Moraes TF. 2017. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol 52:314-326.
- 731 45. Yost-Daljev MK, Cornelissen CN. 2004. Determination of surface-exposed, functional domains of gonococcal transferrin-binding protein A. Infect Immun 72:1775-85.
- 733 46. Beernink PT, Shaughnessy J, Braga EM, Liu Q, Rice PA, Ram S, Granoff DM. 2011. A
 734 meningococcal factor H binding protein mutant that eliminates factor H binding enhances
 735 protective antibody responses to vaccination. J Immunol 186:3606-14.
- 736 47. Calmettes C, Alcantara J, Yu RH, Schryvers AB, Moraes TF. 2012. The structural basis of transferrin sequestration by transferrin-binding protein B. Nat Struct Mol Biol 19:358-60.
- Yadav R, Noinaj N, Ostan N, Moraes T, Stoudenmire J, Maurakis S, Cornelissen CN. 2019.
 Structural Basis for Evasion of Nutritional Immunity by the Pathogenic *Neisseriae*. Front Microbiol 10:2981.
- Houlton IC, Yost MK, Anderson JE, Cornelissen CN. 2000. Identification of discrete domains
 within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron
 uptake functions. Infect Immun 68:6988-96.
- 744 50. Cornelissen CN. 2003. Transferrin-iron uptake by Gram-negative bacteria. Front Biosci 8:d836-745 47.
- Kenney CD, Cornelissen CN. 2002. Demonstration and characterization of a specific interaction between gonococcal transferrin binding protein A and TonB. J Bacteriol 184:6138-45.
- West D, Reddin K, Matheson M, Heath R, Funnell S, Hudson M, Robinson A, Gorringe A. 2001.
 Recombinant *Neisseria meningitidis* transferrin binding protein A protects against experimental meningococcal infection. Infect Immun 69:1561-7.
- 751 53. Price GA, Russell MW, Cornelissen CN. 2005. Intranasal administration of recombinant *Neisseria*752 *gonorrhoeae* transferrin binding proteins A and B conjugated to the cholera toxin B subunit
 753 induces systemic and vaginal antibodies in mice. Infect Immun 73:3945-53.

- 754 54. Cornelissen CN, Anderson JE, Sparling PF. 1997. Characterization of the diversity and the
 755 transferrin-binding domain of gonococcal transferrin-binding protein 2. Infect Immun 65:822-8.
- 756 55. Rossi R, Granoff DM, Beernink PT. 2013. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice. Vaccine 31:5451-7.
- Kellogg DS, Jr., Peacock WL, Jr., Deacon WE, Brown L, Pirkle DI. 1963. *Neisseria gonorrhoeae*.
 Virulence Genetically Linked to Clonal Variation. J Bacteriol 85:1274-9.
- 761 57. West SE, Sparling PF. 1987. Aerobactin utilization by *Neisseria gonorrhoeae* and cloning of a genomic DNA fragment that complements *Escherichia coli fhuB* mutations. J Bacteriol 169:3414-763 21.
- 764 58. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320-4.
- Maurakis S, Keller K, Maxwell CN, Pereira K, Chazin WJ, Criss AK, Cornelissen CN. 2019. The novel
 interaction between *Neisseria gonorrhoeae* TdfJ and human S100A7 allows gonococci to subvert
 host zinc restriction. PLoS Pathog 15:e1007937.
- Kasvosve I, Delanghe J. 2002. Total iron binding capacity and transferrin concentration in the
 assessment of iron status. Clin Chem Lab Med 40:1014-8.
- 771 61. Page MGP. 2019. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin Infect Dis 69:S529-s537.
- 773 62. Ganz T, Nemeth E. 2015. Iron homeostasis in host defence and inflammation. Nat Rev Immunol 15:500-10.
- Andrews NC, Ganz T. 2019. The molecular basis of iron metabolism
 doi:10.1002/9781119252863.ch13, p 161-172. Oxford, UK: John Wiley & Sons, Ltd, Oxford, UK.
- Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable
 RM, Klauda JB, Im W. 2014. CHARMM-GUI Membrane Builder toward realistic biological
 membrane simulations. J Comput Chem 35:1997-2004.
- 780 65. Humphrey W, Dalke A, Schulten K. 1996. VMD Visual Molecular Dynamics. J Mol Graphics 14:33-38.
- 782 66. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, D. Skeel R, Kale L, Schulten K. 2005. Scalable molecular dynamics with NAMD. J Comput Chem 26:1781-1802.
- 784 67. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang
 785 W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A,
 786 Luthey-Schulten Z, Kale L, Schulten K, Chipot C, Tajkhorshid E. 2020. Scalable molecular
 787 dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130.
- 788 68. Darden TA, York DM, Pedersen LG. 1993. Particle mesh Ewald: An N log N method for Ewald sums in large systems. J Comput Phys 98:10089-10092.
- Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I,
 MacKerell Jr. AD, Pastor RW. 2010. Update of the CHARMM all-atom additive force field for
 lipids: validation on six lipid types. J Phys Chem B 114:7830-7843.
- 793 70. Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell Jr. AD. 2009. Additive empirical CHARMM force field for glycosyl linked hexopyranoses. JCTC 5:2353-2370.
- 71. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell Jr. AD.
 2017. CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
 Nat Methods 14:71-73.
- 72. Kabsch W, Sander C. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577-637.

Mickelsen PA, Sparling PF. 1981. Ability of *Neisseria gonorrhoeae*, *Neisseria meningitidis*, and commensal *Neisseria* species to obtain iron from transferrin and iron compounds. Infect Immun 33:555-64.