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We study a classical model of thermally fluctuating polymers confined to two dimensions, expe-
riencing a grooved periodic potential, and subject to pulling forces both along and transverse to
the grooves. The equilibrium polymer conformations are described by a mapping to a quantum
system with a non-Hermitian Hamiltonian and with fermionic statistics generated by noncrossing
interactions among polymers. Using molecular dynamics simulations and analytical calculations, we
identify a localized and a delocalized phase of the polymer conformations, separated by a delocaliza-
tion transition which corresponds (in the quantum description) to the breakdown of a band insulator
when driven by an imaginary vector potential. We calculate the average tilt of the many-body sys-
tem, at arbitrary shear values and filling density of polymer chains, in terms of the complex-valued
non-Hermitian band structure. We find the critical shear value, the localization length, and the
critical exponent by which the shear modulus diverges in terms of the branch points (exceptional
points) in the band structure at which the bandgap closes. We also investigate the combined effects
of non-Hermitian delocalization and localization due to both periodicity and disorder, uncovering
preliminary evidence that while disorder favours localization at high values, it encourages delocal-
ization at lower values.

I. INTRODUCTION

Non-Hermitian operators [1, 2] have been extensively
used to describe the dynamics of a variety of quantum [3–
5] as well as classical systems [6–9]. They are ubiquitous
in both exact and effective models of nature capturing
gain/loss in open systems [4], dissipation [10], probability
fluxes [11, 12], sensitivity to boundary conditions [13–15],
and various other phenomena excluded by assumptions
of Hermiticity. They also enable the description of new
kinds of phase transitions and topological classifications
beyond the existing Hermitian framework for condensed
matter [16–18]. For example, when non-Hermitian sys-
tems are periodic in space, their excitations are described
by complex-valued band structures [19] which support
uniquely non-Hermitian properties such as exceptional
points (branch points) [20]. The physical implications of
non-Hermitian band effects have been explored in a wide
range of classical systems [21–25].

In systems of many bodies—such as spin waves, elec-
trons, polymer chains, and vortex lines—generic ther-
modynamic phases may be distinguished by the local-
ization properties of probability densities throughout the
bulk [26]. Here, non-Hermitian terms quantify the ca-
pacity of external forces and fields to generate fluxes
of probability/information which can drive the system
out of a localized phase [11, 27–30]. Non-Hermitian de-
localization has been extensively studied in models of
thermally fluctuating lines under simultaneous tension
and shear forces in the presence of randomly-positioned
columnar pinning sites [27, 28], which serve as effective
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models for magnetic vortex lines penetrating through
type-II superconductors with columnar defects [31–33].
The statistical mechanics of fluctuating lines in d dimen-
sions was mapped to the quantum-mechanical time evo-
lution of bosons in d − 1 dimensions, whose Hamilto-
nian becomes non-Hermitian when the lines are sheared
in a direction transverse to the defect axes. The single-
particle energy eigenstates, which are localized due to
disorder, become delocalized when the strength of non-
Hermitian terms exceed a threshold corresponding to a
critical shear force [27]. The delocalization of the bosonic
eigenstates manifests as a tilt in the average conforma-
tions of the lines relative to the columnar defects. This
non-Hermitian delocalization transition survives in the
presence of interactions [34–39].

However, the simultaneous interplay of non-Hermitian
drive, thermal fluctuations, interactions, and confine-
ment due to spatial periodicity, as opposed to disor-
der, remains poorly understood. Prior works on non-
Hermitian delocalization of magnetic vortices in periodic
lattices of pinning sites operated in the tight-binding
limit [40–42], thereby failing to capture dependencies on
the form of the continuous potential [43]. Field-theoretic
studies, which in turn derived their effective action from
the tight-binding limit via a Hubbard-Stratonovich trans-
formation, uncovered new thermodynamic phases in the
Hermitian setting [44] whose non-Hermitian counterparts
have been investigated using a mean-field model in 2+1-
dimensions (the upper critical dimension) [45] but not in
1+1D. The form of the continuum equilibrium density
profiles and their connection with spectral and topolog-
ical features of non-Hermitian band structures was not
elucidated in these prior studies.

In this work, we investigate non-Hermitian delocaliza-
tion in a continuum statistical mechanical model with
interactions, in which localization derives from a band-
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FIG. 1. Schematic and description of our model system.
Thermally fluctuating polymer chains (orange lines) with non-
crossing constraints are subjected to a tension force F (purple
arrows) on a two-dimensional substrate potential of strength
V (x) per unit length (green background). The potential, of
amplitude V0, is periodic (with period a) along the x direction
and constant along the τ direction. The tension force, F , is
applied to the ends of each chain at a specified force angle,
θ, with respect to the τ -axis; the transverse component Fθ of
the tension is called the shear force. F is assumed to be large
enough such that the chains do not double back on themselves
and self-interactions of a chain with itself are avoided.

insulating state due to an underlying periodic potential.
Specifically, we use classical molecular dynamics simu-
lations and analytical calculations to study the effect of
shear forces on a model of directed polymers confined
to two dimensions and experiencing a smoothly-varying
periodic substrate potential (see Fig. 1 for a schematic
and a description of our model). Directed polymers are
thermally fluctuating chains that are extended along a
preferred direction by an external field, which prevents
self-interactions within chains. Besides describing super-
conductor vortices [32, 46], directed polymer models cap-
ture the statistical mechanics of semiflexible polymers
embedded in liquid crystals [47] and wandering steps on
vicinal surfaces of crystals [48]. All these systems share
the property that the extended constituents cannot cross
each other in space. Directed polymers with non-crossing
interactions can be exactly solved [49, 50]; in our model,
non-crossing interactions combine with the periodic po-
tential to generate a state in which individual polymers
are localized to distinct grooves [51]. Upon increasing the
shear strength, the polymers collectively undergo a de-
localization transition at a threshold force angle beyond
which their average equilibrium conformations are tilted
and no longer align with the substrate.

We map our model system of polymer chains to a
one-dimensional (1D) quantum Hamiltonian with non-
Hermitian drive caused by an imaginary vector-potential
term. We find the average tilt of the many-body sys-
tem, at arbitrary shear values and filling density of poly-

mer chains, in terms of the complex non-Hermitian band
structure (Eq. (27)) and show that the commensurate
system undergoes a sharp transition in the thermody-
namic limit. The delocalization transition corresponds to
a gap closure in the complex non-Hermitian band struc-
ture associated with the substrate potential in the pres-
ence of shear forces. The exact value of the critical force
angle at which the polymers delocalize is found in terms
of the position of the branch point (exceptional point)
in the spectrum (Eq. (20)) while the critical exponent
by which the shear modulus diverges is determined by
the order of the branch point and is universal for all pe-
riodic potentials (Eq. (29)). The theoretical prediction
of the critical force angle quantitatively agrees with the
transition observed in our simulations.
Our theoretical predictions rely upon a gauge transfor-

mation which maps the non-Hermitian quantum system
to a Hermitian system, albeit with altered boundary con-
ditions that necessitate the use of complex-valued crystal
momenta to describe the Bloch eigenfunctions of the pe-
riodic potential. Using this mapping, we show that the
the complex-valued non-Hermitian band structure is the
analytical continuation of the real-valued Hermitian band
structure for complex momenta, which is well-studied in
the context of surface states of finite crystals [52, 53] and
which we make extensive use of. We also report prelim-
inary evidence of a reentrant delocalization transition in
the presence of both periodic potential and disorder, and
explore possible connections with non-Hermitian topo-
logical pumps.
This article is structured as follows: In Sec. II, we re-

port properties of the equilibrium chain conformations
observed in molecular dynamics simulations and numer-
ically demonstrate a localization-delocalization transi-
tion. In Sec. III A, we derive the diffusion equation gov-
erning the probability density of the chains and map it to
the Schrödinger equation with a non-Hermitian Hamil-
tonian. We find the eigenstates of the Hamiltonian in
Sec. III B and in Sec. IIID show that the delocalization
threshold is captured by a branch point in the complex-
valued band structure. We also verify the theoretical pre-
diction with the results from simulations. We report a
critical exponent associated with the delocalization tran-
sition in Sec. III E, preliminary results on a system with
quenched substrate disorder in Sec. IV, and finally the
relation to topologically quantized currents in Thouless
pumps in Sec. V. We discuss the implications of our re-
sults and potential future directions in Sec. VI.

II. SIMULATION RESULTS

We first report the results of Langevin dynamics sim-
ulations of a discretized version of the system depicted
in Fig. 1, in which changes in equilibrium conformations
at different filling fractions and force angles are readily
visualized. We simulated thermally fluctuating chains
of monomers confined to two dimensions using the open-
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source molecular dynamics software HOOMD-Blue [54] (see
Appendix A for implementation details). The chains are
stretched out via a tension force applied to both ends,
and experience a grooved substrate potential. Monomers
repel each other with a short-ranged potential, and are
linked to neighbors along the chain using stiff harmonic
springs, to emulate polymers that cannot cross each
other and are free to experience shape fluctuations. The
substrate potential per unit length, V (x), is periodic
along the x direction and constant along the τ direction
(shaded background in Fig. 1). The tension force, F , is
applied to the ends of each chain at a specified force an-
gle, θ, with respect to the grooves of the potential (the
τ -axis). The force angle is kept constant during each
simulation run and quantifies the degree of shear experi-
enced by the polymers. The effect of a finite temperature
is incorporated by including viscous drag and introduc-
ing random forces on monomers whose strength is related
to the desired temperature via a fluctuation-dissipation
relation. After an equilibration period, monomer posi-
tions can be aggregated over statistically independent
time points to obtain equilibrium density profiles of the
fluctuating chains.

When the potential energy experienced by a single
monomer is comparable to the thermal energy scale kBT ,
a single polymer chain wanders across the simulation
box with no preferred position (Fig. 2a). Upon sub-
tracting the center-of-mass motion of the chain from the
monomer positions at each time step, the equilibrium
density profile obtained by aggregating monomer posi-
tions over thousands of independent time steps (see Ap-
pendix A for details) displays an overall tilt in the di-
rection of the transverse shear force, as seen in Fig. 2d.
The tilt angle ϕ, extracted from the difference in the av-
erage x positions from the density profiles near opposite
ends of the chain, is seen to align with the force angle
θ (Fig. 2g). This alignment shows that a single chain is
free to tilt in response to the external tension and is not
significantly confined by the substrate potential.

The polymer conformations are markedly different
when the system is prepared at a commensurate fill-
ing of one polymer per groove of the periodic potential.
At small force angles, the wandering of polymers in the
multi-chain system is suppressed and each chain is lo-
calized to a distinct groove (Fig. 2b) [51] breaking er-
godicity [55, 56]. The aggregated density profile shows
that the chains remain vertically aligned even at nonzero
shear, except for a small amount of bending near the ends
(Fig. 2e). Only at force angles larger than a threshold
value, := θc, do the chain conformations acquire a signif-
icant tilt along the entire length of the chain (Fig. 2f).
The threshold force angle is identified by a sharp increase
both in the magnitude of the tilt ϕ and in the slope of the
ϕ-θ relationship (numerical estimation of θc is discussed
in Appendix B). At force angles much larger than the
threshold, the chains align with the applied force (ϕ ≈ θ,
Fig. 2g). At θ > θc, not only do the chains display an
abrupt tilt, they also drift back and forth across the sub-
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FIG. 2. a–c, Snapshots of Langevin dynamics simulations of
discretized polymer chains (points) on a periodic substrate
potential (colormap same as in Fig. 1). Each chain has equi-
librium length 40a and the simulation box has width 10a; x
and τ directions have different scales. a, Single polymer under
low shear. b–c,Noncrossing polymers under commensurate
filling (one chain per repeating unit of the substrate potential)
under low (b) and high (c) shear. d–f, Aggregated density
profiles of equilibrium chain conformations from simulations
a–c. g, Tilt angle of the aggregated polymer conformations,
ϕ, as a function of force angle, θ, as measured in simulations
of a single polymer and of multiple polymers under commen-
surate filling. Gray symbols indicate the parameter values for
panels a–f. Dotted line shows ϕ = θ. Critical force angle θc
is estimated as the intersection of measured tilt–angle curve
with ϕ = 0.1θ (dash-dotted line; see Appendix B for details).
The spacing of simulated θ values provides the uncertainty
in the estimate. From the commensurate curve, we obtain
θc = 0.040± 0.007 (green symbol on θ axis).

strate at equilibrium with no preferred center-of-mass lo-
cation. This motion occurs via the diffusion of kinks
that carry a chain over a potential peak to the adjacent
valley (Fig. 2c); the kink positions and motion must be
coordinated across all chains to satisfy the noncrossing
constraint [45].

In summary, the commensurate system exhibits two
distinct equilibrium phases in simulations: a localized
phase with untilted chain conformations confined to indi-
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vidual potential grooves, and a delocalized phase in which
chains are tilted in the direction of the applied force and
wander across the substrate. To explain these phases,
we map the density profiles of the classical equilibrium
system to the quantum probability evolution of noninter-
acting fermions experiencing a periodic potential [51] in
the presence of a non-Hermitian term due to shear [27].
The mapping has its roots in field-theoretic descriptions
of the statistics of polymer melts [57–60], but is sim-
plified by the absence of self-interactions of each chain
with itself—the tension is assumed to be large enough
that each chain conformation is described by a single-
valued function x(τ) and chains do not double back on
themselves along the τ direction. This feature, which
distinguishes directed polymer models from regular poly-
mers, allows the corresponding quantum system to be
exactly solved for some types of inter-polymer interac-
tions [49, 50].

III. THEORETICAL ANALYSIS

A. Classical-quantum mapping

The chains of monomers depicted in Fig. 2a–c are
rough at a microscopic scale set by the monomer size ℓ0.
Meanwhile, the potential energy varies at a scale set by
the lattice constant a, which can be much larger than the
monomer size. In the limit that a≫ ℓ0, the lattice-scale
features of the chain conformations can be described us-
ing a coarse-grained model in which monomers are aggre-
gated into mesoscopic segments. Each segment is small
enough such that its local environment is more or less ho-
mogeneous, but large enough that its fluctuations obey
Gaussian statistics [60]. This coarse-graining effectively
smoothens out the monomer-scale roughness (as depicted
schematically in Fig. 1) burying microscopic degrees of
freedom in a multiplicative constant for the partition
function (additive constant for the entropy) which does
not affect the equilibrium properties.

For each polymer chain, labeled by the index 1 ≤ n ≤
N , the instantaneous coarse-grained conformation is then
specified by a smooth function xn(τ) with τ ∈ [0, L]
where L is the length of each polymer. The total energy,
at small angles θ ≪ 1 and small chain slopes ∂τxn ≪ 1,
is [32, 33, 45, 50]

E =

N∑︂
n=1

∫︂ L

0

dτ

(︃
F

2
(∂τxn−θ)2+V (xn)+

∑︂
n′ ̸=n

|c|δ(xn−xn′)

)︃
.

(1)
The first term in the integrand captures the energy cost
of the chain deviating from a straight line aligned with
the force direction. For the coarse-grained description to
hold, the transverse fluctuations due to thermal energy
at the monomer scale must be small compared to the lat-
tice spacing. The energy associated with a deflection of
order δ over a length ℓ0 is order F (δ/ℓ0)

2 × ℓ0 ∼ Fδ2/ℓ0.

The typical deflection δth due to thermal fluctuations is
obtained by balancing this energy against the thermal en-
ergy scale kBT , which gives δth ∼

√︁
kBTℓ0/F . In all our

simulations, parameters are chosen such that δth ≪ a.
The second term in Eq. (1) implements the position-

dependent substrate potential, where V (x) is the poten-
tial energy per unit length of the chain experienced at
position x. The coarse-grained description in the the-
ory and the microscopic description in simulations are
matched by setting V = Vm/ℓ0, where Vm is the poten-
tial energy experienced by each monomer.
The last term in Eq. (1) incorporates interactions

among chains, which are assumed to be entirely local
so that chain segments interact only when xn(τ) =
xn′(τ) [50]. In this work, the only interaction we will
consider is that polymers cannot cross each other, which
is implemented by taking the limit |c| → ∞. As pointed
out by deGennes [49], for noncrossing polymers we can
use Girardeau’s mapping [61] to eliminate the interac-
tion term from the energy and absorb its effect into the
boundary conditions of the probability density functions
describing the polymers. We will exploit this feature in
the theoretical treatment below (see Eq. (7)). In simu-
lations, the noncrossing condition is implemented by in-
cluding extremely stiff contact forces among monomers
whose radius is ℓ0, so that monomers cannot pass through
the gaps between pairs of monomers on other chains.
Prior work on a related system [51] showed that when
ℓ0 is small, the statistics of such monomer chains quan-
titatively match theoretical expectations from idealized
noncrossing lines.
We now derive a Schrödinger-like equation governing

the probability weights associated with the chain confor-
mations at thermal equilibrium. Our approach augments
the continuum treatment of shear-free (θ = 0) directed
polymers in Refs. 49 and 50 to include the effects of a
periodic substrate potential [51] and of shear forces fol-
lowing the Hatano-Nelson model [27, 28]. Consider the
conformation of any one of the N polymer chains, x(τ ′),
and assume it is pinned at two points, τ ′ = 0 and τ ′ = τ ,
so that x(0) = x0 and x(τ) = xτ . The energy of the frag-
ment between the points is denoted by E[x; 0, τ ]. The
partition function of this fragment can be written as a
path integral [62] over all paths obeying the pinning con-
straints,

Ψ(xτ , x0, τ) =

∫︂ (xτ ,τ)

(x0,0)

Dx exp(−βE[x; 0, τ ]), (2)

where (β = 1/kBT ). By considering the change in the
partition function between the vertical coordinates τ and
τ + ϵ in the limit ϵ → 0 (see details in Appendix C), we
find that it satisfies the following diffusion equation:

∂Ψ(x, τ)

∂τ
=

(︃
1

2βF

∂2

∂x2
− θ

∂

∂x
− βV (x)

)︃
Ψ(x, τ), (3)

where the linear differential operator in the brackets will
take the role of a Hamiltonian upon mapping to quan-
tum mechanics. The partition function Ψ(xτ , x0, τ) with
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some modifications will help us retrieve the probability
distribution p(x, τ) of finding the point τ along the chain
at horizontal coordinate x.

The transformation from Eq. (2) to Eq. (3) is formally
similar to the transformation from the Feynman path
integral,

∫︁
Dx exp(iS[x]/ℏ), to the Schrödinger formalism

in quantum mechanics. Indeed, if we redefine variables
by mapping τ = it, β = 1

ℏ , F = m, and Fθ = g, Eq. (3)
maps to the time-dependent Schrödinger equation,

iℏ
∂Ψ(x, t)

∂t
=

(︃
(p+ ig)2

2m
+

g2

2m
+ V (x)

)︃
Ψ(x, t) (4)

≡
(︃
H(g) +

g2

2m

)︃
Ψ(x, t), (5)

where p = −iℏ ∂
∂x = − i

β
∂
∂x . The nonzero shear com-

ponent of the forces on the chains manifests itself as an
imaginary vector potential ig = Fθ [27]. We identify the

Hamiltonian to be H(g) shifted by a constant, g2

2m ; where
H(g) is the continuum version of the periodic Hatano-
Nelson Hamiltonian which has been well-studied in the
tight-binding limit [41].

The procedure can be repeated for the full many-body
system with the path integral now involving all possible
conformations of the N chains. The mapped many-body
quantum system then has a Hamiltonian [28, 50],

H =

N∑︂
n=1

(︃
(pn + ig)2

2m
+
g2

2m
+V (xn)+

∑︂
n′ ̸=n

|c|δ(xn−x′n)
)︃
,

(6)
where pn = −iℏ ∂

∂xn
= − i

β
∂

∂xn
. This Hamiltonian de-

scribes a one-dimensional system of N quantum parti-
cles in a periodic potential V (x) acted upon by a com-
mon imaginary vector potential ig. Now, we impose the
restriction |c| → ∞, which corresponds to the noncross-
ing interaction. In this limit, the interaction term can
be absorbed into the boundary conditions of the many-
body wave function [49] using Girardeau’s mapping [61]
which effectively maps bosons with contact repulsion to
non-interacting fermions. By considering only fermionic
many-body wavefunctions, the noncrossing condition is
automatically satisfied. The many-body Hamiltonian
then becomes a sum of single-body terms,

H =

N∑︂
n=1

(︃
Hn(g) +

g2

2m

)︃
. (7)

The statistics of N noncrossing, fluctuating lines has
been mapped to a quantum mechanical problem of non-
interacting fermions, each experiencing the same periodic
scalar potential V and constant imaginary vector poten-
tial ig.

B. Eigenstates and ground-state dominance

Besides simplifying the description of many-body den-
sities which automatically satisfy the noncrossing condi-

tion, the mapping to quantum mechanics motivates the
use of a spectral expansion to represent the solution to
Eq. (3). A general solution to a linear differential equa-
tion such as Eq. (3) can be written as a superposition of
eigenfunctions Ψm(x) of the Hamiltonian,

Ψ(x, τ) =
∑︂
m

cme
−β(εm+Fθ2

2 )τΨm(x), (8)

where

H(g)Ψm(x) =

(︃
(p+ ig)2

2m
+ V (x)

)︃
Ψm(x) = εmΨm(x)

(9)
for some quasi-energy eigenvalue εm, and cm are con-
stants fixed by the initial condition Ψ(x, 0). We will in-
dex the eigenfunctions in increasing order of the real part
of the quasi-energy, Re εm′ > Re εm for m′ > m. As the
coordinate along the polymer increases from τ = 0, the
amplitudes of eigenstates relative to the “ground state”
(m = 0) decay exponentially as e−βRe(εm−ε0)τ . Far
from the boundary, the polymer’s profile is dominated by
the ground-state wave function of the time-independent
Hamiltonian with the lowest real component of εm,

Ψ(x, τ) ∼ e−β(ε0+
Fθ2

2 )τΨ0(x),

a situation termed ground state dominance [63]. Ground
state dominance holds in the interior of polymers with
lengths that satisfy L ≫ 1/[β(Re ε1 − Re ε0)]; the
lower the real energy gap between the lowest two quasi-
energies, the longer the polymer needs to be.
To describe the density profiles of polymers away from

the ends, we also need the contribution to the parti-
tion function of a polymer being pinned at x(L) = xL
and propagating downwards. We will write this partition
function contribution as,

˜︁Ψ(xτ , xL, τ) =

∫︂ (xτ ,τ)

(xL,L)

Dx exp(−βE[x; τ, L]). (10)

The diffusion equation obeyed by ˜︁Ψ is obtained by rotat-
ing the coordinate system (x, τ) → (−x,−τ) in Eq. (3),
leading to

∂˜︁Ψ(x, τ)

∂τ
=

(︃
− 1

2βF

∂2

∂x2
− θ

∂

∂x
+ βV (x)

)︃˜︁Ψ(x, τ).

(11)

On repeating the quantum mapping, and assuming an
even potential, V (−x) = V (x), we get,

−iℏ∂
˜︁Ψ(x, t)

∂t
=

(︃
(p− ig)2

2m
+

g2

2m
+ V (x)

)︃˜︁Ψ(x, t) (12)

=

(︃
H(g)† +

g2

2m

)︃˜︁Ψ(x, t). (13)

Note the reversed sign of time. We now expand˜︁Ψ using the eigenfunctions of H(g)† as ˜︁Ψ(x, τ) =



6

∑︁
m c̃me

−β(ε̃m+Fθ2

2 )(L−τ)˜︁Ψm(x), where

H(g)†˜︁Ψm(x) =

(︃
(p− ig)2

2m
+ V (x)

)︃˜︁Ψm(x) = ε̃m˜︁Ψm(x)

and the coefficients c̃m are fixed by the boundary condi-
tion at τ = L.
Although H(g) ̸= H(g)† because of the non-

Hermiticity induced by a finite force angle, the eigen-
functions and eigenvalues of the Hamiltonians in Eq. (4)
and Eq. (12) are closely related. A diagonalizable non-
Hermitian Hamiltonian can be written as [1]

H =
∑︂
n

λn|Rn⟩⟨Ln|, (14)

where the right eigenstates, |Rn⟩, and the left eigenstates,
⟨Ln|, form a bi-orthonormal basis, ⟨Li|Rj⟩ = δij . By
taking the conjugate transpose of the above equation, we
get

H† =
∑︂
n

λ∗n|Ln⟩⟨Rn|.

We identify Ψm(x) = ⟨x|Rm⟩ and ˜︁Ψm(x) = ⟨x|Lm⟩ such
that ε̃m = ε∗m and

∫︁
dx ˜︁Ψ∗

m(x)Ψn(x) = δmn. Now, since

H(g) (as well as H(g)†) is real-valued, its eigenstates are
either real with real eigenvalues, or come in complex-
conjugate pairs. Using this, we choose to index the eigen-

states ˜︁Ψm(x) such that,∫︂ Lx

0

dx ˜︁Ψm(x)Ψn(x) = δmn and ε̃m = εm (15)

In particular, the ground state has a real eigenvalue even
for the non-Hermitian problem [28], and far from the
upper end of the polymer we obtain

˜︁Ψ(x, τ) ∼ e−β(ε0+
Fθ2

2 )(L−τ)˜︁Ψ0(x).

The polymer density is expressed in terms of the two
partition function contributions as

p(x, τ) =
1

Z
Ψ(x, x0, τ)˜︁Ψ(x, xL, τ), (16)

where Z =
∫︁
dxΨ(x, x0, τ)˜︁Ψ(x, xL, τ) = Ψ(xL, x0, L) is

the full partition function of the chain with end points
(x0, 0) and (xL, L) and is therefore independent of the
x and τ coordinates. While p(x, τ) can be expanded in

terms of the eigenfunctions Ψm(x) and ˜︁Ψm(x), we oper-
ate in the limit of long polymer chains where the density
far from the ends is dominated by the ground state:

p(x, τ) ∼ Ψ0(x)˜︁Ψ0(x). (17)

These quantities are readily translated to the cor-
responding many-body quantities. Using Girardeau’s
mapping [61], the many-body eigenstate, Ψ(x) =

Ψ(x1, x2, ..., xN ), of the Hamiltonian in Eq. (6) is
the Slater determinant of the single-body wave func-
tions Eq. (19) (see Appendix D for details). The Slater
determinant ensures that Ψ(x1, x2, ..., xN ) = 0 when-
ever any xi = xj , thus enforcing the non-crossing con-
dition. The associated energy, is the sum of the single-
particle eigenenergies of states in the Slater determinant,
ε =

∑︁
i εi. The many-body ground state, which deter-

mines the polymer profiles away from the ends, is there-
fore the Slater determinant of the lowestN single-particle
eigenstates. The analogue of Eq. (17) for the many-body
probability density over the polymer chain coordinates
x = (x1, x2, . . . , xN ) at any τ as,

p(x; τ) =
1

Z
Ψ(x, τ)˜︁Ψ(x, τ) ∼ Ψ0(x)˜︁Ψ0(x). (18)

C. Imaginary gauge transformation and the
delocalization transition

The problem of finding the polymers’ density profile
has reduced to finding the lowest N eigenstates of the
Hamiltonian Eq. (9) (ordered by the real part of the
quasi-energy). To do so, we use the fact that if Ψ′(x) is
an eigenstate of the shear-less Hamiltonian, H(g = 0) =
p2

2m + V (x) with eigenvalue ε, then Ψ(x) = e
gx
ℏ Ψ′(x) =

eFβθxΨ′(x) is an eigenstate of H(g) with the same eigen-
value. (This is analogous to a gauge-transformation of
the vector-potential [64].)
When V (x) is periodic, Bloch’s theorem applies and

the eigenfunctions Ψ′
k(x) should be of the form eikxuk(x)

with uk(x) having the same periodicity as the potential,
i.e., uk(x+ a) = uk(x). However, to ensure that Ψ(x) is
physical (in particular that it obeys periodic boundary
conditions) we must choose k to be complex such that

Im(k) = g/ℏ = Fβθ to cancel out the ‘gain factor’ e
g
ℏx =

eFβθx. The single-particle, normalizable eigenstates of
H(g) are then

Ψ(x) = Ψk(x) = eiRe(k)xuk(x), (19)

with k = Re(k) + iFβθ. Such Bloch waves with com-
plex k have been used to describe the evanescent surface
states of a finite crystal [53, 65, 66] and more recently to
elucidate the non-Hermitian skin effect [15, 67].
The essential physics of the nonzero tilt angle for poly-

mer conformations is captured in the localization, or lack
thereof, of the fermionic ground states constructed from
the Bloch waves. A superposition of N Bloch waves is
generically delocalized through the whole lattice and has
equal weight on all unit cells. The equilibrium density
profile of the polymer far from the ends is therefore uni-
form across the system: the polymer wanders freely and
visits each groove with equal probability over long times.
The wandering polymer aligns its conformation to the
force angle to minimize its free energy, leading to a con-
formational tilt which grows with tilt angle as observed
in simulations.
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An exception to the generic delocalized state occurs
under commensurate filling of one polymer per groove of
the periodic potential. At zero shear, appropriate super-
positions of the Bloch waves can be used to construct an
alternate basis for the lowest band, consisting of a set of
Wannier functions

Φ′
j(x) = Φ′(x− ja),

each centered on the jth unit cell of the periodic po-
tential and exponentially localized in the x direction,
Φ′(x) ∼ exp(−λ|x|) [52, 68]. Here, λ > 0 is an inverse
localization length determined by features of the complex
band structure ε(k).

Once we have identified an exponentially localized
set of basis states, the mechanism of how shear causes
delocalization can be framed in a very general man-
ner using the imaginary gauge transformation [28, 29].
Consider a many-body Hermitian (shear-free) system,

H(g = 0) =
∑︁

n
p2
n

2m + V (x). The potential energy,
V (x), might be either periodic (as in the current prob-
lem), or disordered, or both. It may even have possible
interaction terms. Regardless of the localization mecha-
nism, if the many-body ground-state of the shear-free sys-
tem ψ′(x; g = 0) is exponentially localized, the effective
eigenstate of each polymer chain dies off away from its
mean/typical position as Ψ′(x) ∼ exp(−λ|x|) where λ >
0 is the many-body inverse localization length [68, 69].
Using the gauge transformation, we see that in the pres-
ence of shear, the many-body (right) ground-state is
ψ(x; g) = eFβθ

∑︁
n xnψ′(x; g = 0). The gauge trans-

form is permissible as long as eFβθxΨ(x) is well-behaved,
i.e., it still must satisfy the periodic boundary conditions.
This condition is met as long as λ > Fβθ. The critical
shear at which delocalization happens is then Fθc = λ

β

(compare with the conductivity expression in Ref. 70).
If the density profiles of chains in the shear-free many-
body ground state ψ′(x; g = 0) fall off faster than expo-
nentially with distance from the mean chain position (for
example as a Gaussian profile ψ′(x) ∼ exp(−λ2x2) which
decays faster than any exponentially decaying function at
large enough x), no amount of shear will delocalize the
system. By contrast, if the localization is weaker than
an exponential falloff (for example as a power-law decay
with distance from the mean position), an infinitesimal
amount of shear is sufficient to delocalize the system.

Finding the localization length in the Hermitian prob-
lem is, thus, equivalent to finding the critical shear in
the non-Hermitian problem. Conversely, finding the crit-
ical shear, either experimentally or theoretically, in the
non-Hermitian system is equivalent to finding the local-
ization length in an exponentially localized Hermitian
system. In our specific system, this localization length
is precisely that of the Wannier functions at commen-
surate filling, which we explicitly calculate in Sec. IIID.
Interestingly, the effect of the shear force on the polymer
density profiles themselves is minimal in the localized
phase. Observing that the right eigenstate in the non-
Hermitian system falls off as ∼ eFβθx exp(−λ|x|), the

inverse localization length in the sheared system appears
to be λ− Fβθ. This is, however, the inverse localization
length of the right eigenstate only. The polymer’s prob-
ability profile consists of the product of both the right
and the left eigenstate (Eq. (16)). The left eigenstate
of H(g) is the right eigenstate of H(g)† = H(−g) which
suffers an opposite gauge transformation. The inverse
localization length of the polymer density profiles under
shear, obtained by multiplying the left and right ground
states (Eq. (17)), is then the same as that of a system
without shear (θ = 0). Away from the polymer ends,
non-Hermiticity does not affect polymer density profiles
in the localized phase [29].
We note that the gauge transformation of a localized

non-Hermitian system to a localized Hermitian system is
not possible in a tight-binding (discrete) model such as
the lattice-based Hatano-Nelson model with a periodic
potential [41]. Indeed, there is no similarity transforma-
tion that maps a generic non-Hermitian matrix with com-
plex eigenvalues to a Hermitian matrix. A key difference
between discrete and continuum models is that bound-
ary conditions are part of the operator itself in the former
but not in the latter. For the continuum model, we have
to adjust the boundary conditions of the mapped Hermi-
tian system to ensure the original non-Hermitian system
has periodic boundary conditions. When the many-body
non-Hermitian phase is localized, the Hermitian phase is
localized as well, and we can retain periodic boundary
conditions ensuring the mapped Hamiltonian is Hermi-
tian as well as self-adjoint. In the delocalized phase, we
are forced to place special non-periodic boundary condi-
tions in the mapped Hermitian problem such that the op-
erator is no longer self-adjoint. A continuum Hermitian
operator with an infinite-dimensional Hilbert space can
have complex eigenvalues if it is not self-adjoint [71, 72];
this fact explains the complex eigenenergies in our system
even though it can be mapped to a Hermitian Hamilto-
nian. The gauge transformation also allows us to make
use of the well-studied properties of the analytical contin-
uation of the Hermitian spectrum [52] which is essentially
the spectrum of the Hermitian operator under modified
(non-periodic) boundary conditions.
Having identified the mechanism for delocalization in

the system under commensurate filling, we now turn to
analyzing the energy spectrum, ε(k), to determine the
value of the critical force angle; we also compute the tilt
angle of the polymers from the corresponding eigenfunc-
tions.

D. Non-Hermitian gap closure and critical shear

At finite shear, the quasienergies of the eigenstates
become complex-valued since the Hamiltonian is non-
Hermitian, H(g)† = H(−g) ̸= H(g). The complex energy
bands, εn(k), can be regarded as distinct Riemann sheets
over the complex k plane of a multi-valued complex func-
tion ε(k) [52, 53, 73] with each sheet corresponding to a
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FIG. 3. The (complex-valued) energies, ε, of the Hamilto-

nian p2

2m
+ V (x) , where V (x) is periodic, as a function of

the imaginary component of the Bloch wave-vector, Im(k),
the value of which is set by the shear force Fθ and tem-
perature β in the polymer system. When Im(k) = 0, the
energies are real and form separate bands (shown in blue).
As the shear force is increased Im(k) increases and the en-
ergies form complex-valued ovals (grey dotted contours). At
the critical value of Im(k) = µ/a the ground-state oval meets
the first excited band and a commensurate filled crystal is
no longer a band insulator. This is the delocalization mech-
anism exhibited by the polymer system. While the complex
energies shown here have been computed for the specific po-
tential V (x) = V0 cos(2πx/a), with V0 = 1 (see Appendix E
for computation details), this behaviour is generic for even
one-dimensional potentials with V (x) = V (−x) and are ex-
pected to hold with some modifications for non-symmetric
periodic potentials as well [52, 73].

particular band. (When used with an argument k, the
expression εn(k) denotes the nth energy band associated
with the periodic potential; bands are ordered according
to the real part of the energy.) While the bands are sep-
arated for real k, adjacent sheets meet at branch points
of ε(k) which occur at complex k: The nth sheet meets
the (n+1)th sheet at wave-vector values kn = ±π

a ± i
µn

a ,
where the dimensionless numbers µn, which quantify the
distances of the branch points from the real k axis, are
determined by the potential function V (x). The values
of µn will determine the value of the critical shear in our
system.

In the polymer model, commensurate filling ensures
that the quantum particles completely fill the ground
state energy band ε0(k). At Fθ = 0, when there is no
shear, the energies are real and there is a finite gap be-
tween the ground state band and the higher band. At
non-zero shear force Fθ, the bands become complex-
valued and turn into ovals in the complex plane. As Fθ,
and therefore Im(k), increases, these oval energy bands
grow in size (Fig. 3) and the separation between bands
ε0(k) and ε1(k) is reduced as the branch point at k0 is
approached (Fig. 3). When the shear force equals the
branch point value, Fβθ = µ0/a, the ground state en-
ergy band meets the higher band. The energy gap closes
and the system at commensurate filling is now a conduc-
tor that enables probability flows driven by the imagi-
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FIG. 4. Critical force angles measured from simula-
tions with different potential amplitudes and temperatures,
rescaled by the energy and force scales governing the under-
lying Schrödinger equation (Eq. (21)). Symbols are labeled
according to the parameter which is kept constant in distinct
sets of simulations. The other parameters are F = 20, a = 1,
N = 10 in simulation units. Error bars show uncertainty in
the critical force estimate due to the finite sampling resolu-
tion of applied shear forces. Solid curve shows the theoretical
prediction, Eq. (20).

nary vector potential. These probability flows manifest
themselves as tilts in the polymer density profiles, Fig. 2.
The critical angle of force, θc, at which the polymers

acquire a collective tilt (Fig. 2) is therefore predicted to
be

θc =
µ0

Fβa
. (20)

Notably, the value of µn is sensitive to the details of
the continuous periodic potential; its dependence on the
energy gap or the amplitude of the potential energy is
non-universal [74, 75]. This subtlety is not captured by
tight-binding studies of the complex band structure [41],
which gloss over the details of the periodic potential and
suggest that θc should scale with the energy gap in a
universal manner.
One can transform x to the dimensionless coordinate

r = x/a (where a is the lattice constant) in Eq. (9). Upon
rescaling the wavefunction to a new variable Ψ′

n(r) ≡
Ψn(r)e

−Fβθar we get,

−1

2

∂2

∂r2
Ψ′

n(r) + V0Fβ
2a2V ′(r)Ψ′

n(r) = εnFβ
2a2Ψ′

n(r),

(21)
where V0 is the amplitude of the periodic potential and
V ′(r) ≡ V (r)/V0. For a particular functional form of
the rescaled potential V ′(r), the system is then gov-
erned by two dimensionless quantities: the dimensionless
shear force, Fβθa and the generalized potential strength,
V0Fβ

2a2. In Fig. 4 we report measurements of θc from
molecular dynamics simulations in which the parame-
ters β and V0 were varied for our choice of potential



9

V ′(r) = cos(2πr). We find that delocalization thresh-
olds from simulations covering a broad range of param-
eter values collapse onto a narrow region in the force
angle-potential strength plane when rescaled according
to the quantum mapping. Furthermore, the rescaled crit-
ical force angles are consistent with the theoretical pre-
diction of the localization-delocalization transition—the
branch point distance µ0 at the given potential amplitude
(Eq. (20)). The agreement does not involve any fitting
parameters, and is robust to changes in the numerical es-
timation of the critical force angle from simulations (see
Appendix B).

Although we only considered a system with commen-
surate filling in our simulations, the non-Hermitian band
structure also determines the delocalization behavior for
other filling densities f = N/M (where M = Lx/a is
number of unit cells) of the polymers. When f is non-
integer the polymers are expected to be generically de-
localized because there is no energy gap separating the
last occupied single-particle state from the first unoccu-
pied state. By contrast, when f is an integer the system
exhibits a transition from a localized to delocalized state
at a critical force angle given by

µf

Fβa .

The delocalization transition due to closure of the non-
Hermitian energy gap is also apparent in the behaviour
of the wave functions for filled bands. We can write the
many-body wave function of the commensurate system
as a real-valued Slater determinant of Wannier functions
defined on the ground state band (see Appendix D). The
Wannier functions of the nth band, at zero shear, are
also known to depend on the branch point locations µn:
their spatial profiles fall off as ∼ exp(−µnx/a) at large
x [52, 68]. Delocalization of the wavefunctions is then

linked to the threshold at which the “gain factor” e
gx
ℏ

exceeds the falloff e
µnx
a , recovering the prediction for the

critical angle, µn/a = gc/ℏ = Fβθc.
The exponential falloff of the Wannier functions is

known to include a power-law prefactor [76]: the com-
plete functional form for the large-x behavior is Φ′(x) ∼
x−α exp(−µnx/a) for the shear-free system. Right at the
transition point, the gain factor cancels the exponential
decay and it is the power-law falloff that survives. The
exponent for the falloff, α, is derived from the analytic
properties of ε(k) for 1D periodic potentials, is known to
be universal, and equals 3/4 [76]. This feature provides
a critical exponent for the phase transition—at the crit-
ical point, the polymers’ probability density in the bulk
is expected to fall off as ρ(x) ∼ [e

gcx
ℏ Φ′(x)]2 ∼ x−3/2,

independently of the details of the periodic potential.

E. Critical exponent of diverging shear modulus

In the vicinity of the branch points of the energy sur-
face, the imaginary part of the energy is known to vary as
as ε(k) ∼ | Im(k)−Im(kn)|1/2 [53]. This dependence sug-
gests a universal divergence in the shear response of the
system near the critical force angle. We can define the

shear modulus, Γ, of the system as the applied stress,
Fθ/a, divided by the resulting strain, ϕ. Fig. 2 shows
that for a commensurate system, Γ = Fθ/(aϕ) equals
F/a at θ ≫ θc. As θ approaches θc from above, ϕ de-
creases faster than θ so that θ/ϕ, and hence Γ, diverges
as θ → θc. For commensurate filling we therefore expect,

ϕ ∝

⎧⎪⎨⎪⎩
0 if θ ≪ θc,

(θ − θc)
η if θ ∼ θc,

θ if θ ≫ θc,

(22)

for some critical exponent η which we find to be 1
2 in the

following.
The tilt of the polymer chains, ϕ, can be measured by

the averaged slope of the polymer configurations,

ϕ(τ) ∼ ⟨∂τxn⟩ =
1

N

N∑︂
n=1

∫︂ Lx

0

dxxn
∂p(x, τ)

∂τ
, (23)

where the overline denotes averaging over the N poly-
mers. The tilt, ϕ(τ), depends on the coordinate τ be-
cause of the influence from the initial conditions at τ = 0
and τ = L. Indeed in Fig. 2e,f we see that the polymers’
density profile shows a small amount of bending near the
ends. We will be interested in the value of ϕ in the bulk
of the polymer system, that is at large values of τ and
L−τ . In this regime, the ground state dominance applies

such that (Ψ, ˜︁Ψ) → (Ψ0, ˜︁Ψ0) and we find that the local
tilt angle, ϕ(τ) becomes a constant (see Appendix F 1
and Refs. 27 and 28),

ϕ ∼ ⟨∂τxn⟩ = − 1

NF

∂ε0
∂θ

. (24)

Here, ε0 is the many-body ground state energy which is
the sum of the lowest N single-body energies,

ε0 =

N∑︂
i=1

εi. (25)

At commensurate filling and largeN , the sum of single-
particle energies that yields the many-body ground state
energy can be written in the form of an integral over the
complex-valued energy band ε0(k):

ε0 =

∫︂
C

dk

2π/(Na)
ε0(k) =

∫︂
C

dk

2π/(Na)
Re(ε0(k)), (26)

where the complex contour C is the line segment con-
necting k = −π/a+ iβFθ to k = π/a+ iβFθ at constant
Im(k) = βFθ. In the last step, we used the fact that
since the single-body eigenvalues are either real or occur
in complex conjugate pairs, the many-body ground state
energy for a filled band is guaranteed to be real.
Using Eq. (24), the average tilt angle far away from

the polymer ends is given by

ϕ = − 1

NF

∂ε0
∂θ

= − 1

NF

∫︂
C

dk

2π/(Na)

∂ Re(ε0(k))

∂θ

= −βa
2π

∫︂
C

dk
∂ Re(ε0(k))

∂ Im(k)
. (27)
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FIG. 5. The theoretically predicted ϕ vs. θ graph for a com-
mensurate polymer system. By Eq. (29), the tilt of the poly-
mer chains, at shear value of Fθ and temperature 1/β = kBT ,
is given by βa

π
Im ε(k) with k = π

a
+ Fβθ. Shown is the nu-

merically computed value of this expression (blue solid line)
for a cosine potential, V (x) = cos(2πx/a). The green dashed

line is ϕ = θ = ki
Fβ

, to which the tilt asymptotically tends to

at large shear; the red dotted curve is c(ki− µ
a
)
1
2 , demonstrat-

ing the critical exponent is 1
2
(the value of c is set by fitting).

As predicted, the tilt is exactly zero below the critical shear
(Eq. (29)).

Note that the line element dk involves variations only in
Re(k), so we can safely apply the derivative to the in-
tegrand. We now use the fact that the complex energy
function corresponding to the lowest band, ε0(k), is a
Riemann sheet of a multivalued function ε(k) and is an-
alytic everywhere away from the branch points at k0 =
±π

a ± iµ0

a which are encountered only when θ = θc [52].
As a result, away from the critical angle the Cauchy-
Riemann equations for the analytic function ε0(k) can
be used to rewrite Eq. (27) as

ϕ =
βa

2π

∫︂
C

dk
∂ Im(ε0(k))

∂ Re(k)

=
βa

2π

[︂
Im
(︂
ε0

(︂π
a
+ iβFθ

)︂)︂
− Im

(︂
ε0

(︂
−π
a
+ iβFθ

)︂)︂]︂
,

=
βa

π
Im
(︂
ε0

(︂π
a
+ iβFθ

)︂)︂
. (28)

In the last line we used the fact that ε0(−k∗) = ε∗0(k)
since the Hamiltonian is real [52].

Now for θ < θc, the integration contour C traces a
complete loop of the closed oval corresponding to the
lowest band in Fig. 3, such that ε0(k) evaluates to the
same value at the endpoints of the contour and the value
of the integral, Eq. (27), is identically zero. For θ > θc,
the closed oval corresponding to the lowest band ‘opens
up’ by merging with the higher band. The size of the
opening along the Im(ε) direction is proportional to the
acquired tilt via Eq. (28). Near the branch point, k0 =
π/a+iFβθc, it is known that Im

(︁
ε0
(︁
π
a + iβFθ

)︁)︁
behaves

like
√
θ − θc since the branch point is always of order

one [52]. Finally for very large values of θ, the momentum
term of the Hamiltonian dominates the potential term
and we can show that Im

(︁
ε0
(︁
π
a + iβFθ

)︁)︁
= πθ

βa .

These calculations rely only on the analytic properties
of ε(k) for one-dimensional periodic potentials and on the
existence of a gap between the lowest band and higher
bands. We stress that while the location of the branch
point in the complex momentum plane (i.e. the value of
µ0) depends on system details, its existence and the or-
der of the branch point are independent of the specifics of
the periodic potential [52, 53, 73]. Therefore, the critical
exponent of 1/2 is universal for all substrate potentials
that are periodic along the x direction and constant along
the τ direction. The details of the calculation linking
the branch point structure to the polymer conformations
can be found in Appendix F 2 along with figures of the
complex band-structure for a cosine potential and a cal-
culation of the tilt for arbitrary filling (see Eq. (F9) in
Appendix F 2).
In summary, we have established that for a commen-

surate system, the polymer tilt angle is determined by
the complex-valued lowest energy band and behaves as

ϕ =
βa

π
Im
(︂
ε0

(︂π
a
+ iβFθ

)︂)︂
=

⎧⎪⎨⎪⎩
0 if θ < θc,

c(θ − θc)
1
2 if θ ≳ θc,

θ if θ ≫ θc,

(29)
for some constant of proportionality, c, which depends
on the specifics of the periodic potential. Fig. 5 shows
this theoretical prediction, numerically computed from
the complex band structure of a cosine potential as used
in our simulations (solid line). The tilt exhibits the ex-
pected functional forms near the critical point (dotted
line) and at large force angles (dashed line).
In the simulations performed for this paper, the poly-

mer chains had a length of 40a while the horizontal length
of the simulation box was 10a, too limited to extract a
critical exponent from the tilt angle measurements. We
leave a numerical verification of the predicted divergence
exponent for future work.

IV. EFFECTS OF QUENCHED SUBSTRATE
DISORDER

The present model of fluctuating lines under shear
was originally introduced to study the competition be-
tween non-Hermitian delocalization and Anderson local-
ization [27] of the polymers due to disorder in the sub-
strate potential. We now investigate the interplay of our
band-insulator localization mechanism with Anderson lo-
calization by introducing a random component to the
substrate potential V (x) which is constant along the τ
direction (see Appendix A for implementation details).
The disorder strength was quantified using the root mean
square amplitude σd of the random potential Vd(x) added

to the periodic substrate, σd ≡
√︂∫︁Ma

0
dx [Vd(x)]2/Ma.



11

Force angle, θ

T
il

t
an

gl
e,
φ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Disorder strength, σd/V0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
ri

ti
ca

l
fo

rc
e

an
gl

e,
F
β
a
θ c

Individual simulations
Averaged tilt curve

0.00

0.04

0.08

0.12 σd/V0 = 0.07 σd/V0 = 0.28

0.00 0.04 0.08 0.12

0.00

0.04

0.08

0.12 σd/V0 = 0.71

0.00 0.04 0.08 0.12

σd/V0 = 1.41

a b

FIG. 6. a, Tilt vs. force angle measurements from simulations with different disorder strengths (V0 = 0.239, F = 20, β = 1,
N = 10). Each panel shows curves from 50 independent random realizations of potentials (thin blue curves). The thick curve
shows the average of all tilt values for each applied force angle. All panels have the same value ranges for the θ and ϕ axes. b,
Dependence of the critical force angle on disorder strength. Discs with error bars show the average and standard deviation of
θc measured from the 50 independent disorder realizations at each value of σd. Crosses show θc measured from the average tilt
(thick curves in a).

At each disorder strength, multiple independent realiza-
tions of the random disorder potential were simulated;
the results are shown in Fig. 6. While outcomes varied
among independent runs for a given disorder strength be-
cause of the finite system size (blue curves in Fig. 6a), we
find that the mean critical force varies non-monotonically
with disorder strength, first falling and then increasing
(Fig. 6b). A similar trend was obeyed by critical force
angles extracted from the averaged ϕ–θ curve obtained
by averaging the measured tilt angles across all indepen-
dent realizations (red curves and symbols in Fig. 6).

These observations can be explained by considering
the separate effects of disorder on the bandgap and on
the localization properties of the single-particle eigen-
states. Numerical studies of the lattice Hatano-Nelson
model with a periodic potential [41] have shown that
small amounts of disorder reduced the real-valued energy
gap between bands along the Re(ε) axis without affect-
ing the extended nature of the Bloch eigenstates near the
band edges. As a result, we expect low levels of disor-
der to shift the delocalization transition to smaller shear
values due to the reduction of the bandgap. For a given
shear value, however, all single-particle eigenstates be-
come localized at high-enough disorder due to Anderson
localization, and the many-body fermionic ground state
would also be localized even in the absence of an energy
gap between unoccupied and occupied states [77]. Higher
values of tilt are necessary to drive the non-Hermitian
delocalization of the single-particle eigenstates at large
disorder, leading to an increase in the threshold shear
value. The non-monotonic behavior is consistent with
a switch in the dominant localization mechanism, from
band-insulator physics at low disorder to Anderson local-
ization of single-particle eigenstates at high disorder.

The non-monotonic variation in localization with dis-

order strength implies that for some values of the force
angle, the system undergoes two transitions as the disor-
der is increased. Consider a commensurate system with a
force angle maintained at a value for which the polymers
are localized in the absence of disorder. The system can
be driven into a delocalized state by increasing the sub-
strate disorder beyond the disorder-driven gap closure. If
the disorder level is increased even further, the polymers
will eventually recover their vertical confinement due to
Anderson localization of the single-particle eigenstates.
This mechanism represents a non-Hermitian version of
a reentrant localization transition, reminiscent of similar
phenomena in Hermitian systems [78–80] and in biased
Brownian motion under periodic potentials with weak
disorder [81].

V. RELATION TO TOPOLOGICALLY
QUANTIZED TRANSPORT

Since the force angle θ is shared among all polymers
in the system, the transverse component of the tension
can be eliminated by rotating the coordinate system so
that the τ axis aligns with the tension direction. In this
rotated frame, the potential energy grooves are no longer
aligned with τ , giving rise to a substrate potential which
depends on both x and τ , and the corresponding quan-
tum system becomes time-dependent. That is, the energy
functional in the rotated frame is

E =

N∑︂
n=1

∫︂ L

0

dτ

(︃
F

2
(∂τxn)

2 + V (xn + θτ)

)︃
, (30)

with the interaction terms omitted since they can be ab-
sorbed into the fermionic statistics. Prior work on a
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shear-free version of the directed polymer model with
substrate potentials varying in both axes uncovered topo-
logical phenomena enabled by thermal fluctuations and
noncrossing interactions [51]. In this section, we outline
the possibility and the potential complications in realiz-
ing topologically protected chain conformations enabled
by non-Hermitian spacetime-periodic potentials.

Upon performing the classical-quantum mapping as
before, the quantum Hamiltonian for each fermionic par-
ticle acquires a time-dependence in the potential,

Ĥ =
p2

2m
+ V (x+ igt/m). (31)

and the partition function of the chain satisfies the fol-
lowing equation [82]:

∂Ψ(x, τ)

∂τ
=

(︃
1

2Fβ

∂2

∂x2
− βV (x+ θτ)

)︃
Ψ(x, τ). (32)

The potential is periodic in space (with period a) and
along the imaginary time axis (with period a/θ), making
Eq. (32) a Floquet partial differential equation [83]. The
equation can also be derived by changing variables from
(x, τ) to (x′, τ ′) = (x+ θτ, τ) in Eq. (3).

At small values of θ, the Hamiltonian varies slowly in
time so we can use the quantum adiabatic theorem to
describe the evolution of the probability density along
the vertical axis. It is known that a 1D quantum sys-
tem with a potential varying slowly in time exhibits a
current which is quantized to multiples of the Chern
number. This is called the quantized adiabatic pump or
Thouless pump [84]. In the polymer system, this mech-
anism translates to the tilt of the polymers at commen-
surate filling being proportional to the Chern number of
the lowest band of the spacetime-periodic potential [51],
which equates to one for a sliding potential of the form
V (x, τ) = V (x+θτ) [84]. Each polymer contour, on aver-
age, shifts to the right by one lattice step for each period
in the τ direction, which corresponds to the the polymer
profiles being tilted by an angle θ away from the verti-
cal direction and following the potential grooves exactly.
This topological tilt matches the commensurate confor-
mations observed at low force angles in simulations.

In the rotated frame, the delocalization transition is
triggered by increasing the tilt of the grooves relative to
the vertical (tension) direction beyond a threshold angle.
Past the transition, chains do not follow the grooves but
instead align themselves closer to the vertical direction.
The Chern number of the substrate potential no longer
dictates the alignment of the polymers, and the transition
can be interpreted as a non-Hermitian breakdown of the
topological adiabatic pump.

We have not achieved a quantitative understanding of
this delocalization transition in the rotated frame, where
no gap closure is apparent. The instantaneous spectrum
of the time-dependent Hamiltonian in the rotated frame,(︃

1

2Fβ

∂2

∂x2
− βV (x+ θτ)

)︃
Ψ(x, τ) = ε(τ)Ψ(x, τ), (33)

can be found by replacing x+ θτ → x′. This gives us(︃
1

2Fβ

∂2

∂x′2
− βV (x′)

)︃
Ψ(x′ − θτ, τ) = ε(τ)Ψ(x′ − θτ, τ),

(34)

so that Ψ(x′−θτ, τ) is a Bloch state eik(x
′−θτ)uk(x

′−θτ)
for the Hermitian Hamiltonian 1

2Fβ
∂2

∂x′2 − βV (x′) and

ε(τ) is the corresponding real-valued energy with no de-
pendence on θ or τ . In other words, the instantaneous
spectrum of the time-dependent Hamiltonian in the ro-
tated frame, Eq. (31), does not exhibit a gap closure
at any value of g so an alternative mechanism for an
abrupt transition at a threshold force angle is needed.
One possible mechanism is a breakdown in adiabaticity
due to mixing with the higher bands when the potential
varies so quickly in the vertical direction that ground-
state dominance no longer applies. In this limit, we must
consider the Floquet spectrum of the Hamiltonian, which
describes the evolution of eigenstates over full periods in
the vertical direction [85]. The breakdown of adiabatic-
ity and corresponding delocalization could be triggered
by the appearance of a Floquet exceptional point [86] at
a threshold force angle.

VI. DISCUSSION

In summary, we have described a new non-Hermitian
delocalization transition in a statistical mechanical sys-
tem of polymer chains. The transition occurs from an
insulator-like localized state created via a periodic poten-
tial and noncrossing interactions, and is driven by trans-
verse forces that generate non-Hermitian terms under a
mapping to a solvable quantum Hamiltonian. We found
that the delocalization of the polymer chains is caused by
a gap closure in the complex non-Hermitian band struc-
ture. We derived the exact value of the critical shear
in terms of the branch point structure of complex en-
ergy bands of the Hamiltonian. We also found that the
critical exponent by which the shear modulus diverges is
given by generic properties of the branch point. We have
investigated the localization due to the combined effect
of both periodicity and disorder and uncovered prelimi-
nary evidence that while disorder favours localization at
high values, it encourages delocalization at lower values.
Finally, we mapped the system to a 1D non-Hermitian
Thouless pump, whose breakdown triggers the delocal-
ization transition.
Our work shows that non-Hermitian band physics [19]

and phase transitions driven by exceptional points [87],
both typically associated with driven systems, can be
realized in a purely classical equilibrium setting. The di-
rected polymer model studied here serves as a test-bed for
exploring non-Hermitian physics that is straightforward
to describe and visualize, and which admits exact solu-
tions even in the presence of thermal fluctuations and
interactions. Our model and analytical framework be
generalized to more complex potentials [88, 89] and inter-
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actions [90], as well as disorder models that could harbor
new many-body localization phenomena [91]. The gauge
transformation that links the spectrum of our system to
the analytic continuation of band structures to complex-
valued crystal momenta [52, 53] could provide insights
into non-Hermitian delocalization in systems where lo-
calization is caused by disorder or interactions. Higher-
dimensional generalizations of our system, which gener-
ate particles with exotic statistics under the classical-
quantum mapping [92], could be used to probe the non-
Hermitian physics of composite fermions.

A promising avenue for further investigation involves
analyzing the system in a rotated frame which aligns the
τ axis with the net force direction rather than the poten-
tial grooves. In this frame, the corresponding quantum
system becomes time-dependent, opening up the pos-
sibility of realizing non-Hermitian topological phenom-
ena [16, 19] due to adiabatic pumping of the underly-
ing probability distributions [51, 82]. Delocalization in
the rotated frame could provide a manifestation of Flo-
quet exceptional point physics [86] in a classical model.
The introduction of disorder, which enables unique non-
Hermitian topological indices based on winding num-
bers [93, 94], provides yet another target for future stud-
ies.

While we have focused on the theoretical description
of a model polymer system in our work, the transition
we have uncovered could potentially be realized in a va-
riety of fluctuating-line systems. The 1+1D statistical
mechanics of vortex lines has previously been measured
in type-II superconductors in a slab geometry [46]. The
substrate potential for the vortices can be controlled by
patterning the superconducting properties via techniques
such as focused ion beam milling [95] or masked ion irra-
diation [96]. In this system, the localized state at nonzero
tilt angle signifies a misalignment between the external
magnetic field direction (the direction of applied ten-
sion) and the direction of the internal magnetization (car-
ried by the vortices, which are aligned to the potential
grooves)—a transverse Meissner effect [97], owed to band
insulator physics rather than disorder. Other experimen-
tal candidates include artificial polymer-like fluctuating
chains assembled from mesoscopic monomers such as col-
loids [98, 99] and nanoparticles [100], which can be con-
fined to planar substrates and subjected to patterned
electromagnetic or chemical forces.
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Appendix A: Simulation methods

We implemented Langevin dynamics simulations of
discretized polymer chains using a modified version of the
open-source simulation software HOOMD-Blue [54], with
modifications made to enable the addition of periodic
potentials of arbitrary phase. Each polymer is approxi-
mated as a chain of 200 particles of mass m, connected
by stiff harmonic springs with equilibrium length l0, im-
plemented as a bond potential Vbond(r) = K(r − l0)

2/2
where r is the distance between adjacent particles on the
chain and K is a stiffness constant. The noncrossing
constraint is enforced by adding a stiff contact interac-
tion between all pairs of particles in the system, with pair
potential Vcontact(r) = K(r − l0)

2 for separations r < l0.
For simplicity, the same stiffness coefficient is used for
both potentials.
The tension is implemented by applying the requisite

forces on the first and last particles of each polymer chain
in the desired shear angle relative to the vertical direc-
tion. To prevent the finite-length chains from drifting
vertically, the first particle of each chain is confined to a
τ coordinate of zero with a deep and narrow harmonic
potential well; the well does not constrain the horizontal
motion of the particles. The substrate potential energy
per unit length of the chain, V (x) = V0 cos(2πx/a), is
implemented by adding a position-dependent potential
energy of magnitude l0V (x) to each particle.
In all our simulations, we set m = 1 and a = 1 to

set the mass and length scales. The time scale is implic-
itly defined by setting K = 10000 in simulation units for
the bond and contact stiffnesses across all simulations.
We also set l0 = 0.2, so chains with 200 particles have
an equilibrium length of 40a. The simulation box has
periodic boundary conditions along the x direction with
dimension Lx = 10a (ten repetitions of the periodic po-
tential) and the system size in the τ direction is set to be
much larger than the chain length.
The equilibrium behavior of the system is simulated by

using the built-in Langevin integrator of HOOMD-Blue,
which introduces random forces on each particle that
replicate the effect of a finite temperature T . Langevin
dynamics requires the introduction of drag forces on each
particle, Fdrag,i = −γvi proportional to the instanta-
neous velocity vi of the ith particle. The value of the
drag coefficient affects the transient dynamics as equilib-
rium is approached, but is not expected to affect the equi-
librium properties. We choose a drag coefficient γ = 0.5
for our simulations. The time step is chosen to be 0.001
in simulation units. All simulations are run for H = 107
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time steps or more. To aid the evolution to equilibrium
conformations, the system is “annealed” by starting the
simulation at a temperature of 1.5T and ramping the
temperature down to the desired value T over the first
H/2 time steps. Equilibrium density profiles are then
built up by sampling particle positions during the latter
H/2 time steps in intervals of 104 time steps.

Disorder in the substrate potential is implemented by
adding nd cosine potentials with random amplitudes αi,
wave numbers pi, and phases ϕi to V (x):

Vdisorder(x) =

nd∑︂
i=1

αi cos

(︃
2πpi
Lx

x+ ϕi

)︃
,

where αi are drawn from a uniform distribution chosen
to generate the desired RMS amplitude σd, ϕi are drawn
uniformly from the interval [0, 2π), and pi are drawn uni-
formly from the range 2 ≤ pi ≤ 20.

Appendix B: Extracting critical force angle from
simulation data

According to our theoretical analysis, in the limit of
infinitely long polymers at commensurate filling the ϕ-
θ curve should be exactly zero up to the critical value
θc, then increase with a diverging slope (as (θ − θc)

1/2)
before approaching the ϕ = θ line. In our finite-sized
molecular dynamics simulations, the polymers acquire a
slight tilt at low force angles, which abruptly increases at
a finite θ value (see solid curve in Fig. 2g for the typical
behavior). The small nonzero tilt at low θ arises due to
bending confined to the polymer ends, whereas the steep
rise (signaled by a sudden increase in the slope of the phi-
θ relationship) is interpreted as a finite-size signature of
the sharp delocalization transition in the thermodynamic
limit.

In order to automate the estimation of the critical de-
localization angle from simulations, we need a criterion
to identify the abrupt rise in the polymer tilt angle curve.
One option would be to set a threshold value of ϕ and
identify θc as the first θ value at which the measured tilt
angle is above this threshold. However, the magnitude of
the tilt at low θ values depends on the system parame-
ters such as the polymer length and potential strength, so
any such threshold ϕ value would have to be adjusted for
each simulation to accurately capture the sharp increase.
Furthermore, such a criterion would not incorporate the
information also present in the changing slope of the ϕ-θ
curve. Another possible approach would be to directly
estimate the slope of the measured ϕ-θ curve and ap-
ply a threshold value to the slope, but this approach is
limited in precision by the large spacing between simu-
lated θ values (restricted by the computational resources
available).

Rather than imposing a threshold on the value of ϕ
or the slope of the ϕ-θ curve, we found that the sudden
increase in tilt was reliably captured by searching for the

first point of intersection between the ϕ-θ curve and the
line ϕ = Cθ, where C < 1 is a numerical prefactor. If
C is set to be large enough, the intersection point avoids
the range of slow increase in tilt at low θ, and correctly
captures the abrupt increase in slope near the purported
critical force angle. The expected large-angle behavior
meanwhile restricts C to be smaller than one. If our esti-
mation is robust, we would expect to find an intermediate
range of C values for which the intersection, and there-
fore the θc estimate, does not significantly change with
C because the two curves cross within the region of steep
increase in ϕ with θ. We indeed find that our criterion
generates θc estimates that do not change significantly
in the range 0.1 ≲ C ≲ 0.4 (Fig. 7). When C is much
smaller than 0.1, the point of intersection falls within the
region of shallow slope in the ϕ-θ for some parameter val-
ues and the resulting estimate varies strongly with C. At
C values larger than 0.4, the point of intersection falls far
to the right of the region of steep increase, leading to a
systematic overestimate of the critical angle. These pat-
terns are apparent in the variations in estimated θc as the
value of C is changed in Fig. 7. We use the finite spacing
of the simulated θ values to quantify the uncertainty in
this estimate.
In the main text, we use the curve-line intersection

criterion with C = 0.1 (the smallest value which reliably
captures the abrupt increase in ϕ across all simulations)
to extract critical angle estimates for comparison with
the theoretical results in Fig. 4. However, our conclu-
sions would be unchanged if we used other values of C
within the range 0.1 ≲ C ≲ 0.4, as the estimates would
still agree with the theoretical prediction within the un-
certainty, as shown in Fig. 7. Note that there are no
fitting parameters; the theory curve is completely deter-
mined by the system parameters.

Appendix C: Deriving the diffusion equation

To obtain the differential equation whose solution pro-
vides the partition function in Eq. (2), we consider the
evolution of Ψ for a small change in the τ coordinate,
τ → τ + ϵ. Since the energy of the polymer is built up of
purely local terms, E[x; 0, τ+ϵ] = E[x; 0, τ ]+E[x; τ, τ+ϵ]
for any ϵ. As a result, Ψ obeys the useful ‘Markovian’
recursive relation [60],

Ψ(xτ , x0, τ+ϵ) ∼
∫︂
dxϵΨ(xτ , xτ +xϵ, ϵ)Ψ(xτ +xϵ, x0, τ).

(C1)
The partition function can now be evaluated iteratively

[60]. For small ϵ we can expand the left hand side as
Ψ(xτ , x0, τ) + ϵ∂τΨ(xτ , x0, τ) +O(ϵ2). We also perform
the expansion,

Ψ(xτ+xϵ, x0, τ) ≈
(︃
1+xϵ∂x+

x2ϵ
2
∂2x

)︃
Ψ(xτ , x0, τ). (C2)

Finally as the field does not change appreciably during
the evolution by ϵ we replace E[x; τ, τ + ϵ] by its mean
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FIG. 7. Critical force angle θc estimated as the intersection of the ϕ-θ curve with the line ϕ = cθ, for different values of the
numerical coefficient c. Estimates from simulated curves (symbols) are compared to the theoretical prediction (solid line) after
rescaling as in Fig. 4. Data shown are from the sweep with V0 = 0.239 and varying β.

value to get,

Ψ(xτ , xτ + xϵ, ϵ) ∼ e−βϵ(F
2 (− xϵ

ϵ −θ)2+V (xτ )) (C3)

(We change notation by omitting the initial condition
x0 and replacing xϵ by x.)

Plugging everything in, performing the Gaussian inte-
gral, and discarding O(ϵ2) terms gives the diffusion equa-
tion, Eq. (3). Note that this connects to the assumption
of the existence of a microscopic scale over which the ex-
ternal fields are constant and the polymer segment obeys
Gaussian statistics.

Appendix D: The full many-body system

The full many-body problem is easily solved once the
single-body wave functions above are known. Using
Girardeau’s mapping [61], the many-body Hamiltonian,
Eq. (6) reduces to a sum of single-body Hamiltonians pro-
vided the many-body wave function obeys the constraint,
Ψ(x) = Ψ(x1, x2, ..., xN ) = 0 whenever any xi = xj .
This constraint is satisfied by the Slater determinant of
the single-body wave functions (the Bloch waves with
complex momenta).

To get real-valued solutions, we note that since the
Hamiltonian, Eq. (6), is real, its normalized eigenstates
Ψn(x) are either real or come in complex conjugate pairs.

Thus we just need to ensure that the Slater determinant
has either real eigenstates or pairs of complex conjugate
ones.
For a filled band it is useful to define the solution in

terms of Wannier functions rather than Bloch waves. The
descriptions are equivalent since the determinant of a
matrix of solutions is invariant on multiplication with
a Unitary matrix. The Slater determinant in terms of
the single-body Wannier functions, ΦX(x), is

S(x) =
1√
N !

∑︂
σ∈SN

sgn(σ)

N∏︂
i=1

ΦXi(σ(xi)), (D1)

where the Wannier functions, ΦX(x), are related to the
Bloch functions, Ψk(x), by

ΦX(x) =
1√
N

∑︂
k

e−ikXΨk(x);X ∈ {a, 2a, . . . ,Ma}.

(D2)
While the above defined functions are not unique (due

to the freedom in choice of global phase for the Bloch
functions) a unique set of real-valued Wannier functions
can always be found [52].
Finally, since the polymers are distinguishable we re-

strict the domain of the constructed wave-function:

Ψ(x) =

{︄√
N !S(x) if x ∈ R0

0 elsewhere,
(D3)



16

where R0 is defined by the inequalities, x1 < x2 < ... <
xN (mod Ma), and is the physical region allowed in our
non-crossing problem [49]. This redefining does not in-
terfere with the wave function being an eigenstate since it
still satisfies the eigenvalue equation and is still continu-
ous. (The derivative of the wave function is allowed to be
discontinuous because of the singular terms, δ(xi − xj),
in the Hamiltonian.)

Note that while Girardeau’s fermion-to-boson mapping
requires the determinant S(x) be multiplied with an anti-
symmetry factor, A(x) ∈ {±1}, to render it symmet-
ric [61], this is not required since our wave function is
non-zero only in R0.

Appendix E: Computation of band-structure and
the critical angle

The band structure, εn(k) at complex k can be com-
puted using any electronic-structure calculations soft-
ware such as [101] as used in [102].

In our case, we used the fact that exact solutions for
the cosine potential, V (x) = V0 cos(2πx/a) are known
in terms of the Mathieu functions [103], which are im-
plemented with high precision in computational software
such as Mathematica. To generate Fig. 3, Fig. 5, and
Fig. 8, we computed the Floquet exponent (also called
the Mathieu characteristic exponent for the specific case
of the cosine potential) for different complex values of the
energy eigenvalue ε. The imaginary part of the Floquet
exponent is the same as Im k up to numerical factors.
After computing a fine mesh of Floquet exponents for a
range of energy eigenvalues, we interpolate the values to
generate smooth sheets/curves. For Fig. 4, we used the
fact that εn(k) is real for k in the line segment joining
π
a − iµa to π

a + iµa [53]. To find µ for any fixed value of
potential strength, V0, we then had to increase the value
of Im k (with Re k fixed to π/a) until the corresponding
value of ε became complex-valued.

Appendix F: Derivation of polymer tilt

1. Tilt from energy eigenvalues

In Refs. 27 and 28, the tilt angle of a polymer in a
single-particle eigenstate Ψm of the Hamiltonian H(g)
was shown to be related to the dependence of the energy
eigenvalue on the force angle:

ϕ = −∂εm
∂g

= − 1

F

∂εm
∂θ

.

The expression was derived by defining a current operator
in terms of a derivative of the Hamiltonian with respect
to the vector potential strength g. Here, we provide an
alternative derivation of this expression using classical
probability currents under periodic boundary conditions,

and also show that it describes the average tilt of the
many-body system.
We begin by evaluating the change in the probability

density function along the τ direction:

∂p(x, τ)

∂τ
≡ ∂τp(x, τ) =

1

Z

[︂˜︁Ψ∂τΨ+Ψ∂τ ˜︁Ψ]︂
=

1

Z

[︃
1

2βF

(︂˜︁Ψ∂2xΨ−Ψ∂2x˜︁Ψ)︂− θ
(︂˜︁Ψ∂xΨ+Ψ∂x˜︁Ψ)︂]︃ .

This change in density generates a local probability cur-
rent j(x, t) along the x direction through the continuity
equation

∂τp+ ∂xj = 0

⇒ j(x, τ) =
1

Z

[︃
− 1

2βF

(︂˜︁Ψ∂xΨ−Ψ∂x˜︁Ψ)︂+ θ
(︂˜︁ΨΨ

)︂]︃
.

The integrated probability current provides the rate of
change in the average polymer position along the τ direc-
tion, which is the local tilt angle: ∂τ ⟨x⟩ =

∫︁
dxx∂τp =

−
∫︁
dxx∂xj =

∫︁
dx j, where the last step involves inte-

gration by parts on the periodic domain 0 ≤ x < Lx.
Therefore, we obtain

∂τ ⟨x⟩ =
∫︂ Lx

0

dx j(x, τ)

= − 1

2βFZ

∫︂ Lx

0

dx
(︂˜︁Ψ∂xΨ−Ψ∂x˜︁Ψ)︂+ θ

Z

∫︂ Lx

0

dx ˜︁ΨΨ

= − 1

βFZ

∫︂ Lx

0

dx
(︂˜︁Ψ∂xΨ)︂+ θ, (F1)

where the last step again involves integration by parts.
To understand the origin of the constant term, consider
a single polymer wandering across a featureless substrate
V (x) = 0 at a nonzero force angle with free ends. The
aggregated density profile is a constant over all space so
∂xΨ = 0, yet the polymer aligns to the force direction on
average so the tilt equates to θ.
To express the above equation in terms of the eigen-

values we first note that,

H(g) =
(p+ ig)2

2m
+ V (x)

= − 1

2β2F
∂2x +

θ

β
∂x − Fθ2

2
+ V (x), (F2)

such that,

∂θH(g) =
1

β
∂x − Fθ. (F3)

Now we expand the equation ∂θ(HΨn) = ∂θ(εnΨn),

multiply both sides by ˜︁Ψm(x) and integrate,∫︂
dx (˜︁Ψm(∂θH)Ψn + (εm − εn)˜︁Ψm∂θΨn) = δmn∂θεm.

(F4)
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We used H†˜︁Ψ∗
m = ε∗m˜︁Ψ∗

m to simplify ˜︁ΨmH = εm˜︁Ψm. If
m = n (we will be using ground-state dominance), we
get,

∂θεm =

∫︂
dx ˜︁Ψm(∂θH)Ψm =

1

β

∫︂
dx ˜︁Ψm∂xΨm − Fθ.

(F5)
Given specific boundary conditions at the polymer

ends, we can write the tilt of an arbitrary polymer state
using the spectral expansion introduced in the main text;
this would give a local tilt angle dependent on the vertical
coordinate τ . In the interior of a long polymer, however,

ground-state dominance dictates that (Ψ, ˜︁Ψ) → (Ψ0, ˜︁Ψ0)
and, on substituting Eq. (F5) in Eq. (F1), the local tilt
angle becomes a constant,

∂τ ⟨x⟩ = − 1

F

∂ε0
∂θ

→ ϕ. (F6)

We equate this to the measured tilt angle, ϕ, in the sim-
ulations.

For a system of many polymers, we now have N prob-
ability currents jn and the continuity equation is trans-
formed to

∂τp(x; τ) +

N∑︂
i=1

∂xiji(x; τ) = 0.

The local tilt angle associated with the nth polymer is
obtained by integrating the corresponding current:

∂τ ⟨xn⟩ = −
∫︂ Lx

0

dxxn
∑︂
i

∂xi
ji(x; τ)

=

∫︂ Lx

0

dx jn(x; τ)

= − 1

βFZ

∫︂ Lx

0

dx
(︂˜︁Ψ∂xn

Ψ
)︂
+ θ,

where Z =
∫︁
dx (˜︁ΨΨ). Since all the polymers are statisti-

cally identical, the equilibrium tilt of an individual poly-
mer is the same as the average tilt of all the polymers,
which decomposes into a sum of single-particle terms un-
der the mapping we use for noncrossing polymers:

∂τ ⟨xn⟩ =
1

N

∑︂
n

[︄
− 1

βFZ

∫︂ Lx

0

dx

(︄˜︁Ψ∑︂
n

∂xn
Ψ

)︄
+ θ

]︄

=
1

NFZ

∫︂ Lx

0

dx ˜︁Ψ(︄∂θ∑︂
n

Hn(g)

)︄
Ψ. (F7)

Under ground-state dominance the average tilt angle
again depends solely on the many-body energy eigenstate
with the lowest real part and we obtain Eq. (24) of the
main text:

ϕ = − 1

NF

∂ε0
∂θ

.

2. Using the analytical properties of the complex
band structure

Eqn. (28) of the main text establishes that the tilt can
be simplified to,

ϕ =
βa

π
Im
(︂
ε0

(︂π
a
+ iβFθ

)︂)︂
.

The multivalued function ε(k) is also periodic upon
advancing Re(k) by 2π/a [52]. At constant Im(k) =
βFθ with θ < θc, the Riemann sheet ε0(k) is well-
separated from its adjacent sheets (which form higher
bands), and is itself periodic with the same periodicity as
ε(k) (see Fig. 8a). This implies that ε0

(︁
−π

a + iβFθ
)︁
=

ε0
(︁
π
a + iβFθ

)︁
, and the average tilt (Eq. (27)) evaluates

to zero.

By contrast, when Im(k) > µ0/a = βFθc, i.e. for
force angles above the critical angle, the real part of the
lowest band touches the next band at Re(k) = ±π/a
(see Fig. 8). Now, although the multivalued function
ε(k) is still periodic along the Re(k) axis, the sheet ε0(k)
with the lowest real part of the energy is no longer peri-
odic. Upon smoothly following ε0 from one endpoint of
the contour to the other, the real component returns to
its starting value, whereas the imaginary component is
nonzero at either endpoint. This feature is apparent in
the shapes of the dashed lines in Fig. 3 above the crit-
ical contour: the oval corresponding to the lowest band
opens up when it merges with the next band, but remains
symmetric about the Re(ε) axis. Therefore, the average
tilt becomes nonzero when θ > θc, since the closed oval
corresponding to the lowest band ‘opens up’ by merging
with the next band and ε0

(︁
π
a + iβFθ

)︁
becomes complex-

valued.

We can deduce additional features of the ϕ–θ curve
near θc from known analytic properties of ε(k). Near
the branch point k0 = π/a + iFβθc, the energy behaves
as ε0(k) = ε0(k0) + Aei

π
4 (k − k0)

1/2 to lowest order in
(k−k0), where A is a nonzero real constant [52, 53]. Since
ε0(k0) is real, the imaginary part of ε0(

π
a + iβFθ) has the

following behavior near θc:

Im
(︂
ε0

(︂π
a
+ iβFθ

)︂)︂
=

{︄
0 θ < θc
A√
2

√︁
Fβa(θ − θc) θ > θc

(F8)
Immediately after the transition, therefore, the tilt is ex-
pected to grow as ϕ ∼ (θ − θc)

1/2 in the limit of large
system sizes.

Finally, for very large values of the force angle and
hence of Im(k), the momentum term dominates the
Hamiltonian and we can ignore the potential term. The
eigenfunctions of Ĥ are of the form eikx with energy-

momentum relation ε(k) = k2

2β2F . For θ ≫ θc, we there-
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FIG. 8. The complex band-structure ε(k) of the Hamiltonian, p2

2m
+ V (x) with V (x) = cos(x) as a function of complex k. a

and b show the real and imaginary parts, respectively, of the lowest two bands (Riemann sheets ordered by the real part of
the energy) of ε(k). The lowest band is plotted as a solid surface in the interval 0 < Re k < π/a and the next band is plotted
in the interval π/a < Re k < 2π/a. In panel a, the other band in each region is shown as a translucent surface. Only the
region with Re k ≥ 0 and Im k ≥ 0 is shown since on changing the sign of either Re k or of Im k, ε(k) turns into ε(k)∗ [52].
The three contours are at Im k = 0.5µ/a (blue, dashed), Im k = µ/a (red, solid) which corresponds to the critical shear, and
Im k = 1.25µ/a (green, dotted). c and d show these contours in the full Brillouin zone, illustrating that ε(k) is periodic upon
advancing Re(k) by 2π/a.

fore expect

Im
(︂
ε0

(︂π
a
+ iβFθ

)︂)︂
=

1

2β2F
Im

(︃(︂π
a
+ iβFθ

)︂2)︃
=

π

βa
θ, (F9)

from which we obtain ϕ = θ from Eq. (28).

The calculations can be easily generalized to arbitrary
fillings too. ForN polymers andM potential wells, where

N is odd, we get,

ϕ = − 1

NF

∂ε0
∂θ

= −Mβa

N2π

∫︂ π(N−1)
Ma

−π(N−1)
Ma

dk
∂ Re(ε0(k))

∂ Im(k)
,

=
M

N

βa

π
Im

(︃
ε0

(︃
π(N − 1)

Ma
+ iβFθ

)︃)︃
. (F10)

This corresponds to the path along increasing values of

Im k at constant Re k = π(N−1)
Ma in Fig. 8b. When N is

even, the many-body ground-state eigenvalues and eigen-
states come in complex-conjugate pairs. In that case,
the generalization of the calculation requires forming ap-
propriate superpositions of the two complex-conjugate
states, in terms of their real and imaginary parts, to keep
the probability density, p(x, τ), real.
The calculations in this Appendix rely on generic fea-

tures of the complex band structures of one-dimensional
periodic potentials as detailed in Refs. 52, 53 and 73. We
can verify these general predictions for the specific (co-
sine) potential we have used in our study, for which we
can compute the complex-valued energy bands following
Appendix E. Figure 8 shows the three distinct behaviors
for Eq. (28) as the force angle is increased.
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“Generalized aubry-andré self-duality and mobility
edges in non-hermitian quasiperiodic lattices,” Physical
Review B 102, 024205 (2020).

[90] Song-Bo Zhang, M. Michael Denner, Tomáš Bzdušek,
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